人教版八年级数学下册16.3二次根式的加减(2)
16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册
同类项合并就是字母不变,系数相加减。
新课学习
二次根式的加减
7.5dm
现有一块长7.5dm、宽5dm的木板,
能否采用如图的方式,在这块木板
5dm
上截出两个分别是8dm2和18dm2的
dm
dm
正方形木板?
( + )dm
问题转化为比较7.5dm与( + )dm的大小。
新课学习
( + )
复习导入
2、把下列各根式化简
(1) 12
2
3
1
(5)
2
2
2
(2) 48
4
3
(6) 32
4
2
(3) 18
3
2
(4) 50
5
2
1
(7) 45 (8) 1
3
3
5
2
3
3
导入新课
计算下列各式:
(1)2x+3x
5x
(2)2x5-5x5+5x5
2x5
(3)3x+2x+3y
5x+3y
(4)3a2-2a2+a3
a2+a3
先化为最简二次根式
把同类二次根式合并。
二次根式的加减与整式的加减根据都是分配律,它们的
运算实质也基本相同。
拓展提升
1.解下列方程和不等式.
(1)
x+
−
=2x+1
+
(2) (x-1)>3(x+1)
分析:(1)先将分母有理化,再解方程即可解答本题;
(2)根据解不等式的步骤进行解答即可,注意不等号的方向。
16.3 二次根式的加减(第2课时)(课件)八年级数学下册(人教版)
他算一算,他的金色细彩带够用吗?如果不够用,还需买多少厘米的金色细
彩带?( 2≈1.414,结果保留整数)
解:镶壁画所用的金色彩带的长为:
4×( 800+ 450)
=4×(20 2+15 2)
=140 2≈197.96(cm),
因为1.2m=120cm<197.96cm,
整式乘法法则与整式乘法公式进行计算。运用的乘法公式主要是:平方
差公式与完全平方公式。
(a b)(a b) a 2 b 2 ,(a b) 2 a 2 2ab b 2
练一练
1、某居民小区有块形状为矩形的绿地,长为 128米,宽为 50
米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部
分),每个长方形花坛的长为 13 + 1 米,宽为 13 − 1 米.
(1)求矩形的周长.(结果化为最简二次根式)
(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/
1.
3 11
32
3.设实数 3的整数部分为m,小数部分为n,则(2m+n)(2m﹣n)的值是( A )
A.2 3
B.−2 3
C.2 3 − 2
D.2 − 2 3
4.化简( 3 − 2)2002 · ( 3 + 2)2003 的结果为(B )
A.-1
B. 3 + 2
C. 3 − 2
m a n b 的式子,构成平方差公式,可以使分母不含
根号.
课堂练习
1.计算:
1
2 3
16.3.2二次根式的混合运算作业课件++2023-2024学年人教版八年级数学下册
解:(2)因为 4<5<9,所以 2< 5 <3,即-3<- 5 <-2,所以 2<5- 5 <3, 所以 a=2,b=5- 5 -2=3- 5 ,则 4ab-b2=4×2×(3- 5 )-(3- 5 )2=24-8 5 -9+6 5 -5=10-2 5
10.(教材 P14 练习 T2 变式)计算: (1)(2 7 +3 3 )(2 7 -3 3 ); 解:原式=(2 7 )2-(3 3 )2=28-27=1
(2)( 5 +2)2-( 5 -2)2; 解:原式=( 5 +2+ 5 -2)( 5 +2- 5 +2)=2 5 ×4=8 5
(3)(2 6 +5)2023(2 6 -5)2023-( 2 -1)2. 解:原式=[(2 6 +5)(2 6 -5)]2023-[( 2 )2-2 2 +1]=(24-25)2023-3+2 2 = -1-3+2 2 =2 2 -4
C.(2 2 - 3 )( 2 + 3 )=(2 2 )2-( 3 )2=5
D.( 3 - 1 )2=3-2+1 =4
3
33
7.若 a= 3 + 2 ,b= 3 - 2 ,则 a 与 b 之间的关系是( C )
A.a+b=0 B.a-b=0
C.ab=1 D.ab=-1
8.计算: (1)(2023·山西)( 6 + 3 )( 6 - 3 )的结果为__3__; (2)( 3 + 2 )2- 24 =__5__. 9.已知长方形的长为(2 5 +3 2 ) cm,宽为(2 5 -3 2 ) cm,则长方形的面积 为__2__cm2.
解:原式=( 5 )2-( 2 )2+( 3 )2-2 3 +1=5-2+3-2 3 +1=7-2 3
16.在一个边长为( 3 + 2 )cm 的正方形内部挖去一个边长为( 3 - 2 )cm 的正 方形(如图),求剩余部分(阴影)的面积.
人教版数学八年级下册16.3《二次根式的加减》说课稿
人教版数学八年级下册16.3《二次根式的加减》说课稿一. 教材分析人教版数学八年级下册16.3《二次根式的加减》这一节,是在学生已经掌握了二次根式的性质和运算法则的基础上进行讲解的。
本节内容主要让学生学会如何进行二次根式的加减运算,进一步培养学生的运算能力和数学思维能力。
教材通过例题和练习题的形式,让学生在实际操作中掌握二次根式加减的计算方法,并能够灵活运用。
二. 学情分析在教学这一节之前,学生已经学习了二次根式的性质,包括根号下的数可以分为完全平方数和非完全平方数,以及二次根式的乘除运算。
但是,对于二次根式的加减运算,学生可能还存在一定的困难,特别是在处理含有同类项和非同类项的二次根式加减时,容易出错。
因此,在教学过程中,需要引导学生理清思路,明确二次根式加减的规则。
三. 说教学目标1.让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。
2.培养学生的运算能力和数学思维能力,使学生在解决实际问题时,能够灵活运用二次根式的加减运算法则。
3.通过二次根式的加减运算,让学生体会数学的规律性和逻辑性,提高学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。
2.教学难点:如何引导学生理解并处理含有同类项和非同类项的二次根式加减问题。
五. 说教学方法与手段1.采用启发式教学法,引导学生通过观察、分析、归纳总结,发现二次根式加减的规律。
2.使用多媒体教学手段,通过动画、图片等形式,直观地展示二次根式的加减过程,帮助学生理解。
3.学生进行小组讨论和合作交流,让学生在讨论中解决问题,提高学生的团队协作能力。
六. 说教学过程1.导入:通过一个实际问题,引出二次根式的加减运算,激发学生的学习兴趣。
2.新课讲解:讲解二次根式的加减运算法则,并通过例题演示如何进行二次根式的加减运算。
3.学生练习:让学生独立完成一些二次根式的加减运算题目,巩固所学知识。
16.3二次根式的加减二次根式的混合运算(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的加减法则和混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动方面,我发现同学们对于实验操作非常感兴趣,这也让他们对二次根式的理解更加深刻。但在操作过程中,有些同学可能因为手法不熟练而影响了实验结果。为了提高实践活动的效果,我考虑在下次课前进行一次简短的实验技巧培训,让同学们在操作时更加得心应手。
最后,从学生的反馈来看,他们对于二次根式的学习还是充满热情的。但在教学过程中,我也发现了自己需要改进的地方,如在讲解难点时更加耐心、细致,关注每一个学生的掌握情况。同时,我还要在课后及时了解学生的疑问和困惑,以便在下一节课中进行针对性的解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如\( \sqrt{a} \)的表达式,其中\( a \)是一个非负实数。它在数学中有着广泛的应用,特别是在几何、物理和工程领域。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算\( \sqrt{18} + \sqrt{12} \),通过这个案例,我们将学习如何将不同的二次根式转换为同类项,并进行加减运算。
-处理含有分数和变量的二次根式运算:难点在于如何正确处理分数和变量在二次根式运算中的规则。
-例如:解决\( \frac{1}{4}\sqrt{8x^2} \times \sqrt{2x} \)的问题,强调先简化根号内的表达式,然后进行乘法运算。
人教版八年级数学下册二次根式的加减
解:(1)( 8 3) 6 (2)(4 2 - 3 6) 2 2
8 6 3 6
4 2 2 2-3 6 2 2
巩固练习
16.3 二次根式的加减/
1.计算:(1) 2 3 5 (2) 80 40 5
解:(1)原式 2 3 2 5 (2)原式 80 5 40 5
∴在这块木板上可以截出两个分别是8dm2和18dm2的正 方形木板.
探究新知
二次根 式性质
16.3 二次根式的加减/
整式加 分配律 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 用分配 整式 二次根式 律合并 加减
依据:二次根式的性质、分配律和整式加减法则.
基本思想:把二次根式加减问题转化为整式加减问题.
(4)3 12 - 1 6 3- 1 6 3 3
27
33
9 15
巩固练习
16.3 二次根式的加减/
4.下列计算正确的是 ( C )
A. 2 2 2
B. 3 2 3 2
C. 12 3 3 D. 3 2 5
5.已知一个矩形的长为 48 ,宽为 12 ,则其 周长为_1_2__3__.
A. 8
1
B.3
C. 18
D.9
2.(2019•兰州)计算: 12 - 3 =( A )
A. 3
B.2 3
C.3
D.4 3
课堂检测
16.3 二次根式的加减/
基础巩固题
1. 与 12 能合并的二次根式是( D )
A. 32 B. 24
C.
12 5
2.下列计算正确的是 ( C )
二次根式的加减初中数学原创课件
×
√
×
√
×
( − )
√
探索新知
案例1:学校计划在校园内修建一个正方形的花坛,在花
坛中央还要修一个正方形的小喷水池.如果小喷水池的面积
是2平方米,花坛的边长是小喷水池的3倍,问花坛的外周
与小喷水池的周长一共是多少米?
答案: 4 +12
或
4 ( +3 )
3 2
16.3 二次根式的加减
第1课时 二次根式的加减
学习目标
1.能熟练进行二次根式的化简;
2.会识别同类二次根式并进行合并;
3.会利用二次根式的加减法则进行计算.
复习回顾
1.被开方数不含分母
下列哪些是最简二次根式?
2
×
×
+
√
2.被开方数中不含能开得
尽方的因数或因式
−
如果结果中有
分数,必须用
假分数表示
=(4 + - 1)
=
别漏了“1”.
-
解:原式= 2 -
(2) -
+2
=
(2+
=
-
-
(
+ )
+
-1) -
-
-
课堂小结
回顾本节课,我们学习了哪些知识?
1.同类二次根式的定义
16.3 二次根式的加减(第2课时)
5 2
2
45赛开始!请同学们在10分钟内完成 课本第14页的练习。
当堂训练
必做题: 1、计算 1 3
3 6 2 6 3;
6 8;
24
3 3 6 2 3
7 5 7
53
a b 2 (a, b为有理数) 2、如果 2 , 那么a+b=( ) 选做题: 3、先化简,再求值:当 a 2 1, b 2 1, b a 2 2 求: 1a b ab 的值; 2 的值.
课题:16.3 二次根式的加减 (第二课时)
学习目标
1、能正确的进行二次根式的加减乘除混 合运算; 2、巧用多项式乘法法则、公式进行二次 根式的混合运算.
自学指导
请同学们默读课本第14页练习上的内容,熟 看例3和例4,掌握二次根式的加减乘除混合运算 方法,并回答下面三个问题(请在5分钟内完成): 1.二次根式的加减乘除混合运算顺序是什么? 2.在二次根式的运算中,多项式的乘法法则和乘 法公式适用吗? 3.例3(1)运用了什么运算律?例4(1)、(2) 运用了什么呢?
16.3.2二次根式的加减2
求
x y y x
a 23 1 时,求代数式
a 1
2
a 23 a 1
的值。
4、已知
3x 1 2 x
2
3x 1 2 x
化简
x 4 9x 6x 1 x 2
观察题目的特点 是否能应用 乘法公式
已知a 3 2 , b 3 2, 求a ab b 的值.
2 2
解:原式
3 2 3 2 3 2 5 2 6 3 2 5 2 6
2
3 2
2
5 2 6 1 5 2 6 9
2)(2 2)
2
(3 5 5 2)
2.求当a= 2 时,代数式(a -1)2 - (a+ 2 )(a-1) 的值.
1已知x 3 2 3的值
3,求代数式 x 2 x 2 x 2
2
课外拓展 1、已知
7 3 7 3 x ,y 2 2
求3x2-4xy+3y2的值 2、已知 的值。 3、当
4
1
4
计算
1、注意运算顺序 2、运用运算律
(1). 27 3 6 2 3 6 (2). 3 3 8 (3).( 48 27) 3
计算
( 1 )( 2 3) ( 2 5)
(2)( 5 3) ( 5 3)
(3)( 3 2 5)
2
想一想:还有其他方法吗?
已知a 3 2 , b 3 2, 求a ab b 的值.
2 2
解二:a ab b
新人教版数学初中八年级下册16.3《二次根式的加减》公开课优质课教学设计
1《16.3二次根式的加减》本课在学习二次根式乘除运算及化简的基础上,本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,从算术平方根的运算出发,研究二次根式的加减运算.二次根式的运算方法与数的运算方法本质上是一致的.二次根式的运算方法与数的运算方法本质上是一致的.实数的运算律对二次根式的运算仍实数的运算律对二次根式的运算仍然适用.结合二次根式的化简、乘除和加减运算,利用交换律、结合律、分配律及多项式乘法公式进行二次根式的混合运算.进行二次根式的混合运算.1. 1. 探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2.2. 会进行二次根式的加减运算.会进行二次根式的加减运算.3.3. 通过探究二次根式的加减运算体会数学中的类比思想通过探究二次根式的加减运算体会数学中的类比思想. .4.4. 类比有理数混合运算和整式混合运算,探索二次根式的加、减、乘、除混合运算顺序的步骤和方法方法. .5.5. 能熟练地进行二次根式的加、减、乘、除混合运算能熟练地进行二次根式的加、减、乘、除混合运算. .6.6. 通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力.1.1. 在化简二次根式的基础上,应用分配律进行二次根式的加减运算.在化简二次根式的基础上,应用分配律进行二次根式的加减运算.2.2. 熟练并准确地进行二次根式的加、减、乘、除混合运算熟练并准确地进行二次根式的加、减、乘、除混合运算. .课件课件◆ 教材分析 ◆ 教学目标◆ 教学重难点 ◆◆ 课前准备◆◆ 教学过程第一课时一、复习引入:一、复习引入:问题1:什么叫最简二次根式?你能将18,8,23化为最简二次根式吗?化为最简二次根式吗? 问题2:现有一块长7.5dm,7.5dm,宽宽5dm 的木板的木板,,能否采用如图的方式能否采用如图的方式,,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板的正方形木板? ? 提问提问::①大、小正方形木板的边长分别为18dm 和8dm,dm,木板是木板是否够宽否够宽??②木板是否够长呢②木板是否够长呢??③怎样计算818+的结果呢的结果呢? ?问题3:计算下列各式:(1)a+2a a+2a;;(2)3x-2x 3x-2x;;解:(1)a+2a=(1+2)a=3a a+2a=(1+2)a=3a;;(2)3x-2x=(3-2)x=x 3x-2x=(3-2)x=x;;【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备. .二、新课讲解:1.1.探究二次根式的加法探究二次根式的加法探究二次根式的加法. .问题4:请类比整式的加减,计算下列各式::请类比整式的加减,计算下列各式:(1)323+;(2)52-53.解:(1)333)21(323=+=+;(2)55)23(52-53=-=.【点拨】最简二次根式中,被开方数相同的二次根式的加减,直接把系数相加减,根号和根号内的数不变内的数不变. .问题5:53+能合并吗?为什么?82+呢?呢?解:53+不能合并,因为它们被开方数不相同;不能合并,因为它们被开方数不相同;232)21(22282=+=+=+.【小结】(1)二次根式能够进行合并的条件:①首先将二次根式化成最简二次根式;②观察被开方数是否相同开方数是否相同. .(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并式合并. .练习1:下列各组二次根式中,能够合并的一组二次根式是(:下列各组二次根式中,能够合并的一组二次根式是( )A .xy 与y x 2B .22y x +与22y x - C .mn 与n m + D.ab 2与ba 2 练习练习:2:2:2::(教材P13练习)下列计算是否正确?为什么?练习)下列计算是否正确?为什么?(1)3838-=-;(2)9494+=+;(3)22223=-.解:(1)∵228=和3的被开方数不相同,的被开方数不相同,∴不能合并∴不能合并,,故错误故错误. .(2)∵53294=+=+,1394=+,故9494+¹+,故错误;,故错误;(3)∵22)23(2223=-=-,故正确故正确. .[点拨点拨]]化为最简二次根式后,只有被开方数相同的二次根式才能合并化为最简二次根式后,只有被开方数相同的二次根式才能合并. .2.2.二次根式加法的运用二次根式加法的运用二次根式加法的运用. .问题7:(教材例题)计算:(1)4580-;(2)a a 259+;(3)483316122+-;(4))53()2012(-++.解:(1)553-544580==-; (2)a a a a a 853259=+=+;(3)3102831232-28483316122+=+=+-; (4)533535232)53()2012(+=-++=-++.练习3:(教材P13练习2)计算:(1)4580-;(2)a a 9194+; (3)52080+-;(4))2798(18-+;(5))681()5.024(--+.解:(1)553-544580==-; (2)a a a a a =+=+31329194; (3)535525452080=+-=+-;(4)33210332723)2798(18-=-+=-+;.42636422262)642()2262()681()5.024(5+=+-+=--+=--+)(问题6:前面问题2中,怎样计算818+的结果呢的结果呢??木板长7.5dm,7.5dm,宽宽5dm 5dm,是否够长?,是否够长?,是否够长?解:818+=2223+···化为最简二次根式·化为最简二次根式=2)23(+···乘法分配率·乘法分配率=25≈7.077.07<<7.5故木板够长故木板够长. .练习4:(教材P13练习3)如果两个圆的圆心相同,他们的面积分别是12.56和25.1225.12,求圆环的,求圆环的宽度d (π取3.143.14,结果保留小数点后两位),结果保留小数点后两位),结果保留小数点后两位). .解:∵解:∵S S 圆=πr 2,∴d=r 大圆-r 小圆小圆=2224814.356.1214.312.25-=-=-=-ππ小圆大圆S S ≈0.83 答:圆环的宽度d 为0.83.三、课堂小结:三、课堂小结:1.1. 知识梳理:(1)二次根式合并的前提:化成最简二次根式之后,被开方数相同)二次根式合并的前提:化成最简二次根式之后,被开方数相同. .(2)二次根式加减的实质:合并被开方数相同的最简二次根式)二次根式加减的实质:合并被开方数相同的最简二次根式. .2.2.二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:①化成最简二次根式后,如果被开方数不相同,则不能进行合并;①化成最简二次根式后,如果被开方数不相同,则不能进行合并;②合并被开方数相同的最简二次根式时,②合并被开方数相同的最简二次根式时,只合并根式外的因式,即系数相加减,被开方数和根指数只合并根式外的因式,即系数相加减,被开方数和根指数不变不变. .3.3. 二次根式加减运算的步骤:①去括号;②化简;③判断并合并.二次根式加减运算的步骤:①去括号;②化简;③判断并合并.4.4.二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别运算运算二次根式的乘除法二次根式的乘除法 二次根式的加减法二次根式的加减法 系数系数系数相乘除系数相乘除 系数相加减系数相加减被开方数被开方数 被开方数相乘除被开方数相乘除 被开方数不变被开方数不变化简化简 结果化成最简二次根式结果化成最简二次根式先化成最简二次根式先化成最简二次根式,,再合并被开方数相同的二次根式的二次根式((同类二次根式同类二次根式) )四、随堂测试:四、随堂测试:1.1.下列各式计算正确的是下列各式计算正确的是下列各式计算正确的是 ( () A.532=+ B.13334=- C.363332=´ D.3327=¸ 解析解析:A.:A.:A.不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;B.B.合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;C.C.应为应为18363332=´=´´,故错误;,故错误;D.39327327==¸=¸,故正确,故正确. .故选D.2.2.以下二次根式以下二次根式以下二次根式::①12,②22,③32,④27中, 化简后能合并成一项的是化简后能合并成一项的是化简后能合并成一项的是( ( ( )A.A.①和②①和②①和②B. B.②和③②和③②和③C. C.①和④①和④D.D.③和④③和④③和④解析:①3212=;②222=;③3632=;④3327=. 3.3. 计算:2-23的值是(的值是() A.2 B.3 C.2 D.22 解析:解析:..222)13(2-23=-=.4.4. 一个等腰三角形的两边长分别为2332,, 则三角形的周长为则三角形的周长为则三角形的周长为. . 解析:分两种情况讨论:(1)当32为腰长,23为底边长时,周长为3423+;(2)当23为腰长,为32底边长时,周长为3226+.5.5. 若最简二次根式若最简二次根式14232+a 与16322-a 的被开方数相同的被开方数相同,,则a= a= . 解析:由题意得4a 2+1=6a 2-1-1,解得,解得a=a=±±1.6.6. 计算:(1)233-2332++; (2)101015-40+.第二课时一、复习引入:一、复习引入:1.1.计算:(1)728+;(2)68´;(3)324¸. 解:(1)282622728=+=+;(2)34486868==´=´;(3)228324324==¸=¸.【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备. .2.2. 计算:(1)(2x-y)(2x-y)··zx zx;;(2)(2x 2y+3xy 2)÷xy xy;;(3)(2x+y)(x-3y) (3)(2x+3y)(2x-3y);(2x+3y)(2x-3y);((4)(2x+1)2+(2x-1)2.解:(1)(2x-y)(2x-y)··zx=2x 2z-xyz z-xyz;;(2)(2x 2y+3xy 2)÷xy=2x 2y ÷xy+3xy 2÷xy=2x+2y xy=2x+2y;;(3)(2x+y)(x-3y)=2x 2-6xy+xy-3y 2=2x 2-5xy-3y 2;(4)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x 2-9y 2;(5)(2x+1)2+(2x-1)2=4x 2+4x+1+4x 2-4x+1=8x 2+2.提问:上面的运算用到了哪些法则和公式?提问:上面的运算用到了哪些法则和公式?学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式. .【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算. .二、新课讲解:二、新课讲解:问题1:如果把上面的x ,y ,z 改成二次根式呢?以上的运算法则是否仍然成立?改成二次根式呢?以上的运算法则是否仍然成立?例1.1.(教材(教材P14例题3)计算:(1)6)38(´+;(2)226324¸-)(.解:(1)6)38(´+=6368´+´=1848+=2334+;(2)2263-24¸)( =22632224¸-¸=3232-.【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率. . 练习1:(教材P14练习1)计算:(1))53(2+;(2)5)4080(¸+; 解:(1))53(2+=5232´+´=106+;(2)5)4080(¸+=540580¸+¸=816+=224+.【小结】(1)与有理数、实数运算一样,在混合运算中先乘除,后加减;)与有理数、实数运算一样,在混合运算中先乘除,后加减;(2)最终的结果一定要化为最简二次根式)最终的结果一定要化为最简二次根式. . .问题2.2.(教材(教材P14面例4)例2.2. 计算:(1))52()32(-×+;(2))35)(35(-+. 解:(1))52()32(-×+=152523)2(2--+=15222--=2213--;(2))35)(35(-+=22)3()5(-=5-3=2.提问:你能说出上面两道题中每一步的依据是什么吗?提问:你能说出上面两道题中每一步的依据是什么吗?【小结】乘法公式使计算准确、简便,因此能用运算公式的,尽可能用运算公式.因为二次根式表示数,二次根式的运算也是实数的运算.根式表示数,二次根式的运算也是实数的运算.练习2:计算:(1))17(72--=;(2))2332)(2332(+-=.答案为:7214+-;6.练习3:计算2)322215324(×+-的结果是(的结果是( ) A. A. 303-3320 B.30-3320 C.332303- D.332302- 练习3 计算:(1))2762)(6227(-+;(2)2)377(-;(3)22)632()632(-+--+解:(1))2762)(6227(-+=222762)()(-=24-98=-74=-74;;(2)2)377(-=22)37(3772)7(+´´-=2114154-;(3)22)632()632(++--+=)]632()632)][(632()632[(++--++++-+ =)62()3222(-×+=21238--.练习4:已知4x 2+y 2-4x-6y+10=0-4x-6y+10=0,求下面式子的值,求下面式子的值,求下面式子的值. . )1()(2y x y x y x y y xx +-+解:由4x 2+y 2-4x-6y+10=0得到得到(2x-1)(2x-1)2+(y-3)2=0,∴2x-1=0,y-3=0.解得,解得,x=x=21,y=3. )1()(2yx y x y x y y xx +-+ =yx x y y x 12--+ =y y x x y y y x--+=x y -当x=21,y=3时,时, 原式原式==223213-=-. 三、课堂小结:三、课堂小结:师生共同回顾本节课所学主要内容师生共同回顾本节课所学主要内容: :关于二次根式的四则混合运算关于二次根式的四则混合运算,,实质上就是实数的混合运算.(1)(1)运算顺序与有理式的运算顺序相运算顺序与有理式的运算顺序相同;(2);(2)运算律仍然适用运算律仍然适用运算律仍然适用;(3);(3);(3)与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似,,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.四、随堂检测:1. 下列二次根式中可以进行合并的是下列二次根式中可以进行合并的是( ) ( )A. ab 与2abB. 22n m + 与22n m -C. mn 与nm 11+ D. 438b a 与432b a 【知识点:同类二次根式】【知识点:同类二次根式】【参考答案】D【思路点拨】先化简成最简二次根式,再看被开方数是否相同【思路点拨】先化简成最简二次根式,再看被开方数是否相同. .2.2.计算:计算:)12)(12(-+的结果是(的结果是(). A.23+ B.23- C.1D.3 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】C C【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,本题利用平方差公式直本题利用平方差公式直接计算即可接计算即可. .3.3.若矩形相邻两边长分别是若矩形相邻两边长分别是cm 20和cm 125,则它们的周长是,则它们的周长是. .【知识点:二次根式混合运算】【知识点:二次根式混合运算】【参考答案】cm 514【思路点拨】矩形的周长【思路点拨】矩形的周长==(长(长++宽)×宽)×2 24. 计算:)4831375(12-+´的结果是(的结果是() A.23 B.32 C. 6D. 12 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】D D【思路点拨】123232)34335(12)4831375(12=´=-+´=-+´5. 计算:3)4841311527(¸+-【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】1-【解析】原式=1333)33533(-=¸-=¸+-略。
人教版八年级数学下册课件 16-3 第1课时 二次根式的加减
b
2a+3b
如果把a,b用二次根式来替代,能得到什么呢?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 .
因为 3 8 3 22 2 6 2,由前面知两者可以合并.
你又发现
了什么?
2a+3b=2 2+6 2=8 2
我们发现:要将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
归纳总结
将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
注意:判断几个二次根式是否可以合并,一定都要
化为最简二次根式再判断.
合并的方法与合并同类项类似,把根号外的因数(式)
相加,根指数和被开方数(式)不变.如:
m a n a m n a
例题讲解
例1 若最简根式
3 − 2 与 3 可以合并,
2
4 5 , 3 5, 2 5 .
化简后被开方数相同
获取新知
知识点一:同类二次根式
同类二次根式:几个二次根式化成最简二次根式后,它们
的被开方数相同, 这些二次根式就称为同类二次根式
备注:
1.同类二次根式首先必须是最简二次根式;
2.同类二次根式再次必须是被开方数相同
例题讲解
例1 下列根式中,与 3 不是同类二次根式的是( C )
第十六章 二次根式
16.3 第1课时 二次根式的加减
知识回顾
问题1 满足什么条件的根式是最简二次根式?
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
问题2 化简下列两组二次根式,每组化简后有什么共同特点?
(1) 8 ,18 ,0.5;
二次根式16.3(2)
课题16.3二次根式加减(2)备课教师高敏单位梅河口市第二中教学目标知识与技能会熟练地进行二次根式的加减乘除混合运算,提高运算能力。
过程与方法通过类比,理解二次根式混合运算算理的合理性情感态度价值观体验和掌握迁移,转化等数学思想方法。
教学重点二次根式的四则混合运算教学难点对二次根式混合运算算理的理解,正确应用法则进行二次根式的各级运算。
教法探索归纳法学法类比的学习方法教具小黑板教学流程教师与学生活动内容设计意图一、复习旧知,预热新知1、二次根式的乘除运算法则是什么?在运算中需要注意什么?2、二次根式的加减运算法则是什么?其依据是什么?复习二次根式的加,减,乘,除运算法则,为继续学习混合运算做铺垫。
二、例题学习,探究新知教材14页例3总结以上两题的计算步骤及依据:与整式中多项式与单项式的乘除步骤一致,依据是乘法分配律。
例4运用类比,用所学知识解决新问题通过解决问题,讨论交流的整过程,让感受新知识解决的方法,并学会归纳所学新知识三巩固练习,学以致用本环节注意1,学生是否能理解用整式的乘法的一样的思路进行二次根式的混合运算,形成知识的正迁移.2,学生在混合运算中是否能区分并准确应用二次根式的各级运算法则进行运算。
练习:教材14页练习1,2让学生在归纳的过程中加深知识的记忆,并增强学生的分析、概括能力四,拓展提升例5 已知x=3+2,y=3-2求下列各式的值(1)222x xy y++(2)22x y-本题是代入求值,根据以前的所学的求值的经验,需将原式化简——这里二次根式已经是最简形式,但若直接代入x,y进行计算,问题变得复杂。
观察到要求的两个式子均为乘法公式的结果,且因式分解后得到x+y或x-y,因此可先将原式因式分解,再代入x,y值计算。
培养学生学以致用的能力培养学生的思考能力,并加强学生对知识点的归纳能力让学生明了本节课的重点与难点归纳小结通过今天的学习你有何收获?作业布置教材16.3第4题,6题板书设计课题。
人教版八年级下册数学精品教学课件 第16章 二次根式 第2课时 二次根式的混合运算
典例精析
例2 甲、乙两个城市间计划修建一条城际铁路, 其 中有一段路基的横断面设计为上底宽 4 2 m,下底 宽6 2 m,高 6 m 的梯形,这段路基长 500 m,那 么这段路基的土石方 (即路基的体积,其中路基的体积 =路基横断面面积×路基的长度)为多少立方米呢?
4 2m
6m
6 2m
利用乘法公式进行二次根式的运算
问题1 整式乘法运算中的乘法公式有哪些?
平方差公式:(a + b)(a - b) = a2- b2;
完全平方公式:(a + b)2 = a2 + 2ab + b2; (a - b)2 = a2 - 2ab + b2.
问题2 整式的乘法公式对于二次根式的运算也适用吗?
前面我们已经知
道二次根式运算
类比整式运算, 所以适用
解:∵3 10 4,
∴ a 3,b 10 3 .
∴ a2 b2 32 ( 10 3)2
3 10 3 3 10 3 10 6 10
6 10 10.
1.下列计算中正确的是( B )
A. 3( 3 1 ) 3 3
B.( 12- 27) 3 1
C. 32 1 2 2 2
(1) (3 2 3) 27+ 6 3 ; (2)(2023 3)0 + 3 12 - 6 . 2
解:(1) 原式 6 3 3 3 3 6
3 3 .
(2) 原式 1+2 3 3 3
32.
归纳 有绝对值符号的,同括号一样,先去绝对值,注 意去掉绝对值后,得到的数应该为正数.
D. 3( 2 3) 6 2 3
2.计算:( 2+ 3)2 24 5 .
3. 设 a
人教版八年级数学下册16.3二次根式的加减教案
(4)混合运算的顺序:学生在面对含有多个二次根式的混合运算时,容易混淆运算顺序。
举例:计算2√3 + √5 × √2,学生应先进行乘法运算,得到√10,再进行加法运算。
在教学过程中,教师需针对以上重点和难点内容进行有针对性的讲解和强调,通过实例分析和练习,帮助学生理解并掌握核心知识,突破学习难点。
举例:化简二次根式√24,学生需要找到24的因数4,并将其分解为√4 × √6,进一步化简为2√6。
(2)二次根式的加减运算:学生在进行二次根式加减运算时,容易忽略合并同类项的步骤。
举例:计算√3 + √5 - √3,学生需要意识到两个√3可以相互抵消,最终结果为√5。
(3)实际问题的应用:学生往往难以将实际问题抽象为二次根式的加减问题。
实践活动环节,学生们分组讨论和实验操作都表现得积极主动,但部分小组在讨论过程中还是偏离了主题。我应该在引导讨论时,更加明确主题,确保学生的讨论能紧扣教学内容。
学生小组讨论环节,我尝试作为一个引导者,发现学生们在面对开放性问题时,思维非常活跃,能提出很多有创意的想法。但在成果分享时,有些学生表达不够清晰,这需要我在今后的教学中加强对学生表达能力的培养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的定义和性质。二次根式是形如√a的表达式,其中a是非负实数。它是解决平方根相关问题的重要工具,广泛应用于几何、物理等多个领域。
2.案例分析:接下来,我们来看一个具体的案例。计算√9 + √16,通过这个案例,展示二次根式在实际中的加减运算方法。
(2)熟练运用二次根式的加减法则,进行混合运算。
人教版数学八年级下 16.3 二次根式的加减
更多同类练习见《教材帮》
数学RJ八下16.3节作业帮
2.计算:(1)( 12 + 5 8) × 3 .(2)(5 3 + 2 5)2 .
解:(1)原式= 2 3 + 10 2 × 3
=2 3 × 3+10 2 × 3
=6+10 6.
(2)原式= (5 3)2 +2 × 5 3 × 2 5 + (2 5)2
16.3 二次根式的加减
课时1
初中数学
八年级下册 RJ
知识回顾
最简二次根式:满足以下两个条件的二次根式,叫做
最简二次根式.
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式 .
二次根式化成最简二次根式的
1.分:利用分解因数或分解因式的方法把被开方
数的分子、分母都化成质因数(或最简因式)的
B选项 63 2 = ab 6.
C选项
2
3
=
2× 3
3× 3
=
6
.
3
C. 3
D.
2
3
将下列二次根式化成最简二次根式:
0.5 =
1
1
= =
2
2
2
2
= .
2× 2
2
当小数无法开方时,
将它转化为分数.
83 = 42 ⋅ 2= 42 · 2= 2a 2.
44 =
8dm2 和 18dm2 的正方形木板?
7.5dm
面 积 为 8dm2 和
18dm2的正方形的
5dm
边 长 分别 是 多少 ?
8dm2
18dm2
解:因为 8 = 2 2 , 18 = 3 2 ,
人教版数学八下16.3《二次二次根式的加减》 (2)
解:R r
S
s
18
8
2
R-r
1 (1)3 48 9 3 12; (2)( 48 20) ( 12 5 ) 3 1 解:原式 16 3 4 5 4 3 5 解: 原式 3 16 3 9 3 43 3 4 32 52 3 5 12 3 3 3 6 3 6 3 5
m n 2
) 125
3.如果最简二次根式
2
与
mn
1 D. 6 27
是同类二次根式,求m、n 的值.
知识点2:二次根式的加减法:
(1)两列火车分别运煤2x吨和3x吨,问这两列火车共运多少? 2x+3x=5x吨 _______________ (2)两列火车分别运煤2x吨和3y吨,问这两列火车共运多少? (2x +3y)吨 _______________ 以下问题你能用同样的方法计算吗?
注意:判断一组式子是否为同类二次根式,只需看化 为最简二次根式后的被开方数是否相同,与最简二次 根式前面的因式及符号无关.
1.在下列各组根式中,是同类二次根式的是( B 1 2, A . 2 , 12 B . 2 C. 4ab , ab2 D. a 1 , a 1
2. 与
)
A.
12是同类二次根式的是( D 32 B. 24 C.
13 3 2 12 3 4 3 3 3 4 9 3
1.下列计算是否正确?为什么?
火眼金睛
( 1)
( 2) ( 3) ( 4)
8
3
8 3
4
9
16.3 二次根式的加减
=5-2 3.
11
教材新知精讲
知识点一
综合知识拓展
知识点二
12
教材新知精讲
拓展点一
拓展点二
拓展点三
综合知识拓展
拓展点四
拓展点一利用二次根式的整数部分和小数部分求代数式的值
1
设
的整数部分是
3- 7
例1
a,小数部分是 b,求代数式 a2+(1+ 7)ab
的值.
1
分析首先把
16.3
二次根式的加减
教材新知精讲
知识点一
综合知识拓展
知识点二
知识点一二次根式的加减
一般地,二次根式加减时,可以先将二次根式化成最简二次根式,
再将被开方数相同的二次根式进行合并.
名师解读 (1)二次根式的加减实际上就是合并被开方数相同的二
次根式.与合并同类项类似,进行二次根式的加减时,只要把二次根
=(20 3-18 3+4 15)÷ 3
=20 3 ÷ 3-18 3 ÷ 3+4 15 ÷ 3
=20-18+4 5
=2+4 5;
(5)(2 3 − 2)( 3 + 2)
=2 3 × 3+2 3 × 2 − 2 × 3 − 2 × 2
=6+2 6 − 6-2=4+ 6;
(6)( 3-1)2-( 2 − 3)( 2 + 3)
知识点一
综合知识拓展
知识点二
例 2 计算:(1) 6 × 2 + 24 ÷ 3 − 48;
(2) 2
(3)
48-4
72 + 6
1
最新人教版八年级数学下册十六章二次根式16.3二次根式的加减教学设计
16.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、问题引入现有一块长为7.5dm ,宽为5dm 的木板,能否采用如图16.3-1的方式,在这块木板上戳出两个面积分别是8dm 3和18dm 3的正方形木板?二、探索新知1.学生活动:列出代数式8+18 利用前面所学知识将其化简得到2+32.教师提问同类项以及合并同类项的知识,学生复习回答问题老师点评:所以如果被开方数相同,则这样的二次根式可以利用分配律合并一般地,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.所以上面问题2+3=25,由2<1.5可知52<7.5,即两个正方形的边长的和小于木板的长,因此可以用这块木板按要求截出所需要的木板。
例1.计算(1)80-45 (2)a 9+a 25 (3)+(4)+分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.、例2.计算(1)483316-122+ (4)(2012+)+(5-3)比较二次根式的加减与整式的加减,你能得到什么结论?三、展示交流教材P13练习1、2.四、堂清巩固例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:∵4x2+y2-4x-6y+10=0∵4x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6当x=,y=3时,原式=×+6=+3五、课堂小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、布置作业1.教材P21习题21.3 1、2、3、5.2.选作课时作业设计.3.课后作业:《同步训练》七、板书设计16.3 二次根式的加减(1)先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.八、课后回顾16.3 二次根式的加减(2)第二课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算. 重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y )·zx (2)(2x 2y+3xy 2)÷xy2.计算(1)(2x+3y )(2x-3y ) (2)(2x+1)2+(2x-1)2老师点评:这些内容是对整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立. 整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)× (2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.例2.计算(1)()()5-232+ (2)()()3-535+ 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.三、展示交流课本P 14练习1、2.四、堂清巩固例3.已知=2-,其中a 、b 是实数,且a+b ≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2五、课堂小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P21习题16.3 4、6、8、9.2.课后作业:《练习册》七、板书设计16.3 二次根式的加减(2)八、课后回顾作业设计一、选择题1.(-3+2)×的值是().A.-3 B.3-C.2- D.-2.计算(+)(-)的值是().A.2 B.3 C.4 D.1二、填空题1.(-+)2的计算结果(用最简根式表示)是________.2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______.3.若x=-1,则x2+2x+1=________.4.已知a=3+2,b=3-2,则a2b-ab2=_________.三、综合提高题1.化简2.当x=时,求+的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().A.与 B.与C.与 D.与2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.练习:+的有理化因式是________;x-的有理化因式是_________.--的有理化因式是_______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1);(2);(3);(4).4.其它材料:如果n是任意正整数,那么=n理由:==n练习:填空=_______;=________;=_______.答案:一、1.A 2.D二、1.1- 2.4-24 3.2 4.4三、1.原式====-(-)=-2.原式==== 2(2x+1)∵x==+1 原式=2(2+3)=4+6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22 4 10
x 3 1, y 3 1
1 x2 2xy y2; 2 x2 y2
解:(1)原式=(x+y)2 (2)原式 (x+y)(x-y)
=( 3+1+ 3-1 )2 =( 3+1+ 3-1)( 3+1- 3+1) (2 3)2 =2 3 2
( 6 2)( 6 2)
3 ( 5 3Biblioteka ( 5 2)4 ( 6 2)( 6 2)
( 5)2 2 5 3 5 6 5 55 6 11 5 5
( 6)2 ( 2)2 62 4
( 3 2)2
5 ( 3 2)2
( 3)2 4 3 4 3 43 4 7 43
(2 5 2)2
6 (2 5 2)2
(2 5)2 4 10 ( 2)2 20 4 10 2 22 4 10
( 48+ 20)-( 12- 5)= 4 3+2 5-2 3+ 5 =2 3+3 5
化成最简 二次根式
合并被开方数相 同的二 次根式
归纳:
x3 y2 x3
解:(1)(2 x3 + y2)·x3
=(2 x3)2 + x3 y 2
23 6
66
若 x 3, y 2
(4 6 3 2) 2 2
解:(1)(4 6 3 2) 2 2 4 62 23 22 2
3 3 3
适用
2( 3 5) ( 5 3)( 5 2) ( 3 2)2
( 80 40 ) 5 ( 6 2)( 6 2)
(2 5 2)2
2( 3 5) 解: 1 2( 3 5)
6 10
( 80 40 ) 5
2 ( 80 40) 5
80 5 40 5 16 8 4 22
( 5 3)( 5 2)
6题
16.3 二次根式加减(2)
(1)3 48 -9 1 +3 12;(2)( 48+ 20)-( 12 - 5). 3
3 48-9 1 +3 12=12 3-3 3+6 3=15 3 3
化成最简 二次根式
合并被开方 数相同的二
次根式
(1)3 48 -9 1 +3 12;(2)( 48+ 20)-( 12 - 5). 3
2 34
8 3
x 32
x2017 • y 2018
y 32
解:(3)x2017 • y 2018
(xy)2017 • y
2017
( 3 2)( 3 2) • ( 3 2) (1)2017 ( 3 2)
32
A. 3+ 2 5 C. ( 5)1 5
B
B. 12 3 2 D. ( 3 1)2 2
( 24-3 15+2 2 2 ) 2
A
3
A.20 3-3 30 3
C.3 30- 2 3 3
B.20 3- 30 3
D.2 30- 2 3 3
(1)2 7( 7-1)= _-_1_4_+_2__7_; (2)(2 3-3 2)(- 2 3-3 2)=____6____.
(1) ( 5 3)( 5 3) __2__; 2( 3+2)2 ___7___4___3_; (3)(3 5 4 2) (2 5 3 2) _6___1_0__ .
12
4 3
1.二次根式的混合运算类比哪些运算来进行?
类比有理数的运算顺序和整式的运算法则和公式
2.在二次根式的运算中常用的方法有哪些?
乘法分配律;多项式乘法法则;平方差公式; 完全平方公式
3.二次根式混合运算的运算顺序是什么?
先乘除后加减,有括号先算括号里面的
再见 教科书第60页第3、
2 33 2
归纳:
用整式的乘法 法则(a+b)(cd) =ac+bc-ad-bd. ( 2 3)( 2 5)
运用公式 (a+b)(a-b) =a2-b2.
(2 3 3 2)(2 3 3 2)
3 ( 3)2 ( 5 1)( 5 1) 27 3 2 3
注意:运算顺序先 算乘方(或开方) ,再算乘除,最后 算加减,有括号的 先算括号内的
解:(1)( 2 3)( 2 5) 解:(2)(2 3 3 2) (2 3 3 2)
( 2)2 3 2 5 2 15
(2 3)2 (3 2)2
2 2 2 15
12 18
2 2 13
6
3
解:(3)3
(
3)2 (
5 1)(
5 1)
27
32
3 3513 3 3 2
小结:在二次根式的 运算中多项式的乘法 法则、乘法公式仍然
x 32 y x2 2xy y2
x2 y2
x2017 • y 2018
32
x 32 y 32
x2 2xy y2
解:(1)x2 2xy y2
(x y)2
2
32 32 ( 3)2 3
x 32
x2 y2
y 32
解:(2)x2 y2
(x y)(x y)
3 2 3 2 3 2 3 2
(1) 8 18 6 (2) 4 7 4 7
(1) 8 18 6
43 63
(2) 4 7 4 7
16 ( 7)2 16 7 9
(3) 2 2 3 2 2 解 (3) 2 2 3 2 2
:
6 42 32 4
22
2
(4) 2 5 2
2
(4) 2 5 2