测控系统仿真技术3
基于LabVIEW与Proteus的测控仿真实验系统设计
基于LabVIEW与Proteus的测控仿真实验系统设计周春明【摘要】A method of design of measurement and control simulation experiment system based on LabVIEW and Proteus was proposed with the remote temperature controlling system as an example. AT89C51 in Proteus was used as the slave computer to achieve the functions of temperature acquisition, A/D conversion and data transmis-sion to the host computer. LabVIEW was employed to construct the master system to achieve the PID control of the received temperature. It transmitted the PID adjustmentdata to SCM in order to adjust its PWM wave’ s duty rati-o. So the working state of“OVEN” could be controlled and the purpose of the remote temperature controlling could be achieved. The master system communicated with the slave computer by a pair of virtual serial ports constructed by Virtual Serial Port Driver 6 . 9 . Simulation results demonstrated the validity of the methods of design of measure-ment and control system. It has a practicability in the field of experiment teaching and project development.%以单片机远程温度控制系统为例,给出了一种基于LabVIEW与Proteus的测控仿真实验系统的设计方法,利用Proteus中的AT89 C51单片机仿真下位机运行,实现温度的采集、 A/D转换器的控制及向上位机传输数据等功能。
测控技术与仪器对应的研究生方向
测控技术与仪器对应的研究生方向
1. 系统仿真与精密测控技术;
2. 传感器技术及其在测控领域的应用;
3. 数据采集、处理与智能分析技术;
4. 计算机硬件系统与网络应用;
5. 无线传感器网络与移动应用;
6. 智能仪表,工业自动化系统应用;
7. 自动控制理论及其工程应用;
8. 非线性热力学、控制与智能仪器仪表;
9. 先进仪器、测量与控制系统;
10. 生物传感器技术研究;
11. 平面与立体测量系统;
12. 系统安全评估理论与技术;
13. 工业大数据分析及在测控领域应用;
14. 飞行器测控理论及其应用技术;
15. 运动传感与机器人导航技术;
16. 舰艇测控、操纵及自主对抗技术;
17. 核能仪表、测量与控制系统;
18. 军事空间射弹技术;
19. 智能电力系统运行与控制技术;
20. 军工系统总体设计与仿真技术。
电力电子电机控制系统仿真技术课程设计 (2)
电力电子电机控制系统仿真技术课程设计项目背景和目的电力电子技术和电机控制技术是现代电气工程领域的两大关键技术,应用广泛、难度较高。
针对这一行业需求,我们设计了本课程项目,帮助学生深入掌握电力电子电机的原理和控制技术,并能够通过仿真技术实现一个基于控制系统的电力电子电机系统设计。
本课程设计项目旨在使学生了解电力电子电机控制系统仿真的基本原理和方法,掌握电机的基本工作原理和控制方法,进一步激发学生学习积极性和创新精神。
项目内容本课程设计项目主要包括以下内容:1.电路原理:–半导体基础;–继电器、开关和保险丝等电气元件;–电子元器件的应用;–电路连通;–电源稳压和滤波。
2.电机原理:–直流电机、异步电机、同步电机和步进电机等类型电机的工作原理;–电机性能参数的含义和计算;–转矩控制原理和方法。
3.电力电子控制系统:–电力电子器件和控制技术的基础知识;–电力电子控制器的设计原理;–电力电子控制系统的仿真模型。
4.课程设计:–设计一个基于控制系统的电力电子电机系统;–利用仿真软件进行电路仿真和电机控制仿真;–实现电机转速、转矩控制,满足不同负载要求;–实现测控系统的硬件和软件设计。
项目要求本课程设计项目要求学生: - 了解电力电子和电机控制基础知识; - 掌握基本的电路设计、仿真和电机控制方法; - 熟悉测控系统硬件和软件设计原理; - 具备团队意识和实践经验。
项目评估本课程设计项目的评估方式是分组评估,学生需要组成4-5人小组进行研究、开发和竞赛,具体评估标准包括: 1. 项目创新性和技术难度; 2. 模型仿真的准确性和合理性; 3. 系统稳定性和可靠性; 4. 项目实施的完整性和演示效果。
总结本课程设计项目旨在帮助学生全面掌握电力电子和电机控制两大难点知识,进一步提高学生实践能力和创新能力,为他们以后的职业发展打下坚实的基础。
基于Matlab的测控系统动态性能优化与仿真
维普资讯
第3 卷 第 1 期 4 5
VL 4 o3
No1 .5
计
算
机
工
程
20 08年 8月
Au u t 2 0 g s 0 8
Co put rEng ne r ng m e i ei
・ 工程应 用 技术 与实现 ・
文章编号,1 0 48 08 5 2 o 文献标识码, 0 —32( 0)—o3 2 0 2 1 - A
箱完成校正模型的参数寻优,实现测控系统动态性能的优化 没计。仿真结果显示 ,该方法 优化效 果明显 ,拓展 了工作频带 ,改善了系统的 动态性能。 关健 诃:动态性能 ;工作 频带;优化设计
Dy a i r o m a c tm i a i n a d S m u a i n o n m cPe f r n eOp i z to n i l to f M e s r m e ta d Co t o y t m s d o a l b a u e n n n r l se Ba e n M ta S
DU AN uang yun G -
( p r n o Me h n cl n ie r g Qig a U iest, nn 1 0 6 De a t t f c a ia E gn ei . n h i nv ri Xiig8 0 1 ) me n y
[ b t cl hs a e p p s dn m c e om n e p m l e g e o f i od p cm n sno m a r e tn n o ss m a d A s a tT ipp r r oe a y a i p r r ac t a ds n t d c -i l e e te sr e s e n ad o t lyt ,n r o s f o i i m h om r sa u m c r e
系统仿真PDPSPDPS入门到精通详细教程
优化系统设计
仿真技术可以帮助工程师在设计阶段发现潜在的问 题并进行优化,提高设计的可靠性和效率。
加速产品开发周期
通过仿真技术,可以缩短产品开发周期,加 快产品上市时间,提高企业竞争力。
PDPS/PDPS概述
PDPS/PDPS简介
PDPS/PDPS是一款功能强大的系统仿真软件,广泛应用于各个领 域。它具有丰富的功能和工具,支持多种仿真方法和算法。
并行计算与分布式仿真技术
并行计算原理与实现
01
介绍并行计算的基本原理和实现方法,包括任务并行
和数据并行两种方式。
分布式仿真技术
02 详细讲解分布式仿真的原理和实现方法,包括基于消
息传递的分布式仿真和基于共享内存的分布式仿真。
PDPS中的并行计算与分布式仿真支持
03
探讨PDPS如何支持并行计算和分布式仿真,包括提
数值积分方法
03
离散事件仿真方法
利用数值积分算法对连续系统进 行仿真,如欧拉法、龙格-库塔 法等。
通过模拟离散事件的发生和处理 过程来仿真系统,适用于排队系 统、生产流程等。
系统仿真软件介绍
MATLAB/Simulink
功能强大的数学计算和仿真软件,提供丰富的工具箱和模型库,适用 于多种领域的系统仿真。
供的并行计算库、分布式仿真框架等工具和技术。
07
总结与展望
回顾本次课程重点内容
系统仿真基本概念和原理
介绍了系统仿真的定义、分类、应用 领域以及基本原理,包括建模、仿真 实验设计和结果分析等。
系统建模与仿真实验设计
深入阐述了系统建模的方法和步骤, 包括模型构建、参数设置、仿真实验 设计等,以及如何通过仿真实验验证 模型的正确性和有效性。
航天飞行器导航与控制系统设计与仿真
航天飞行器导航与控制系统设计与仿真导语:航天飞行器是现代科技的巅峰之作,它的导航与控制系统是其正常运行和控制的核心。
本文将探讨航天飞行器导航与控制系统的设计原理、关键技术以及仿真模拟的重要性。
一、航天飞行器导航与控制系统设计原理航天飞行器的导航与控制系统设计原理主要包括三个方面,即姿态控制、导航定位和轨迹规划。
1. 姿态控制:姿态控制是指通过控制飞行器的各种运动参数,使其保持稳定的飞行姿态。
对于航天飞行器来说,由于外部环境的复杂性和飞行任务的特殊性,姿态控制尤为重要。
常用的姿态控制方法包括PID控制、模型预测控制和自适应控制等。
2. 导航定位:导航定位是指通过测量飞行器的位置和速度等参数,确定其在空间中的位置。
现代航天飞行器的导航定位通常采用多传感器融合的方式,包括惯性导航系统、卫星定位系统和地面测控系统等。
其中,卫星导航系统如GPS、北斗系统等具有广泛应用。
3. 轨迹规划:轨迹规划是指根据航天飞行器的飞行任务和外部环境的要求,确定其飞行轨迹和航线。
航天飞行器的轨迹规划需要考虑多个因素,如飞行器的运动特性、飞行任务的要求、空间障碍物等。
二、航天飞行器导航与控制系统的关键技术航天飞行器导航与控制系统设计离不开一些关键技术的支撑,其中包括:1. 传感器技术:传感器技术是导航与控制系统的基础,可以通过传感器对飞行器的姿态、速度、位置等进行准确测量。
陀螺仪、加速度计、GPS接收机等传感器设备的精度和稳定性对导航与控制系统的性能有着重要影响。
2. 控制算法:姿态控制和导航定位需要高效的控制算法来实现。
PID控制算法是常用的姿态控制方法,模型预测控制和自适应控制等算法则在一些特殊应用中得到了广泛应用。
对于导航定位,卡尔曼滤波和粒子滤波等算法可以很好地利用多传感器信息进行位置估计。
3. 轨迹规划算法:航天飞行器的轨迹规划需要考虑多个因素,如安全性、能耗等。
基于遗传算法和优化算法的轨迹规划方法可以在不同的约束条件下求解最优解。
电动缸测控系统的仿真与通信
史 成 碱
( 新 疆大 学 电气工程 学院 , 新 疆 鸟 鲁木 齐
宏主
8 3 0 0 4 7 )
摘
要 :为了研 究 电动缸 的性能 和控 制系统 , 利 用虚拟 仪 器 L a b Wi n d n w s / c V I 设 计 了 电动 缸测 控 系 统 的仿 真软 件 。通过 对 电 动缸 数
动部件所组成的系统 , 则电动缸等效模型如图 1 所示 。
等场合 。目前 , 国内对 电动缸 的研究仍 处于一个初级 阶 段。研究电动缸 的性 能、 测试 和控制 系统 , 既 符合当前
国 内 电动缸 行 业 的发 展 需 要 , 又 可 以为 电 动缸 的进 一 步
图1 电动 缸 等 效 模 型 示 意 图
电动缸的传递函数 为 :
= =
第 一作者 史成 城 ( 1 9 8 7 一 ) , 男, 现为 新疆 大 学 自动 化 专业 在读 硕 士研 究生; 主要 从事智 能控 制 方面 的研 究。
者篝
㈩
l 9
其中:
《 自动化仪表》 第3 4卷第 7期 2 0 1 3年 7月
系统仿真技术 教学大纲
系统仿真技术一、课程说明课程编号:090115Z10课程名称:系统仿真技术/ System Simulation Technology课程类别:专业课学时/学分:32/2 (其中实验学时:12)先修课程:线性代数、自动控制理论适用专业:自动化、测控技术与仪器、电气工程及其自动化、智能科学与技术教材、教学参考书:1.薛定宇. 基于MATLAB/Simulink的系统仿真技术与应用(第2版). 北京:清华大学出版社. 2011年;2.孙亮. MATLAB语言与控制系统仿真. 北京:北京工业大学出版社.2006年;3.黄向华.控制系统仿真. 北京:北京航空航天大学出版社.2008年4. 吴健珍. 控制系统CAD与数字仿真. 北京:清华大学出版社. 2014年5. 刘兴堂.现代系统建模与仿真技术.西安:西北工业大学出版社. 2011年二、课程设置的目的意义系统仿真技术课程是为自动化、测控技术与仪器、电气工程及其自动化、智能科学与技术等专业设立的拓展知识体系的专业限选课,课程的设置目的是让学生通过学习系统仿真技术这门交叉学科的课程,了解控制系统中的仿真问题,掌握控制系统仿真的基本概念以及基本方法,掌握MATLAB语言编程对控制系统进行仿真,能够熟练应用仿真技术对控制系统进行分析与综合,为今后从事自动控制系统设计打下基础。
三、课程的基本要求知识:掌握计算机仿真的基本概念,系统仿真的实现方法,MATLAB使用方法和编程技巧,系统仿真所必要的数值计算方法,图形界面仿真工具,以Simulink为主要工具掌握系统仿真方法与技巧等知识。
学会从控制系统的性能要求出发进行系统建模,建立控制系统仿真模型设计的基本思维方式,更加系统的性能指标要求,利用系统仿真的基本方法对控制系统进行分析与综合,形成系统-模型-仿真的基本知识结构。
能力:从应用的角度提出控制系统的仿真方法,将自动控制理论的知识用于解决系统建模的工程问题;用数学工具和计算机仿真进行系统模型的分析,培养解决复杂工程问题的能力;掌握最基本的仿真系统设计理念,针对具体问题提出有效的解决方案,提高进行控制系统仿真的能力;在自动化、计算机交叉知识的讨论中培养创新意识,提高分析、发现、研究和解决问题的能力;素质:建立工程系统仿真-验证-设计的观念,通过课程中的分析讨论辩论培养分析沟通交流素质,建立自动控制系统的性能综合分析及仿真验证的思维模式,提升理解工程管理与设计的基本素质。
matlab仿真技术在测控系统中的应用
论 每一种 测控 系统 , 都 是为 了适 应时代 的需 求而 产生 与完善 的 , 测 控 系统 在设 计过 程 中需要 不 断 的对各 种 参 数 和设 备进 行 调控 和 更改 , 这 就需要对 测 控 系统 进 行模拟运 转 和仿 真 。 现 在 的测 控 系统 工 作 量较 大 , 而且 运 算 复 杂 、困难 , 在 设 计 和 投入 使 用前 期需 要 有 严格 的仿 真过程 , 在计 算 机技 术 和 软 件 编程 技 术快 速发展 的 今 天 , 仿 真技 术也 在不 断 的创 新和 突破 。 m a t l a b 仿 真技术 就是用 m a t l a b软件对测 控 系统 的运作 进行 建模 , 对 其 现 实 中 的工作 进行 仿 真 , 把 各方 面 的数 据 和设 备 调 配到 最 佳 的工 作状 态 , 使 整个 测 控 系统 的工作 效 率 达到 最高 , 然后 系 统 才能 够投 入使用 。 m a t l a b 仿 真 技 术能 够 通 过 S i m u l i n k预定 义库 模 块 即 , 建 造 测 控 系 统 的库 模块 , 然 后 通 过交 互 式的 图形 编 辑 器组 合 和管 理 较 为直 观 的模 块视 图 , 再 通 过软 件 的一 些 功 能进 行代 码 和程 序 的 生成 , 就 能 够达 到 模 型 建立 的效果 。在 S i m u l i n k 测 控 系统 仿 真模型库中整个测控系统仿真 的流程是 : 信号的产生与输 出、 编 码 、解码 、调试 、解 调 , 而且 可 以通 过仿 真模 式对 整 个 测控 系 统 的运 转 进行仿 真 。 在 m a t l a b仿真技 术 中能够 使 测控 系 统 在 虚 拟 的工 作 环境 中运 转 , 并 且 能够 对 系统 各 项数 据 和配 置 进行 无 限次 的修 改 , 直 到 满 足测 控 要 求之 后 。m a t l a b仿 真技 术 是 基 于m a t l a b与 S i m u l i n k的 , 通 过一 些 代 码 和 数 据 的 处 理 、运 算 , 发 出一定 的指令 进 行建 模 , 而且 它 的可视 性 非 常 强 , 能够 很 直 观 的进 行仿 真过程 , 为 测控 系统 的设计 打下 坚实 的基 础 。 m a t l a b仿 真技 术 在 测控 系统 中的应 用 , 能够 为 测控 系统 的 设 计 提供 较 为 真实 的模 型和 运作 环境 , 并 且 不 断 的进 行各 种 数 据 的调 控 , 为测 控系统 投 入使 用高效 运作 提供 依据 。
控制系统仿真实验报告(20200717013819)
控制系统仿真实验报告班级:测控 1402 班姓名:王玮学号: 14050402072018 年 01 月实验一经典的连续系统仿真建模方法一实验目的 :1了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2掌握机理分析建模方法。
3深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写数值积分法仿真程序。
4掌握和理解四阶 Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。
二实验内容 :1.编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1)将阀位u增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(3)利用 MATLAB 中的 ode45() 函数进行求解,比较与(1)中的仿真结果有何区别。
2.编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(4)阀位增大 10%和减小 10%,利用 MATLAB中的 ode45() 函数进行求解阶跃响应,比较与( 1)中的仿真结果有何区别。
三程序代码 :龙格库塔 :%RK4文件clccloseH=[1.2,1.4]';u=0.55; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:));xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型 :function dH=f(H,u)k=0.2;u=0.5;Qd=0.15;A=2;a1=0.20412;a2=0.21129;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2 编写四阶Runge_Kutta公式的计算程序,对线性状态方程(18)式进行仿真:1阀值 u 对仿真结果的影响U=0.45;h=1;U=0.5;h=1;U=0.55;h=1;2 步长 h 对仿真结果的影响:U=0.5;h=5;U=0.5;h=20;U=0.5;h=39U=0.5;h=50由以上结果知 , 仿真步长越大 , 仿真结果越不稳定。
控制系统仿真实验报告
控制系统仿真实验报告班级:测控1402班姓名:王玮学号:072018年01月实验一经典的连续系统仿真建模方法一实验目的:1 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2 掌握机理分析建模方法。
3 深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab编写数值积分法仿真程序。
4 掌握和理解四阶Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。
二实验内容:1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1)将阀位u 增大10%和减小10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定(3)利用 MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。
2. 编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大10%和减小10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定(4)阀位增大10%和减小10%,利用MATLAB 中的ode45()函数进行求解阶跃响应,比较与(1)中的仿真结果有何区别。
三程序代码:龙格库塔:%RK4文件clccloseH=[,]';u=; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:)); xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型:function dH=f(H,u)k=;u=;Qd=;A=2;a1=;a2=;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真:1 阀值u对仿真结果的影响U=;h=1; U=;h=1;U=;h=1;2 步长h对仿真结果的影响:U=;h=5; U=;h=20;U=;h=39 U=;h=50由以上结果知,仿真步长越大,仿真结果越不稳定。
测控系统仿真
班级:测控1201班 姓名:徐颢源 学号:0921204930532 NO1:有下列矩阵A ,如果再给出A (5,6)=3命令将得出什么结果,试理解该赋值方式。
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=49819323753175323321A 程序代码如下:A=[1 2 3 3;2 3 5 7;1 3 5 7;3 2 3 9;1 8 9 4]; A(5, 6)=3执行结果如下:A =1 2 3 3 0 02 3 5 7 0 01 3 5 7 0 03 2 3 9 0 01 8 9 4 0 3NO2:用matlab 语言实现下面的分段函数⎪⎩⎪⎨⎧<<>==-D x h,-x h/Dx, D x h,f(x)v D设D=2,h=3 程序代码如下:x=input('x=');if x>2y=3else if x<-2y=-3elsey=3/2*xendendNO3:选择合适的步距绘制出下面的图形1、sin (1/t ),其中)11-t ,(∈程序代码如下:t=-1:0.01:1;y=sin(1./t);plot(t,y)运行结果如下:2、sin(tan(t))-tan(sin(t)),其中),(t ππ-∈。
程序代码如下:t=-pi:pi/100:pi;y=sin(tan(t))-tan(sin(t));plot(t,y)运行结果如下:NO4:请分别绘制出xy和sinxy的三维图和等高线。
绘制xy图像程序代码如下:[x,y]=meshgrid(-3:0.02:3,-3:0.02:3);z=x.*y;mesh(x,y,z)运行结果如下:绘制sinxy图像程序代码如下:[x,y]=meshgrid(-3:0.05:3,-3:0.05:3);z=sin(x.*y);mesh(x,y,z)。
《测控仪器设计》(第4章)《测控仪器设计(第3版)》精选全文
(3)滚动轴承导轨
– 摩擦力矩小 – 运动灵活 – 承载能力大 – 调整方便 – 用于大型仪器(如万工显、三座标、测长机等)
(二)滚动摩擦导轨的组合应用
(1)滚动与滑动摩擦导轨 的组合应用
– 滚动轴承导轨摩擦力 小 ,运动灵活 ,用做
导向
滚动轴承和滑动导轨的组合 1—平面滑动导轨 2—滚动轴承导轨
导轨的几何精度包括导轨在垂直平面内与水平面内的直线度,导轨面间 的平行度和导轨间的垂直度
(2)导轨的接触精度
垂直面内的直线度
水平面内的直线度
导轨面间的平行度
(二)导轨运动的平稳性
爬行现象:在其低速运动时,导轨运动的驱动指令是均匀的
而与动导轨相连的工作台却出现一慢一快,一跳一停的现象 产生爬行现象的主要原因有: ①导轨间的静、动摩擦系数差值较大; ②动摩擦系数随速度变化; ③系统刚度差
高
液体静压
高
导轨
空气静压
高
导轨
较好 较好
好 好
大 较低 较大 较低
差 较好
好
要求不 高
要求较 高
要求高
好 要求高
成本
低 较高
高 高
(二)标准导轨的选用
b) a)
直线球滑座系列导轨 a)直线球滑座导轨 b)球滑座LSP型结构示意图
• 1.滚珠导轨
▪ (1)双V形滚珠导轨
▪ 运动灵敏度较高,能承受 不大的倾复力矩
▪ (2)双圆弧滚珠导轨
▪ 计量光学仪器中(如小型 工具显微镜、投影仪等) 使用
▪ 接触面积较大,接触点 应力较小,变形也较小, 承载能力强、寿命长。
V形滚珠导轨 a)常用双V形滚珠导轨 b)V形小圆弧导轨
c)双圆弧导轨
MATLAB与控制系统仿真实验指导书
《MATLAB与控制系统仿真》实验指导书(2011年第一版)西安邮电学院自动化学院2011年6月目录前言 (1)MATLAB语言实验项目 (3)实验一熟悉MATLAB集成环境与基础运算 (3)实验二 MATLAB的基本计算 (7)实验三 MATLAB图形系统 (9)实验四 MATLAB程序设计 (13)实验五 MATLAB函数文件 (15)实验六MATLAB数据处理与多项式计算 (17)实验七 SIMULINK仿真实验 (21)前言MATLAB 产品家族是美国 MathWorks公司开发的用于概念设计、算法开发、建模仿真、实时实现的理想的集成环境。
是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和SIMULINK两大部分。
MATLAB由于其完整的专业体系和先进的设计开发思路,使得 MATLAB 在多种领域都有广阔的应用空间,特别是在科学计算、建模仿真以及系统工程的设计开发上已经成为行业内的首选设计工具,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB软件工具在自动化专业、测控技术与仪器和电气工程及其自动化等专业的本科生学习中,经常用来计算、仿真和设计,尤其是MATLAB软件的仿真功能,能使学生对所学知识有更加深入的理解和分析。
《MATLAB与控制系统仿真》课程,和《自动控制原理》、《现代控制理论》、《数字信号处理》、《电力电子技术》等重要的专业课程相互支撑、相辅相成,同时也有利于学生完成课程设计和毕业设计等实践教学环节。
基于虚拟仿真的测控系统优化研究
基于虚拟仿真的测控系统优化研究测控系统在现代工业、科研、航空航天等领域发挥着至关重要的作用。
它能够对各种物理量进行精确测量和控制,确保系统的稳定运行和性能优化。
然而,传统的测控系统设计和优化方法往往存在一些局限性,如成本高、周期长、难以全面考虑各种复杂因素等。
随着计算机技术和仿真技术的飞速发展,虚拟仿真技术为测控系统的优化提供了一种全新的、高效的解决方案。
虚拟仿真技术是一种基于计算机模型和算法的模拟方法,它可以在虚拟环境中创建和模拟真实世界的系统和过程。
在测控系统优化中,虚拟仿真技术能够帮助我们在设计阶段就对系统的性能进行预测和评估,从而提前发现潜在的问题并进行改进。
通过建立测控系统的虚拟模型,我们可以模拟不同的工作条件、输入信号和控制策略,观察系统的响应和输出,进而对系统的参数进行调整和优化。
在基于虚拟仿真的测控系统优化研究中,首先需要建立准确的系统模型。
这个模型要能够反映测控系统的实际物理结构和工作原理,包括传感器、控制器、执行器等各个组成部分。
模型的准确性直接影响到仿真结果的可靠性和有效性。
为了建立精确的模型,我们需要收集大量的实际数据,并运用适当的数学方法和物理定律进行建模。
在建立好系统模型后,接下来就是选择合适的仿真算法和工具。
市面上有许多成熟的仿真软件和工具可供选择,如 MATLAB/Simulink、LabVIEW 等。
这些工具提供了丰富的功能和模块,可以方便地搭建测控系统的仿真模型,并进行各种分析和优化。
在选择仿真算法时,需要考虑算法的精度、计算效率和稳定性等因素,以确保能够在合理的时间内得到准确的仿真结果。
虚拟仿真技术在测控系统的传感器优化方面具有显著的优势。
传感器是测控系统获取信息的关键部件,其性能直接影响到整个系统的测量精度和可靠性。
通过虚拟仿真,我们可以模拟不同类型、不同参数的传感器在各种工作环境下的性能表现,从而选择最合适的传感器类型和参数配置。
例如,在温度测量中,我们可以通过仿真比较不同类型的温度传感器(如热电偶、热电阻、红外传感器等)在不同温度范围、不同介质中的测量精度和响应时间,进而选择最适合的传感器。
测控系统指显动态仿真实现方法的研究
测控系统指显动态仿真实现方法的研究【摘要】利用三维建模软件对目标和光电跟踪测量系统等实物建立三维模型,把捕获系统实时获取的目标状态信息和光电跟踪测量系统运行信息通过网络实时传送给场景生成计算机,场景生成计算机利用这些数据信息驱动三维模型,从而实时模拟目标与光电跟踪测量系统的运行状态。
该系统可为指挥控制人员的决策提供更直观、简便的帮助。
【关键词】光电跟踪测量系统;三维模型;动态场景1场景生成系统的组成及功能在实际跟踪系统中,为了更精确地测量出目标的真实运行情况,中心站把各光电跟踪测量系统及目标发射点位置信息传送给场景生成计算机。
场景生成计算机根据得到的位置信息将坐标转换为发射坐标系,并对场景缩放,使整个测量系统场景在计算机屏幕上可见。
目标发射后,雷达等测量系统把目标的位置信息实时传送给中心控制站,中心控制站引导各站点的光电跟踪测量系统按雷达传送的引导数据调整视场指向。
当目标进入光电跟踪测量系统视场后,将其捕获并形成闭环跟踪状态。
各光电跟踪测量系统把实时捕获的目标位置信息传送给中心控制站,中心控制站再把接收到的各站点数据进行处理,同时将各站点的高低角、方位角、跟踪状态以及目标的位置信息传送给场景生成计算机。
场景生成计算机根据这些得到的信息进行处理后,实时地控制场景生成系统中的光电跟踪测量系统模型和目标模型按实际场景中的状态运行,并实时地显示在计算机屏幕上,使工作人员可以很直观地了解到各站点的光电跟踪测量系统的跟踪情况、目标的轨迹、位置等信息,以便于指挥人员根据实际情况做出各种决策。
2 模型的建立及导入在direct 3d中对于场景模型,可以用一些通用的方法,如三角形法、平等四边形法等,用小的图元来近似地模拟实物模型,产生与真实目标相近的效果。
但是,对于那些特别复杂的模型,如果在程序中用小的图元来模拟实物模型,其工作量将是巨大的,对于实时性要求比较高的软件,这样的设计就无法满足需求。
对本系统而言,必须保证目标与光电跟踪测量系统的状态要完全与真实的效果一样,因此在对软件的设计中就必须使程序的处理能力与光电跟踪测量系统的捕获频率保持同步。
飞行仿真技术:第三讲 机载系统仿真
飞行仿真技术:第三讲机载系统仿真
王郁琴
【期刊名称】《测控技术》
【年(卷),期】1994(013)004
【总页数】4页(P43-46)
【作者】王郁琴
【作者单位】无
【正文语种】中文
【中图分类】V216.7
【相关文献】
1.红外成像制导空间飞行器系统仿真技术研究 [J], 王东木;何秋茹
2.飞行仿真技术:第一讲飞行仿真技术综述 [J], 王行仁
3.中国自动化学会系统仿真专业委员会、中国系统仿真学会计算机与软件专业委员会联合召开——’2005系统仿真技术及其应用学术会议征文通知 [J],
4.中国自动化学会系统仿真专业委员会中国系统仿真学会计算机与软件专业委员会联合召开’2004系统仿真技术及其应用学术会议征文通知 [J],
5.系统仿真技术在某飞行器侧向回路稳定性分析中的应用 [J], 孙富春;陆文娟;韦峰因版权原因,仅展示原文概要,查看原文内容请购买。
基于PT100的温度测控系统的设计与仿真
基于PT100的温度测控系统的设计与仿真王青【摘要】温度测控在现代工业生产过程中起着非常关键的作用,也是设备按照预定的方案正常运行的必要条件;针对目前工业设备温度控制系统电路稳定性差、精度低、实时显示效果差等缺点,设计了基于PT100的温度测控系统;该系统采用电桥对PT100传感器输出的电信号进行采样;采用LM741设计差分放大电路消除线路阻抗引起的测量偏差;采用ADC0808逐次逼近法消除温控系统的非线性误差;采用STC高性能单片机作为主控芯片进行数据处理、并能够实时显示温度数值和具有设定上下限的功能,最后通过继电器实现对被控对象通断进行控制;系统通过Proteus软件仿真运行验证了电路设计的合理性、温度显示数据的高精度和系统正常运行的鲁棒性.【期刊名称】《计算机测量与控制》【年(卷),期】2019(027)009【总页数】5页(P47-50,56)【关键词】PT100;温度;Proteus仿真【作者】王青【作者单位】南通理工学院电气与能源工程学院,江苏南通226002【正文语种】中文【中图分类】TP230 引言温度是表征物体冷热程度的物理量,它可以通过物体随温度变化的某些特性(如电阻、电压变化等特性)来间接测量,通过研究发现金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的稳定性,利用铂的这种物理特性制成的传感器称为铂电阻温度传感器[1]。
金属铂电阻温度传感器精度高、稳定性好,在工业测量方面有广泛的应用。
1 PT100测温工作原理通常所说的PT100是指铂电阻温度传感器在0 ℃时对应的电阻值为100 Ω,电阻变化率为0.385 1 Ω/ ℃,PT100的分度表如表1所示。
根据电阻值和摄氏温度的具体关系,可以推算出变化电阻对应的温度值。
由于PT100是中低温区(-200~650 ℃)最常用的一种温度传感器,故环境温度下具体的电阻取值关系为。
RPT=R0[1+AT+BT2+C(T-100)T3](1)式(1)中R0为摄氏温度在0 ℃时金属铂电阻温度传感器对应的阻值,T为实时环境温度值,ABC分别表示系数值A=3.908*10-3;B=-5.775*10-7;C=-4.183*10-12,RPT为实时环境温度T对应PT100的电阻值[2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.3 控制系统的稳定性分析 1. 稳定的基本概念
系统是否稳定是决定系统能否正常工作的前提条 件,系统的稳定性反映在干扰消失后的过渡过程性 质上。 若系统受到扰动偏离原来的平衡状态后,去掉 扰动量,系统能够按照一定精度恢复到原始状态, 这样的系统我们称之为稳定的系统。反之,如果去 掉扰动,系统不能回到原始状态,或者偏离量随时
对于单位反馈系统来讲,稳态误差系数与开环传递函数中的 积分环节数有直接的关系。 对于稳定的系统,静态误差系数反映了系统限制或消除稳态 误差的能力,系数越大,稳态误差越小;系统的类型号越高 ,则限制或消除稳态误差的能力越强。
3. 关于稳态误差计算时的几点说明
(1)只有稳定的系统才能计算其稳态误差,否则无意义,如 果系统的稳定性事先没有确定,要按照稳定的条件和判断方 法确定系统是稳定的,然后才能计算稳态误差。 (2)前面的分析和计算公式的推导是在输入信号作用下,单 位负反馈系统的稳态误差处理,如果是非单位反馈系统,应 该将其转换为单位反馈,再利用公式处理。 (3)公式中的K值,是根据式(3-19)所表示的系统开环
如果系统的数学模型可采用二阶微分方程来描述,则 该系统称为二阶系统。 二阶系统的传递函数为:
n C ( s) k ( s) 2 2 2 R( s) T s 2Ts 1 s 2 n s n 2
2
T为时间常数, 为阻尼比, 率。
n
2
1 T
为无阻尼自然振荡频
4. 脉冲函数信号
脉冲函数信号也称为冲击函数信号,单位脉冲函数信号 为数学上的一种抽象,在实际系统中难以产生。 5. 正弦函数信号 正弦函数信号是在频率法中采用的外作用信号,用正 弦函数作为系统的外作用信号,可以求得系统对不同频 率的正弦输入信号的稳态响应,称之为频率响应。
3.1.3
典型信号的响应 对于一个控制系统来讲,设其各变量的初始 状态为零,在输入典型外作用信号时,系统的输 出称为典型信号的响应。
即:
G(s)
10 5 s 2 0.5s 1
;放大系数K=5,时间常数T=0.5
按公式可得加入放大器后系统的单位阶跃响应表达式为:
c(t ) k (1 e
t T
) 5(1 e 2t )
(2)计算系统的过渡过程调节时间 取5%的误差带:ts=3T=3×0.5=1.5(秒)
3.2.4 系统的稳态误差分析
前面所讨论的系统过渡过程表征了系统的动态性能, 这是控制系统的重要特征之一。控制系统的另一个特 征是稳态性能,对于稳定的系统,它的稳态性能一般 是根据系统在阶跃函数、斜坡函数、加速度函数等输 入信号作用下引起的稳态误差来衡量。
1. 稳态误差的概念
我们将稳定系统误差的终值称为系统的稳态误差,记为:
G(s) C (s) 1 R( s) Ts 1
dt
T为系统的时间常数,下面讨论在系统初始条件为零时,一阶 系统对典型输入信号的响应。
一阶系统的单位阶跃响应分析
对一阶系统输入单位阶跃函数信号:
r (t ) 1 (t )
其拉氏变换为:
R( s)
1 S
1 1 1 T 系统的输出响应: C ( s) R( s) G ( s) s Ts 1 s Ts 1
常称之为调节时间。
一般有:ts=3T (对应5%的误差带) ts =4T (对应2%的误差带) 从上式中可以看出,系统的时间常数越小,调节时间就越小, 系统响应的过渡过程时间就越短,响应过程的快速性就越 好。
【例3.1】已知一阶系统的传递函数为
10 G( s) s2
求其单位阶跃响应表达式,计算系统的过渡过程调节时间,分 析系统的性能特点。 解:(1)将一阶系统的传递函数化为标准式并找出系统的特 征参数
取2%的误差带:ts=4T=4×0.5=2(秒)
(3)从上述计算结果分析该系统的性能特点
该系统中加入了1个放大器,系统的单位阶跃响
应是一条从零开始,按指数规律变化,最终稳态
值为5的非周期性曲线,动态过程无振荡;由于
时间常数为0.5,使得调节时间稍长,快速性较差; 系统的稳态误差为零。
3.2.2 二阶系统的时域响应
2.二阶系统的性能指标计算及其参数对应 关系
C(t) σ 1 0.9 td 0.5 0.1 0 tr tp t ts
%
通常,在欠阻尼状态下,如上图所示,描 述系统的动态性能指标有以下5个方面:
(1)延迟时间:d t
1 0.7
n
这是系统的单位阶跃响应到达其稳态 值的50%所需的时间。增大自然频率或 是减少阻尼比,都可以使系统响应的延 迟时间减少,从而使响应的初始段时间 短,跟踪迅速。
ess lim e(t )
t
系统的稳态误差取决于系统的结构(包括系统的类 型及参数)和外部输入信号的性质。
2. 稳态误差的计算
我们采用静态误差系数法来分析讨论系统稳态误差的计算 ,这是给定稳态误差终值的一种计算方法。
在典型输入信号作用下的稳态误差与系统 型号、静态误差系数的对应关系参见表3-4。
将上式进行拉氏反变换,可以得到系统输出的过渡过程表达式:
c(t ) 1 e
t T
Css Ctt
在单位阶跃输入信号作用下,一阶系统的输出量随时间变化 的规律是单调上升的指数曲线,响应的最终值为1,时间常数T是 描述响应速度的唯一参数,T越小,暂态过程进行得越快,即速 度越快。
结论:一阶系统的阶跃响应曲线是一个单调的非周期响应, 没有超调量,系统过渡过程的快慢是其主要性能指标,通
(2)上升时间: 其中,
tr d
arccos
这是系统的响应从其稳态值的10%上升到 90%所需的时间。表征了系统的响应速度, 上升时间越小,响应越快。当阻尼比不变时, 角就不变,则增大自然频率会使上升时间缩 短,可加快系统的响应速度;当阻尼振荡频 率不变时,阻尼比越小,上升时间就越短。
3.1.1 概述 系统的响应是指在给定信号作用下,系统的输出信号随时间 变化的状况,也是系统微分方程的解。我们将系统在稳定之前 的响应称为暂态响应,它提供系统在过渡过程中各项动态性能 指标;系统到达稳态后的响应称为稳态响应,它反映出系统的 稳态性能指标,也即系统稳态误差的大小。 为了便于研究和分析控制系统,通常选用几种确定的函数来 作为典型的外部输入信号,其具备的基本特点是:
s1, 2 n j n 1 2 j d
n 是特征根实部的模值;称为阻尼振荡角频率,
对二阶系统输入单位阶跃函数信号:r (t )
1 (t )
1 R 拉氏变换为: ( s ) S
系统的输出响应为:
n 1 C ( s ) R( s ) ( s ) 2 s s 2 n s n 2
2
s n n 1 2 2 2 s ( s n ) 2 d ( s n ) d
将上式进行拉氏反变换,可以得到系统输出的过渡过程表达式:
c(t ) 1 e
nt
[cos d t
1 2
sin d t ]
这就是二阶系统在欠阻尼状态下单位阶跃响应的过渡过程。
响应状态 欠阻尼状态 临界阻尼状态 过阻尼状态 零阻尼状态
特征根形式 实部为负的共轭复根 相等的负实根 两个不相等的负实根 一对纯虚根
响应特点 衰减的振荡特性 非周期响应,无振荡 非周期响应,无振荡 持续的等幅振荡
0< <1
=1 >1 =0
1. 二阶系统的单位阶跃响应分析
下面重点分析在欠阻尼状态下的二阶系统的单位阶跃响应。 由于欠阻尼状态下,阻尼比取值为0< <1,此时系统的特征 根为一对实部为负的共轭复根,可变为:
3. 劳斯稳定判据 英国人E.J.劳斯提出一种代数判据,它是根据系统 特征方程式的系数来直接判断特征根的实数部分的 符号,从而决定系统的稳定性。
劳斯稳定判据为:控制系统稳定的充要条件是劳 斯阵列表中第一列所有元素的计算值均大于零。 检查劳斯阵列表中第一列所有元素的符号:
若第一列各元素均为正值,说明特征根具备负的 实数部分,即所有闭环极点都在[S]平面的左半部分, 系统是稳定的; 如果第一列元素值出现负号,则系统不稳定, 符号改变的次数等于特征右根的个数。
传递函数得到的,如果给定的系统传递函数表达式不是标准
式,则应先将其转换为式(3-19)所示的形式。
4. 减少稳态误差的措施 (1)组成控制系统的元器件参数应具备相应的精 度和稳定性。 (2)提高系统的开环放大倍数可以降低系统的稳 态误差,通常是在系统的前向通道中串联放大环 节。但是,单纯提高K值会使系统的稳定性变坏, 造成系统不稳定,解决的办法是可以进行相应的 校正,如引入局部速度负反馈等。 (3)提高系统的型号,可以增强系统跟随输入信 号的能力,通常是在系统的前向通道中串联积分 环节。但是,积分环节增加以后,会改变闭环系 统的传递函数极点,将使系统稳定性下降。
(3)峰值时间:
tp d
这是指系统响应超过稳态值,到达第一个峰值所需的时间。 其值与阻尼振荡频率成反比。 (4)超调量:
% e
1 2
这是系统响应在过渡过程中,输出量的最大值与稳态值之 间的偏差。超调量只是阻尼比的函数,阻尼比越大,超 调量越小,系统的动态响应越平稳。
(5)调节时间:
间增长而增加,则称之为不稳定数具有相同的符号, 且均不为零,也即特征方程不缺项。 控制系统稳定的充要条件是: ——特征根均为负实数或者具有负的实数 部分;或者说特征方程所有根均在根平 面的左半部分;也可以说系统闭环传递 函数的所有极点均位于[S]平面的左半部 分。
2
二阶系统的闭环特征方程为
方程的特征根为:
s 2 n s n 0
s1, 2 n n 2 1