高考物理真题考点点拨精析(大纲版):考点5动量守恒定律
P高中物理专题解析专题5-动量守恒定律
k mE P 2=m P E k 22=5. 动量守恒定律I 合=ΔP 或 F 合t = mv t —mv 0 (冲量方向与物体动量变化量方向一致)公式一般用于冲击、碰撞中的单个物体,解题时要先确定正方向。
三、动量守恒定律:一个系统不受外力或受外力矢量和为零,这个系统的总动量保持不变。
P 总 = P 总’ 或m 1v 1+m 2v 2 = m 1v 1'+m 2v 2'公式一般用于冲击、碰撞、爆炸中的多个物体组成的系统,解题时要先确定正方向。
系统在某方向上外力矢量和为零时,某方向上动量守恒。
四、完全弹性碰撞:在弹性力作用下,动量守恒,动能守恒。
非弹性碰撞:在非弹性力作用下,动量守恒,动能不守恒。
完全非弹性碰撞:在完全非弹性力作用下,碰撞后物体结合在一起运动,动量守恒,动 能不守恒。
系统机械能损失最大。
五、动量与动能的关系:【典型例题】例1. 如图1所示的装置中,木块B 与水平面间接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起做为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中 ( )A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒分析:合理选取研究对象和运动过程,利用机械能守恒和动量守恒的条件分析。
如果只研究子弹A 射入木块B 的短暂过程,并且只选A 、B 为研究对象,则由于时间极短,则只需考虑在A 、B 之间的相互作用,A 、B 组成的系统动量守恒,但此过程中存在着动能和内能之间的转化,所以A 、B 系统机械能不守恒。
本题研究的是从子弹开始射入木块到弹簧压缩至最短的整个过程,而且将子弹、木块和弹簧合在一起为研究对象,在这个过程中有竖直墙壁对系统的弹力作用,(此力对系统来讲是外力)故动量不守恒。
解答:由上面的分析可知,正确选项为B例2. 质量为m 1=10g 的小球在光滑的水平面上以v 1=30cm/s 的速率向右运动,恰遇上质量m 2=50g 的小球以v 2=10cm/s 的速率向左运动,碰撞后,小球m 2恰好停止,那么碰撞后小球m 1的速度是多大?方向如何?分析:由于两小球在光滑水平面上,以两小球组成的系统为研究对象,该系统沿水平方向不受外力,因此系统动量守恒。
高考物理动量守恒知识点讲解
高考物理动量守恒知识点讲解在高考物理中,动量守恒定律是一个非常重要的知识点,也是解题的关键工具之一。
理解并熟练运用动量守恒定律,对于解决很多物理问题至关重要。
一、动量守恒定律的基本概念动量,用符号 p 表示,定义为物体的质量 m 与速度 v 的乘积,即 p = mv。
动量是一个矢量,其方向与速度的方向相同。
动量守恒定律指的是:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
这里的“系统”可以是两个或多个相互作用的物体组成的整体。
二、动量守恒定律的表达式常见的表达式有两种形式:1、 m₁v₁+ m₂v₂= m₁v₁' + m₂v₂' (这是最常见的形式,适用于两个物体组成的系统)其中,m₁、m₂分别是两个物体的质量,v₁、v₂是它们相互作用前的速度,v₁'、v₂' 是相互作用后的速度。
2、∑p₁=∑p₂(即系统作用前的总动量等于作用后的总动量)三、动量守恒定律的条件1、系统不受外力或所受外力的矢量和为零。
这是最理想的情况,但在实际问题中,外力的矢量和为零的情况相对较少。
2、系统所受的外力远小于内力,且作用时间极短。
比如爆炸、碰撞等过程,虽然系统受到了外力,但由于内力远远大于外力,在极短的时间内,可以近似认为系统的动量守恒。
四、动量守恒定律的应用1、碰撞问题(1)完全弹性碰撞在完全弹性碰撞中,动量守恒且动能守恒。
例如,两个质量分别为 m₁和 m₂的小球,以速度 v₁和 v₂相向碰撞,碰撞后它们的速度分别变为 v₁' 和 v₂'。
根据动量守恒:m₁v₁+ m₂v₂= m₁v₁' + m₂v₂'根据动能守恒:1/2 m₁v₁²+ 1/2 m₂v₂²= 1/2 m₁v₁'²+ 1/2m₂v₂'²通过解这两个方程,可以求出碰撞后的速度 v₁' 和 v₂'。
[荐]高中物理:动量守恒定律-必考知识点+例题详解
【下载后获高清完整版-独家】高中物理:动量守恒定律-必考知识点+例题详解1. 动量,表征运动物体的作用效果或者保持运动的趋势,是一个状态量,表示物体的一个运动状态。
动量是矢量,即有方向。
2.冲量,力在时间上的累积,是一个过程量。
容易发现,动量与冲量的单位是一样的。
它们之间有什么关系吗?3.动量定理,冲量等于动量的改变量,即冲量引起动量的变化。
,动量定理的实质是牛顿第二定律推论:动量的变化率等于物体所受的合外力。
4.动量守恒定律⑴明确内力和外力的概念,单个物体与系统的含义;⑵如果一个系统所受合外力为零,则系统的总动量保持不变实质:把系统或者各个物体看做一个整体,合外力为零时,系统整体或者系统质心保持静止或匀速直线运动。
考察各组成部分的运动时,动量守恒就是牛顿第三定律的推广,作用力与反作用力大小相等、方向相反,作用时间一样,所以冲量大小相等、方向相反,代数和为零,动量守恒。
⑶合外力不为零,但内力远大于外力时,也可认为近似守恒,如碰撞、爆炸等;⑷合外力不为零,但在某一方向上满足守恒条件,定律在该方向上也同样适用。
5.碰撞⑴碰撞的特点①相互作用的时间很短;②内力远大于外力,可认为系统动量守恒;③碰撞后系统的总动能不会增加;⑤碰撞后不能穿透对方。
⑵弹性碰撞:碰撞前后机械能守恒;两个物体碰撞前的速度分别为、,碰撞后的速度分别为、,根据系统的动量守恒和机械能守恒,可得当=0时,上式简化为:①时,两速度均为正;时,两物体交换速度(≠0时也成立);时,两速度前负后正;②极端情况下,时,,;时,,;但要注意,此时被动球的动量不等于0,而是最大值(想一想为什么?)⑶非弹性碰撞:机械能不守恒的碰撞,因为碰撞产生的形变并不能完全恢复,所以造成动能损失。
完全非弹性碰撞:碰撞后两物体合二为一,具有共同的速度,此时动能损失最大。
[例1]静止在水平面上的物体受到水平拉力作用,经时间撤去,物体至停止共滑行位移,再换用水平拉力作用,经时间撤去,物体停止时也滑行了位移,已知,、对物体的冲量为、,对物体做功为、,则下列关系正确的是()A.,B.,C.,D.,解析:考察动能变化:由动能定理,合外力做功等于动能的改变量,摩擦力做的负功在两种情况下是一样的,所以拉力做的正功也是一样的,即;再考察冲量变化:我们知道,由动量定理、是两种情况下的总的运动时间。
高三物理第一轮复习要点:动量守恒定律
高三物理第一轮复习重点:动量守恒定律动量守恒定律是说系统内部物体间的互相作用只好改变每个物体的动量,而不可以改变系统的总动量,在系统运动变化过程中的任一时辰,单个物体的动量能够不一样,但系统的总动量同样,小编整理了高三物理第一轮复习重点:动量守恒定律,供参照。
动量守恒定律知识点总结1、动量守恒定律的条件:系统所受的总冲量为零( 不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的互相作使劲 ) ,即系统所受外力的矢量和为零。
( 碰撞、爆炸、反冲 )注意:内力的冲量对系统动量能否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传达的原由,而外力的冲量是改变系统总动量的原由。
2、动量守恒定律的表达式 m1v1+m2v2=m1v1/+m2v2/(规定正方向 ) △p1=—△ p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
一定注意差别总动量守恒与某一方向动量守恒。
4、碰撞(1)完整非弹性碰撞:获取共同速度,动能损失最多动量守恒 ;(2)弹性碰撞:动量守恒,碰撞前后动能相等 ; 动量守恒, ; 动能守恒 ;5、人船模型——两个本来静止的物体( 人和船 ) 发生互相作用时,不受其余外力,对这两个物体构成的系统来说,动量守恒,且任一时辰的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)动量守恒定律解题技巧例 1:质量 m1=10g的小球在圆滑的水平桌面上以v1=30cm/s 的速率向右运动,恰巧碰上在同一条直线上向左运动的另一个小球 . 第二个小球的质量为 m2=50g,速率v2=10cm/s. 碰撞后,小球 m2恰巧停止 . 那么,碰撞后小球 m1 的速度是多大,方向怎样 ?剖析:取互相作用的两个小球为研究的系统。
因为桌面光滑,在水平方向上系统不受外力. 在竖直方向上,系统受重力和桌面的弹力,其协力为零. 故两球碰撞的过程动量守恒.解:设向右的方向为正方向,则各速度的正、负号分别为v1=30cm/s ,v2=10cm/s ,v'2=0. 据动量守恒定律有mlvl+m2v2=m1v'1+m2v'2.解得 v'1=-20cm/s.即碰撞后球m1的速度大小为20cm/s ,方向向左 .经过此例总结运用动量守恒定律解题的重点以下:(1)确立研究对象 . 对象应是互相作用的物系统 .(2)剖析系统所受的内力和外力,侧重确认系统所遇到的合外力能否为零,或合外力的冲量能否能够忽视不计 .。
高中物理 动量守恒定律 (提纲、例题、练习、解析)
动量守恒定律【学习目标】1.能用牛顿运动定律推导动量守恒定律;2.知道动量守恒定律的适用条件和适用范围;3.进一步理解动量守恒定律,知道定律的适用条件和适用范围,会用动量守恒定律解释现象、解决问题.【要点梳理】要点一、动量守恒定律1.系统 内力和外力在物理学中,把几个有相互作用的物体合称为系统,系统内物体间的相互作用力叫做内力,系统以外的物体对系统的作用力叫做外力.2.动量守恒定律(1)内容:如果一个系统不受外力或者所受外力的矢量和为零,那么这个系统的总动量保持不变.(2)动量守恒定律的数学表达式:①p p ='.即系统相互作用前的总动量p 和相互作用后的总动量p '大小相等,方向相同.系统总动量的求法遵循矢量运算法则.②0p p p ∆==-'.即系统总动量的增量为零.③12p p ∆∆=-.即将相互作用的系统内的物体分为两部分,其中一部分动量的增加量等于另一部分动量的减少量. ④当相互作用前后系统内各物体的动量都在同一直线上时,动量守恒定律可表示为代数式:11221122m v m v m v m v +=+''.应用此式时,应先选定正方向,将式中各矢量转化为代数量,用正、负号表示各自的方向.式中12v v 、为初始时刻的瞬时速度,12v v 、''为末时刻的瞬时速度,且它们一般均以地球为参照物.(3)动量守恒定律成立的条件:①系统不受外力作用时,系统动量守恒;②若系统所受外力之和为零,则系统动量守恒;③系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒.但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒.要点诠释:为了方便理解和记忆,我们把以上四个条件简单概括为:①②为理想条件,③为近似条件,④为单方向的动量守恒条件.3.动量守恒定律的适用范围它是自然界最普遍、最基本的规律之一.不仅适用于宏观、低速领域,而且适用于微观、高速领域.小到微观粒子,大到天体,无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的.4.运用动量守恒定律解题的基本步骤和方法(1)分析题意,确定研究对象.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑. 动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.(2)对系统内物体进行受力分析,分清内力、外力,判断所划定的系统在其过程中是否满足动量守恒的条件,若满足则进行下一步列式,否则需考虑修改系统的划定范围(增减某些物体)或改变过程的起点或终点,再看能否满足动量守恒条件,若始终无法满足动量守恒条件,则应考虑采取其他方法求解.(3)明确所研究的相互作用过程的始、末状态,规定正方向,确定始、末状态的动量值表达式.(4)根据题意,选取恰当的动量守恒定律的表达形式,列出方程.(5)合理进行运算,得出最后的结果,并对结果进行讨论,如求出其速度为负值,说明该物体的运动方向与规定的正方向相反.要点二、与动量守恒定律有关的问题1.由牛顿定律导出动量守恒定律的表达式以两球碰撞为例:光滑水平面上有两个质量分别是1m 和2m 的小球,分别以速度1v 和2v (1v >2v )做匀速直线运动。
物理高考知识点动量守恒
物理高考知识点动量守恒动量是物理学中的重要概念,它描述了物体运动的特性。
在高考中,动量守恒定律是一个重要的知识点。
本文将通过介绍动量的定义、动量守恒定律的表达方式、应用以及相关实例等方面,来详细讨论物理高考中有关动量守恒的知识点。
首先,让我们来了解一下动量的定义。
动量是物体的运动量,它的定义为物体的质量乘以其速度。
可以用公式表示为:p = m × v,其中p表示动量,m表示物体的质量,v表示物体的速度。
这个定义告诉我们,动量的大小与物体的质量和速度有关。
接下来,我们来讨论动量守恒定律的表达方式。
动量守恒定律是指,在一个孤立系统中,如果没有外力作用,系统的总动量将保持不变。
可以用数学表达式表示为:Σp1 = Σp2,其中Σp1表示系统在初始时刻的总动量,Σp2表示系统在末尾时刻的总动量。
这个定律告诉我们,如果一个系统在没有外力作用下,系统内各个物体的动量之和保持不变。
在物理高考中,我们需要掌握动量守恒定律的应用。
具体来说,可以通过动量守恒定律解决一些与碰撞有关的问题。
例如,在弹性碰撞中,两个物体发生碰撞后,它们的总动量在碰撞前后保持不变。
根据动量守恒定律,我们可以通过这个关系来求解碰撞后物体的速度等问题。
类似地,在非弹性碰撞中,总动量也是守恒的,但是碰撞后的物体之间有能量损失。
通过动量守恒定律结合相关公式,我们可以解决这类问题。
为了更好地理解动量守恒定律在实际情况中的应用,我们可以通过一个实例来说明。
考虑一个弹性碰撞问题,一个质量为m1、速度为v1的物体与另一个质量为m2、速度为v2的物体发生碰撞后,求解碰撞后两个物体的速度。
首先,根据动量守恒定律,我们有m1v1 + m2v2 = m1v1' + m2v2',其中v1'和v2'分别表示碰撞后两个物体的速度。
其次,根据弹性碰撞的条件,我们有 m1v1 + m2v2 = m1v1' + m2v2' 和(1/2)m1v1² + (1/2)m2v2² = (1/2)m1v1'² + (1/2)m2v2'²。
高考物理动量守恒定律知识点小结
高考物理动量守恒定律知识点小结动量守恒定律、碰撞、反冲现象知识点归纳总结1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
(2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
高中物理动量守恒定律试题经典含解析
s=Vt⑥
由②⑤⑥得
S= ⑦
考点:动量守恒定律;机械能守恒定律.
点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.
7.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K时,可以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程: 。
② 是一种不稳定的粒子,其半衰期为2.6×10-16s。一定质量的 ,经7.8×10-16s后所剩下的 占开始时的。
(1)写衰变方程;
(2)求出反冲核钋的速度; 计算结果用题中字母表示
(3)求出这一衰变过程中的质量亏损。 计算结果用题中字母表示
【答案】(1) ;(2) ,负号表示方向与 离子速度方向相反;(3)
【解析】
【分析】
【详解】
(1)由质量数和核电荷数守恒定律可知,核反应方程式为
(2)核反应过程动量守恒,以 离子的速度方向为正方向
(1)释放后物块A和凹槽B的加速度分别是多大?
(2)物块A与凹槽B的左侧壁第一次碰撞后瞬间A、B的速度大小;
(3)从初始位置到物块A与凹糟B的左侧壁发生第三次碰撞时B的位移大小.
【答案】(1)(2)vAn=(n-1)m∙s-1,vBn="n" m∙s-1(3)xn总=0.2n2m
【解析】
【分析】
【详解】
(2)由s—t图象知:碰后两物体由共同速度,即发生完全非弹性碰撞
碰后的共同速度
根据动量守恒定律,有:
另一物体的质量
考点:s—t图象,动量守恒定律
11.如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹.设木板足够长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间.
高考物理动量守恒知识点讲解
高考物理动量守恒知识点讲解在高考物理中,动量守恒定律是一个非常重要的知识点,也是解决许多力学问题的关键。
理解和掌握动量守恒定律,对于提高我们解决物理问题的能力有着至关重要的作用。
接下来,让我们一起深入探讨动量守恒的相关知识。
一、动量的概念动量(momentum)是一个与物体的运动状态相关的物理量。
我们用符号“p”来表示动量,它的定义是物体的质量“m”与速度“v”的乘积,即 p = mv。
从这个定义可以看出,动量与物体的质量和速度都有关系。
质量越大、速度越大的物体,其动量也就越大。
需要注意的是,动量是一个矢量,它的方向与速度的方向相同。
二、动量守恒定律动量守恒定律是指:如果一个系统不受外力或者所受合外力为零,那么这个系统的总动量保持不变。
用数学表达式可以写成:m1v1 + m2v2 = m1v1' + m2v2' (其中m1、m2 分别表示两个物体的质量,v1、v2 表示它们相互作用前的速度,v1'、v2' 表示相互作用后的速度)这个定律的适用条件有两个:一是系统不受外力或者所受合外力为零;二是系统内力远大于外力,比如爆炸、碰撞等过程,在极短的时间内,内力很大,外力可以忽略不计,此时也可以近似认为系统动量守恒。
为了更好地理解动量守恒定律,我们来看几个例子。
例 1:在光滑水平面上,有两个质量分别为 m1 和 m2 的小球,它们以速度 v1 和 v2 相向运动,发生正碰后,它们的速度分别变为 v1' 和v2' 。
由于水平方向上系统不受外力,所以动量守恒,即 m1v1 + m2v2 = m1v1' + m2v2' 。
例 2:一个人站在静止的船上,向船外抛一个质量为 m 的物体,人和船的质量为 M 。
在抛物体的过程中,系统在水平方向上所受合外力为零,所以动量守恒。
设抛出物体的速度为 v,人和船的速度为 V,则有 0 = mV + mv 。
三、动量守恒定律的应用动量守恒定律在解决物理问题中有广泛的应用,下面我们来介绍几种常见的应用场景。
高考物理专题复习05:动量、动量守恒定律
动量守恒定律一:复习要点1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。
2.一般数学表达式:''11221122m v m v m v m v +=+3.动量守恒定律的适用条件 :①系统不受外力或受到的外力之和为零(∑F 合=0);②系统所受的外力远小于内力(F外F 内),则系统动量近似守恒;③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒)4.动量恒定律的五个特性①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷二:典题分析1.放在光滑水平面上的A 、B 两小车中间夹了一压缩轻质弹簧,用两手控制小车处于静止状态,下列说法正确的是 ( )A.两手同时放开,两车的总动量等于零B .先放开右手,后放开左手,两车的总动量向右C .先放开右手,后放开左手,两车的总动量向左D .先放开右手,后放开左手,两车的总动量为零 解析:该题考查动量守恒的条件,答案为 AB2.A、B两滑块在一水平长直气垫导轨上相碰.用频闪照相机在t0=0,t1=Δt,t2=2Δt,t3=3Δt各时刻闪光四次,摄得如图所示照片,其中B像有重叠,mB=(3/2)mA,由此可判断 ( )A.碰前B静止,碰撞发生在60cm处,t=2.5Δt时刻 B.碰后B静止,碰撞发生在60cm处,t=0.5Δt时刻 C.碰前B静止,碰撞发生在60cm处,t=0.5Δt时刻 D.碰后B静止,碰撞发生在60cm处,t=2.5Δt时刻解析:该题重点考查根据照片建立碰撞的物理图景,答案为 B3.质量为50㎏的人站在质量为150㎏(不包括人的质量)的船头上,船和人以0.20m/s 的速度向左在水面上匀速运动,若人用t =10s 的时间匀加速从船头走到船尾,船长L =5m ,则船在这段时间内的位移是多少?(船所受水的阻力不计)分析:(该题利用动量守恒重点考查了人、船模型中速度关系、位移关系) 解析:设人走到船尾时,人的速度为x v ,船的速度为y v对系统分析:动量守恒()y x Mv mv v M m +=+0 对船分析:(匀加速运动) S =t v v y⋅+2对人分析:(匀加速运动) t v v L S x⋅+=-20 得:S = 3.25 m.4.如图所示,一块足够长的木板,放在光滑水平面上,在木板上自左向右并非放有序号是1,2,3,…,n 的物体,所有物块的质量均为m ,与木板间的动摩擦因数都相同,开始时,木板静止不动,第1,2,3,…n 号物块的初速度分别是v 0,2 v 0,3 v 0,…nv 0,方向都向右,木板的质量与所有物块的总质量相等 ,最终所有物块与木板以共同速度匀速运动。
高考物理:动量守恒定律、碰撞、反冲现象知识点归纳总结!
高考物理:动量守恒定律、碰撞、反冲现象知识点归纳总结!1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m1v1 m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4.碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
(2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
高考物理知识点之动量守恒定律
高考物理知识点之动量守恒定律考试要点基本概念一、动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:p=mv(1)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(2)动量是矢量,它的方向和速度的方向相同。
(3)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
2.动量的变化:∆=p-'pp由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
(1)若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
(2)若初末动量不在同一直线上,则运算遵循平行四边形定则。
3冲量按定义,力和力的作用时间的乘积叫做冲量:I=Ft(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(3)高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(4)要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
二、动量定理1.动量定理物体所受合外力的冲量等于物体的动量变化。
既I =Δp(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
(2)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
(3)现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。
高三物理动量守恒知识点
高三物理动量守恒知识点动量是物体运动的重要属性之一,而动量守恒定律是物理学中一项重要的基本定律。
它在解释和预测物体相互作用时起着至关重要的作用。
高三物理中的动量守恒知识点是学习物理的基础,下面将详细介绍。
一、动量的定义和计算方法动量是物体的物理量,可以用公式 p = mv 来计算,其中 p 表示动量,m 表示物体的质量,v 表示物体的速度。
在动量守恒定律中,最基本的一个概念就是动量的守恒。
当一个物体在一个封闭系统中发生相互作用时,物体的总动量保持不变。
二、动量守恒定律的表达动量守恒定律可以表达为:在一个封闭系统中,物体的总动量在相互作用过程中保持不变。
即如果在一个封闭系统中没有外力作用,物体的动量和总动量守恒。
这是一个非常重要的基本定律,在研究物体相互作用时常常使用。
三、弹性碰撞和完全非弹性碰撞根据动量守恒定律,可以进一步分析物体之间的碰撞。
在弹性碰撞中,物体在碰撞过程中动能守恒,动量守恒,且碰撞后物体会反弹,保持原有的形状。
而在完全非弹性碰撞中,物体在碰撞过程中会发生形变或者粘连,动能不守恒,但动量仍然守恒。
四、动量守恒定律的应用动量守恒定律在实际生活和工程中有着广泛的应用。
例如,汽车发生碰撞时,根据动量守恒定律可以预测碰撞后车辆的速度和动量变化。
此外,动量守恒定律还可以应用于火箭发射、交通信号灯设计等工程领域。
五、动量守恒实验为了加深对动量守恒定律的理解,可以进行一些简单的实验。
例如,可以利用弹簧测力计和滑轨来观察和验证动量守恒定律。
通过调节质量和速度等因素,可以进行不同条件下的实验,观察物体碰撞后的动量变化情况。
六、动量守恒的局限性虽然动量守恒定律在大多数情况下都适用,但在某些特殊情况下可能存在一定的局限性。
例如,在相对论范围内,质量增加的物体速度趋近于光速,动量守恒定律就需要以相对论动量的形式来描述。
综上所述,高三物理中的动量守恒知识点是物理学中非常重要的一部分。
理解和掌握动量的定义、计算方法以及动量守恒定律的表达和应用是学好物理的基础。
高考物理动量守恒定律试题经典及解析
高考物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m 【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x xm M t t=,x 1+x 2=L 代入数据联立解得:24Lx ==0.1m 考点:动量守恒定律;能量守恒定律.2.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.3.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】 【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.4.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理-动量守恒定律考点
(1)因碰撞时间极短,A、B碰撞时,C的速度
为零,由动量守恒定律得mAv0=mAvA+mBvB。
vA
mAv0 mBvB方向4与mA/ 初s,速度方向相反。
mA
(2)第一次恢复原长,弹簧的弹性势能为零
设此时B的速度为vB′,C的速度为vC
mBvB=mBvB′+mC12vCm,Bv2B
1 2
mBv2B
3.瞬时性:系统在相互作用的过程中,每一时刻系统的动量都守 恒,而不应将不同时刻系统内各物体的动量进行合成。 4.相对性:由于动量的大小与参考系的选择有关,因此在应用动 量守恒时,应注意各物体的速度必须是相对同一参考系的速度, 一般以地面为参考系。
4】如图所示,光滑水平面上木块A的质量mA=1kg,木块B的质量 mB=4kg,质量为mC=2kg的木块C置于足够长的木块B上,B、C之间 用一轻弹簧相拴接并且接触面光滑。开始时B、C静止,A以 v0=10m/s的初速度向右运动,与B碰撞后B的速度为3.5m/s,碰撞 时间极短。求: (1)A、B碰撞后A的速度。 (2)弹簧第一次恢复原长时C的速度。
3】如图所示,一小车静止在光滑水平面上,甲、乙两人分别站 在左右两侧,整个系统原来静止,则当两人同时相向走动时 ()
A.要使小车静止不动,甲、乙速率必须相等 B.要使小车向左运动,甲的速率必须比乙的大 C.要使小车向左运动,甲的动量必须比乙的大 D.要使小车向左运动,甲的动量必须比乙的小
选C。甲、乙与小车组成的系统动量守恒,有: m甲v甲+m乙v乙+M车v车=0,可知,只要甲、乙的动量大小不等, 小车的动量就不会为0,即将获得动量而运动,要使小车向左运动, 甲的动量必须比乙的大,故C正确。
+Ep
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
高考物理动量守恒定律解析版汇编含解析
高考物理动量守恒定律解析版汇编含解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
高考物理动量守恒定律解析版汇编含解析
高考物理动量守恒定律解析版汇编含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题4.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律5.冰球运动员甲的质量为80.0kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理学习材料
金戈铁骑整理制作
考点5 动量守恒定律
一、选择题
1.(2011·大纲版全国·T20)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ。
初始时小物块停在箱子正中间,如图所示。
现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止。
设碰撞都是弹性的,则整个过程中,系统损失的动能为
A .21
2
mv B .
2
12mM v m M
+ C .12N mgL μ D .N mgL μ
【思路点拨】解答本题要把握以下思路:
【精讲精析】选BD
根据动量守恒,共同速度
m
M mv v +=
',损失动能
22221)(2121v M
m mM v m M mv E k +='+-=
∆,所以B 正确.根据能量守恒,损失的动能等动量守恒求共速
初末动能之差
损失的动能
摩擦力乘相对位移
系统产生的热量
于因摩擦发出的的热量,而计算热量的方法是摩擦力乘以相对位移,所以
k E N fL N mgL μ∆=∙=,可见D 正确。
二、非选择题
2.(2011·重庆理综·T24)(18分)如题24图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时与第三车相碰,三车以共同速度又运动了距离L 时停止。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:
⑴整个过程中摩擦阻力 所做的总功; ⑵人给第一辆车水平冲量的大小; ⑶第一次与第二次碰撞系统动能损失之比。
【思路点拨】解答本题时可按以下思路分析:⑴摩擦力的功可以用摩擦力与位移的乘积求出.⑵车与车的短暂碰撞过程遵守动量守恒定律.⑶动能损失可从碰撞前后的动能之差求出。
【精讲精析】⑴整个过程中摩擦阻力所做的总功 ⑴kmgL kmgL kmgL kmgL W 632-=---=
⑵设第一车的初速度为0u ,第一次碰前速度为1v ,碰后共同速度为1u ,第二次碰
前速度为2v ,碰后共同速度为2u .
20212121mu mv kmgL -=
-……………① 212
221)2(21)2(mu v m gL m k -=-……………②
2
2)3(210)3(u m gL m k -=-……………③
由动量守恒得
112mu mv =……………④ 2232mu mv =……………⑤
人给第一辆车水平冲量的大小kgL m mu I 722==………⑥ ⑶由①⑥解得kgL v 2621=………⑦ 由④⑦解得kgL v u 264
141
2121⨯==………⑧ 第一次碰撞系统动能损失kmg u m mv E k 2
13
)2(212121211=
-=∆………⑨ 由③解得kgL u 22
2=………⑩
由⑤解得222
3
u v =………
第二次碰撞系统动能损失kmg u m v m E k 2
3)3(21)2(212222
1=-=∆…………… 第一次与第二次碰撞系统动能损失之比
3
13
21=∆∆k k E E …………… 3.(2011·上海高考物理·T22A )光滑水平面上两小球a 、b 用不可伸长的松弛细绳相连。
开始时a 球静止,b 球以一定速度运动直至绳被拉紧,然后两球一起运动,
在此过程中两球的总动量 (填“守恒”或“不守恒”);机械能 (填“守恒”或“不守恒”)。
【思路点拨】解答本题要把握以下思路:绳被拉紧是两个物体结合在一起,属于碰撞中的完全弹性碰撞。
【精讲精析】b 球以一定速度运动直至绳被拉紧,两物体间绳子的拉力就是相互
131211
作用的内力,满足动量的守恒条件,所以两小球a 、b 组成的系统动量守恒,两球一起运动,具有共同速度,符合完全非弹性碰撞的特征,动能损失很大,机械能不守恒。
〖答案〗守恒,不守恒
4.(2011·四川理综·T23)(16分)
随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍惜生命.一货车严重超载后的总质量为49t ,以54km/h 的速率匀速行驶.发现红灯时司机刹车,货车即做匀减速直线运动,加速度的大小为2.5m/s 2(不超载时则为5m/s 2).
(1)若前方无阻挡,问从刹车到停下来此货车在超载及不超载时分别前进多远?
(2)若超载货车刹车时正前方25m 处停着总质量为1t 的轿车,两车将发生碰撞,设相互作用0.1 s 后获得相同速度,问货车对轿车的平均冲力多大? 【思路点拨】(1)利用匀变速直线运动公式求解;
(2)从匀变速直线运动公式求出碰前的速度,以之为初动量,利
用动量守恒定律得出共同速度;然后用隔离法单独研究轿车,对其应用动量定理求平均冲力. 【精讲精析】
(1)由运动学公式aS v v t 22
02=-,代入数据可知
m a v S 4521201== 以及 m a v S 5.2222
2
2==
(2)设经过位移/S =25m 后,该货车的速度为1v ,由运动学公式
/1212
02S a v v =-
再设碰后共同速度为2v ,由动量守恒定律
21)(v m M Mv +=
以轿车为研究对象,应用动量定理
02-=∆mv t F
联立以上三式得 N F 4108.9⨯=
【答案】(1)m S 451= m S 5.222= (2) N F 4108.9⨯=.。