等差数列

合集下载

等差数列的基本公式

等差数列的基本公式

等差数列的基本公式1 等差数列等差数列是一种有规律的数字序列,其公式为a1, a1+d, a1+2d, a1+3d, a1+4d, a1+5d,……,其中a1表示等差数列的第一项,d表示公差,也就是说当前项减去前一项所得的数字是一个常数,这个常数就是公差d。

举个例子来说明等差数列,比如-3, -1, 1, 3, 5, 7,……,其中第一项是-3,所以a1=-3,现在我们求出d,找出当前项减去前一项所得的数字,也就是-1-(-3)=2,这里的2就是公差d,同理其他的项目也是这个d,结论:a1=-3, d=2。

通常情况下,等差数列的和可以通过下面的基本公式来求出:Sn=n/2*[2a1+(n-1)*d]其中n为等差数列的项数,a1表示等差数列的第一项,d表示公差。

终止项:如果要求出某个项数,我们可以使用下面的基本公式:an=a1+(n-1)*dan表示等差数列中的第n项,a1表示等差数列的第一项,d表示公差。

2 使用简而言之,用等差数列的基本公式可以计算出等差数列的任何一项以及它的和,从而方便的解决各种数学计算问题。

同时,它也是用来描述一些现实中的数学模型,比如在射门多少米才能射进一个球门的问题中,可以用等差数列对其进行模拟,从而得出精确的答案。

此外,等差数列还可以用来求解一些稍微复杂点的问题。

比如给定一组数据,要求求出其中每一项,我们可以首先把数据存入Excel 表格或者程序中,然后用有规律归纳出等差数列的基本公式,最后再将数据抽出进行计算,轻松的就得到了正确的答案。

总的来说,等差数列的基本公式是一个不可缺少的数学工具,它可以帮助我们快速、准确的计算出数学问题,也可以模拟出现实中的数学模型,发挥其广泛而有效的作用。

等差数列

等差数列

数列专题(一)——等差数列1.等差数列定义:⇔∈=-+为常数d N n d a a n n ),(*1数列}{n a 为等差数列。

2.等差数列的通项公式1(1)n a a n d =+-; 3.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 4.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=;(4)n S 为等差数列}{n a 的前n 项和,则数列,...,,232m m m m m S S S S S --也是等差数列. 基础题1.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.82.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。

3.设等差数列}{n a 的前n 项和为n S ,若2,11952-=+-=a a a ,则当n S 取最小值时,n 等 于( ) A. 9 B. 8 C. 7 D. 64.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年新课标2文科)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.已知等差数列}{n a 中,其前n 项和为n S ,36,963==S S ,则._______987=++a a a 提高题1.(15年新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.2.已知等差数列}{n a 中,若,0,031110119<⋅<+a a a a 且数列}{n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A. 20 B. 17 C. 19 D. 213.已知等差数列}{n a 中,其前n 项和为n S ,且满足35124,2a a a a a n n n -=-=++,则7S =( ) A. 7 B. 12 C. 14 D. 214.在等差数列}{n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( ) A. 9 B. 10 C. 11 D. 125.设n n T S ,分别是等差数列}{},{n n b a 的前n 项和,且5959=T S ,则35b a的值为_________.6.(15年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .一、等差数列3.等差数列的通项公式1(1)n a a n d =+-; 2.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 3.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=. 基础题2.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.8 答案:C5.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。

等差数列知识总结

等差数列知识总结

等差数列知识总结一、等差数列的一般概念1、定义一般地,如果一个数列从第二项起,每一项与前一项的差是同一个常数.....,称这样的数列为等差数列,这个常数为等差数列的公差,通常用字母d 表示。

表示为:1()n na a d n N *+-=∈ 2、通项公式:①:1(1)na a n d =+-,1a 为首项,d 为公差 ②:()(,)nm a a n m d n m N *=+-∈ ③:n a An B =+(关于n 的一次表达式)3、等差中项:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,表示为:2a b A +=。

二、等差数列的性质(若数列{}n a 是公差为d 的等差数列)1、1()1、、n m k a a a a d m n k N n m k--==∈*--; 2、若()、、、m n p q m n p q N +=+∈*⇒m n p q a a a a +=+; 3、若2m n k +=⇒2()、、m n k a a a m n k N +=∈*;4、下标成等差数列且公差为m 的项()23,,,,、k k m k m k m a a a a k m N +++⋅⋅⋅∈*组成公差为md 的等差数列;5、()232,,,m m m m m S S S S S m N --⋅⋅⋅∈*也成等差数列,公差为2md ;6、①若项数为2n+1,则()21中S n a =+且奇偶中S S a -= ()1偶中奇中S na S n a =⎧⎪⎨=+⎪⎩,1奇偶S n S n += (中a 指中项,即1中n a a +=,而,奇偶S S 指所有奇数项、所有偶数项之和)②若项数2n ,则偶奇S S n d -=⋅三、等差数列的判断1、{}1()常数n n n a a d a +-=⇔是等差数列;2、{}122()n n n n a a a N a ++=+∈*⇔是等差数列;3、{}(,)为常数n n a kn b k b a =+⇔是等差数列;4、{}21(,)22-且无常数项n n d d S An Bn A B a a =+==⇔为等差数列。

等差数列的定义和通项公式

等差数列的定义和通项公式

等差数列的定义和通项公式一、等差数列的定义和通项公式1、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,常用字母$d$表示。

2、等差数列的通项公式等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$为首项,$d$为公差。

注:已知等差数列$\{a_n\}$中的任意两项$a_n$,$a_m(n,m∈\mathbf{N}^*,m≠n)$,则$\begin{cases}a_n=a_1+(n-1)d,\\a_m=a_1+(m-1)d\end{cases}\Rightarrow$$a_n-a_m=$$(n-m)d\Rightarrow$$\begin{cases}d=\frac{a_n-a_m}{n-m},\\a_n=a_m+(n-m)d。

\end{cases}$即已知等差数列中的任意两项,可求得其公差,进而求得其通项公式。

3、等差中项由三个数$a$,$A$,$b$组成的等差数列可以看成最简单的等差数列。

这时,$A$叫做$a$与$b$的等差中项。

此时,$2A=a+b$,$A=\frac{a+b}{2}$。

若数列中相邻三项之间存在如下关系:$2a_n=a_{n+1}+a_{n-1}(n\geqslant2)$,则该数列是等差数列。

4、等差数列与函数的关系将等差数列的通项公式$a_n=a_1+(n-1)d$变形,整理得$a_n=nd+(a_1-d)$。

则从函数的角度来看$a_n=a_1+(n-1)d$是关于$n$的一次函数($d≠0$时)或常函数($d=0$时)。

它的图象是一条射线上的一系列横坐标为正整数的孤立的点,公差$d$是该射线所在直线的斜率。

(1)当$d>0$时,数列$\{a_n\}$是递增数列;(2)当$d=0$时,数列$\{a_n\}$是常数列;(3)当$d<0$时,数列$\{a_n\}$是递减数列;5、等差数列的性质若数列$\{a_n\}$是首项为$a_1$,公差为$d$的等差数列,则它具有以下性质(1)若$m+n=p+q(m,n,p,q∈\mathbf{N}^*)$,则$a_m+a_n=a_p+a_q$。

等差数列项数的公式

等差数列项数的公式

等差数列项数的公式
等差数列的项数公式是:
第n项=第1项+ (n-1) *公差
其中,第1项是等差数列的首项,n是等差数列的项数,公差是等差数列中相邻两项的差值。

拓展:
除了项数公式,还有其他一些与等差数列项数相关的公式和性质:
1.等差数列的前n项和公式:
等差数列的前n项和可以表示为:Sn = (n/2) * (第1项+第n项) 其中,Sn表示等差数列的前n项和。

2.等差数列的末项公式:
等差数列的末项可以表示为:第n项=第1项+ (n-1) *公差
3.项数公式的逆运算:
已知等差数列的第1项、末项和公差,可以使用项数公式的逆运算求得项数n。

具体步骤为:(第n项-第1项) /公差+ 1 = n
4.项数公式的特殊情况:
当等差数列的公差为1时,项数公式可以简化为:第n项=第1项+ (n-1) = n +第1项- 1
这些公式和性质都可以帮助我们在解决与等差数列项数相关的问题时进行计算和推导。

等差数列定义

等差数列定义

等差数列定义
等差数列是一种常见的数列,其定义为:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,通常用字母 d 表示。

例如,数列 1,4,7,10,13,16 就是一个等差数列,其中,公差为 3。

等差数列的通项公式是:an = a1 + (n-1)d,其中 an 表示等差数列的第 n 项,a1 表示等差数列的第一项,n 表示数列中的项数,d 表示公差。

等差数列的性质有:
1. 公差相等性质:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,公差相等。

2. 首项性质:等差数列的第一项称为首项,通常用 a1 表示。

3. 末项性质:等差数列的最后一项称为末项,通常用 an 表示。

4. 项数性质:等差数列中项的数量称为项数,通常用 n 表示。

5. 总和性质:等差数列的前 n 项和称为总和,通常用 Sn 表示。

通过这些性质,可以求解等差数列的各种问题。

例如,可以根据已知的等差数列前几项和公差,求出数列的通项公式和第 n 项的值;也可以根据已知的等差数列前几项,求出数列的前 n 项和。

等差数列在数学中有广泛的应用,例如在科学和工程中,可以用等差数列描述时间、距离、速度等变化规律;在金融领域中,可以用等差数列描述资金的增长和降低等变化规律。

等差数列公式大全

等差数列公式大全

等差数列公式大全-CAL-FENGHAI.-(YICAI)-Company One1等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=mn a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则mn a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。

8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d9、 n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小10、 在等差数列{n a }中,奇s 与偶s 的关系: ①当n 为奇数时,n s =21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法: ⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列 ⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。

等差数列的概念

等差数列的概念

等差数列的概念等差数列是指数列中相邻两项之差恒定的数列。

在数学中,等差数列是一种重要的数列类型,具有广泛的应用。

它在数学、物理、经济等领域都有着重要的地位和作用。

一、等差数列的定义等差数列的定义比较简单,即数列中任意两项之差都相等。

数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

二、等差数列的性质1. 公差:等差数列中相邻两项之差称为公差,常用字母d表示。

公差可以是正数、负数或零,代表着数列中每一项之间的间隔。

2. 首项和末项:等差数列中的第一项为首项,常用字母a1表示;最后一项为末项,常用字母an表示。

3. 通项公式:等差数列的通项公式可以用来表示数列中任意一项的值。

根据公式an = a1 + (n-1)d,我们可以轻松地求得数列中任意一项的值。

4. 总和公式:等差数列的前n项和可以用总和公式来表示。

总和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。

5. 递推关系:等差数列中的每一项都可以通过前一项加上公差得到。

这种递推关系使得我们可以通过已知条件计算出其他项的值。

三、等差数列的应用等差数列在数学上具有广泛的应用,它们可以通过表达式和性质来解决各种问题。

1. 数学应用:等差数列常常用来解决一次方程和一次不等式的问题。

通过等差数列的性质和公式,我们可以求解未知项的值,计算前n项和,判断数列的增减性等。

2. 物理应用:等差数列在物理学中也有重要的应用。

例如,物体匀速运动的位移、速度和加速度等可以通过等差数列来表示和计算。

3. 经济应用:等差数列在经济学中的应用也非常广泛。

例如,在贷款计算和投资分析中,我们常常需要利用等差数列的公式来计算每期的利息、本金和回报率等。

四、等差数列的例题分析为了更好地理解等差数列的概念和应用,我们来看几个例题。

例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。

解法:根据等差数列的总和公式Sn = (n/2)(a1 + an),代入已知条件,得到S5 = (5/2)(2 + 2 + 3×4) = 35。

第2讲 等差数列

第2讲 等差数列

知识归纳一、等差数列的概念1.定义:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,这样的数列叫做等差数列.2.等差中项:如果三数a 、A 、b 成等差数列,则A 叫做a 和b 的等差中项,即A =a +b2.二、等差数列的通项公式等差数列{a n }的通项a n =a 1+(n -1) d =a m +(n -m )d.推导方法:累加法a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1. 三、等差数列的前n 项和公式 等差数列{a n }的前n 项和S n =n a 1+a n 2=na 1+n n -12d. 推导方法:倒序相加法. 四、用函数观点认识等差数列 1.a n =nd +(a 1-d)(一次函数).2.S n =d 2n 2+(a 1-d2)n(常数项为零的二次函数).五、等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列,证明一个数列为等差数列,一般用定义法;(2)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列; (3)通项公式法:a n =kn +b(k ,b 是常数)(n ∈N *)⇔{a n }是等差数列; (4)前n 项和公式法:S n =An 2+Bn(A 、B 是常数)(n ∈N *)⇔{a n }是等差数列. (5){a n }是等差数列⇔{S nn }是等差数列.六、等差数列的性质 1.下标和与项的和的关系在等差数列中,若p +q =m +n ,则有a p +a q =a m +a n ;若2m =p +q ,则有 a p +a q =2a m ,(p ,q ,m ,n ∈N *). 2.任意两项的关系在等差数列{a n }中,m 、n ∈N *,则a m -a n =(m -n)d 或a m =a n +(m -n)d 或a m -a nm -n=d. 3.在等差数列中,等距离取出若干项也构成一个等差列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md.等差数列的依次n 项和也构成一个等差数列,即S n ,S 2n -S n ,S 3n -S 2n ,……第2讲 等差数列为等差数列,公差为n2d.即下标成等差的项成等差数列,下标和成等差的具有相同构成规律的项的和成等差数列.4.设等差数列{a n}的公差为d,那么(1)d>0⇔{a n}是递增数列,S n有最小值;d<0⇔{a n}是递减数列,S n有最大值;d=0⇔{a n}是常数数列.(2)数列{λa n+b}仍为等差数列,公差为λd.(3)若{b n},{a n}都是等差数列,则{a n±b n}仍为等差数列.(4)项数为n的等差数列中,n为奇数时,S奇-S偶=a n+12,S奇S偶=n+1n-1.S n=na中=na n+12.n为偶数时,S偶-S奇=n2d.(5)若{a n}与{b n}为等差数列,且前n项和分别为S n与S′n,则a mb m=S2m-1S′2m-1.误区警示1.用a n=S n-S n-1求a n得到a n=pn+q时,只有检验了a1是否满足a n,才能确定其是否为等差数列,前n项和是不含常数项.....的n的二次函数时,{a n}才是等差数列.2.在讨论等差数列{a n}的前n项和S n的最值时,不要忽视n是整数的条件及含0项的情形.3.如果p+q=2r(p、q、r∈N*),则a p+a q=2a r,而不是a p+a q=a2r.方法技巧一、函数思想等差数列的通项是n的一次函数,前n项和是n的二次函数,故有关等差数列的前n项和的最值问题,数列的递增递减问题等都可以利用函数的研究方法来解决.[例1]已知数列{a n}为等差数列,且a3=5,a5=11,则a n=__________.二、等差数列的设项技巧与方程思想(1)对于连续奇数项的等差数列,可设为:…,x-d,x,x+d,…,此时公差为d;(2)对于连续偶数项的等差数列,通常可设为…,a-3d,a-d,a+d,a+3d,…,此时公差为2d.[例2]有四个数,其中前三个成等差数列,后三个成等比数列,并且第一个与第四个数的和为16,第二个与第三个数的和为12,求这四个数.典例讲练等差数列的通项已知等差数列{a n }、{b n }的公差分别为2和3,且b n ∈N *,则数列{ab n }是( ) A .等差数列且公差为5 B .等差数列且公差为6 C .等差数列且公差为8 D .等差数列且公差为9①在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A .12 B .14 C .16 D .18②已知数列{a n }中,a 3=2,a 5=1,若{11+a n }是等差数列,则a 11等于( )A.0B.16C.13D.12等差数列的前n 项和①等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-66②设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{S nn }的前n项和,求T n .①已知等差数列{a n }的前n 项和S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A. 12B .1C .2D .3②已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0D .S 5=S 6等差数列性质的应用已知等差数列{a n }的前n 项和为S n ,若m>1,且a m -1+a m +1-a 2m -1=0,S 2m -1=39,则m 为( ) A .10 B .19 C .20D .39①等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( ) A .130 B .65 C .70D .75②在等差数列{a n }中,若a 1+a 5+a 9=π4,则tan(a 4+a 6)等于( )A. 3 B .-1 C .1D.33有关等差数列的最值问题等差数列{a n }中,a 1<0,S 9=S 12,该数列前多少项的和最小?①若数列{a n }(n ∈N *)的首项为14,前n 项的和为S n ,点(a n ,a n +1)在直线x -y -2=0上,那么下列说法正确的是( )A .当且仅当n =1时,S n 最小B .当且仅当n =8时,S n 最大C .当且仅当n =7或8时,S n 最大D .S n 有最小值,无最大值②已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21综合应用设{a n }是一个公差为d(d ≠0)的等差数列,它的前10项和S 10=110,且a 1、a 2、a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.①数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11②设数列{a n }满足a 1=0且11-a n +1-11-a n =1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n = k =1nb k ,证明:S n <1.课堂巩固1.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43 D .452.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6D .53.设S n 是等差数列{a n }的前n 项和,若a 4=9,S 3=15,则数列{a n }的通项a n =( ) A .2n -3 B .2n -1 C .2n +1 D .2n +34.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时n 的值是( )A .5B .6C .7D .8 5.设S n 表示等差数列{a n }的前n 项和,已知S 5S 10=13,那么S 10S 20等于( )A.19B.310C.18D.136.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .187.已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( ) A .10 B .16 C .20D .248.已知等差数列{a n }的公差为d(d≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6D .49.设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( ) A .22 B .21 C .20D .1910.已知方程(x 2-2x +m)(x 2-2x +n)=0的四个根组成一个首项为14的等差数列,则|m -n|=A.1B.34C.12D.3811.已知直线(3m +1)x +(1-m)y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10=( ) A.921 B.1021 C.1121D.202112.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.13.已知a n =n 的各项排列成如图的三角形状:记A(m ,n)表示第m 行的第n 个数,则A(21,12)=________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 … … … … … … … … … …14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( ) A .-2或-3 B .2或3 C .-2 D .316.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .117.数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.18.已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且 b n -1+b n +1=2b n (n≥2). (1)求数列{a n }和{b n }的通项公式; (2)若c n =b na n ,求数列{c n }的前n 项和T n .19.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.18B.13C.19D.31020.将正偶数集合{2,4,6…}从小到大按第n 组有2n 个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组. A .30 B .31 C .32D .3321.设数列{a n }是以2为首项,1为公差的等差数列,b n 是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( )A .1033B .2057C .1034D .205822.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i<4?B .i<5?C .i≥5?D .i<6?23.已知函数f(x)=sinx +tanx.项数为27的等差数列{a n }满足a n ∈⎝⎛⎭⎫-π2,π2,且公差d≠0.若f(a 1)+f(a 2)+…+f(a 27)=0,则当k =______时,f(a k )=0.24.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.25.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)设T n 为数列{1a n a n +1}的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.1.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22D .442.等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对 3.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .94.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为 A .3 B .-1 C .2 D .3或-15.已知数列2,x ,y,3为等差数列,数列2,m ,n,3为等比数列,则x +y +mn 的值为( ) A .16 B .11 C .-11 D .±116.在函数y =f(x)的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f(x)的解析式可能为( )A .f(x)=2x +1B .f(x)=4x 2C .f(x)=log 3xD .f(x)=⎝⎛⎭⎫34x7.已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b 2的值为________.8.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________. 9.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …………2826那么10.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上. (1)求数列{a n }的通项公式; (2)设b n =3a n ·a n +1,求数列{b n }的第n 项和T n .11.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-2 212.设等差数列{a n }的前n 项和为S n 且S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( )A.S 15a 15B.S 9a 9C.S 8a 8D.S 1a 113.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ) A.1升 B.6766升 C.4744升 D.3733升14.若数列{x n }满足x n -x n -1=d ,(n ∈N *,n≥2),其中d 为常数,x 1+x 2+…+x 20=80,则x 5+x 16=________.15.已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .。

等差数列

等差数列
4 (n≥2), 令 bn= a 1 -2 . (1)求
证: 数列 {bn} 是等差数列; (2)求数列 {an} 的通项公式. 2(an-2) 4 (1)证: 由已知 an+1-2=2- a = a . n n an 1 1 1 ∴ a -2 = 2(a -2) = 2 + a -2 . n+1 n n 1 . 即 b -b = 1 . ∴ a 1 -2 - a 1 = n+1 n 2 2 n+1 n-2 故数列 {bn} 是等差数列. (2)解: ∵{ a 1 } 是等差数列, 2 n 1 1 = n. ∴ a -2 = a 1 +( n 1) 2 2 n 1- 2 2. ∴an=2+ n 2. ∴数列 {an} 的通项公式为 an=2+ n
典型例题
5.在等差数列 {an} 中, 已知 a1=20, 前 n 项和为 Sn, 且 S10=S15. (1)求前 n 项和 Sn; (2)当 n 为何值时, Sn 有最大值, 并求它的 最大值. 5 (1)Sn=- 6 (n2-25n); (2)当且仅当 n=12 或 13 时, Sn 有最大值, 最大值为130.
三、判断、证明方法
1.定义法; 2.通项公式法; 3.等差中项法.
四、Sn的最值问题
an≥0, 1.若 a1>0, d<0 时, 满足 an+1≤0.
an≤0, 2.若 a1<0, d>0 时, 满足 an+1≥0.
二 次 函 数
注: 三个数成等差数列, 可设为 a-d, a, a+d(或 a, a+d, a+2d) 四个数成等差数列, 可设为a-3d, a-d, a+d, a+3d.

等差数列公式大全-等差公式大全

等差数列公式大全-等差公式大全

等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m )d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a ,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n ,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。

8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n 。

a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N *)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p ,q 为常数) ⇔ {n a }是等差数列⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。

等差数列的概念与性质

等差数列的概念与性质

等差数列的概念与性质等差数列是数学中常见的一种数列类型,它具有一定的规律和性质。

在本文中,将介绍等差数列的概念、公式以及一些重要的性质。

1. 概念等差数列是指数列中的任意两个相邻项之间的差值相等的数列。

通常用字母a表示首项,d表示公差,n表示项数。

例如,一个等差数列可以表示为:a,a+d,a+2d,a+3d,...,a+(n-1)d。

2. 公式等差数列有两种常见的表示形式:一般形式和通项公式。

(1) 一般形式:等差数列的一般形式可以用递推关系式来表示,即:an = a1 + (n-1)d。

其中,an表示第n项,a1表示首项,d表示公差。

(2) 通项公式:等差数列的通项公式用来表示第n项的值,通常表示为:an = a1 + (n-1)d。

这个公式可以直接求得等差数列的任意一项的值。

3. 性质等差数列具有一些重要的性质,下面将介绍其中的几个。

(1) 公差性质:等差数列中的任意两个相邻项之间的差值都相等,这个差值称为公差。

公差可以用来确定等差数列的特征。

(2) 通项性质:通过等差数列的通项公式,可以快速计算出数列的任意一项的值。

这个性质在数学问题的求解中非常有用。

(3) 首项与末项性质:等差数列的首项和末项可以通过公式an = a1 + (n-1)d来计算。

当已知首项、公差和项数时,可以快速计算出末项的值。

(4) 项数性质:等差数列的项数n可以通过通项公式an = a1 + (n-1)d 来求解。

这个性质在确定等差数列的有效区间时非常有用。

4. 应用等差数列在实际问题中有广泛的应用。

例如,在数学、物理、经济等领域中,等差数列常被用来描述一些随时间变化的规律。

通过对等差数列的分析,可以求解一些复杂的数学问题,帮助理解和解决实际应用中的相关问题。

综上所述,等差数列是数学中常见的一种数列类型,具有一定的规律和性质。

理解等差数列的概念、公式以及性质,对于解决实际问题和推导数学知识都有重要的意义。

通过运用等差数列的知识,我们可以更好地理解和应用数学中的相关概念。

知识点什么是等差数列

知识点什么是等差数列

知识点什么是等差数列知识点:什么是等差数列等差数列是数学中常见的一种数列,其中每个相邻的数字之间的差值都是相等的。

在等差数列中,一个数字称为首项,差值称为公差。

等差数列可用于解决各种实际问题,也在数学推理中扮演重要角色。

本文将介绍等差数列的定义、性质和应用。

一、等差数列定义及基本性质等差数列的定义是:如果一个数列满足每个相邻的数字之间的差值都相等,则称该数列为等差数列。

等差数列一般用字母a、d和n来表示,其中a表示首项,d表示公差,n表示数列的项数。

等差数列的基本性质包括:1. 公差性质:等差数列中,任意两个相邻数字的差值是相等的。

2. 通项公式:等差数列的通项公式可由首项和公差推导得出。

通项公式通常表示为an = a + (n - 1)d,其中an表示数列的第n项,a表示首项,d表示公差。

3. 求和公式:等差数列的前n项和可以通过求和公式Sn = (n/2)(2a+ (n - 1)d)来计算,其中n表示项数,a表示首项,d表示公差。

二、等差数列的应用等差数列在数学中的应用非常广泛,以下介绍几个常见的应用情况。

1. 数学问题:等差数列可用于解决各种数学问题,如求和、找规律、推测等。

通过等差数列的性质和通项公式,可以轻松计算数列的各项数值、求和以及验证数列中的规律。

2. 数字序列:在实际问题中,常会遇到一组数字按照一定规律排列的情况。

如果这组数字满足相邻数字之差相等,那么可以认定它们构成了一个等差数列。

通过识别等差数列,我们可以更好地理解和解决实际问题。

3. 金融领域:等差数列在金融领域的应用十分广泛。

例如银行的利率、投资计划的收益等都可能涉及等差数列。

通过等差数列的性质,我们可以对这些金融问题进行分析和计算。

4. 物理学问题:在物理学中,等差数列可以用于描述一些连续变化或周期性变化的现象。

例如,匀速运动中的位移、速度和加速度等都可以通过等差数列来表示和计算。

三、等差数列的例题解析为了更好地理解等差数列的应用,我们来看一个例题:例题:一个等差数列的首项是3,公差为4,求前10项的和。

等差数列四种判定方法

等差数列四种判定方法

等差数列四种判定方法等差数列是数学中的一个重要的概念,在高中数学中也经常涉及到。

在判断等差数列的时候,常常有四种方法。

这篇文章将为大家介绍等差数列的四种判定方法,分别为通项公式、公差、前两项差、后两项差。

掌握这些方法,可以更加准确的判断一个数列是否为等差数列。

一、通项公式等差数列通项公式为:an = a1 + (n - 1)dan表示第n项,a1表示第一项,d表示公差。

在使用通项公式判断等差数列时,可以先求出前几项的值,然后利用通项公式求出后面的项,再与实际值进行比较,判断是否为等差数列。

已知一个数列的前五项为1、3、5、7、9,要判断它是否为等差数列。

首先可以看出,这个数列的公差为2,于是可以利用通项公式求出后面的项:a6 = a1 + (6 - 1)d = 1 + 5 × 2 = 11将求得的a6、a7与实际值比较,发现它们与数列中的后两项9、11并不相等,因此这个数列不是等差数列。

二、公差公差是等差数列中相邻两项之差的固定值。

在判断一个数列是否为等差数列时,可以先求出前两项的差,然后比较后面各项之间的差,看是否相等。

如果相等,则说明这个数列是等差数列。

然后比较后面各项之间的差:a3 - a2 = 2发现它们之间的差都是2,因此这个数列是等差数列。

三、前两项差总结等差数列的判定方法有四种,分别为通项公式、公差、前两项差、后两项差。

不同的方法在不同的情况下使用,可以选择合适的方法进行判断。

在求等差数列的和、第n项等问题时,也可根据不同的情况选择不同的方法求解。

除了判定等差数列的四种方法以外,还有一些其他的相关内容需要了解。

一、等差数列的求和公式对于一个等差数列a1,a2,……,an,它们的和Sn可以通过下列公式求得:Sn = (a1 + an)×n/2a1为数列的首项,an为数列的末项,n为数列的项数。

应用等差数列求和公式可以快速计算等差数列的和,节省手工计算的时间。

已知一个等差数列的首项a1为1,公差d为2,项数n为10,要求这个数列的和。

等差数列知识点总结

等差数列知识点总结

等差数列知识点总结等差数列是数学中常见且重要的概念,它在数学、物理、经济学等领域都有广泛应用。

了解等差数列的性质和运算规律对于理解数学问题和解题非常有帮助。

本文将对等差数列的定义、通项公式、求和公式以及常见问题进行总结。

一、等差数列的定义等差数列由一系列有规律的数构成,这些数之间的差值保持不变。

等差数列的全体数可以用以下表示形式来描述:an = a1 + (n - 1)d其中an表示等差数列的第n个数,a1表示等差数列的首项,d表示公差,n表示项数。

二、等差数列的性质1. 公差等差数列中相邻两项之间的差值称为公差。

公差可以为正、零或负。

当公差为正时,数列递增;当公差为负时,数列递减。

2. 通项公式等差数列的通项公式用来表示数列中任意一项与首项之间的关系。

通项公式可表示为:an = a1 + (n - 1)d3. 前n项和等差数列前n项和表示数列的前n项之和,通常用Sn表示。

前n 项和公式可表示为:Sn = (n/2)(a1 + an)其中n为项数,a1为首项,an为第n项。

三、等差数列的运算规律1. 求任意项的值根据通项公式,我们可以计算等差数列中任意一项的值。

已知首项a1、公差d和项数n,可以使用以下公式求得第n项的值:an = a1 + (n - 1)d2. 求前n项和已知首项a1、公差d和项数n,可以使用前n项和公式计算等差数列的前n项和Sn。

具体计算步骤如下:(1)求得第n项an的值;(2)代入前n项和公式,得到Sn的值。

3. 求公差如果已知等差数列的两个相邻项或任意两项的值,可以通过求差的方式计算出公差。

公式如下:d = an - an-1四、等差数列的常见问题1. 求等差数列的第n项的值已知首项a1、公差d和项数n,可以使用通项公式计算等差数列的第n项的值。

具体计算步骤如下:an = a1 + (n - 1)d2. 求等差数列的前n项和已知首项a1、公差d和项数n,可以使用前n项和公式计算等差数列的前n项和Sn。

等差数列

等差数列

1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );【例1】设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。

2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈,首项为1a ,公差为d ,末项为n a 推广:d m n a a m n )(-+=,从而mn a a d mn --=;总结:等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 说明:等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

【例1】等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .51【例2】首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 【例3】设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120B.105C.90D.75【例4】若数列{a n }的前n 项和S n =n 2-10n(n =1,2,3,…),则此数列的通项公式为_______________;数列{na n }中数值最小的项是第_______项。

3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项及其延展【例1】如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么【例2】已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则等差数列的公差为( )A .3或-3B .3或-1C .3D .-3【例3】在等差数列{}n a 中,1910a a +=,则5a 的值为( )A 、5B 、6C 、8D 、10【例4】已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.【例5】等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项:()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)【例1】)设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24【例2】设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 【例3】设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则【例4】设{}n a 是公差为-2的等差数列,如果a 1+a 4+….. + a 97 =50,那么a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-82【例5】(1)已知等差数列{}n a 的前5项之和为25,第8项等于15,求第21项。

等差数列公式

等差数列公式

等差数列公式等差数列公式:等差数列的和为首项和末项之和乘以项数再除以2.等差数列的项数为末项减去首项再除以公差,然后加1. 首项等于2和除以项数再减去末项。

末项等于2和除以项数再减去首项。

正方形公式:正方形的周长等于边长乘以4.正方形的面积等于边长的平方。

正方体公式:正方体的体积等于棱长的立方。

正方体的表面积等于棱长的平方乘以6.长方形公式:长方形的周长等于长和宽的和乘以2.长方形的面积等于长乘以宽。

长方体公式:长方体的体积等于长乘以宽乘以高。

长方体的表面积等于长乘以宽的2倍加上长乘以高的2倍加上宽乘以高的2倍。

三角形公式:三角形的面积等于底乘以高再除以2.三角形的高等于面积乘以2再除以底。

三角形的底等于面积乘以2再除以高。

平行四边形公式:平行四边形的面积等于底乘以高。

梯形公式:梯形的面积等于上底加下底的和乘以高再除以2.圆形公式:圆形的周长等于直径乘以π,或者半径乘以2再乘以π。

圆形的面积等于半径的平方乘以π。

圆柱体公式:圆柱体的侧面积等于底面周长乘以高。

圆柱体的表面积等于侧面积加上底面积的2倍。

圆柱体的体积等于底面积乘以高。

圆锥体公式:圆锥体的体积等于底面积乘以高再除以3.和差问题公式:两个数的和加上它们的差等于两倍的大数。

两个数的和减去它们的差等于两倍的小数。

和倍问题公式:和除以倍数减1等于小数。

小数乘以倍数等于大数。

差倍问题公式:差除以倍数减1等于小数。

小数加上差等于大数。

植树问题公式:非封闭线路上植树的问题分为三种情况:⑴两端都要植树,株数等于段数加1,全长等于株距乘以株数减1.⑵一端植树,另一端不植树,株数等于段数,全长等于株距乘以株数。

⑶两端不植树,株数等于段数减1,全长等于株距乘以株数加1.。

高中等差数列公式大全

高中等差数列公式大全

高中等差数列公式大全一、等差数列的定义。

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

设等差数列{ a_n}的首项为a_1,则a_n-a_n - 1=d(n≥slant2)二、等差数列的通项公式。

1. 基本公式。

- a_n=a_1+(n - 1)d- 推导:a_2=a_1+d,a_3=a_2+d=a_1+2d,a_4=a_3+d=a_1+3d·s,以此类推可得a_n=a_1+(n - 1)d。

2. 变形公式。

- a_n=a_m+(n - m)d(m,n∈ N^*)- 推导:由a_n=a_1+(n - 1)d,a_m=a_1+(m - 1)d,两式相减得a_n-a_m=(n - m)d,移项可得a_n=a_m+(n - m)d。

三、等差数列的前n项和公式。

1. 公式一。

- S_n=frac{n(a_1+a_n)}{2}- 推导:S_n=a_1+a_2+·s+a_n,S_n=a_n+a_n - 1+·s+a_1,将这两个式子相加得2S_n=n(a_1+a_n),所以S_n=frac{n(a_1+a_n)}{2}。

2. 公式二。

- S_n=na_1+(n(n - 1))/(2)d- 推导:因为a_n=a_1+(n - 1)d,将其代入S_n=frac{n(a_1+a_n)}{2}中,得到S_n=frac{n<=ft[a_1+a_1+(n - 1)d]}{2}=na_1+(n(n - 1))/(2)d。

四、等差数列的性质。

1. 若m,n,p,q∈ N^*,且m + n=p + q,则a_m+a_n=a_p+a_q。

- 特别地,当m + n = 2k(m,n,k∈ N^*)时,a_m+a_n=2a_k。

2. 在等差数列{ a_n}中,若a_n=m,a_m=n(m≠ n),则a_m + n=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列练习题(一)1.已知为等差数列,135246105,99a a a a a a ++=++=,则20a 等于( )A. -1B. 1C. 3D.72.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于A .1 B53C.- 2 D 3 4.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =A.-2B.-12 C.12D.2 5.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A.12B.13C.14D.15 6.在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于 ( )A .18B 27C 36D 97.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .120 8.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16 B .24 C .36 D .48 9.等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( )A .12B .10C .8D .610.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .2711.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15 B .30C .31D .6412.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.二、填空题13. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 14.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 15.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =16.已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10= 三、解答题17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .18、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0,①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.19、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项? (2)新数列的第29项是原数列的第几项?20、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.21、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (Ⅰ)问第几年开始获利? (Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.22.已知等差数列{n a }中,0,166473=+-=a a a a 求{n a }前n 项和n s .高中数学必修⑤练习题----等差数列班级__________ 姓名_________ 学号____ 评分_______一、选择题:(本大题共10小题,每小题5分,共50分)1.设数列11,22,5,2,……则25是这个数列的 ( )A.第六项B.第七项C.第八项D.第九项2.若a ≠b,数列a,x 1,x 2 ,b 和数列a,y 1 ,y 2 , y 3,b 都是等差数列,则 =--1212y y x x ( )A .32B .43C .1D .343. 等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450 ,则前9项和S 9= ( ) A.1620 B.810 C.900 D.6754.在-1和8之间插入两个数a,b ,使这四个数成等差数列,则 ( )A. a=2,b=5B. a=-2,b=5C. a=2,b=-5D. a=-2,b=-55.首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83<d ≤3 6.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为( ) A .3 B .-3 C .-2 D .-1 7.在等差数列}{n a 中,,0,01110><a a 且||1011a a >,则在n S 中最大的负数为 ( )A .17SB .18SC .19SD .20S8.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( ) A.a 11 B.a 10 C.a 9 D.a 89.设函数f(x)满足f(n+1)=2)(2n n f +(n ∈N *)且f(1)=2,则f(20)为 ( ) A.95B.97C.105D.19210.已知无穷等差数列{a n },前n 项和S n 中,S 6 <S 7 ,且S 7 >S 8 ,则 ( ) A .在数列{a n }中a 7 最大;B .在数列{a n }中,a 3 或a 4 最大;C .前三项之和S 3 必与前11项之和S 11 相等;D .当n ≥8时,a n <0. 二、填空题:(本大题共4小题,每小题5分,共20分)11.集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________.12、在等差数列{}n a 中,37104118,14.a a a a a +-=-=-记123n n S a a a a =++++ ,则13S =_____ 13、已知等差数列{}n a 中,79416,1a a a +==,则16a 的值是 . 14.等差数列{a n }、{b n }、{c n }与{d n }的前n 项和分别记为S n 、T n 、P n 、Q n .n n T S =1315-+n n ,()n n af n b =;n n c d =2325--n n ,()n nP g n Q =.则()()f n g n 的最小值=三、解答题:15.(12分)(1)在等差数列{}n a 中,71,83d a =-=,求n a 和n S ; (2)等差数列{}n a 中,4a =14,前10项和18510=S .求n a ;16.(13分)一个首项为正数的等差数列{a n },如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大?17.(13分)数列{a n }中,18a =,42a =,且满足2120n n n a a a ++-+= (1)求数列的通项公式;(2)设12||||||n n S a a a =+++ ,求n S 。

18.(14分)一种设备的价值为a 元,设备维修和消耗费用第一年为b 元,以后每年增加b 元,用t 表示设备使用的年数,且设备年平均维修、消耗费用与设备年平均价值费用之和为y 元,当a=450000,b=1000时,求这种设备的最佳更新年限(使年平均费用最低的t)19.(14分)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列;(2)求a n 表达式; (3)若b n =2(1-n)a n (n ≥2),求证:b 22+b 32+…+b n 2<1.20.(14分)已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ).(1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求102030a a a ++的取值范围;(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?等差数列●知识梳理1.等差数列的概念若数列{a n }从第二项起,每一项与它的前一项的差等于同一个常数,则数列{a n }叫等差数列. 2.通项公式:a n =a 1+(n -1)d , 推广:a n =a m +(n -m )d .变式:a 1=a n -(n -1)d ,d =11--n a a n ,d =m n a a mn --,由此联想点列(n ,a n )所在直线的斜率.3.等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b =2ca +;a 、b 、c 成等差数列是2b =a +c 的充要条件.4.前n 项和:S n =2)(1n a a n +=na 1+2)1(-n n d =n ·a n -21(n -1)nd . 变式:21n a a +=n S n =n a a a n +⋅⋅⋅++21=a 1+(n -1)·2d =a n +(n -1)·(-2d).●点击双基1.(2003年全国,文5)等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 是 A.48B.49C.50D.512.(2003年全国,8)已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |等于A.1B.43 C.21 D.83 3.(2004年春季上海,7)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则a n =___________________.4.(2003年春季上海,12)设f (x )=221+x ,利用课本中推导等差数列前n 项和的公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为___________________. ●典例剖析【例1】 数列{a n }的前n 项和为S n =npa n (n ∈N *)且a 1≠a 2, (1)求常数p 的值;(2)证明:数列{a n }是等差数列.【例2】 已知{a n }为等差数列,前10项的和S 10=100,前100项的和S 100=10,求前110项的和S 110.【例3】 已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .●闯关训练 夯实基础1.等差数列{a n }中,a 10<0,a 11>0且a 11>|a 10|,S n 为其前n 项和,则 A.S 1,S 2,…,S 10都小于0,S 11,S 12,…都大于0 B.S 1,S 2,…,S 19都小于0,S 20,S 21,…都大于0 C.S 1,S 2,…,S 5都小于0,S 6,S 7,…都大于0 D.S 1,S 2,…,S 20都小于0,S 21,S 22,…都大于02.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{S n }中也为常数的项是 A.S 7 B.S 8 C.S 13 D.S 153.在等差数列{a n }中,公差为21,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_________.那么2004应该在第______________行第______________列.5.(2004年全国,文17)等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50. (1)求通项{a n };(2)若S n =242,求n .6.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,S 3,…,S 12中哪一个最大,并说明理由.培养能力7.已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列;(2)求a n 的表达式.8.有点难度哟!(理)设实数a ≠0,函数f (x )=a (x 2+1)-(2x +a1)有最小值-1. (1)求a 的值;(2)设数列{a n }的前n 项和S n =f (n ),令b n =na a a n242+⋅⋅⋅++,证明:数列{b n }是等差数列.(文)有一批影碟机(VCD )原销售价为每台800元,在甲、乙两家电商场均有销售,甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?探究创新9.有点难度哟!已知f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,n 为正偶数,且a 1,a 2,a 3,…,a n 组成等差数列,又f (1)=n 2,f (-1)=n .试比较f (21)与3的大小.拓展题例【例1】 已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少相同的项?并求所有相同项的和.【例2】 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n .数列概念及等差数列三.【要点精讲】 1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

相关文档
最新文档