优质课2.匀变速直线运动的规律
化学教案:匀变速直线运动的规律
化学教案:匀变速直线运动的规律本教案主要讲解匀变速直线运动的规律。
匀变速直线运动是物理学中的一个重要概念,是研究物体运动规律的基础。
了解匀变速直线运动的规律对于理解和掌握物理学的知识体系具有重要意义。
一、教学目标通过本次教学,学生可以:1、了解匀变速直线运动的概念和特征;2、掌握匀变速直线运动的几个关键概念,如位移、速度、加速度等;3、掌握匀变速直线运动的运动规律;4、了解匀变速直线运动在实际生活中的应用。
二、教学重点1、匀变速直线运动的概念和特征;2、匀变速直线运动的运动规律。
三、教学难点1、运用所学知识解决实际问题;2、理解匀变速直线运动的运动规律。
四、教学过程1、导入(5分钟)教师可以通过发放一个小小的图片或者一段小视频,向学生介绍匀变速直线运动。
2、学习匀变速直线运动的概念和特征(20分钟)(1)在黑板上画出匀变速直线运动的图形,向学生解释匀变速直线运动的概念和特征。
(2)在黑板上向学生列出全程所需要使用的公式,包括匀变速直线运动的位移、速度、加速度等。
3、学习匀变速直线运动的运动规律(30分钟)(1)向学生讲解匀变速直线运动的运动规律,包括匀变速直线运动的位移规律、速度规律、加速度规律等。
(2)引导学生通过练习题和实验来加深对匀变速直线运动的运动规律的理解。
4、学习匀变速直线运动在实际生活中的应用(15分钟)(1)通过生动的案例向学生展示匀变速直线运动在生活中的应用,如汽车行驶、电梯升降等。
(2)引导学生对匀变速直线运动在实际生活中的应用进行思考,并就此展开讨论。
五、教学总结(5分钟)教师总结本次教学的重点、难点及教学效果。
同时要求学生对所学的知识点进行回顾和总结,以更好地掌握所学内容。
六、拓展练习(10分钟)安排一些关于匀变速直线运动的作业,以进一步加深学生对所学内容的理解和掌握。
七、教学反思本教案主要目的是使学生掌握匀变速直线运动的概念、特征和运动规律,并将所学知识应用于实际生活中。
《匀变速直线运动的规律》 讲义
《匀变速直线运动的规律》讲义一、匀变速直线运动的定义匀变速直线运动是指在直线运动中,加速度恒定不变的运动。
也就是说,在运动过程中,物体的速度均匀变化。
加速度是描述速度变化快慢的物理量,如果加速度的大小和方向都不变,那么物体就做匀变速直线运动。
二、匀变速直线运动的分类匀变速直线运动分为匀加速直线运动和匀减速直线运动两种情况。
当加速度与速度方向相同时,物体做匀加速直线运动,速度不断增大。
当加速度与速度方向相反时,物体做匀减速直线运动,速度不断减小。
三、匀变速直线运动的基本公式1、速度公式:v = v₀+ at其中,v 是末速度,v₀是初速度,a 是加速度,t 是运动时间。
这个公式表明,末速度等于初速度加上加速度与时间的乘积。
2、位移公式:x = v₀t + 1/2 at²此公式描述了在时间 t 内,物体的位移 x 与初速度 v₀、加速度 a 和时间 t 的关系。
3、速度位移公式:v² v₀²= 2ax这个公式可以在已知初末速度和位移的情况下,求出加速度。
四、几个重要的推论1、平均速度公式:v(平均) =(v₀+ v) / 2在匀变速直线运动中,平均速度等于初速度与末速度的算术平均值。
2、中间时刻的瞬时速度:v(t/2) =(v₀+ v) / 2即匀变速直线运动在某段时间内中间时刻的瞬时速度等于这段时间初末速度的平均值。
3、连续相等时间内的位移差公式:Δx = aT²在匀变速直线运动中,连续相等的时间 T 内的位移之差是一个恒定值,等于加速度 a 与时间 T 的平方的乘积。
五、典型例题例1:一辆汽车以10m/s 的初速度在平直公路上做匀加速直线运动,加速度为 2m/s²,求 5s 末汽车的速度和 5s 内的位移。
解:根据速度公式 v = v₀+ at,可得 5s 末的速度 v = 10 + 2×5= 20m/s根据位移公式 x = v₀t + 1/2 at²,可得 5s 内的位移 x = 10×5 +1/2×2×5²= 75m例 2:一个物体从静止开始做匀加速直线运动,加速度为 3m/s²,求第 3s 内的位移。
匀变速直线运动的规律课件
物体速度变化量与发生这一变化所用时间的比值,记为a。
位移和时间计算
位移定义
物体从初位置到末位置的有向线段, 记为x。
时间定义
物体运动过程所经历的时间,记为t。
平均速度和瞬时速度计算
平均速度定义
物体在某段时间内位移与时间的比值, 记为v_avg。
VS
瞬时速度定义
物体在某一时刻或某一位置的速度,记为 v。
THANKS FOR WATCHING
感谢您的观看
数据分析
以速度v为纵轴、时间t为横轴建立直角坐标系,根据实验数据描点。如果这些点在一条直线上,就证明了小车的 速度随时间均匀变化。如果不是直线,应该根据这些点作出一条最能反映速度随时间变化规律的直线,即“拟合 ”一条直线。
06 匀变速直线运动相关物理 量计算
初速度和加速度计算
初速度定义
物体开始运动时的速度,记为v₀。
3. 把小车停在靠近打点 计时器处,接通电源后, 放开小车,让小车拖着 纸带运动,打点计时器 就在纸带上打下一列小 点。换上新纸带,重复 实验三次。
数据处理和分析方法
数据处理
从三条纸带中选择一条比较理想的进行测量。为了便于测量,应舍去开始一些过于密集的点迹,找一个适当的点 当作计时起点。测量出各计数点到计时起点的距离x,计算出打下各计数点时小车的瞬时速度v。
03
研究物体上升和下落过程中的速度、位移、时间等关系,以及
计算物体的最大高度和落地时间等。
匀减速直线运动规律及应用
1 2
匀减速直线运动的定义
物体在直线运动中,速度均匀减小的运动。
匀减速直线运动的规律
加速度方向与速度方向相反,速度均匀减小至0。
3
匀减速直线运动的应用
匀变速直线运动的规律及其应用(教案及教学反思)
匀变速直线运动的规律及其应用教学对象:高中物理教学目标:1. 理解匀变速直线运动的概念。
2. 掌握匀变速直线运动的规律。
3. 学会运用匀变速直线运动的规律解决实际问题。
教学重点:1. 匀变速直线运动的概念。
2. 匀变速直线运动的规律。
3. 匀变速直线运动规律的应用。
教学难点:1. 匀变速直线运动规律的理解和应用。
教学准备:1. 教学PPT。
2. 教学视频或实验器材。
教学过程:一、导入(5分钟)1. 利用实验或视频展示匀变速直线运动的现象,引导学生观察和思考。
2. 提问:什么是匀变速直线运动?它有哪些特点?二、知识讲解(15分钟)1. 讲解匀变速直线运动的概念,解释匀变速直线运动的特点。
2. 推导匀变速直线运动的规律,引导学生理解规律的物理意义。
三、案例分析(10分钟)1. 提供几个实际问题,让学生运用匀变速直线运动的规律进行分析和解答。
四、课堂练习(5分钟)1. 发放练习题,让学生独立完成。
2. 讲解练习题,指出常见错误和解题技巧。
五、教学反思(5分钟)2. 让学生谈谈自己在学习过程中的收获和困惑,鼓励学生提出问题和建议。
教学延伸:1. 进一步学习匀变速直线运动的图形表示方法,如v-t图和s-t图。
2. 探究匀变速直线运动的其他相关问题,如速度与位移的关系等。
教学反思:1. 检查学生对匀变速直线运动概念和规律的理解程度,针对性地进行讲解和辅导。
2. 关注学生在解决问题时的思维过程和方法,引导学生运用规律解决实际问题。
3. 调整教学方法和节奏,确保学生能够跟上教学进度,提高学习效果。
六、实验验证(10分钟)1. 安排学生进行匀变速直线运动的实验,如滑块和轨道实验。
2. 引导学生观察实验现象,记录数据。
3. 分析实验结果,验证匀变速直线运动的规律。
七、拓展学习(10分钟)1. 介绍匀变速直线运动在实际生活中的应用,如汽车行驶、物体自由落体等。
2. 引导学生思考匀变速直线运动在其他领域中的应用,如地球物理学、天体物理学等。
匀变速直线运动的规律及应用
匀变速直线运动的规律及应用1. 匀变速直线运动的基础概念1.1 什么是匀变速直线运动?匀变速直线运动,其实就是物体在运动过程中,速度在不断变化,但变化的速度是恒定的。
说白了,就是车子加速或减速的速度保持不变。
就像你骑自行车,如果每秒钟都加速10公里,那么你就是在做匀变速直线运动。
1.2 匀变速直线运动的公式说到公式,别怕复杂。
其实也就那么几个关键点。
首先,我们有位移公式:( s = v_0 t + frac{1}{2} a t^2 ),其中 ( s ) 是位移,( v_0 ) 是初速度,( a ) 是加速度,( t ) 是时间。
接着,速度公式是:( v = v_0 + a t )。
只要掌握了这些,匀变速运动也就搞定了。
2. 匀变速直线运动的实际应用2.1 交通工具中的匀变速我们在交通工具上最常见的就是匀变速运动了。
例如,汽车起步的时候,加速度是比较均匀的,车速逐渐增加。
这个时候,如果你有个车速表,就能看到车速稳步上升。
再比如地铁,刚启动时加速也是匀速的,让你在车上也能感受到“平稳”的感觉。
2.2 日常生活中的应用不仅限于交通工具,我们平常玩滑板、溜冰,甚至走路时,也会遇到匀变速运动的情况。
当你加速走路或减速时,速度的变化往往是均匀的。
比如你在跑步机上慢跑,跑步机的速度增加得比较平稳,这就是匀变速的典型表现。
3. 如何利用匀变速直线运动提高生活质量。
3.1 提高运动效果利用匀变速运动的规律,我们可以更科学地安排运动计划。
比如你要增加跑步的强度,可以在跑步时逐渐增加速度,这样可以避免突然加速带来的不适,同时提高运动效果。
3.2 安全驾驶在驾驶过程中,掌握匀变速运动的知识也非常重要。
比如,当你在高速公路上超车时,平稳加速不仅让驾驶更安全,也能提高车辆的稳定性。
懂得运用匀变速的原理,你的驾驶体验会更舒适,车子也能更省油。
结语所以呢,匀变速直线运动不仅是物理课上的难题,更是我们日常生活中的重要部分。
了解它的规律,应用到实际生活中,不仅能让我们在运动时更有效率,还能在驾驶时更安全。
第2讲-匀变速直线运动的规律及应用
考点一 匀变速直线运动规律及应用
短跑运动员完成 100 m 赛跑的过程可简化为匀加速直线运动和匀速 直线运动两个阶段。一次比赛中,某运动员用 11.00 s 跑完全程,已知运 动员在加速阶段的第 2 s 内通过的位移为 7.5 m,求 (1)该运动员的加速度; (2)在加速阶段通过的位移。
思维关键: 画出过程示意图
返回
考点一 匀变速直线运动规律及应用
解析: 根据题意,在第 1 s 和第 2 s 内运 动员都做匀加速直线运动,设运动员在 匀加速阶段的加速度为 a,在第 1 s 和第 2 s 内通过的位移分别为 x1 和 x2,由运动 学规律得: x1=21at20① x1+x2=12a(2t0)2② t0=1 s③ 联立①②③求得 a=5 m/s2④ 设运动员做匀加速运动的时间为 t1,匀速
开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域
时的速度之比和穿过每个矩形区域所用的时间分别是( )
A.v1∶v2∶v3=3∶2∶1 B.v1∶v2∶v3= 3∶2∶1 C.t1∶t2∶t3=1∶2∶3 D.t1∶t2∶t3=( 3- 2)∶( 2-1)∶1
由 v2-v20=2ax 可得初速度为零的匀加速直线运动中 通过连续相等位移的速度之比为 1∶2∶3,则所求的 速度之比为 3∶2∶1,故选项 A 错,B 正确。
xAB=34xAC③
物设故由因物变vv根 面 O所对 的 现 t(利 2可 t对 比 因x2202BBB,aC==C-体以体速为C据 积 时 将 于x以 用tx=于 为 为 ===那AB2vC匀 之 41间 整 初从直物向上看 推Ctta,20=3初么+t=2-xxx变 比 之 个速 )线成 论体上三=t1CBAv2s通xt速∶tCaB,22BB速 等 度 比 斜x+:运2沿s=①滑∶ Cv匀式tat22过x。2B。 2B中B度 又∶直 于 为 面为xtsBCxC动2斜B到正A减解A3,Ca间B线 对 分零= 为∶ Bttx②… 的B好面12DB速得CD∶,时x运 应 成的tCx零+2A等 、规∶,向4∶A所x解刻Ct冲动 边 相匀3Cttn=的于D∶BD律x上∶=…得的 用的 平 等加3BCE上EC+=ax匀可A4∶、做=瞬1的规 方 的速ttAn斜CBt∶tC=Et得加C3Ex时 +匀律 比 四直=时= A=段4A∶A面=215C速速, , 段线减t∶。间2t的∶ 1(Bt=… 的,,C∶度作 得 ,运s由 直 3速平为22时∶ ,2解相-等出 SS如(动,以均s运线2△ △间t。而得1于BnAB图当,上速v又)C动OD运- 分∶通,CC这(所通t三于-度=x,t由= 别动1x段3示过 过图式,CBC)向-t为设匀。C,=位DO,连象解因=x下222移在B设 ,续,2t得此BxA)s由又v由匀D4的∶A通 且相如连的B…=vCB=①④B平 加,v过 SS等图∶续 (=点 时(△ △Ba②⑤均=AB的速所tv2是BODn2相间B0-CC速③⑥-CC各示 v。滑= 这⑥等 0为1度-解解段段。41段 )下tn, 的,x位的a利得得t-,位,斜tvO⑤时移时用1t移所AvtDD)B面CE。B所间相间C==的==以=。用为似tv中里(,v2通t0三 =0+2间3④通-过角v2时=过s形刻x2v2的B的)0,Ct。x,位的规又因t律移时 此EvA20, =有 =之间
匀变速直线运动的规律及其应用(教案及教学反思)
教案:匀变速直线运动的规律及其应用教学目标:1. 了解匀变速直线运动的概念及其特点;2. 掌握匀变速直线运动的规律及其应用;3. 能够运用匀变速直线运动的规律解决实际问题。
教学重点:1. 匀变速直线运动的概念及其特点;2. 匀变速直线运动的规律及其应用。
教学难点:1. 匀变速直线运动的规律的推导;2. 实际问题的解决。
教学准备:1. 教学PPT;2. 教学视频或动画;3. 实际问题案例。
教学过程:一、导入(5分钟)1. 引入匀变速直线运动的概念,引导学生回顾已学的物理知识;2. 提问学生对于匀变速直线运动的特点有何了解,引导学生思考。
二、新课讲解(15分钟)1. 讲解匀变速直线运动的定义及其特点;2. 推导匀变速直线运动的规律,引导学生参与其中,巩固知识点;3. 通过PPT或教学视频展示匀变速直线运动的具体案例,让学生更好地理解。
三、案例分析(15分钟)1. 给出几个实际问题案例,让学生运用匀变速直线运动的规律进行解决;2. 引导学生分组讨论,共同解决问题;3. 邀请学生分享解题过程和答案,进行点评和指导。
四、课堂练习(10分钟)1. 发放课堂练习题,让学生独立完成;2. 对学生的练习答案进行点评和指导,纠正错误。
五、课堂小结(5分钟)1. 对本节课的内容进行简要回顾,巩固知识点;2. 强调匀变速直线运动的规律在实际问题中的应用。
教学反思:本节课通过讲解匀变速直线运动的规律及其应用,让学生能够运用所学知识解决实际问题。
在教学过程中,通过导入、新课讲解、案例分析、课堂练习和课堂小结等环节,引导学生逐步理解和掌握匀变速直线运动的规律。
在案例分析环节,通过分组讨论和分享解题过程,培养了学生的合作意识和沟通能力。
在课堂练习环节,及时对学生的练习答案进行点评和指导,帮助学生纠正错误,提高解题能力。
总体来说,本节课的教学效果较好,学生对匀变速直线运动的规律及其应用有了更深入的理解和掌握。
但在教学过程中,仍需注意对于匀变速直线运动规律的推导环节,可以适当给予学生更多的引导和帮助,以确保学生能够更好地理解和掌握。
匀变速直线运动的规律课件
运动规律
运动规律可以通过图象来推导和分析。
结论和要点
匀速直线运动的结论
匀速直线运动的速度恒定,位移与时间成正 比。
变速直线运动的结论
变速直线运动的速度随时间改变,位移与速 度的关系复杂。
匀变速直线运动的规律
匀变速直线运动是物体在直线上运动过程中速度随时间改变的运动规律。
匀速直线运动的定义和特点
1 什么是匀速直线运动
物体在直线上以相同大小的速度匀速运动。
2 匀速直线运动的特点
速度恒定不变,位移与时间成正比。
匀速直线运动的公式推导
速度公式的推导
速度等于位移除以时间。
位移公式的推导
位移等于速度乘以时间。
变速直线运动的定义和特点
1 什么是变速直线运动
物体在直线上以不同大小的速度变化运动。
2 变速直线运动的特点
速度随时间改变,位移与速度的关系复杂。
变速直线运动的公式推导
速度公式的推导
速度等于位移除以时间。
位移公式的推导
位移等于速度乘以时间。
运动图象与运动规律的关系
运动图象
2.匀变速直线运动的规律
学科教师辅导讲义一、错题讲解 二、知识梳理1.匀变速直线运动(1)定义:沿着一条直线,且加速度不变的运动。
(2)分类:①匀加速直线运动,a 与v 0方向相同。
②匀减速直线运动,a 与v 0方向相反。
2.匀变速直线运动的规律(1)速度公式:v =v 0+at 。
(2)位移公式:x =v 0t +12at 2。
(3)位移速度关系式:v 2-v 20=2ax 。
初速度为零的匀变速直线运动的四个重要推论(1)1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n (2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为: x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1) (4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)1.一观察者站在第一节车厢前端,当列车从静止开始做匀加速运动时,下列说法正确的是( ) A .每节车厢末端经过观察者的速度之比是1∶2∶3… B .每节车厢末端经过观察者的时间之比是1∶3∶5… C .在相等时间里经过观察者的车厢数之比是1∶3∶5… D .在相等时间里经过观察者的车厢数之比是1∶2∶3…解析:选AC 根据初速度为零的匀变速直线运动的推论及v 2=2ax 知选项A 、C 正确。
匀变速直线运动的两个重要推论(1)物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初末时刻速度矢量和的一半,即:v=v t 2=v 0+v 2。
(2)任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2。
还可以推广到x m -x n =(m -n )aT 2。
匀变速直线运动规律的总结
匀变速直线运动规律的总结
一、匀变速直线运动规律:
1、匀变速直线运动:匀变速直线运动是指物体在直线上运动,且速
度在运动过程中保持恒定时,叫做匀变速直线运动。
2、运动路程的计算:在匀变速直线运动中,按照分段计算的方法可
以求出在给定时间内运动的距离,公式为:S=V*t。
其中,V为物体运动
的速度,t为运动的时间。
3、速度的计算:在匀变速直线运动中,可以求出物体在给定时间内
走的路程,按照分段计算的方法可以求出运动速度,公式为:V=S/t。
其中,S为物体走的路程,t为运动的时间。
4、加速度的计算:加速度是物体速度变化的速率,它是物体变化速
度的程度。
在匀变速直线运动中,由于物体的速度保持不变,所以其加速
度也为0。
二、匀变速直线运动特点:
1、速度恒定:在匀变速直线运动中,物体运动的速度在整个运动过
程中都是恒定的,既不会减少也不会增加。
2、加速度为零:在匀变速直线运动中,物体的加速度一直为零,因
为物体的速度保持不变,所以其加速度不变。
3、曲线不能直接代表速度:匀变速直线运动曲线不能直接代表速度,我们必须以路程或时间等绝对量准确地衡量速度。
4、受力状态复杂:匀变速直线运动中,物体受到的力可能不定,它
会受外力的影响。
知识点匀变速直线运动的规律
匀变速直线运动的规律一.考点整理匀变速直线运动规律1.匀变速直线运动:沿着一条直线,且加速度的运动.分为匀加速直线运动〔a与v方向〕和匀减速直线运动〔a与v向〕.2.三个根本规律:①速度公式:v = ;②位移公式:x = ;③位移速度关系式:v2t–v02 = .3.三个推论:①做匀变速直线的物体在连续相等的相邻时间间隔T内的位移差等于恒量,即x2–x1 = x3–x2 =……= x n–x n – 1 = ;②做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度,即v平均= v t/2= ;③匀变速直线运动的某段位移中点的瞬时速度v x/2 = .4.初速度为零的匀加速直线运动的特别规律:⑴在1T末,2T末,3T末,…,n T末的瞬时速度之比为v1∶v2∶v3∶…∶v n = ;⑵在1T内,2T内,3T内,…,n T内的位移之比为x1∶x2∶x3∶…∶x n = ;⑶在第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶x N =____________________________________;⑷从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n = ;⑸从静止开始通过连续相等的位移时的速度之比为v1∶v2∶v3∶…∶v n = ;5.自由落体运动:物体只在作用下,从开始下落的运动叫自由落体运动.⑴根本特征:只受,且初速度为、加速度为的匀加速直线运动.⑵根本规律:由于自由落体运动是直线运动,所以匀变速直线运动的根本公式及其推论都适用于自由落体运动.①速度公式:v = ;②位移公式:h = ;③位移与速度的关系:v2 = .⑶推论:①平均速度等于中间时刻的瞬时速度,也等于末速度的一半,即v平均= v/2 = ;在相邻的相等时间内下落的位移差Δh = 〔T为时间间隔〕.二.思考与练习思维启动1.依据给出的速度和加速度的正负,对物体运动性质的推断正确的选项是〔〕A.v > 0,a < 0,物体做加速运动B.v < 0,a < 0,物体做加速运动C.v < 0,a > 0,物体做减速运动D.v > 0,a >0,物体做加速运动2.一物体由静止开始沿光滑斜面做匀加速直线运动,运动6秒到达斜面底端,斜面长为18米,则:⑴物体在第3秒内的位移多大?⑵前3秒内的位移多大?3.甲物体的质量是乙物体质量的5倍,甲从H高处自由下落,同时乙从2H高处自由下落,以下说法中正确的选项是〔高度H远大于10 m〕〔〕A.两物体下落过程中,同一时刻甲的速率比乙的大B.下落1 s末,它们的速度相等C.各自下落1 m,它们的速度相等D.下落过程中甲的加速度比乙的大三.考点分类探讨典型问题〖考点1〗匀变速直线运动规律的应用【例1】珠海航展现场空军八一飞行表演队两架“歼-10〞飞机表演剪刀对冲,上演精彩空中秀.质量为m的“歼-10〞飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v0着陆后马上翻开减速阻力伞,加速度大小为a1,运动时间为t1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x.求:第二个减速阶段飞机运动的加速度大小和时间.【变式跟踪1】如下列图,是某型号全液体燃料火箭发射时第—级发动机工作时火箭的a– t图象,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第—级的推力降至60%,第—级的整个工作时间为200s.由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看做均匀变化,试计算:⑴t = 50 s时火箭的速度大小;⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t =10 s时离地面的高度是多少?如果此时有一碎片脱落,不计空气阻力,碎片将需多长时间落地?〔取g = 10 m/s2,结果可用根式表示〕〖考点2〗自由落体运动和竖直上抛运动例2某人在高楼的平台边缘,以20 m/s的初速度竖直向上抛出一石子.不考虑空气阻力,取g=10 m/s2,求:⑴物体上升的最大高度;回到抛出点所用的时间;⑵石子抛出后通过距抛出点下方20 m处所需的时间.【变式跟踪2】在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为〔〕A.10 m B.20 m C.30 m D.50 m考点3:实际应用:汽车的“刹车〞问题.汽车刹车问题的实质是汽车做单方向匀减速直线运动问题.汽车在刹车过程中做匀减速直线运动,速度减为0后,车相对地面无相对运动,加速度消逝,汽车停止不动,不再返回.汽车运动时间满足t≤v0/a,发生的位移满足x≤v02/2a〔停止时取“=〞号〕.例3一辆汽车以10 m/s的速度沿平直的公路匀速前进,因故紧急刹车,加速度大小为0.2 m/s2,则刹车后汽车在1 min内通过的位移大小为〔〕A.240 m B.250 m C.260 m D.90 m【变式跟踪3】一辆公共汽车进站后开始刹车,做匀减速直线运动,开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m,则刹车后6 s内的位移是〔〕C.25 m D.75 m四.考题再练高考真题1.〔202xX高考〕某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的X速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为〔〕A.5m/s B.10m/s C.15m/s D.20m/s【预测1】中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约3000m,着陆距离大约为202xm.设起飞滑跑和着陆时都是匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是〔〕A.3∶2 B.1∶1 C.1∶2 D.2∶12.〔202x全国卷大纲版〕一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.每根铁轨的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求:⑴客车运行速度的大小;⑵货车运行加速度的大小【预测2】小明同学乘坐“和谐号〞动车组,觉察车厢内有速率显示屏.当动车组在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,局部数据列于表格中.动车组的总质量M = 2.0×105kg,假设动车组运动时受到的阻力是其重力的0.1倍,取g = 10m/s2.在小明同学记录动车组速率这段时间内,求:⑴动车组的加速度值;⑵动车组牵引力的最大值;⑶动车组位移的大小.五.课堂演练自我提升t/s v/m·s-1 0 30 100 40 300 50 400 50 500 60 550 70 600 801.一个物体从静止开始做匀加速直线运动.它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的选项是〔〕A.x1∶x 2 = 1∶3,v1∶v2 = 1∶2 B.x1∶x2 = 1∶3,v1∶v2 = 1∶ 2C.x1∶x2 = 1∶4,v1∶v2 = 1∶2 D.x1∶x2 = 1∶4,v1∶v2 = 1∶ 22.某做匀加速直线运动的物体初速度为2 m/s,经过一段时间t后速度变为6 m/s,则t/2时刻的速度为〔〕A.由于t未知,无法确定t/2时刻的速度B.5 m/sC.由于加速度a及时间t未知,无法确定t/2时刻的速度D.4 m/s3.科技馆里有一个展品,该展品放在暗处,顶部有一个不断均匀向下喷射水滴的装置,在频闪光源的照耀下,可以看到水滴好似静止在空中固定的位置不动,如下列图.某同学为计算该装置喷射水滴的时间间隔,用最小刻度为毫米的刻度尺测量了空中几滴水间的距离,由此可计算出该装置喷射水滴的时间间隔为〔g取10 m/s2〕〔〕A.0.01 s B.0.02 s C.0.1 s D.0.2 s4.做匀减速直线运动的物体经4 s后停止,假设在第1 s内的位移是14 m,则最后1 s内的位移是〔〕A.3.5 m B.2 m C.1 m D.05.沙尘暴天气会严峻影响交通.有一辆卡车以54 km/h的速度匀速行驶,司机突然模糊看到正前方十字路口一个老人跌倒〔假设没有人扶起他〕,该司机刹车的反响时间为0.6 s,刹车后卡车匀减速前进,最后停在老人前1.5 m处,预防了一场事故.刹车过程中卡车加速度大小为5 m/s2,则〔〕A.司机觉察情况后,卡车经过3 s停下B.司机觉察情况时,卡车与该老人的距离为33 mC.从司机觉察情况到停下来的过程,卡车的平均速度为11 m/sD.假设卡车的初速度为72 km/h,其他条件都不变,则卡车将撞到老人6.从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则以下说法正确的选项是〔〕A.A上抛的初速度与B落地时速度大小相等,都是2vB.两物体在空中运动的时间相等C.A上升的最大高度与B开始下落时的高度相同D.两物体在空中同时到达的同一高度处肯定是B开始下落时高度的中点7.一条东西方向的平直公路边上有两块路牌A、B,A在西B在东,一辆匀速行驶的汽车自东向西经过B路牌时,一只小鸟恰自A路牌向B匀速飞去,小鸟飞到汽车正上方马上折返,以原速率飞回A,过一段时间后,汽车也行驶到A.以向东为正方向,它们的位移-时间图像如下列图,图中t2 = 2t1,由图可知〔〕A.小鸟的速率是汽车速率的两倍B.相遇时小鸟与汽车位移的大小之比是3:1C.小鸟飞行的总路程是汽车的1.5倍D.小鸟和汽车在0-t2 时间内位移相等8.汽车刹车后,停止转动的轮胎在地面上发生滑动产生明显的滑动痕迹,即常说的刹车线.由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据.假设某汽车刹车后至停止的加速度大小为7 m/s2,刹车线长为14 m,求:⑴该汽车刹车前的初始速度v0的大小;⑵该汽车从刹车至停下来所用的时间t0;⑶在此过程中汽车的平均速度.参考答案:一.考点整理匀变速直线运动规律1.保持不变同反2.v0 + at v0t + at2/2 2ax 3.aT2(v0 + v t)/22220tvv4.1∶2∶3∶…∶n 12∶22∶32∶…∶n21∶3∶5∶…∶(2n–1) 1∶(2–1)∶(3–2)∶…∶(n–n-1) 1∶2∶3∶…∶n5.重力静止重力零g初速度为零的匀加速gt gt2/2 2gh gt/2 gT2二.思考与练习思维启动1.BCD;速度和加速度都是矢量,假设二者符号相同,物体就做加速运动,故B、D正确;假设二者符号相反,物体就做减速运动,故A错误,C正确.2.⑴第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m = 2.5 m,⑵将6 s的时间分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.3.BC三.考点分类探讨典型问题例1如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据运动学规律有:x1 = v0t1–12a1t12,v B = v0–a1t1,B到C过程,依据运动学规律有:x2 = v B t2–12a2t22,0 = v B–a2t2,A到C过程,有:x = x1 + x2,联立解得:a2 = (v 0–a1t1)2/(2x + a1t12– 2 v0t1) t2 = (2x + a1t12– 2v0t1)/( v 0–a1t1)变式1 ⑴因为在前50 s内,加速度可以看做均匀变化,则加速度图线是倾斜的直线,它与时间轴所围的面积就表示该时刻的速度大小,所以有:v = (1/2)(15+20)×50 m/s = 875 m/s.⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t = 10 s时离地面的高度是h=at2/2 =(1/2)×15×102 m = 750 m,如果有一碎片脱落,它的初速度v1=at=150 m/s,离开火箭后做竖直上抛运动,有-h = v1t-12gt2,代入数据解得t=5(3+15) s,t′=5(3-15) s舍去.例2 法1:⑴上升过程,匀减速直线运动,取竖直向上为正方向,v0 = 20 m/s,a1 = –g,v = 0,依据匀变速直线运动公式:v2–v02 = 2ax,v= v0 + at,得物体上升的最大高度:H = v02/2a1 = v02/2g = 20 m;上升时间:t1 = v0/g = 2 s;下落过程,自由落体运动,取竖直向下为正方向.v02 = 0,a2 = g,回到抛出点时,x1 = H,到抛出点下方20 m处时,x2 = 40 m,依据自由落体公式,得下落到抛出点的时间:t2=2x1g =2×2010s=2 s,回到抛出点所用的时间为t = t1+t2 = 4 s.⑵下落到抛出点下方20 m处的时间:t2′=2x2g=2×4010s = 2 2 s;从抛出到落到抛出点下方20 m处所经历时间为t′ = t1 + t2′= 2(1+2) s.法2:⑴全过程分析,取向上为正方向,v0 = 20 m/s,a= –g,最大高度时v = 0,回到原抛出点时x1 =0 m,由匀变速运动公式得最大高度:H = v02/2g = 20 m,回到原抛出点:x1 = v0t–12gt2,t = 2 v0/g =4 s.⑵落到抛出点下方20 m处时,x = – 20 m:x = v0t2–12gt22,代入数据得:–20 = 20t2–12×10t22,解得⎩⎨⎧t2=〔2+22〕 s t2′=〔2-22〕 s.舍去.所以石子落到抛出点下方20 m 处所需时间t 2=2(1+2) s 变式2 A CD ;物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下列图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种过程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下落通过时,路程s 2=2H -x 1=2×20 m -10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m +10 m =50 m .故A 、C 、D 正确例3 B ;因汽车刹车后一直做匀减速直到运动速度为零为止,所以t = v 0/a = 50 s ,所以汽车刹车后在1 min内通过的位移为x = v 0t /2 = 250 m . 变式3 C ;因汽车做匀减速直线运动.由x = v 0t +12at 2得 9=v 0×1-12a ×12,9+7=v 0×2-12a ×22,解得v 0 = 10 m/s ,a = 2 m/s 2.汽车从刹车到停止所需时间t = v 0/a = 5s ;刹车后6 s 内的位移即5 s 内的位移x = v 0t – 12at 2,代入数据解得x = 25 m .四.考题再练 高考真题 1.B预测1:B ;由x = v t /2解得起飞滑跑时间和着陆滑跑时间之比是 t 1:t 2 =(x 1/x 2)(v 2/v 1) =1∶1,选项B 正确. 2.⑴ 设连续两次撞击铁轨的时间间隔为Δt ,每根铁轨长度为l ,则客车速度为v = l /Δt ,其中l = 25.0m 、Δt = 10.0/(16–1) s 得 v = 37.5m/s .⑵ 设从货车开始运动后t = 20.0s 内客车行驶了s 1米,货车行驶了s 2米,货车加速度为a ,30节货车车厢的总长度为L = 30×16.0m .由运动学公式有 s 1 = v t 、s 2 = at 2/2,由题给条件有L = s 1 – s 2,联立上述各式,并代入数据解得a = 1.35m/s 2.预测2:⑴ 通过记录表格可以看出,动车组有两个时间段处于加速状态,设加速度分别为a 1、a 2,由 a =Δv /Δt 代入数据后得a 1 = 0.1m/s 2、a 2 = 0.2m/s 2.⑵ 由牛顿第二定律 F - F f = Ma ,F f = 0.1Mg 当加速度大时,牵引力也大.代入数据得 F = F f + Ma 2 =2.4×105N .⑶ 通过作出动车组的 v – t 图可知,第—次加速运动的结束时刻是200s ,第二次加速运动的开始时刻是450s .x 1 = (v 1 + v 2)/2]t 1、x 2 = v 2t 2、x 3 = (v 2 + v 3)/2]t 3、x = x 1 + x 2 + x 3,代入数据解得x = 30250m .五.课堂演练 自我提升1.B ;由x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶xn =1∶3∶5∶…∶(2n – 1)知x 1∶x 2=1∶3,由x =12at 2知t 1∶t 2=1∶2,又v=at 可得v 1∶v 2=1∶2,正确.2.D ;中间时刻的速度等于这段时间内的平均速度,即v t/2 = (v 0 + v )/2 = 4 m/s3.C ;自上而下第—、二和三点之间的距离分别为x 1 = (10.00 – 1.00)×10-2 m = 9.00×10-2 m ,x 2 = (29.00 –10.00)×10-2 m =19.00×10-2 m ,依据公式Δx = aT 2得x 2–x 1 = gT 2,故T = 0.1 s . 4.B ;设加速度大小为a ,则开始减速时的初速度大小为v 0=at =4a ,第1 s 内的位移是x 1=v 0t 1-12at 12=3.5a = 14 m ,所以a =4 m/s 2,物体最后1 s 的位移是x =12at 22=2 m .此题也可以采纳逆向思维的方法,把物体的运动看做是初速度为零的匀加速直线运动,其在连续相邻相等时间内的位移之比为1∶3∶5∶7,第4 s 内的位移是14 m ,所以第1 s 内的位移是2 m .5.BD ;v 0=15 m/s ,故刹车后卡车做匀减速运动的时间t 2 = v 0/a = 3 s ,故卡车经过3.6 s 停下来,A 错误;卡车与该老人的距离x =v 0t 1 + v 02/2a +Δx =33 m ,B 正确;v 平 = (x –Δx )/(t 1 + t 2) =8.75 m/s ,C 错误;x ′ = v ′t 1 + v ′2/2a = 52 m > 33 m ,所以D 正确.6.AC ;设两物体从下落到相遇的时间为t ,竖直上抛物体初速度为v 0,由题gt = v 0 – gt = v 得v 0=2v .故A 正确.依据竖直上抛运动的对称性可知,B 自由落下到地面的速度为2v ,在空中运动时间为t B = 2v /2g ,A 竖直上抛,在空中运动时间t A = 2×(2v /g ) = 4v /g .故B 错误.物体A 能上升的最大高度h A = (2v )2/2g ,B 开始下落的高度h B =g (2v /g )2/2,显然两者相等.故C 正确.两物体在空中同时到达同一高度为h = gt 2/2 = g (v /g )2/2 = v 2/2g = h B /4.故D 错误.应选AC7.BC ;设AB 之间的距离为L ,小鸟的速率是v 1,汽车的速率是v 2,小鸟从出发到与汽车相遇的时间与返回的时间相同,故它们相向运动的时间为t 1/2,则在小鸟和汽车相向运动的过程中有v 1t 1/2 + v 2t 1/2 = L ,即〔v 1 + v 2〕t 1/2 = L ,对于汽车来说有v 2t 2 = L ;联立以上两式可得v 1 =3 v 2,故A 错误B 正确.汽车通过的总路程为x 2 = v 2t 2,小鸟飞行的总路程为x 1 = v 1t 1=3 v 2×(t 2/2) = (3/2)x 2,故C 正确.小鸟回到出发点,故小鸟的位移为0,故D 错误.应选BC .8.⑴ 由题意依据运动学公式v 2 – v 20 = 2ax 得– v 20 = 2ax 代入数据解得v 0 = 14 m/s . ⑵ 法1:由v = v 0 + at 0得t 0 = (v – v 0)/a = 2s ;法2:(逆过程) 由x = 12at 02 得t 0 =2xa= 2 s . ⑶ 法1:v 平均 = x /t = 7 m/s ;法2:v 平均 = (v 0 + v )/2 = 7 m/s .附:9.物体以肯定的初速度v 0冲上固定的光滑斜面,到达斜面X 点C 时速度恰为零,如下列图.物体第—次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 法1〔比例法〕:对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n = 1∶3∶5∶…∶(2n – 1),现有x BC ∶x AB = (x AC /4)∶(3x AC /4) = 1∶3,通过x AB 的时间为t ,故通过x BC 的时间t BC = t . 法2〔中间时刻速度法〕:中间时刻的瞬时速度等于这段位移的平均速度.v AC = (v 0 + 0)/2 = v 0/2,又v 02 =2ax AC ① v B 2 = 2ax BC ② x BC = x AC /4 ③ 解①②③得:v B = v 0/2,可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置.因此有t BC = t . 法3〔利用有关推论〕:对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n = 1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n -1).现将整个斜面分成相等的四段,如下列图.设通过BC段的时间为t x ,那么通过BD ,DE ,EA 的时间分别为:t BD = (2-1)t x ,t DE = (3-2)t x ,t EA = (2-3)t x ,又t BD + t DE + t EA = t ,得t x = t .v /m·s -1t/s100 200 300 400 500 600 20406080。
第一章 第2讲匀变速直线运动的规律(精品资料).doc
【最新整理,下载后即可编辑】第2讲匀变速直线运动的规律一、匀变速直线运动的规律1.匀变速直线运动沿一条直线且加速度不变的运动.2.匀变速直线运动的基本规律(1)速度公式:v=v0+at.(2)位移公式:x=v0t+12at2.(3)位移速度关系式:v2-v02=2ax.自测1某质点做直线运动,速度随时间的变化关系式为v=(2t +4) m/s,则对这个质点运动情况的描述,说法正确的是( )A.初速度为2 m/sB.加速度为4 m/s2C.在3 s末,瞬时速度为10 m/sD.前3 s内,位移为30 m二、匀变速直线运动的推论1.三个推论(1)连续相等的相邻时间间隔T内的位移差相等.即x2-x1=x3-x2=…=x n-x n-1=aT2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度. 平均速度公式:v =v 0+v 2=2v t. (3)位移中点速度2xv =v 20+v 22.2.初速度为零的匀加速直线运动的四个重要推论(1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)T 内、2T 内、3T 内、…、nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n自测2 某质点从静止开始做匀加速直线运动,已知第3秒内通过的位移是x (单位:m),则质点运动的加速度为( )A.3x 2(m/s 2)B.2x 3(m/s 2)C.2x5(m/s2) D.5x2(m/s2)三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)基本规律①速度公式:v=gt.②位移公式:x=2gt2.③速度位移关系式:v2=2gx.(3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)和谐地结合起来.2.竖直上抛运动(1)运动特点:加速度为g,上升阶段做匀减速运动,下降阶段做自由落体运动.(2)运动性质:匀变速直线运动.(3)基本规律①速度公式:v=v0-gt;②位移公式:x =v 0t -12gt 2. 自测3 教材P45第5题 频闪摄影是研究变速运动常用的实验手段.在暗室中,照相机的快门处于常开状态,频闪仪每隔一定时间发出一次短暂的强烈闪光,照亮运动的物体,于是胶片上记录了物体在几个闪光时刻的位置.如图1是小球自由下落时的频闪照片示意图,频闪仪每隔0.04 s 闪光一次.如果通过这幅照片测量自由落体加速度,可以采用哪几种方法?试一试.照片中的数字是小球落下的距离,单位是厘米.命题点一 匀变速直线运动的基本规律及应用1.基本思路 画过程示意图―→判断运动性质―→选取正方向―→选用公式列方程―→解方程并加以讨论2.方法与技巧 题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量) 没有涉及的物理量 适宜选用公式v 0、v 、a 、t x v =v 0+at除时间t外,x、v0、v、a均为矢量,所以需要确定正方向,一般以v0的方向为正方向.例1(2018·河南许昌模拟)一个物体从静止开始,以加速度a 1做匀加速直线运动,经过时间t改为做加速度大小为a2的减速运动,又经过时间t物体回到开始位置,求两个加速度大小之比a 1 a 2 .拓展点刹车类问题的处理技巧——逆向思维法的应用刹车类问题:指匀减速到速度为零后即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间.如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动.例2随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍爱生命.某路段机动车限速为15 m/s,一货车严重超载后的总质量为5.0×104 kg,以15 m/s 的速度匀速行驶.发现红灯时司机刹车,货车立即做匀减速直线运动,加速度大小为5 m/s2.已知货车正常装载后的刹车加速度大小为10 m/s2.(1)求此货车在超载及正常装载情况下的刹车时间之比.(2)求此货车在超载及正常装载情况下的刹车距离分别是多大?(3)若此货车不仅超载而且以20 m/s的速度超速行驶,则刹车距离又是多少?(设此情形下刹车加速度大小仍为5 m/s2)变式1(多选)一物体以某一初速度在粗糙的水平面上做匀减速直线运动,最后静止下来.若物体在最初5 s内通过的位移与最后5 s内通过的位移之比为x1∶x2=11∶5,物体运动的加速度大小为a=1 m/s2,则( )A.物体运动的时间可能大于10 sB.物体在最初5 s内通过的位移与最后5 s内通过的位移之差为x1-x2=15 mC.物体运动的时间为8 sD.物体的初速度为10 m/s命题点二匀变速直线运动的推论及应用方法与技巧类型1 平均速度公式的应用例3质点由静止从A点出发沿直线AB运动,行程的第一阶段是加速度大小为a1的匀加速运动,接着做加速度大小为a2的匀减速运动,到达B点时恰好速度减为零.若AB间总长度为s,则质点从A到B所用时间t为( )A.s(a1+a2)a1a2B.2s(a1+a2)a1a2C.2s(a1+a2)a1a2D.a1a22s(a1+a2)变式2一个做匀变速直线运动的质点,初速度为0.5 m/s,第9 s内的位移比第5 s内的位移多4 m,则该质点的加速度、9 s末的速度和质点在9 s内通过的位移分别是( )A.a=1 m/s2,v9=9 m/s,x9=40.5 mB.a=1 m/s2,v9=9 m/s,x9=45 mC.a=1 m/s2,v9=9.5 m/s,x9=45 mD.a=0.8 m/s2,v9=7.7 m/s,x9=36.9 m类型2 逆向思维法和初速度为零的匀变速直线运动推论的应用例4(多选)(2018·四川雅安模拟)如图2所示,一冰壶以速度v 垂直进入三个矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是( )A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1C.t1∶t2∶t3=1∶2∶ 3D.t1∶t2∶t3=(3-2)∶(2-1)∶1变式3(多选)一物块以一定的初速度从光滑斜面底端a点上滑,最高可滑至b点,后又滑回至a点,c是ab的中点,如图3所示,已知物块从a上滑至b所用时间为t,下列分析正确的是( ) A.物块从c运动到b所用的时间等于从b运动到c所用的时间B.物块上滑过程的加速度与下滑过程的加速度等大反向C.物块下滑时从b运动至c所用时间为2 2 tD.物块上滑通过c点时的速度大小等于整个上滑过程中平均速度的大小命题点三自由落体和竖直上抛运动1.两种运动的特性(1)自由落体运动为初速度为零、加速度为g的匀加速直线运动.(2)竖直上抛运动的重要特性(如图4)①对称性a.时间对称:物体上升过程中从A→C所用时间t AC和下降过程中从C→A所用时间t CA相等,同理t AB=t BA.b.速度对称:物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.②多解性:当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成多解,在解决问题时要注意这个特性.2.竖直上抛运动的研究方法分段法上升阶段:a=g的匀减速直线运动下降阶段:自由落体运动全程法初速度v0向上,加速度g向下的匀变速直线运动,v=v0-gt,h=v0t-12gt2(向上方向为正方向)若v>0,物体上升,若v<0,物体下落若h>0,物体在抛出点上方,若h<0,物体在抛出点下方例5(2018·湖北部分重点高中协作体联考)如图5所示是一种较精确测重力加速度g值的方法:将下端装有弹射装置的真空玻璃直管竖直放置,玻璃管足够长,小球竖直向上被弹出,在O点与弹簧分离,上升到最高点后返回.在O点正上方选取一点P,利用仪器精确测得OP间的距离为H,从O点出发至返回O点的时间间隔为T1,小球两次经过P点的时间间隔为T2,求:(1)重力加速度g;(2)当O点距离管底部的距离为L0时,玻璃管的最小长度.拓展点双向可逆类问题——类竖直上抛运动如果沿光滑斜面上滑的小球,到最高点仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变,故求解时可对全过程列式,但必须注意x、v、a等矢量的正负号及物理意义.例6(多选)一物体以5 m/s的初速度在光滑斜面上向上运动,其加速度大小为2 m/s2,设斜面足够长,经过t时间物体位移的大小为4 m,则时间t可能为( )A.1 sB.3 sC.4 sD.5+412s命题点四多运动过程问题1.基本思路如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.可按下列步骤解题:(1)画:分清各阶段运动过程,画出草图;(2)列:列出各运动阶段的运动方程;(3)找:找出交接处的速度与各段间的位移-时间关系;(4)解:联立求解,算出结果.2.解题关键多运动过程的转折点的速度是联系两个运动过程的纽带,因此,转折点速度的求解往往是解题的关键.例7甲、乙两个质点都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两个质点的加速度大小不变,乙的加速度大小是甲的3倍;在接下来的相同时间间隔内,甲的加速度大小增加为原来的3倍,乙的加速度大小减小为原来的1 3 .求甲、乙两质点各自在这两段时间间隔内走过的总路程之比.变式4航天飞机是一种垂直起飞、水平降落的载人航天器.航天飞机降落在平直跑道上,其减速过程可简化为两个匀减速直线运动阶段.航天飞机以水平速度v0着陆后立即打开减速阻力伞(如图6),加速度大小为a1,运动一段时间后速度减为v;随后在无减速阻力伞情况下匀减速运动直至停下.已知两个匀减速滑行过程的总时间为t,求:(1)第二个匀减速运动阶段航天飞机减速的加速度大小a 2;(2)航天飞机着陆后滑行的总路程x .1.假设某无人机靶机以300 m/s 的速度匀速向某个目标飞来,在无人机离目标尚有一段距离时从地面发射导弹,导弹以80 m/s 2的加速度做匀加速直线运动,以1 200 m/s 的速度在目标位置击中该无人机,则导弹发射后击中无人机所需的时间为( )A.3.75 sB.15 sC.30 sD.45 s2.(多选)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,经过时间t 速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( )A.v 0t -12at 2B.v 0tC.v 0t 2D.12at 2 3.(2018·广东湛江模拟)如图1所示,一骑行者所骑自行车前后轮轴的距离为L ,在水平道路上匀速运动,当看到道路前方有一条减速带时,立刻刹车使自行车做匀减速直线运动,自行车垂直经过该减速带时,对前、后轮造成的两次颠簸的时间间隔为t .利用以上数据,可以求出前、后轮经过减速带这段时间内自行车的( )A.初速度B.末速度C.平均速度D.加速度4.(2018·黑龙江哈尔滨质检)关于自由落体运动(g=10 m/s2),下列说法中不正确的是( )A.它是竖直向下,v0=0、a=g的匀加速直线运动B.在开始连续的三个1 s内通过的位移之比是1∶3∶5C.在开始连续的三个1 s末的速度大小之比是1∶2∶3D.从开始运动到距下落点5 m、10 m、15 m所经历的时间之比为1∶2∶35.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m.则刹车后6 s内的位移是( )A.20 mB.24 mC.25 mD.75 m6.(2018·河南信阳调研)在一平直路段检测某品牌汽车的运动性能时,以路段的起点作为x轴的原点,通过传感器发现汽车刹车后的坐标x与时间t的关系满足x=30t-5t2(m),下列说法正确的是( )A.汽车刹车过程的初速度大小为30 m/s,加速度大小为10 m/s2B.汽车刹车过程的初速度大小为30 m/s,加速度大小为5 m/s2C.汽车刹车过程的初速度大小为60 m/s,加速度大小为5 m/s2D.汽车刹车过程的初速度大小为60 m/s,加速度大小为2.5 m/s27.一物体做初速度为零的匀加速直线运动,将其运动时间顺次分成1∶2∶3的三段,则每段时间内的位移之比为( )A.1∶3∶5B.1∶4∶9C.1∶8∶27D.1∶16∶818.(多选)给滑块一初速度v0使它沿光滑斜面向上做匀减速运动,加速度大小为g2,当滑块速度大小减为v2时,所用时间可能是( )A.v 02g B.vg C.3v0g D.3v02g9.一物体以初速度v0做匀减速直线运动,第1 s内通过的位移为x1=3 m,第2 s内通过的位移为x2=2 m,又经过位移x3物体的速度减小为0,则下列说法错误的是( )A.初速度v0的大小为2.5 m/sB.加速度a的大小为1 m/s2C.位移x3的大小为1.125 mD.位移x3内的平均速度大小为0.75 m/s10.(2018·甘肃天水质检)如图2所示,木杆长5 m,上端固定在某一点,由静止放开后让它自由落下(不计空气阻力),木杆通过悬点正下方20 m处圆筒AB,圆筒AB长为5 m,取g=10 m/s2,求:(1)木杆经过圆筒的上端A所用的时间t1是多少?(2)木杆通过圆筒AB所用的时间t2是多少?11.如图3所示为某型号货车紧急制动时(假设做匀减速直线运动)的v2-x图象(v为货车的速度,x为制动距离),其中图线1为满载时符合安全要求的制动图象,图线2为严重超载时的制动图象.某路段限速72 km/h,是根据该型号货车满载时安全制动时间和制动距离确定的,现有一辆该型号的货车严重超载并以54 km/h 的速度行驶.通过计算求解:(1)驾驶员紧急制动时,该型号严重超载并以54 km/h的速度行驶的货车制动时间和制动距离是否符合安全要求;(2)若驾驶员从发现险情到采取紧急制动措施的反应时间为1 s,则该型号货车满载时以72 km/h速度正常行驶的跟车距离至少应为多远.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)寻找问题中隐含的临界条件,例如速度小者加速追 赶速度大者,在两物体速度相等时有最大距离;速度 大者减速追赶速度小者,在两物体速度相等时有最小 距离等。
(4)求解此类问题的方法,除了以上所述根据追及的主 要条件和临界条件解联立方程外,还有利用二次函数 求极值,及应用图象求解等。 4.相遇问题的分析思路 相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位臵坐标相同. (1)列出两物体运动的位移方程,注意两个物体运动时 间之间的关系.
s v t 0.32m
第5s内位移大小
s v t 0.02m
因此从开始运动到5s末物体所经过的路程为0.34m, 而位移大小为0.30m,克服电场力做的功 W=mas5=3×10-5J。
练习1.物体做匀加速运动,已知加速度为2m/s2 , 那么在任意1s内 (B )
A. 物体的末速度一定是初速度的2倍。 B. 物体的末速度一定比初速度大2m/s C. 物体的初速度一定比前1 秒的末速度大2m/s D. 物体的末速度一定比前1 秒内的初速度大2m/s
一、匀速直线运动
定义:物体在任何相等时间内的位移相等.匀速 运动时速度与位臵关系为v=s/t.
二、匀变速直线运动
1.定义:物体在一直线上运动,如果在相等的时间内 速度变化相等,这种运动就叫做匀变速直线运动. 2.匀变速运动中,物体的加速度a为定值.如规定初速 度方向为正方向;当a>0时,物体做匀加速直线运 动;当a<0时,物体做匀减速直线运动.
(2)利用两物体相遇时必处在同一位臵,寻找两物体位 移间的关系. (3)寻找问题中隐含的临界条件.
(4)与追及中的解题方法相同 若被追赶的物体做匀减速运动,一定要注意追上前该 物体是否已经停止运动。 相向运动的物体,当各自发生的位移绝对值的和等于 开始时两物体间的距离时即相遇。
例1.在与x轴平行的匀强电场中,一带电量q=1.0×108C、质量m=2.5×10-3kg的物体在光滑水平面上沿着 x轴作直线运动,其位移与时间的关系是x=0.16t- 0.02t2,式中x以m为单位,t以s为单位。从开始运动 到5s末物体所经过的路程为 m,克服电场力所做 的功为 J。 解:须注意:本题第一问要求的是路程;第二问求功 ,要用到的是位移。 1 2 2 将x=0.16t-0.02t 和 s v 0 t 2 at 对照,可知该物体的初速度v0=0.16m/s,加速度大 小a=0.04m/s2,方向跟速度方向相反。由v0=at可 知在4s末物体速度减小到零,然后反向做匀加速运 动,末速度大小v5=0.04m/s。前4s内位移大小
3、匀变速直线运动的规律
(1).基本公式. 速度公式:
(2)推论.
1 2 位移公式: s v0t at 2
(1)速度、位移关系:
vt v0 at
(2)平均速度:
v v 2as v0 vt v 2
2 t 2 0
【注意】匀变速直线运动中所涉及的物理量有 五个,分别为v0、vt、s、a、t,其中t是标量,其余 均为矢量,一般情况下,选初速度方向为正方向. 当知道五个量中的任意三个的时候,就可以利用 公式求出其余两个量.
例2.汽车以10 m/s的速度行使5分钟后突然刹车。 如刹车过程是做匀变速运动,加速度大小为5m/s2 , 则刹车后3秒钟内汽车所走的距离是多少? 【错解】因为汽车刹车过程做匀减速直线运动,初 速v0=10 m/s加速度
【错解原因】出现以上错误有两个原因。一是对刹车 的物理过程不清楚。当速度减为零时,车与地面无相 对运动,滑动摩擦力变为零。二是对位移公式的物理 意义理解不深刻。位移S对应时间t,这段时间内a必 须存在,而当a不存在时,求出的位移则无意义。由 于第一点的不理解以致认为a永远地存在;由于第二 点的不理解以致有思考a什么时候不存在。
(4)匀速运动追匀减速直线运动,当二者速度相同时相 距最远. (5)匀加速直线运动追匀加速直线运动,应当以一个运 动当参照物,找出相对速度、相对加速度、相对位 移. 3.追及问题分析 (1)根据追赶和被追赶的两个物体的运动性质,列出两 物体的位移方程,并注意两物体运动时间的关系。 (2)通过对运动过程分析,画出简单的图示,找出两物 体运动位移的关系式,追及的主要条件是两个物体在 追上时位臵坐标相同。
4、匀变速直线运动的重要推论
(1)做匀变速直线运动的物体,如果在各个连续 相等时间T内位移分别为s1、s2、s3…sn,加速度 为a则△s=s2-s1=s3-s2=…=sn-sn-1=aT2. 即任意相邻相等时间内的位移之差相等。可 以推广到sm-sn=(m-n)aT 2 (2)做匀变速直线运动的物体的初速度为v0,末 速度为vt,则在这段时间内的平均速度等于这段 时间中间时刻的瞬时速度: v t v0 vt 2 2
(3)从静止出发后,在T秒末、2T秒末、3T末速 度之比为:1∶2∶3∶…∶n. (4)通过连续相等位移所用时间之比为1 ﹕ 2 1 ﹕ 3 2
三、追及和相遇问题
1.追及和相遇问题中的隐含条件 解决追及和相遇问题时,应注意寻找追击类问题的提示 (1)匀加速运动追击匀速运动,当二者速度相同时相 距最远. (2)匀速运动追击匀加速运动,当二者速度相同时追不 上以后就永远追不上了.此时二者相距最近. (3)匀减速直线运动追匀速运动,当二者速度相同时 相距最近,此时假设追不上,以后就永远追不上了.
2 v0 vt2 (3)在上述时间的位移中点的即时速度:v s 2 2
5、初速度为0的匀变速直线运动的特殊规律
(1)从静止出发后,在T秒内、2T秒内、3T秒内 位移之比为:12∶22∶32∶…∶n2
(2)从静止出发后,在第一个T秒内、第二个T 秒内、第三个T秒内位移,即连续相等时间内位 移之比为:1∶3∶5∶…∶(2n-1).
练习2.汽车以20m/s的速度做匀速运动,某时刻关闭发 动机而做匀减速运动,加速度大小为5m/s2,则它关闭 发动机后通过t=37.5m所需的时间为( ) A.3s; B.4s C.5s D.6s 错解:设汽车初速度的方向为正方向,即 V0=20m/s,a=-5m/s2,s=37.5m. 则由位移公式 1 2 20t 1 5t 2 37.5 s V0 t at 2 2 解得:t1=3s,t2=5s.即A、C二选项正确。 分析纠错:因为汽车经过t0= 0 V0 4s a 已经停止运动,4s后位移公式已不适用,故t2=5s应 舍去。即正确答案为A。