2019版一轮优化探究文数第二章 第一节 函数及其表示练习
2019版高考数学(理)一轮狂刷练:第2章函数、导数及其应用2-1a含解析
15 8 27 A. B. C.- D.18 16 9 16 答案 A 1 1 1 15 解析 f(2)=4,f f2 =f 4 =1- 4 2= .故选 A. 16 3.已知 f(x5)=lg x,则 f(2)等于( A.lg 2 B.lg 32 C.lg 答案 D 1 解析 令 x5=t,则 x= t 5 ∴f(t)=lg t
解析 f[f(x)]=f[lg (1-x)]=lg [1-lg (1-x)],则 故选 B.
1-x>0, 1-lg 1-x>0
⇒-9<x<1.
5.若函数 y=f(x)的定义域是[0,1],则函数 F(x)=f(x+a)+f(2x+a)(0<a<1)的 定义域是( ) a - ,1-a B. 2 1-a -a, D. 2 1-a a .故选 A. ⇒- ≤x≤ 2 2 ) 1 ,1 B. 2 1 ,+∞ D. 2 a 1-a - , A. 2 2 C.[-a,1-a] 答案 A 解析 0≤x+a≤1, 0≤2x+a≤1
[基础送分 提速狂刷练] 一、选择题 1.已知 A={x|x=n2,n∈N},给出下列关系式:①f(x)=x;②f(x)=x2;③f(x) =x3;④f(x)=x4;⑤f(x)=x2+1,其中能够表示函数 f:A→A 的个数是( A.2 B.3 C.4 D.5 答案 C 解析 对于⑤,当 x=1 时,x2+1∉A,故⑤错误,由函数定义可知①②③④ 均正确.故选 C. 2.(2018·吉安四校联考)已知函数 f(x)= 1-x2x≤1, x2+x-2x>1, 1 则 f f2 的值为( ) )
1 5 1 5
)
1 1 D. lg 2 32 5
(t>0),
1 1 = lg t.∴f(2)= lg 2.故选 D. 5 5 ) B.(-9,1) D.[-9,1)
2019北师大版同步优化探究文数练习:第二章 第一节 函数及其表示含解析
课时作业A组——基础对点练1.函数f(x)=log2(x2+2x-3)的定义域是( )A.[-3, 1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)解析:使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).答案:D2.下列各组函数中,表示同一函数的是( )xA.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2x2C.f(x)=,g(x)=|x|x-11-xD.f(x)=0,g(x)=+解析:在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.答案:C3.设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图像可以是( )解析:A项,定义域为[-2,0],D项,值域不是[0,2],C项,当x=0时有两个y值与之对应,故选B.答案:B4.设f,g都是由A到A的映射,其对应法则如下:映射f的对应法则x1234f(x)3421映射g的对应法则x1234g (x )4312则f [g (1)]的值为( )A .1 B .2C .3D .4解析:由映射g 的对应法则,可知g (1)=4,由映射f 的对应法则,知f (4)=1,故f [g (1)]=1.答案:A5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( )A .x +1 B .2x -1C .-x +1D .x +1或-x -1解析:设f (x )=kx +b ,则由f [f (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.答案:A6.设函数f (x )=Error!若f =4,则b =( )(f(56))A .1 B.78C. D.3412解析:f =f=f .当-b <1,即b >时,3×-b =4,解得b =(舍)(f(56))(3×56-b)(52-b)5232(52-b)78.当-b ≥1,即b ≤时,2-b =4,解得b =.故选D.52325212答案:D7.已知函数f (x )=Error!若f (a )+f (1)=0,则实数a 的值等于( )A .-3 B .-1C .1D .3解析:由题意知f (1)=21=2.∵f (a )+f (1)=0,∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3.答案:A8.下列函数中,不满足f (2x )=2f (x )的是( )A .f (x )=x +1 B .f (x )=x -|x |C .f (x )=|x |D .f (x )=-x解析:对于A ,f (x )=x +1,f (2x )=2x +1≠2f (x )=2x +2,A 不满足;对于B ,f (x )=x -|x |,f (2x )=2x -|2x |=2f (x ),B 满足;对于C ,f (x )=|x |,f (2x )=2|x |=2f (x ),C 满足;对于D ,f (x )=-x ,f (2x )=-2x =2f (x ),D 满足.故选A.答案:A9.已知函数f (x )=2x +1(1≤x ≤3),则( )A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4)解析:因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).答案:B10.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =B .y =[x10][x +310]C .y =D .y =[x +410][x +510]解析:取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B.答案:B11.已知函数f (x )=Error!则f (0)=( )A .-1 B .0C .1D .3解析:f (0)=f (2-0)=f (2)=log 22-1=0.答案:B12.已知实数a <0,函数f (x )=Error!若f (1-a )≥f (1+a ),则实数a 的取值范围是( )A .(-∞,-2]B .[-2,-1]C .[-1,0)D .(-∞,0)解析:当a <0时,1-a >1,1+a <1,所以f (1-a )=-(1-a )=a -1,f (1+a )=(1+a )2+2a =a 2+4a +1,由f (1-a )≥f (1+a )得a 2+3a +2≤0,解得-2≤a ≤-1,所以a ∈[-2,-1].故选B.答案:B13.若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )的表达式为________.解析:令x +2=t ,则x =t -2.因为f (x )=2x +3,所以g (x +2)=f (x )=2x +3,所以g (t )=2(t -2)+3=2t -1.故函数g (x )的表达式为g (x )=2x -1.答案:g (x )=2x -114.(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________.解析:因为f (-2)=2,所以-32a +2b +2-1=2,即32a -2b =-1,则f (2)=32a -2b +2-1=0.答案:015.已知函数f (x )=Error!则f的值是__________.(f(14))解析:由题意可得f =log 2=-2,(14)14∴f =f (-2)=3-2+1=.(f(14))109答案:10916.(2018·广州市测试)已知函数f (x )=Error!,若|f (a )|≥2,则实数a 的取值范围是__________.解析:当a ≤0时,1-a ≥1,21-a ≥2,所以|f (a )|≥2成立;当a >0时,由|f (a )|≥2可得|1-log 2a |≥2,所以1-log 2a ≤-2或1-log 2a ≥2,解得0<a ≤或a ≥8.综上,实数a 的12取值范围是(-∞,]∪[8,+∞).12答案:(-∞,]∪[8,+∞)12B 组——能力提升练1.(2018·石家庄质检)已知函数f (x )=Error!,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞) B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.答案:B2.具有性质:f =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:(1x )①f (x )=x -;②f (x )=x +;③f (x )=Error!其中满足“倒负”变换的函数是( )1x 1x A .①② B .①③C .②③D .①解析:对于①,f (x )=x -,f =-x =-f (x ),满足;对于②,f =+x =f (x ),不满足;1x (1x )1x (1x )1x 对于③,f =Error!(1x )即f =Error!故f =-f (x ),满足.(1x )(1x )综上可知,满足“倒负”变换的函数是①③.答案:B3.(2018·天津模拟)设函数f (x )满足f =1+x ,则f (x )的表达式为( )(1-x1+x )A. B.21+x 21+x 2C.D.1-x 21+x 21-x 1+x解析:令=t ,则x =,代入f =1+x ,得f (t )=1+=,故选A.1-x1+x 1-t1+t (1-x 1+x )1-t 1+t 21+t 答案:A4.(2018·郑州质检)设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 017D .2 018解析:令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2;令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D.答案:D5.已知函数f (x )=Error!,则f (-2 017)=( )A .1 B .eC.D .e 21e 解析:由已知可得,当x >2时,f (x )=f (x -4),故其周期为4,f (-2 017)=f (2017)=f (2016+1)=f (1)=e.答案:B6.函数f (x )=Error!则不等式f (x )>2的解集为( )A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(,+∞)10D .(,+∞)10解析:令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >,故选C.10答案:C7.已知函数f (x )=Error!则f (-1+log 35)的值为( )A. B.11553C .15D.23解析:∵-1+log 35<2,∴f (-1+log 35)=f (-1+log 35+2)=f (1+log 35)=f (log 315)=log 315=,故选A.(13)115答案:A8.设函数f (x )=Error!若f (f (a ))=-,则实数a =( )12A .4B .-2C .4或-D .4或-212答案:C9.已知函数f (x )=Error!,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]解析:若x >0,则-x <0,f (-x )=x ln(1+x )+x 2=f (x ),同理可得x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )为偶函数.当x ≥0时,易知f (x )=x ln(1+x )+x 2为增函数,所以不等式f (-a )+f (a )≤2f (1)等价于2f (a )≤2f (1),即f (a )≤f (1),亦即f (|a |)≤f (1),则|a |≤1,解得-1≤a ≤1,故选D.答案:D10.已知实数a ≠0,函数f (x )=Error!若f (1-a )=f (1+a ),则a 的值为( )A .-B .-3234C .-或-D.或-32343234解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-,不合题意;当a <0时,321-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-,所以a 的值34为-,故选B.34答案:B11.给出定义:若m -<x ≤m +(其中m 为整数),则m 叫作离实数x 最近的整数,记作1212{x },即{x }=m .现给出下列关于函数f (x )=|x -{x }|的四个命题:①f=;(-12)12②f (3.4)=-0.4;③f=f ;(-14)(14)④y =f (x )的定义域为R ,值域是.[-12,12]其中真命题的序号是( )A .①② B .①③C .②④D .③④解析:①∵-1-<-≤-1+,121212∴=-1,{-12}∴f===,∴①正确.(-12)|-12-{-12}||-12+1|12②∵3-<3.4≤3+,∴{3,4}=3,1212∴f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4,∴②错误.③∵0-<-≤0+,∴=0,121412{-14}∴f==.∵0-<≤0+,∴=0,∴f ==,(-14)|-14-0|14121412{14}(14)|14-0|14∴f =f ,∴③正确.(-14)(14)④y =f (x )的定义域为R ,值域是,∴④错误.故选B.[0,12]答案:B12.已知函数f (x )=Error!则不等式f (x )≥-1的解集是________.解析:由题意得Error!或Error!解得-4≤x ≤0或0<x ≤2,即-4≤x ≤2,即不等式的解集为[-4,2].答案:[-4,2]13.已知函数f (x )的定义域为实数集R ,任意x ∈R ,f (x -90)=Error!则f (10)-f (-100)的值为__________.解析:令t =x -90,得x =t +90,则f (t )=Error!f (10)=lg 100=2,f (-100)=-(-100+90)=10,所以f (10)-f (-100)=-8.答案:-814.(2018·郑州质检)若函数f (x )满足:任意a ,b ∈R ,都有3f =f (a )+2f (b ),且f (1)(a +2b 3)=1,f (4)=7,则f (2 017)=__________.解析:由已知得f=.(a +2b 3)f (a )+2f (b )3取f (x )=kx +m ,易验证f (x )=kx +m 满足f=.(a +2b 3)f (a )+2f (b )3由f (1)=1,f (4)=7得Error!,由此解得k =2,m =-1,故f (x )=2x -1,f (2 017)=2×2017-1=4 033.答案:4 033。
2019版高考数学一轮复习第二章函数第一节函
数a的取值范围是 ( D ) A.(0,e) C.(0,e] B.(e,+∞) D.[e,+∞)
答案 D 当x≤0时, f(x)=xex,则f '(x)=ex(x+1),
当x<-1时, f '(x)<0,当-1<x≤0时, f '(x)>0, ∵x=-1是函数f(x)的极小值点,也是最小值点,
A.y= C.y=log2x
2 x
B.y=x2 D.y=2x
2 x
答案 A A项,函数y= 的定义域与值域相同,B,C,D项中的函数定义 域与值域均不相同.故选A.
3.(2016北京临川学校期末)函数y= A.(-∞,2) B.(2,+∞)
1 的定义域是 ( log 2 ( x 2)
C )
∴f(x)min=- ,若函数f(x)的值域为 , ,
1 e
1 e
则当x>0时, f(x)min≥- . 当a=0时,显然不符合题意,
1 e
当a≠0时,要满足f(x)min≥- ,
a 0, 只需 4 1 解得a≥e,故选D. , e 4a
定义域 相同,且
全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法 表示函数的常用方法: 解析法 、 图象法 、 列表法 .
3.分段函数
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 对应关系 ,这样的函数通常叫做分段函数.分段函数虽然由几部分 组成,但它表示的是.
1 2
7 4
C.
4 3
D.-
4 3
答案 B 令t= x-1,则x=2t+2, ∴f(t)=2(2t+2)-5=4t-1,
2019版高考数学一轮复习训练: 基础与考点过关 第二章 函数与导数
第二章 函数与导数第1课时 函数及其表示(对应学生用书(文)、(理)9~11页)1. (必修1P 26练习3改编)下列对应关系中________是函数.(填序号) ① A =R +,B =R ,对于任意的x∈A,x →x 的算术平方根;② A ={1,2,3,4,5},B ={0,2,4,6,8},对于任意的x∈A,x →2x ;③ x →-12x ,x ∈R ;④ x →y ,其中y =|x|,x ∈R ,y ∈R ;⑤ x →y ,其中y 为不大于x 的最大整数,x ∈R ,y ∈Z . 答案:①③④⑤解析:①③④⑤均符合函数的定义,②对于集合A 中的元素5,在集合B 中找不到元素与之对应.2. (必修1P 26练习4改编)下列各组函数中,表示同一函数的是__________.(填序号)① y =x +1和y =x 2-1x -1;② y=x 0和y =1;③ f(x)=x 2和g(x)=(x +1)2;④ f(x)=(x )2x 和g(x)=x (x )2. 答案:④解析:只有④表示同一函数,①与②中定义域不同,③是对应法则不同.3. (必修1P 31习题1改编)设函数f(x)=41-x.若f(a)=2,则实数a =__________.答案:-1解析:由题意可知,f(a)=41-a=2,解得a =-1.4. (必修1P 31习题8改编)已知函数f(x)由下表给出,则f(3)=__________.答案:-4解析:由表中函数值得f(3)=-4. 5. (必修1P 36习题3改编)已知函数f(x)在[-1,2]上的图象如图所示,则f(x)的解析式为____________.答案:f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,-12x ,0<x ≤2解析:观察图象,知此函数是分段函数,并且在每段上均是一次函数,利用待定系数法求出解析式.当-1≤x≤0时,f(x)=x +1;当0<x≤2时,f(x)=-x2.∴ f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,-12x ,0<x ≤2.1. 函数的概念(1) 函数的定义一般地,设A ,B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的一个元素y 和它对应,这样的对应叫做从A 到B 的一个函数,通常记为y =f(x),x ∈A .(2) 函数的定义域、值域在函数y =f(x),x ∈A 中,所有的输入值x 组成的集合A 叫做函数y =f(x)的定义域;若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域.(3) 函数的要素函数的构成要素:定义域、对应法则、值域.由于值域是由定义域和对应法则决定的,所以,如果两个函数的定义域和对应法则完全一致,我们就称这两个函数为相同的函数或同一函数.这是判断两函数相等的依据.2. 函数的表示方法表示函数的常用方法有列表法、解析法(解析式法)、图象法. 3. 分段函数在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.4. 映射的概念一般地,设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A→B 为从集合A 到集合B 的一个映射.函数是映射,但映射不一定是函数.[备课札记], 1 函数的概念), 1) 下列集合A 到集合B 的对应关系中,是从集合A 到集合B 的映射的有________.(填序号)① A =R ,B ={y|y>0},f :x→y=|x|;② A ={x|x≥2,x ∈N *},B ={y|y≥0,y ∈N },f :x→y=x 2-2x +2; ③ A ={x|x>0},B ={y|y∈R },f :x→y=±x ;④ A ={α|α是三角形的内角},B ={y|y∈R },对应法则:y =tan α;⑤ A ={m|m∈Z },B ={y|y =0或y =1},对应法则:y =⎩⎪⎨⎪⎧0,m =2n ,n ∈Z ,1,m =2n +1,n ∈Z ;答案:②⑤解析:① 集合A 中的零元素,在集合B 中没有相应的对应元素. ② 按照对应法则,满足题设条件. ③ 一对多,不满足映射的概念.④ ∵ π2∈A ,但π2的正切值不存在,∴ 此对应不是从集合A 到集合B 的映射.⑤ ∵ 集合A 中的每一个元素在集合B 中都有唯一的元素与之对应,∴ 此对应是从集合A 到集合B 的映射.点评:判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”;但要注意:① A 中不同元素可有相同的象,即允许多对一,但不允许一对多;② B 中元素可无原象,即B 中元素可以有剩余.备选变式(教师专享)已知映射f :A→B,其中A =B =R ,对应法则f :x→y=-x 2+2x ,对于实数k∈B,在集合A 中不存在元素与之对应,则k 的取值范围是________.答案:(1,+∞)解析:由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴ Δ=4(1-k)<0,∴ k>1时满足题意., 2 函数的解析式), 2) 求下列各题中的函数f(x)的解析式. (1) 已知f(x +2)=x +4x ,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f(x); (3) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x).解:(1) (解法1)设t =x +2(t≥2),则x =t -2,即x =(t -2)2,∴ f(t)=(t -2)2+4(t -2)=t 2-4,∴ f(x)=x 2-4(x≥2).(解法2)∵ f(x +2)=(x +2)2-4,∴ f(x)=x 2-4(x≥2).(2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a≠0). 由f(0)=1,得c =1.由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=ax 2+bx +1+2x , 整理,得(2a -2)x +a +b =0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⇒⎩⎪⎨⎪⎧a =1,b =-1,∴ f(x)=x 2-x +1. 变式训练根据下列条件分别求出f(x)的解析式. (1) f(x +1)=x +2x ;(2) 二次函数f(x)满足f(0)=3,f(x +2)-f(x)=4x +2.解:(1) 令t =x +1,∴ t ≥1,x =(t -1)2.则f(t)=(t -1)2+2(t -1)=t 2-1,即f(x)=x 2-1,x ∈[1,+∞).(2) 设f(x)=ax 2+bx +c(a≠0),∴ f(x +2)=a(x +2)2+b(x +2)+c , 则f(x +2)-f(x)=4ax +4a +2b =4x +2. ∴ ⎩⎪⎨⎪⎧4a =4,4a +2b =2.∴ ⎩⎪⎨⎪⎧a =1,b =-1. 又f(0)=3,∴ c =3,∴ f(x)=x 2-x +3., 3 分段函数), 3) 如图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA由B 点(起点)向A 点(终点)移动.设P 点移动的路程为x ,△ABP 的面积为y =f(x).(1) 求△ABP 的面积与P 移动的路程间的函数解析式; (2) 作出函数的图象,并根据图象求y 的最大值.解:(1) 这个函数的定义域为(0,12),当0<x≤4时,S =f(x)=12·4·x =2x ;当4<x≤8时,S =f(x)=8;当8<x <12时,S =f(x)=12·4·(12-x)=24-2x.∴ 函数解析式为f(x)=⎩⎪⎨⎪⎧2x ,x ∈(0,4],8,x ∈(4,8],24-2x ,x ∈(8,12).(2) 其图象如图所示,由图知f max (x)=8.变式训练已知函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x<0,则满足不等式f(1-x 2)>f(2x)的x 的取值范围是____________.答案:(-1,2-1)解析:函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x<0的图象如图所示:f(1-x 2)>f(2x)⇔⎩⎪⎨⎪⎧1-x 2>2x ,1-x 2>0,解得-1<x<2-1. 备选变式(教师专享)对于实数a 和b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b>1,设函数f(x)=(x +2)*(3-x),x ∈R .若方程f(x)=c 恰有两个不同的解,则实数c 的取值范围是________.答案:(-∞,2)解析:令x +2-(3-x)≤1,求得x≤1,则f(x)=(x +2)*(3-x)=⎩⎪⎨⎪⎧x +2,x ≤1,3-x ,x>1,画出函数f(x)的图象,如图,方程f(x)=c 恰有两个不同的解,即是函数f(x)的图象与直线y =c 有2个交点,数形结合可得c<2.特别提醒:本题主要考查分段函数的解析式、函数的零点以及新定义问题,属于难题.已知函数零点个数(方程根的个数)求参数取值范围的三种常用的方法:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2) 分离参数法:将参数分离,转化成求函数值域问题加以解决;(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g(x),y =h(x)的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为y =a ,y =g(x)的图象的交点个数问题.1. (2018·溧阳中学周练)若x∈R ,则f(x)与g(x)表示同一函数的是________.(填序号)① f(x)=x ,g(x)=x 2;② f(x)=1,g(x)=(x -1)0;③ f(x)=(x )2x ,g(x)=x(x )2; ④ f(x)=x 2-9x +3,g(x)=x -3.答案:③解析:①中,g(x)=x 2=|x|≠x;②中,g(x)=(x -1)0=1(x≠1);③中,f(x)=(x )2x=1(x>0),g(x)=1(x>0);④中,f(x)=x 2-9x +3=x -3(x≠-3).因此填③.2. 二次函数y =f(x)=ax 2+bx +c(x∈R )的部分对应值如下表:则关于x 答案:[-3,2] 解析:由表格数据作出二次函数的草图,结合数据与图象即可发现不等式f(x)≤0的解集为[-3,2].3. 为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x-2(x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.答案:44. 有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间的关系如图所示.再随后,只放水不进水,水放完为止,则这段时间内(即x≥20),y 与x 之间的函数关系是____________________.答案:y =-3x +95⎝⎛⎭⎪⎫20≤x≤953 解析:设进水速度为a 1 L/min ,出水速度为a 2 L/min ,则由题意得⎩⎪⎨⎪⎧5a 1=20,5a 1+15(a 1-a 2)=35,解得⎩⎪⎨⎪⎧a 1=4,a 2=3,则y =35-3(x -20),得y =-3x +95.当水放完,时间为x =953 min ,又知x ≥20,故解析式为y =-3x +95⎝⎛⎭⎪⎫20≤x≤953. 5. 设函数f(x)=⎩⎪⎨⎪⎧2x -4,x >0,-x -3,x <0.若f(a)>f(1),则实数a 的取值范围是____________.答案:(-∞,-1)∪(1,+∞)解析:由f(1)=-2,则f(a)>-2.当a>0时,有2a-4>-2,则a>1;当a <0时,-a -3>-2,则a <-1.所以实数a 的取值范围是(-∞,-1)∪(1,+∞).6. 函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x >0,12-|12+x|,x ≤0.若关于x 的方程f(x)=kx -k 至少有两个不相等的实数根,则实数k 的取值范围是____________.答案:⎣⎢⎡⎭⎪⎫-13,1∪(1,+∞) 解析:如图,作出函数图象,y 2=kx -k 过定点(1,0),临界点⎝ ⎛⎭⎪⎫-12,12和(1,0)连线的斜率为-13,又f′(1)=1,由图象知实数k 的取值范围是⎣⎢⎡⎭⎪⎫-13,1∪(1,+∞)., 3. 分段函数意义理解不清致误)典例 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.若f(1-a)=f(1+a),则a 的值为__________.易错分析:(1) 误以为1-a<1,1+a>1,没有对a 进行讨论直接代入求解;(2) 求解过程中忘记检验所求结果是否符合要求致误.解析:当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a)可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)可得-1+a -2a =2+2a +a ,解得a =-34.答案:-34特别提醒:(1) 注意分类讨论思想在求函数值中的应用,对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解;(2) 检验所求自变量的值或范围是否符合题意,求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.1. 已知集合A ={a ,b ,c},B ={1,2},那么可建立从A 到B 的映射个数是______,从B 到A 的映射个数是______.答案:8 9解析:依题意,建立从A 到B 的映射,即集合A 中的每一个元素在集合B 中找到对应元素,从而从A 到B 的映射个数为23=8,从B 到A 的映射个数是32=9.所以填写答案依次为:8;9.2. 已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个. 答案:9解析:列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}.3. 若函数f(x)=xax +b,f(2)=1,又方程f(x)=x 有唯一解,则f(x)=________.答案:2x x +2解析:由f(2)=1得22a +b =1,即2a +b =2;由f(x)=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-b a ,∵ 方程有唯一解,∴ 1-ba=0,解得b =1,代入2a +b =2得a =12,∴ f(x)=2xx +2.4. 如图,动点P 从单位正方形ABCD 顶点A 开始,顺次经B ,C ,D 绕边界一周,当x表示点P 的行程,y 表示PA 之长时,求y 关于x 的解析式,并求f ⎝ ⎛⎭⎪⎫52的值.解:当P 在AB 上运动时,y =x(0≤x≤1);当P 在BC 上运动时,y =1+(x -1)2(1<x≤2);当P 在CD 上运动时,y =1+(3-x )2(2<x≤3);当P 在DA 上运动时,y =4-x(3<x≤4). ∴ y =⎩⎪⎨⎪⎧x (0≤x≤1),1+(x -1)2(1<x≤2),1+(3-x )2(2<x≤3),4-x (3<x≤4),∴ f ⎝ ⎛⎭⎪⎫52=52.5. 已知函数f(x)=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则不等式f(x)≥-1的解集是________.答案:[-4,2]解析:f(x)≥-1,等价于⎩⎪⎨⎪⎧x≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解之得-4≤x≤0或0<x≤2,即原不等式的解集是[-4,2].6. (2018·溧阳中学周测)设函数f(x)定义如下表,数列{x n }(n∈N *)满足x 1=1,且对于任意的正整数n ,均有x n +1=f(x n ),求x 2 018的值.解:因为x 1=1,所以x 2=f(x 1)=f(1)=2,x 3=f(x 2)=f(2)=3,x 4=f(x 3)=f(3)=4,x 5=f(x 4)=f(4)=1,x 6=f(x 5)=f(1)=2,…,不难看出数列{x n }是以4为周期的周期数列,所以x 2 018=x 4×504+2=x 2=2.点评:通过观察一些特殊的情形,来获得深刻的认识,是探索数学问题的一种重要方法,应注意学习,同时函数的表示也可以利用列表法来给出.1. 函数是特殊的映射,其特殊性在于集合A 与B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射;而映射不一定是函数.从A 到B 的一个映射,A ,B 若不是数集,则这个映射不是函数.2. 函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;②根据给出的对应法则,自变量在定义域中的每一个值,是否都有唯一确定的函数值.3. 函数解析式的求解方法通常有:配凑法、换元法、待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法体现的方程思想,即根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).第2课时 函数的定义域和值域(对应学生用书(文)、(理)12~14页)1. (必修1P 25例2改编)函数f(x)=x -2+1x -3的定义域是____________________.答案:[2,3)∪(3,+∞)解析:要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0,x -3≠0,解得x≥2且x ≠3.2. (必修1P 26练习6(2)(4)改编)函数y =1x 2-1+x +1的定义域为__________________.答案:(-1,1)∪(1,+∞)解析:依题意得⎩⎪⎨⎪⎧x 2-1≠0,x +1≥0,∴ x>-1且x≠1,故函数的定义域为(-1,1)∪(1,+∞).3. 函数y =1x 2+2的值域为________.答案:⎝ ⎛⎦⎥⎤0,12 解析:∵ x 2+2≥2,∴ 0<1x 2+2≤12.∴ 0<y ≤12.4. 若x 有意义,则函数y =x 2+3x -5的值域是________.答案:[-5,+∞)解析:∵ x 有意义,∴ x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,函数y =x 2+3x -5在[0,+∞)上单调递增,∴ 当x =0时,y min =-5.∴ 函数y =x 2+3x -5的值域是[-5,+∞).5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是____________________.答案:(-∞,0)∪⎝ ⎛⎦⎥⎤12,2解析:∵ x∈(-∞,1)∪[2,5),∴ x -1∈(-∞,0)∪[1,4).当x -1∈(-∞,0)时,2x -1∈(-∞,0);当x -1∈[1,4)时,2x -1∈⎝ ⎛⎦⎥⎤12,2.1. 函数的定义域(1) 函数的定义域就是使函数表达式有意义的所有的输入值x 组成的集合.在解决函数问题时,必须树立起“定义域优先”的观念.(2) 求定义域的步骤① 写出使函数有意义的不等式(组). ② 解不等式(组).③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数中被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sin x ,y =cos x 的定义域均为R .⑤ y =tan x 的定义域为{x|x≠k π+π2,k ∈Z }.⑥ 函数f(x)=x 0的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与定义域中输入值x 对应的y 的值叫做输出值,所有输出值y 组成的集合叫做函数的值域.(2) 基本初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a,+∞);当a<0时,值域为(-∞,4ac -b24a ].③ y =kx (k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R .⑥ y =sin x ,y =cos x 的值域是[-1,1]. ⑦ y =tan x 的值域是R . 3. 函数的最值一般地,设y =f(x)的定义域为A. (1) 如果存在x 0∈A ,使得对于任意的x∈A,都有f (x)≤f(x 0),那么称f(x 0)为y =f(x)的最大值,记为y max =f(x 0).(2) 如果存在x 0∈A ,使得对于任意的x∈A,都有f(x)≥f(x 0),那么称f(x 0)为y =f(x)的最小值,记为y min =f(x 0).4. 值域与最值的关系若函数y =f(x)的最大值为b ,最小值为a ,那么y =f(x)的值域必定是数集[a ,b]的子集,若f(x)可以取到[a ,b]中的一切值,那么其值域就是[a ,b].5. 复合函数如果函数y =f(u)(u∈A),u =g(x)(x∈B,u ∈A),则y =f(g(x))叫做由函数y =f(u)(u∈A),u =g(x)(x∈B,u ∈A)合成的复合函数,u 叫做中间变量.y =f(u)(u∈A),叫做该复合函数的外层函数,而u =g(x)(x∈B)叫做该复合函数的内层函数.注意:由u =g(x)(x∈B)求出的值域一定是A.即内层函数的值域是外层函数的定义域.6. 函数解析式的表示离不开函数的定义域.[备课札记], 1 求函数的定义域), 1) (1) 已知函数f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12的定义域是__________. (2) 函数y =ln (x +1)-x 2-3x +4的定义域为____________. 答案:(1) ⎣⎢⎡⎦⎥⎤12,32 (2) (-1,1) 解析:(1) 因为函数f(x)的定义域是[0,2],所以函数g(x)=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12中的自变量x 需要满足:⎩⎪⎨⎪⎧0≤x+12≤2,0≤x -12≤2,解得⎩⎪⎨⎪⎧-12≤x≤32,12≤x ≤52.所以12≤x ≤32,所以函数g(x)的定义域是⎣⎢⎡⎦⎥⎤12,32. (2) 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x<1.变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 函数f(x)的定义域是[-1,1],求f(log 2x)的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0,∴ 函数定义域是(-∞,-1)∪(-1,0). (2) ∵ 函数f(x)的定义域是[-1,1],∴ -1≤log 2x ≤1,∴ 12≤x ≤2.故f(log 2x)的定义域为⎣⎢⎡⎦⎥⎤12,2. 备选变式(教师专享) 求下列函数的定义域:(1) y =lg (2-x )12+x -x2+(x -1)0; (2) y =lg sin x +64-x 2. 解:(1) 由题意得⎩⎪⎨⎪⎧2-x>0,12+x -x 2>0x -1≠0,,解得⎩⎪⎨⎪⎧x<2,-3<x<4x≠1,,∴ -3<x<2且x≠1,∴ 所求函数的定义域为{x|-3<x<2且x≠1}.(2) 由题意得⎩⎪⎨⎪⎧sin x>0,64-x 2≥0,解得⎩⎪⎨⎪⎧2k π<x<2k π+π,k ∈Z ,-8≤x≤8. ∴ -2π<x<-π或0<x<π或2π<x ≤8.∴ 所求函数的定义域为(-2π,-π)∪(0,π)∪(2π,8]., 2 求函数的值域), 2) 求下列函数的值域: (1) f(x)=x -1-2x ;(2) y =1-x21+x 2;(3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (解法1:换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是f(t)=1-t22-t=-12(t +1)2+1.由于t≥0,所以f(t)≤12,故函数的值域是⎝⎛⎦⎥⎤-∞,12.(解法2:单调性法)容易判断f(x)为增函数,而其定义域应满足1-2x≥0,即x≤12,所以f(x)≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎝ ⎛⎦⎥⎤-∞,12.(2) y =1-x 21+x 2=21+x2-1.因为1+x 2≥1,所以0<21+x2≤2.所以-1<21+x2-1≤1,即y∈(-1,1].所以函数的值域为(-1,1].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,所以y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (解法2)由y =2x -1x +1,得x =1+y2-y.因为x∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),所以y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t-2(t>0).因为t +2t≥2t·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域:(1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f(x)=1-x +x +3的定义域是[-3,1].令y =f(x),则y≥0,∴ y 2=4+2(1-x )(x +3),即y 2=4+2-(x +1)2+4(-3≤x≤1).令t(x)=-(x +1)2+4(-3≤x≤1).∵ x ∈[-3,1],由t(-3)=0,t(-1)=4,t(1)=0,知0≤t(x)≤4,从而y 2∈[4,8],即y∈[2,22], ∴ 函数f(x)的值域是[2,22].(2) g(x)=x 2-9x 2-7x +12=(x +3)(x -3)(x -3)(x -4)=x +3x -4=1+7x -4(x≠3且x≠4).∵ x ≠3且x≠4,∴ g (x)≠1且g(x)≠-6.∴ 函数g(x)的值域是(-∞,-6)∪(-6,1)∪(1,+∞). (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,log x 3>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1; 当0<x<1时,log 3x<0,log x 3<0,y =log 3x +log x 3-1=-[(-log 3x)+(-log x 3)]-1≤-2-1=-3.∴ 函数的值域是(-∞,-3]∪[1,+∞)., 3 函数值和最值的应用)●典型示例, 3) 已知函数f(x)=x 2+2x +ax,x ∈[1,+∞).(1) 当a =12时,求函数f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.【思维导图】 函数恒成立→不等式恒成立→分类讨论→新函数的最值→a 的取值范围【规范解答】 解:(1) 当a =12时,f(x)=x +12x+2.∵ f(x)在区间[1,+∞)上为增函数,∴ f(x)在区间[1,+∞)上的最小值为f(1)=72.(2) (解法1)在区间[1,+∞)上,f(x)=x 2+2x +a x>0恒成立,∴ x 2+2x +a>0恒成立.设y =x 2+2x +a ,x ∈[1,+∞).∵ y =x 2+2x +a =(x +1)2+a -1在[1,+∞)上单调递增,∴ 当x =1时,y min =3+a ,当且仅当y min =3+a>0时,函数f(x)>0恒成立,故a>-3.(解法2)f(x)=x +ax+2,x ∈[1,+∞).当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)在[1,+∞)上单调递增,故当x =1时,f(x)min =3+a , 当且仅当f(x)min =3+a>0时,函数f(x)>0恒成立,故a>-3. 【精要点评】 解法1运用转化思想把f(x)>0转化为关于x 的二次不等式;解法2运用了分类讨论思想.●总结归纳(1) 求函数的值域此类问题主要利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.无论用什么方法求函数的值域,都必须考虑函数的定义域.(2) 函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性等一些基本知识相结合的题目.此类问题要求具备较高的数学思维能力、综合分析能力以及较强的运算能力.(3) 运用函数的值域解决实际问题此类问题的关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题目要求具有较强的分析能力和数学建模能力.●题组练透1. 函数y =x 2+x +1的值域是____________.答案:⎣⎢⎡⎭⎪⎫32,+∞解析:∵ x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,∴ y ≥32,∴ 值域为⎣⎢⎡⎭⎪⎫32,+∞.2. 函数y =x +1-2x 的值域是____________.答案:(-∞,1]解析:令1-2x =t(t≥0),则x =1-t 22.∵ y =1-t 22+t =-12(t -1)2+1≤1,∴ 值域为(-∞,1].3. 已知函数f(x)=x 2+4ax +2a +6.(1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域.解:(1) ∵ f(x)的值域是[0,+∞),即f(x)min =0,∴ 4(2a +6)-(4a )24=0,∴a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0,∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32.当-1≤a≤1时,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4;当1<a≤32时,g(a)=-a 2+a +2=-(a -12)2+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2.∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 4. 已知函数y =mx 2-6mx +m +8的定义域为R . (1) 求实数m 的取值范围;(2) 当m 变化时,若y 的最小值为f(m),求函数f(m)的值域.解:(1) 当m =0时,x ∈R ;当m≠0时,m >0且Δ≤0,解得0<m≤1.故实数m 的取值范围是0≤m≤1.(2) 当m =0时,f(0)=22;当0<m≤1时,因为y =m (x -3)2+8-8m ,故f(m)=8-8m(0<m≤1).所以f(m)=8-8m (0≤m≤1),其值域为[0,22].1. 函数f(x)=ln (2x -x 2)x -1的定义域为____________.答案:(0,1)∪(1,2)解析:由⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0得0<x <2且x≠1.2. 已知函数y =x 2-2x +a 的定义域为R ,值域为[0,+∞),则实数a 的取值集合为________.答案:{1}解析: x 2-2x +a≥0恒成立,且最小值为0,则满足Δ=0,即4-4a =0,则a =1.3. 函数f(x)=⎩⎪⎨⎪⎧2x ,x ≤0,-x 2+1,x >0的值域为____________. 答案:(-∞,1]解析:可由函数的图象得到函数f(x)的值域为(-∞,1].4. 若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0且a≠1)的值域是[4,+∞),则实数a 的取值范围是________.答案:(1,2]解析:当x≤2时,-x +6≥4,要使得函数f(x)的值域为[4,+∞),只需当x >2时,f(x)=3+log a x 的值域在区间[4,+∞)内即可,故a >1,所以3+log a 2≥4,解得1<a≤2,所以实数a 的取值范围是(1,2].5. 已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域都是[-1,0],则a +b =________.答案:-32解析:当a>1时,⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,该方程组无解;当0<a<1时,⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧b =-2,a =12,则a +b =12-2=-32. 6. (2018·南阳一中二模)设g(x)=mx 2+x +1.(1) 若g(x)的定义域为R ,求m 的取值范围;(2) 若g(x)的值域为[0,+∞),求m 的取值范围.解:令f(x)=mx 2+x +1.(1) 由题意知f(x)≥0在R 上恒成立.① 当m =0时, f(x)=x +1≥0在R 上不恒成立;② 当m≠0时,要满足题意必有⎩⎪⎨⎪⎧m>0,Δ=1-4m≤0,∴ m ≥14.综上所述,m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. (2) 由题意知,f(x)=mx 2+x +1能取到一切大于或等于0的实数. ① 当m =0时,f(x)=x +1可以取到一切大于或等于0的实数;② 当m≠0时,要满足题意必有⎩⎪⎨⎪⎧m>0,Δ=1-4m≥0,∴ 0<m ≤14.综上所述,m 的取值范围是⎣⎢⎡⎦⎥⎤0,14. 点睛:本题主要考查函数的定义域与值域、分类讨论思想,属于中档题.分类讨论思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数的问题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并能应用于解题当中.1. 函数f(x)=|x -2|-1log 2(x -1)的定义域为__________.答案:[3,+∞)解析:由题意知⎩⎪⎨⎪⎧log 2(x -1)≠0,x -1>0,|x -2|-1≥0,解得x≥3.2. (2018·溧阳中学周练)函数f(x)=1xln(x 2-3x +2+-x 2-3x +4)的定义域为____________.答案:[-4,0)∪(0,1)解析:函数的定义域必须满足条件:⎩⎪⎨⎪⎧x≠0,x 2-3x +2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0,解得x∈[-4,0)∪(0,1).3. 当x =__________________时,函数f(x)=(x -a 1)2+(x -a 2)2+…+(x -a n )2取得最小值.答案:a 1+a 2+…+a nn解析:f(x)=nx 2-2(a 1+a 2+…+a n )x +(a 21+a 22+…+a 2n ),当x =a 1+a 2+…+a nn时,f(x)取得最小值.4. 设函数f(x)=⎩⎪⎨⎪⎧2x+a ,x>2,x +a 2,x ≤2.若f(x)的值域为R ,则实数a 的取值范围是____________________.答案:(-∞,-1]∪[2,+∞)解析:f(x)的值域为R ,则22+a≤2+a 2,实数a 的取值范围是(-∞,-1]∪[2,+∞).5. 已知函数f(x)=4|x|+2-1的定义域是[a ,b](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b)共有______个.答案:5解析:由0≤4|x|+2-1≤1,即1≤4|x|+2≤2,解得0≤|x|≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.6. 求函数y =(x +3)2+16+(x -5)2+4的值域.解:函数y =f(x)的几何意义:平面内一点P(x ,0)到两点A(-3,4)和B(5,2)的距离之和就是y 的值.由平面几何知识,找出点B 关于x 轴的对称点B′(5,-2).连结AB′,交x 轴于一点P ,点P 即为所求的最小值点,y min =AB′=82+62=10.所以函数的值域为[10,+∞).1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先的意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等.理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.[备课札记]第1课时 函数的单调性(对应学生用书(文)、(理)15~17页)1. 下列函数中,在(-∞,0)上为减函数的是________.(填序号)① y =1x 2;② y=x 3;③ y=x 0 ;④ y=x 2.答案:④解析:∵ 函数y =x 2的图象是开口向上的抛物线,对称轴为y 轴,∴ 函数y =x 2在(-∞,0)上为减函数.2. (必修1P 44习题2改编)(1) 函数f(x)=2x +1的单调增区间是__________;函数g(x)=-3x +2在区间(-∞,+∞)上为________函数.(2) 函数f(x)=x 2-2x -1的单调增区间为________,单调减区间为________.(3) 函数f(x)=-1x -1在区间(-∞,0)上是单调________函数.(4) 函数y =1x在区间[1,3]上是单调________函数.答案:(1) (-∞,+∞) 单调减 (2) [1,+∞) (-∞,1] (3) 增 (4) 减3. (必修1P 54本章测试6改编)若函数y =5x 2+mx +4在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则m =__________.答案:10解析:函数y =5x 2+mx +4的图象为开口向上,对称轴是x =-m 10的抛物线,要使函数y =5x 2+mx +4在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则-m 10=-1,∴ m =10.4. 已知函数f(x)=ax +1x +2在区间(-2,+∞)上为增函数,则实数a 的取值范围是__________.答案:⎝ ⎛⎭⎪⎫12,+∞解析:f(x)=ax +1x +2=a +1-2a x +2,由复合函数的增减性可知,g(x)=1-2ax +2在(-2,+∞)上为增函数,∴ 1-2a<0,∴ a>12.5. 设函数f(x)满足:对任意的x 1,x 2∈R 都有(x 1-x 2)·[f(x 1)-f(x 2)]>0,则f(-3)与f(-π)的大小关系是____________.答案:f(-3)>f(-π)解析:由(x 1-x 2)[f(x 1)-f(x 2)]>0,可知函数f(x)为增函数,又-3>-π,∴ f(-3)>f(-π).1. 增函数和减函数一般地,设函数y =f(x)的定义域为I :如果对于定义域I 内某个区间D 上的任意两个值x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说y =f(x)在区间D 上是单调增函数.(如图①所示)如果对于定义域I 内某个区间D 上的任意两个值x 1,x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说y =f(x)在区间D 上是单调减函数.(如图②所示)2. 单调性与单调区间如果一个函数在某个区间D 上是单调增函数或是单调减函数,那么就说这个函数在这个区间D 上具有单调性(区间D 称为单调区间).3. 判断函数单调性的方法 (1) 定义法利用定义严格判断. (2) 利用函数的运算性质如果f(x),g(x)为增函数,则① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判断单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在关于原点对称的两个区间上具有相同的单调性;偶函数在关于原点对称的两个区间上具有相反的单调性.4. 函数的单调性的证明方法 已知函数解析式,证明其在某区间上的单调性一般只能严格用定义(或导数)来证明.主要步骤:(1) 设元; (2) 作差(商);(3) 变形(变形要彻底,一般通过因式分解、配方等方法,直到符号的判定非常明显); (4) 判断符号; (5) 结论.[备课札记], 1 函数单调性的判断), 1) 判断函数f(x)=axx 2-1(a≠0)在区间(-1,1)上的单调性.分析:此函数既不是常见函数,也不是由常见函数经过简单的复合而成,因此要判断其在区间(-1,1)上的单调性,只能用函数单调性的定义.解:任取x 1,x 2∈(-1,1),且x 1<x 2,则f(x 1)-f(x 2)=a (x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1). 由-1<x 1<x 2<1得(x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1)>0,∴ 当a>0时,f(x 1)-f(x 2)>0,f(x 1)>f(x 2),∴ f(x)在(-1,1)上单调递减;同理,当a<0时,f(x)在(-1,1)上单调递增.备选变式(教师专享)证明函数f(x)=x1+x2在区间[1,+∞)上是减函数.证明:设任取x 1,x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1,x 2∈[1,+∞),且x 1<x 2, ∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).∴ f(x)=x1+x2在[1,+∞)上为减函数.点评:亦可证明函数f(x)=x 1+x 2在区间[-1,1]上是增函数.由于函数f(x)=x1+x2是定义在R 上的奇函数,故利用单调性与奇偶性可作出函数f(x)=x1+x2的图象.同时也可得到函数f(x)=x 1+x 2在[-1,1]上的值域为⎣⎢⎡⎦⎥⎤-12,12., 2 求函数的单调区间), 2) 求下列函数的单调区间:(1) y =x 2-3|x|+14;(2) y =⎝ ⎛⎭⎪⎫13x 2-2x ; (3) y =log 2(6+x -2x 2).解:(1) ∵ y=x 2-3|x|+14=⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫x -322-2(x≥0),⎝ ⎛⎭⎪⎫x +322-2(x<0), ∴ 由图象可知,y 在⎝ ⎛⎦⎥⎤-∞,-32,⎣⎢⎡⎦⎥⎤0,32上为减函数,在⎣⎢⎡⎦⎥⎤-32,0,⎣⎢⎡⎭⎪⎫32,+∞上为增函数.(2) 易得定义域为R ,令u =x 2-2x =(x -1)2-1,则u 在(-∞,1]上为减函数,在[1,+∞)上为增函数.又y =⎝ ⎛⎭⎪⎫13u 在(-∞,+∞)上为减函数,∴ y =⎝ ⎛⎭⎪⎫13x 2-2x 的单调增区间为(-∞,1],单调减区间为[1,+∞).(3) 由题意得6+x -2x 2>0,化简得2x 2-x -6<0,即(2x +3)(x -2)<0,解得-32<x<2,即定义域为⎝ ⎛⎭⎪⎫-32,2.设u =6+x -2x 2=-2⎝ ⎛⎭⎪⎫x -142+498,易知其在⎝ ⎛⎦⎥⎤-32,14上为增函数,在⎣⎢⎡⎭⎪⎫14,2上为减函数,又y =log 2u 在定义域上为增函数,∴ y =log 2(6+x -2x 2)的单调增区间为⎝ ⎛⎦⎥⎤-32,14,单调减区间为⎣⎢⎡⎭⎪⎫14,2. 点评:已知函数的解析式,讨论或求函数的单调区间,应首先确定函数的定义域,然后再根据复合函数单调性的判断规则在函数的定义域内求内层函数相应的单调区间.变式训练函数y =-(x -3)|x|的单调递增区间是____________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =⎩⎪⎨⎪⎧-(x -3)x ,x ≥0,(x -3)x ,x<0.画图象如图所示,可知单调递增区间为⎣⎢⎡⎦⎥⎤0,32.备选变式(教师专享)作出函数f(x)=|x 2-1|+x 的图象,并根据函数图象写出函数的单调区间.解:当x≥1或x≤-1时, y =x 2+x -1=⎝ ⎛⎭⎪⎫x +122-54;当-1<x<1时, y =-x 2+x +1=-⎝ ⎛⎭⎪⎫x -122+54.函数图象如图,由函数图象可知函数单调减区间为(-∞,-1],⎣⎢⎡⎦⎥⎤12,1;单调增区间为⎣⎢⎡⎦⎥⎤-1,12,[1,+∞). ,3函数的单调性与最值)●典型示例, 3) 求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【思维导图】判断对称轴与区间的不同位置关系→分别画出图象→判断f(x)在区间的单调性→求出最值【规范解答】解:f(x)=(x-a)2-1-a2,对称轴为x=a.(1) 当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2) 当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3) 当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4) 当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,当a<0时,f(x)min=-1,f(x)max=3-4a;当0≤a<1时,f(x)min=-1-a2,f(x)max =3-4a;当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;当a>2时,f(x)min=3-4a,f(x)max =-1.【精要点评】 (1) 二次函数的单调区间是由图象的对称轴确定的.故需要确定对称轴与区间的关系.由于对称轴是x=a,而a的取值不定,从而导致了分类讨论.(2) 不是应该分a<0,0≤a≤2,a>2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f(0),也有可能是f(2).●总结归纳(1) 要注意函数思想在求函数值域中的运用,求函数最值常借助函数单调性.含有参数的最值问题,需要分类讨论参数在不同范围内时函数单调性的变化,进而判断最值的位置.(2) 不等式恒成立问题也可以转化为求函数的最值问题.●题组练透1. 函数y=2x+x+1的值域是____________.答案:[-2,+∞)解析:x≥-1,y是x的增函数,当x=-1时,y min=-2,∴函数的值域为[-2,+∞).2. 已知x∈[0,1],则函数y=x+2-1-x的值域是______________.。
2019版高考数学一轮复习第2章函数、导数及其应用23函数的奇偶性与周期性课后作业理.doc
2.3函数的奇偶性与周期性E 课后作业孕谀[基础送分提速狂刷练]一、选择题1. (2017 •重庆测试)下列函数为奇函数的是(答案D解析 函数y=/+3x 2既不是奇函数,也不是偶函数,排除A ;函数尸三一是偶函数,3 — x排除B ;函数y=xsinx 是偶函数,排除C ;函数y=log 专肓;的定义域是(一3, 3),且/(— x) 3+v= log2書二=—f(x),是奇函数,D 正确.故选D.2. 下列函数中,既是定义域内的偶函数又在(一8, 0)上单调递增的函数是()A. f{^=xB. A^)=2lxl答案C解析 函数f(x) =x 在(一8, 0)上单调递减,排除A ;当xW ( —8, °)时,函数/'(x) =2 ' =(*)在(一8, 0)上单调递减,排除B ;当 圧(一8, °)时,函数=i og2—^-= — log 2(-^)在(一co, 0)上单调递增,且函数代劝在其定义域内是偶函数,C 正确;函数fd) = sin 才是奇函数,排除D.故选C.3. (2017 •唐山统考)f(x)是R 上的奇函数,当时,f(x)=/+ln (l + x).则当 *0 时,f\x)=( ) A. — ^―In 仃一方 C. In (1 —x)答案C解析 当 *0 时,一x>0, f(~x) = ( —y)34-ln (1—x), V Ax)是只上的奇函数,.••当 水0 时,f(x)= — f{—x) = — [(—jr)3+ln (1 — 0], .\f(x) =x — In (1—A ).故选 C.4. 已知/tr)是定义在R 上的偶函数,并且/(%+2)=-—^―,当2W/W3时,/(%)JL /AT则 f(105.5) = ()A. —0. 5B. 0・ 5C. —2. 5D. 2. 5 答案D解析 V/U+2)=-—x+ln (1一方 ~x+] n (1 —x)•I f(x+4) =f\_ d+2) +2]=———占R ----------- 七—=f{x).~ f x・・・函数f(x)的周期为4.・•・/(105. 5)=A4X27-2. 5) =f( — 2. 5) =f(2. 5).T2W2. 5W3, ・・・f(2. 5)=2. 5.A A105. 5)=2. 5.故选D.5.(2017 •金版创新)已知函数/'3在V^eR都有fd—2)= — f3,且当圧[一1,0]时,f(x) =2r,则A2017)等于( )1 1A.-B. --C. 1D. -1答案B解析由f\x—2) = — f\x),得f(x—4) = —2) =f(x),所以函数f(x)的周期为4. 所以r(2017)=A4X504+l)=AD =-A-D =-|.故选B.6.(2018 •青岛模拟)奇函数fd)的定义域为R,若fCi+1)为偶函数,且代1)=2,则f(4)+f(5)的值为()A. 2 B・ 1 C. 一1 D. 一2答案A解析V/a+1)为偶函数,fd)是R上的奇函数,・・・f(-x+i)=/V+i), f(0 = — f(—0, Ao) =o,・・・ f(x+ 1) = f(_x+ 1) = —f(x-l),・•・f(x+ 2) = —f\x), f{x+ 4) = /U+ 2+2) = — /U+2) = f(x),故4 为函数/*(劝的周期,则f(4)=f(0)=0, f(5)=f(l)=2,・・・ f(4) + f(5) =0+2=2.故选A.7.(2018 •襄阳四校联考)已知函数f(x)的定义域为R.当*0时,rW=/-l;当一1W/W1 时,/(—x) = — f{x);当x>0 时,f{x+1) = f{x),则A2018)=( )A. -2B. -1C. 0D. 2答案D解析因为当Q0时,fa+l)=f(0,所以当QO时,函数/tv)是周期为1的周期函数,所以/(2018)=/(1),又因为当一lWxWl 时,/(-%)=-/(%),所以Al)=-A-1) =—[(—I)5—1]=2.故选D.8.已知函数f(x)是R上的偶函数,g&)是R上的奇函数,且—1),若代2) =2,则A2018)的值为()A. 2B. 0C. 一2D. ±2答案A解析V /U)是R上的偶函数,gd)是R上的奇函数,且gd)=fa—l),/. — X)=f{ — X —Y) =f(x+l) = —g (A )= — f(x —l)・即 f(x+ 1) = — fix — 1)・f(x+ 2) = — f{x)・・・・fCv+4) =/[(/+2) +2] = —fd+2) =f(0 .・・・函数f(x)是周期函数,且周期为4.・•・ A2018)=r(2)=2.故选 A.9. (2017・石家庄模拟)已知代方是定义在R 上的以3为周期的偶函数,若A1X1, A5) O a ——Q =:百,则实数日的取值范围为() A. (-1,4) B. (-2,0) C. (-1,0) D. (-1,2)答案A解析・・・代方是定义在R 上的周期为3的偶函数, 得—l<a<4,故选A.10. 己知fd)是定义在R 上的奇函数,当*20时,fd)=# — 3x,则函数g{x)=f\x) —无+3的零点所构成的集合为()A. {1,3}B. {-3, -1, 1,3}C. {2—⑴,1,3}D. {一2—⑴,1,3}答案D解析 当 K0 时,f(x) = — f( —x) = — [( —x)" + 3x] = — "―3x,易求得 g(x)=—4/+3,心0,[—x —4x+3, X0,当x~4x+3 = 0吋,可求得x 】=l,疋=3;当一/—4x+3 = 0 时,可求得疋=一2-£, %1=-2+^7(舍去). 故呂3的零点为1,3, —2—5•故选D. 二、填空题i —9'11. (2018 •武昌联考)若函数 心)=]+打2」在定义域上为奇函数,则实数 匸答案土 1k-2~x _k-2x-l 1 +斤・2二尸2”+& /( — X)+f (A )H 公+k + k ・公一\・1 + W ・2” = 1 + 12” 2”+&护一1 対+1= 2r +& •・・・f(5)=f(5—6)=f(—l)=f(l), VA1X1, /(5)=<1,即 臼一4 日+1<0,解解析由f(~x) +f{x) =0,可得斥=1, /. A=±l.12.设代0是定义在R上且周期为2的函数,在区间[— 1,1)上,f(x)=9答案一匸39则 f(5<3)=f(3) =f(4 —1) =f( — l)= — l+-=—~o 513. (2017 •郑州联考)对于函数 心,若存在常数$工0,使得取定义域内的每一个x值,都有f(x)=-f^a -x),则称/V)为准奇函数.给出下列函数:①/V) = (x —1尸,② 代劝=占,③£(劝=玄,④/U)=cos^,其中所有准奇函数的序号是 ________________________________ •答案②④解析 对于函数f\x),若存在常数日H0,使得取定义域内的每一个/值,都有f3 = —f(2白一方,则函数的图彖关于(马0)对称.对于①,= 1尸,函数图彖无对称 中心;对于②,代劝=计亍 函数f(x)的图象关于(―1,0)对称;对于③,t\x) = x ,函数 f(x)的图象关于(0, 0)对称;对于④,f(x)=cosx,函数f(x)的图象关于严11+~^~,0(£丘 Z)对称.所以所有准奇函数的序号是②④.14. (2018・太原模拟)已知定义在R 上的奇函数代方满足彳|一』=才3,代一2)= — 3,数列{/}的前刀项和为S”且创=—1, $=2禺+/?(刀丘2),则f (念)+f (戲)= _______________ .答案3解析 T 奇函数f(x)满足彳|—j=f(x)…••彳|一 j= —f(—劝,•"(方=—彳卄|j= f(x+3), ・・・f(x)是以3为周期的周期函数,・・・$=2禺+/?©, ・・・$+】 = 2%H + /?+1②,②一 ①可得自卄1 = 2自”一1,结合 0 = —1,可得 岔= — 31,日6=—63, .'.f (岔)=f( —31) =f(2)= —f(—2)=3,f (越)=f( — 63)=f(0)=0, A Aa,)+/U)=3.三、解答题15. 设函数代才)在(一8, +oo)上满足 f(2 — /)=f(2 + x), A7-^) = A7 + ^), Il 在闭 区间[0,7]上,只有AD = A3) =0.(1)证明:函数fd)为周期函数;x+a^ 2— ISO,,OW*1,其中 圧R.若(一则f (5爲)的值是解析V A%)是周期为2的函数,(2)试求方程f3 =0在闭区间[-2018, 2018]上的根的个数,并证明你的结论.f x =f 4—x , n=>f(4— 方=f(14一力今/tv) =/tv+10) •f x =f 14 — /・・・广(方为周期函数,7-10.(2)・.・f(3)=f(l)=0, All) = A13) = A-7) = A-9) =0,故 f(x)在[0, 10]和[一10, 0] 上均有两个解.从而可知函数y= f{x)在[0, 2018]上有404个解, 在[一2018,0]上有403个解,所以函数y= M 在[-2018, 2018]上有807个解.16. 定义在R 上的函数f(x)对任意曰,都有伙为常数). (1) 判断&为何值时,代劝为奇函数,并证明;(2) 设k= — \, 是R 上的增函数,且f(4)=5,若不等式f(〃z/—2〃圧+3)>3对任意 /WR 恒成立,求实数刃的取值范围.解(1)若fd)在R 上为奇函数,则f(0)=0,令 a= 6=0,则 f(0 + 0) =f(0)+f(0) + 斤,所以 k=Q. 证明:由 £(曰+力)=f($)+£(力),令 a=x, b=_x, 则 f{x —x) =f{x) +f( —A ),又 AO) =0,则有 0 = f{x) +f(—x),即 t\ — x) = — f\x)对任意 xGR 成立,所以 /V) 是奇函数.(2)因为 f ⑷=f(2) +f(2) — 1 = 5,所以 f(2) =3.所以f(/〃,一2/^+3)>3 = f(2)对任意丸WR 恒成立.又f(x)是R 上的增函数,所以刃x'—2〃AY +3>2对任意xUR 恒成立,即刃,一2//7%+1>0对 任意A^eR 恒成立,当/〃=0时,显然成立;/77>0,当刃H0时,由9得(KzzKl.f 2 — x ⑴证明:由=f 2 + x=f 7 + x4 =4加一4/风0, 所以实数刃的取值范围是[0,1).。
一轮优化探究理数(苏教版)课件:第二章 第一节 函数及其表示
x 2 +1,x<1, f(x)= 2 x +ax,x≥1,
若 f(f(0))=4a,则实数 a
2 等于________.
x 2 +1,x<1, 解析:f(x)= 2 x +ax,x≥1.
∵0<1,∴f(0)=20+1=2.
∵f(0)=2≥1,∴f(f(0))=22+2a=4a,∴a=2.
2
x-1,x≥0, -1= -x-1,x<0,
与 y=x-1 的对应法则不相同, ∴两函数不是同一函数. ④表示同一函数,∵定义域相同且 y=loga ax=x. 答案:④
规律方法
由于值域可由定义域和对应法则惟一确定,所以两个函数当且 仅当定义域和对应法则分别相同时, 才是同一函数.对于定义域 和值域都分别相同的两个函数, 它们也不一定是同一函数.因为 函数的定义域和值域不能惟一地确定函数的对应法则.
四、分段函数 1.若函数在其定义域的不同子集上,因 对应法则 不同而分别 用几个不同的式子来表示,这种函数称为分段函数. 2.分段函数的定义域等于各段函数的定义域的 并集,其值域 等于各段函数的值域的 并集,分段函数虽由几个部分组成,但 它表示的是一个函数.
1 . 已 知函 数
log32 . ________
x 3 f(x) = -x
x≤1, 若 f(x) = 2 ,则 x 为 x>1
解析:当 x≤1 时,3x=2,∴x=log3 2; 当 x>1 时,-x=2,∴x=-2(舍去).
2. 已知函数
2,x∈[0,1], f(x)= x,x∉[0,1],
则使 f(f(x))=2 成立的实数
第二章 函数概念与基本初等函数 第一节 函数及其表示
江苏专版2019版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测五函数及其表示5304
课时达标检测(五) 函数及其表示[练基础小题——强化运算能力]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的序号是________.解析:①中的值域不对,②中的定义域错误,④不是函数的图象,由函数的定义可知③正确.答案:③2.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义,应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.即函数f (x )的定义域为[-3,6). 答案:[-3,6)3.已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=________.解析:f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1. 答案:x +1 4.若函数f (x )=2x 2+2ax -a-1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立, 即2 x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =________.解析:f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则2-52b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、填空题1.函数f (x )=10+9x -x2lg x -1的定义域为________.解析:要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg x -1≠0,即⎩⎪⎨⎪⎧x +1x -10≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].答案:(1,2)∪(2,10]2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f x +1+1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于________.解析:f ⎝ ⎛⎭⎪⎫43=-cos 4π3=cos π3=12;f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23+2=-cos 2π3+2=12+2=52.故f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=3.答案:33.已知函数f (x )=x |x |,若f (x 0)=4,则x 0=________. 解析:当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2. 答案:24.(2018·盐城检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么a =________,c =________.解析:因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c4=c2=30.②联立①②解得c =60,a =16. 答案:16 605.(2018·南京模拟)设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1,x ≥1,log 21-x ,x <1,则f (f (4))=________;若f (a )<-1,则a 的取值范围为________________.解析:f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 2(1+31)=5.当a ≥1时,由-2a 2+1<-1得a 2>1,解得a >1;当a <1时,由log 2(1-a )<-1,得log 2(1-a )<log 212,∴0<1-a <12,∴12<a <1.即a 的取值范围为⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 答案:5 ⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 6.已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.解析:对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足“倒负”变换;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足“倒负”变换;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.答案:①③7.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a =________.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a , 解得a =-34,所以a 的值为-34.答案:-348.若函数f (x )=ax 2+2bx +3的定义域为[-1,3],则函数g (x )=ln(3+2ax -bx 2)的定义域为________.解析:因为函数f (x )的定义域为[-1,3],所以ax 2+2bx +3≥0的解集为[-1,3],所以⎩⎪⎨⎪⎧a <0,-1+3=-2b a ,-1×3=3a,解得⎩⎪⎨⎪⎧a =-1,b =1,所以g (x )=ln(3-2x -x 2).由3-2x -x 2>0得-3<x <1,即函数g (x )=ln(3+2ax -bx 2)的定义域为(-3,1). 答案:(-3,1)9.(2018·连云港中学模拟)已知函数f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________. 解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2,f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是____________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 二、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4x +22,x ∈[-2,-1,-2x +12,x ∈[-1,0,x 2,x ∈[0,1],-12x -12,x ∈1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2019版一轮优化探究文数(苏教版)练习:第二章 第二节 函数的定义域和值域
一、填空题1.函数f (x )=x 2-2x +c 在[-2,2]上的最大值是________.解析:因为二次函数f (x )的对称轴为x =1并且开口向上,所以在区间[-2,2]上的最大值为f (-2)=8+c .答案:8+c2.若f (x )的定义域为[-2,3],则f (x )+的定义域为________.log2(x 2-3)解析:∵f (x )的定义域为-2≤x ≤3,由log 2(x 2-3)≥0,则x 2-3≥1,x ≥2或x ≤-2.即f (x )+的定义域为2≤x ≤3或x =-2.log2(x 2-3)答案:{-2}∪{x |2≤x ≤3}3.y =-的定义域为________.133x -9|x |-2解析:依题意Error!,由此解得 x ≤-2或x ≥2,且x ≠3,即函数的定义域是{x ∈R|x ≤-2或2≤x <3或x >3}.答案:{x ∈R|x ≤-2或2≤x <3或x >3}4.若函数f (x )=的定义域为R ,则实数m 的取值范围是x -4mx 2+4mx +3________.解析:若m =0,则f (x )=的定义域为R ;若m ≠0,则Δ=16m 2-12m <0,x -43得0<m <,综上可知,所求的实数m 的取值范围为[0,).3434答案:[0,)345.函数y =|x +2|+的值域为________.(x -3)2解析:y =|x +2|+=|x +2|+|x -3|(x -3)2=Error!当x ≤-2时,-2x +1≥-2×(-2)+1=5;当x ≥3时, 2x -1≥2×3-1=5,∴y ≥5.答案:[5,+∞)6.函数y =的定义域是________.log2 (4-x )解析:由Error!,即Error!,得x ≤3.答案:(-∞,3]7.已知函数f (x )=x +(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为px -14,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1++1≥2+1,当且仅当x =+1时,px -1p p 取等号,则2+1=4,解得p =.p 94答案:948.对a ,b ∈R ,记min {a ,b }=Error!函数f (x )=min (x ∈R)的最大值为________.{12x ,-|x -1|+2}解析:y =f (x )是y =x 与y =-|x -1|+2两者中的较小者,12数形结合可知,函数的最大值为1.答案:19.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.解析:[a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.答案:1二、解答题10.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.解析:(1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =.32(2)∵对一切x ∈R ,函数值均为非负数,∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤,32∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-(a +)2+(a ∈[-1,]).3217432∵二次函数g (a )在[-1,]上单调递减,32∴g ()≤g (a )≤g (-1),32即-≤g (a )≤4,194∴g (a )的值域为[-,4].19411.已知函数y =log a (ax 2+2x +1).(1)若此函数的定义域为R ,求a 的取值范围;(2)若此函数的定义域为(-∞,-2-)∪(-2+,+∞),求a 的值.22解析:(1)ax 2+2x +1>0,Δ=4-4a ,∵定义域为R.∴a >0,Δ<0,∴a >1.(2)由题意,ax 2+2x +1>0的解集为(-∞,-2-)∪(-2+,+∞).22∴Error!∴a =.1212.设f (x )=,g (x )=ax +5-2a (a >0).2x 2x +1(1)求f (x )在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.解析:(1)(导数法) f ′(x )=4x (x +1)-2x 2(x +1)2=≥0在x ∈[0,1]上恒成立.2x 2+4x(x +1)2∴f (x )在[0,1]上单调递增,∴f (x )在[0,1]上的值域为[0,1].(2)f (x )在[0,1]上的值域为[0,1],g (x )=ax +5-2a (a >0)在x ∈[0,1]上的值域为[5-2a,5-a ].由条件,只需[0,1]⊆[5-2a,5-a ],∴Error!⇒≤a ≤4.52。
2019版同步优化探究文数(北师大版)练习第二章 第一节 函数及其表示 Word版含解析
课时作业组——基础对点练.函数()=(+-)的定义域是( ).[-, ].(-).(-∞,-]∪[,+∞).(-∞,-)∪(,+∞)解析:使函数()有意义需满足+->,解得>或<-,所以()的定义域为(-∞,-)∪(,+∞).答案:.下列各组函数中,表示同一函数的是( ).()=,()=().()=,()=(+).()=,()=.()=,()=+解析:在中,定义域不同,在中,解析式不同,在中,定义域不同.答案:.设={-≤≤},={≤≤},函数()的定义域为,值域为,则()的图像可以是( )解析:项,定义域为[-],项,值域不是[],项,当=时有两个值与之对应,故选.答案:.设,都是由到的映射,其对应法则如下:映射的对应法则映射的对应法则则[()]的值为( )....解析:由映射的对应法则,可知()=,由映射的对应法则,知()=,故[()]=.答案:.已知()是一次函数,且[()]=+,则()=( ).+.-.-+.+或--解析:设()=+,则由[()]=+,可得(+)+=+,即++=+,∴=,+=,解得=,=,则()=+.故选.答案:.设函数()=(\\(-,<,,≥.))若=,则=( ).解析:==.当-<,即>时,×-=,解得=(舍).当-≥,即≤时,-=,解得=.故选. 答案:.已知函数()=(\\(,>,+,≤,))若()+()=,则实数的值等于( ).-.-..解析:由题意知()==.∵()+()=,∴()+=.①当>时,()=+=无解;②当≤时,()=+,∴++=,∴=-.答案:.下列函数中,不满足()=()的是( ).()=+.()=-.()=.()=-解析:对于,()=+,()=+≠()=+,不满足;对于,()=-,()=-=(),满足;对于,()=,()==(),满足;对于,()=-,()=-=(),满足.故选.答案:.已知函数()=+(≤≤),则( ).(-)=+(≤≤).(-)=-(≤≤).(-)=-(≤≤).(-)=-+(≤≤)解析:因为()=+,所以(-)=-.因为函数()的定义域为[],所以≤-≤,即≤≤,故(-)=-(≤≤).答案:.某学校要召开学生代表大会,规定各班每人推选一名代表,当各班人数除以的余数大于时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数=[ ]([]表示不大于的最大整数)可以表示为( )。
2019版高考数学一轮复习《第二章函数与导数》课时训练含答案.doc
第二章 函数与导数第1课时 函数及其表示一、 填空题1. 下列五个对应f ,________是从集合A 到集合B 的函数.(填序号)① A =⎩⎨⎧⎭⎬⎫12,1,32,B ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12=-6,f(1)=-3,f ⎝ ⎛⎭⎪⎫32=1; ② A ={1,2,3},B ={7,8,9},f(1)=f(2)=7,f(3)=8; ③ A =B ={1,2,3},f(x)=2x -1; ④ A =B ={x|x ≥-1},f(x)=2x +1;⑤ A =Z ,B ={-1,1},n 为奇数时,f(n)=-1,n 为偶数时,f(n)=1. 答案:①②④⑤解析:根据函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.2. 设f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f(g(π))的值为________.答案:0解析:根据题设条件,∵ π是无理数,∴ g(π)=0, ∴ f(g(π))=f(0)=0.3. 已知f ⎝ ⎛⎭⎪⎫x 2-1=2x +3,且f(m)=6,则m =________. 答案:-14解析:令2x +3=6,得x =32,所以m =x 2-1=12×32-1=-14.4. 如果f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x ≠0且x ≠1时,f(x)=________.答案:1x -1解析:令t =1x ,得x =1t ,∴ f(t)=1t 1-1t=1t -1,∴ f(x)=1x -1.5. 计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的对应关系如下表:答案:6E6. 已知g(x)=1-2x ,f(g(x))=1-x2x2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=__________.答案:15解析:令g(x)=1-2x =12,得x =14.∴ f ⎝ ⎛⎭⎪⎫12=1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15.7. 函数f(x)对任意x ,y 满足f(x +y)=f(x)+f(y),且f(2)=4,则f(-1)=____________.答案:-2 解析:由f(2)=f(1+1)=f(1)+f(1)=2f(1)=4得f(1)=2,由f(0)=f(0+0)=f(0)+f(0)=2f(0)得f(0)=0,由f(0)=f(-1+1)=f(-1)+f(1)=0,得f(-1)=-f(1)=-2.8. 已知函数f(x)=⎩⎪⎨⎪⎧-x -1(-1≤x<0),-x +1(0<x≤1),则f(x)-f(-x)>-1的解集为______________.答案:⎣⎢⎡⎭⎪⎫-1,-12∪(0,1] 解析:① 当-1≤x<0时,0<-x ≤1,此时f(x)=-x -1,f(-x)=-(-x)+1=x +1,∴ f(x)-f(-x)>-1化为-2x -2>-1,解得x<-12,则-1≤x<-12.② 当0<x ≤1时,-1≤-x<0,此时,f(x)=-x +1,f(-x)=-(-x)-1=x -1,∴ f(x)-f(-x)>-1化为-2x +2>-1,解得x<32,则0<x ≤1.故所求不等式的解集为⎣⎢⎡⎭⎪⎫-1,-12∪(0,1]. 9. 一辆汽车在某段路程中的行驶速度v 与时间t 的关系如图所示,则该汽车在前3 h 行驶的路程为________km.假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2 006 km ,那么在t ∈[1,2)时,汽车里程表读数s 与时间t 的函数解析式为____________________.答案:220 s =80t +1 976,且t ∈[1,2)解析:前3 h 行驶的路程为50+80+90=220(km).∵ t ∈[1,2)时里程表读数s 是时间t 的一次函数,可设为s =80(t -1)+b ,当t =1时,s =2 006+50=2 056=b ,∴ s =80(t -1)+2 056=80t +1 976. 二、 解答题10. 如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f(x),并写出它的定义域.解:设AB =2x ,CD ︵=πx ,于是AD =1-2x -πx2,则y =2x·1-2x -πx 2+πx22,即y =-π+42x 2+x.由⎩⎪⎨⎪⎧2x >0,1-2x -πx 2>0,得0<x <1π+2,∴ 函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 11. 已知函数f(x)对一切实数x ,y 均有f(x +y)-f(y)=x(x +2y +1)成立,且f(1)=0,(1) 求f(0)的值;(2) 试确定函数f(x)的解析式.解:(1) 令x =1,y =0,得f(1)-f(0)=2. 又f(1)=0,故f(0)=-2.(2) 令y =0,则f(x)-f(0)=x(x +1),由(1)知,f(x)=x(x +1)+f(0)=x(x +1)-2=x 2+x -2.12. 据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC 上一点T(t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1) 当t =4时,求s 的值;(2) 将s 随t 变化的规律用数学关系式表示出来.解:(1) 由图象可知,当t =4时,v =3×4=12,所以s =12×4×12=24.(2) 当0≤t ≤10时,s =12·t ·3t =32t 2;当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上可知s =⎩⎪⎨⎪⎧32t2,t∈[0,10],30t -150,t∈(10,20],-t2+70t -550,t∈(20,35].13. 已知f(x)=⎩⎪⎨⎪⎧1,x∈[0,1],x -3,x∈(-∞,0)∪(1,+∞),若f(f(x))=1成立,求x 的取值范围.解:因为f(f(x))=1,所以0≤f(x)≤1或f(x)-3=1.① 由0≤f(x)≤1,可得0≤x ≤1或⎩⎪⎨⎪⎧0≤x-3≤1,x<0或x>1,所以0≤x ≤1或3≤x ≤4;② 由f(x)-3=1,得f(x)=4,所以x -3=4,∴ x =7. 综合①②知,x 的取值范围是[0,1]∪[3,4]∪{7}.点评:由于f(x)是分段函数,所以在探求方程f(f(x))=1的解时,需要根据分段函数中相应的限制定义域进行分类讨论.第2课时 函数的定义域和值域一、 填空题1. 函数f(x)=-x2+x +6x -1的定义域是______________.答案:[-2,1)∪(1,3]解析:依题意有⎩⎪⎨⎪⎧-x2+x +6≥0,x -1≠0,解得⎩⎪⎨⎪⎧-2≤x≤3,x≠1,所以定义域为[-2,1)∪(1,3]. 2. 已知f(x)=1x +1,则函数f(f(x))的定义域是________.答案:(-∞,-2)∪(-2,-1)∪(-1,+∞)解析:f(f(x))=1f (x )+1=11x +1+1,∴ ⎩⎪⎨⎪⎧x +1≠0,11+x+1≠0,解得⎩⎪⎨⎪⎧x≠-1,x≠-2.所以定义域为(-∞,-2)∪(-2,-1)∪(-1,+∞).3. 若函数y =f(x)的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F(x)=f(x)+1f (x )的值域是________. 答案:⎣⎢⎡⎦⎥⎤2,103解析:令t =f(x),则t ∈⎣⎢⎡⎦⎥⎤12,3,由F(x)=t +1t 知,F(x)∈⎣⎢⎡⎦⎥⎤2,103,所以函数F(x)的值域为⎣⎢⎡⎦⎥⎤2,103.4. 函数y =4-3+2x -x2的值域是__________________.答案:[2,4]解析:y =4--(x -1)2+4,∵ 0≤-(x -1)2+4≤4,∴ 0≤-(x -1)2+4≤2,∴ 2≤4--(x -1)2+4≤4, ∴ 所给函数的值域为[2,4].5. 函数y =x -x(x ≥1)的值域为________. 答案:(-∞,0]解析:y =-⎝ ⎛⎭⎪⎫x -122+14.因为x ≥1,所以y ≤0. 6. 函数y =|x|x+x 的值域是____________________.答案:(-∞,-1)∪(1,+∞)解析:由y =⎩⎪⎨⎪⎧x +1,x>0,x -1,x<0可得值域.7. 若函数y =12x 2-2x +4的定义域、值域都是闭区间[2,2b],则b =________.答案:2解析:y =12x 2-2x +4=12(x -2)2+2,显然f(2)=2,所以f(2b)=2b ,结合b>1,得b=2.8. 设f(x)=⎩⎪⎨⎪⎧x2,|x|≥1,x ,|x|<1,g(x)是定义在R 上的二次函数,若f(g(x))的值域是[0,+∞),则g(x)的值域是________.答案:[0,+∞)解析:若f(g(x))的值域是[0,+∞),则g(x)可取(-∞,-1]∪[0,+∞).又g(x)是定义在R 上的二次函数,定义域连续,其值域也是连续的,因此g(x)的值不可能同时取(-∞,-1]和[0,+∞).又若g(x)的值域为(-∞,-1],则f(g(x))的值域为[1,+∞),所以g(x)的值域只能为[0,+∞).二、 解答题9. 求下列函数的值域: (1) y =2x -x -1; (2) y =x +1-x -1.解:(1) 令x -1=t ,则t ≥0,且x =t 2+1≥1,所以y =2x -x -1=2t 2-t +2=2⎝ ⎛⎭⎪⎫t -142+158.因为t ≥0,所以y ≥158,因此所求函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.(2) y =x +1-x -1=2x +1+x -1,不难证明函数在其定义域[1,+∞)上是减函数,所以其值域为(0,2].点评:利用代换法求值域时,要关注新代换量的取值范围.10. 已知函数g(x)=x +1,h(x)=1x +3(x ∈(-3,a]),其中a 为常数且a>0.令函数f(x)=g(x)·h(x).(1) 求函数f(x)的解析式,并求其定义域;(2) 当a =14时,求函数f(x)的值域.解:(1) f(x)=x +1x +3,x ∈[0,a](a>0). (2) 当a =14时,函数f(x)的定义域为[0,14].令x +1=t ,则x =(t -1)2,t ∈[1,32],则f(x)=F(t)=t t2-2t +4=1t +4t-2.当t =4t 时,t =±2∉[1,32].又t ∈[1,32]时,t +4t 单调递减,∴F(t)单调递增,F(t)∈[13,613],即函数f(x)的值域为[13,613]. 11. 函数f(x)=2x -ax的定义域为(0,1](a ∈R ).(1) 当a =-1时,求函数y =f(x)的值域;(2) 若f(x)>5在定义域上恒成立,求a 的取值范围.解:(1) 当a =-1时,∵ x ∈(0,1],∴ y =f(x)=2x -a x =2x +1x ≥22x·1x=22,当且仅当x =22时取最小值.∴ 函数y =f(x)的值域为[22,+∞). (2) 若f(x)>5在定义域(0,1]上恒成立,即2x 2-5x>a 在(0,1]上恒成立.设g(x)=2x 2-5x ,∵ g(x)=2x 2-5x =2⎝ ⎛⎭⎪⎫x -542-258,∴ 当x ∈(0,1]时,g(x)∈[-3,0).而g(x)=2x 2-5x>a ,∴ 只要a<-3即可,∴ a 的取值范围是(-∞,-3).12. 已知二次函数f(x)=ax 2+bx(a ,b 是常数,且a ≠0)满足条件:f(2)=0,且方程f(x)=x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m ,n(m<n),使f(x)的定义域和值域分别为[m ,n]和[2m ,2n]?如存在,求出m ,n 的值,如不存在,请说明理由.解:(1) 由题意⎩⎪⎨⎪⎧f (2)=0,f (x )=x 有等根,即 ⎩⎪⎨⎪⎧4a +2b =0,ax2+(b -1)x =0有等根.∴⎩⎪⎨⎪⎧2a +b =0,(b -1)2=0,解得⎩⎪⎨⎪⎧a =-12,b =1,∴ f(x)=-12x 2+x. (2) 假设存在适合题设条件的实数m ,n ,由(1)知f(x)=-12x 2+x =-12(x -1)2+12≤12,∴ 2n ≤12,即n ≤14.而函数f(x)=-12x 2+x 图象的对称轴方程为x =1,∴ 函数f(x)=-12x 2+x 在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m2+m =2m ,-12n2+n =2n , 解得⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0.又m<n ,∴ ⎩⎪⎨⎪⎧m =-2,n =0,即存在实数m =-2,n =0,使函数f(x)的定义域为[-2,0],值域为[-4,0].13. 等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,如图,直线MN ⊥AD 交AD 于点M ,交折线ABCD 于点N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域和值域.(用分段函数形式表示)解:过点B ,C 分别作AD 的垂线,垂足为点H 和点G ,则AH =a 2,AG =3a2.当点M 位于点H 及其左侧时,AM =MN =x ,则面积y =S △AMN =12x 2⎝⎛⎭⎪⎫0≤x≤a 2;当点M 位于点H ,G 之间时,面积y =S 梯形MNBA =12(AM +BN)·M N =12⎝⎛⎭⎪⎫x +x -a 2·a 2=12ax -a28⎝ ⎛⎭⎪⎫a 2<x<3a 2; 当点M 位于点G 及其右侧时,面积y =S 梯形ABCD -S △MDN =a +2a 2·a 2-12(2a -x)2=-12x 2+2ax -5a24⎝ ⎛⎭⎪⎫32a≤x≤2a .综上所述,y =⎩⎪⎨⎪⎧12x2⎝⎛⎭⎪⎫0≤x≤a 2,12ax -a28⎝ ⎛⎭⎪⎫a 2<x<3a 2,-12x2+2ax -54a2⎝ ⎛⎭⎪⎫3a 2≤x≤2a .其定义域为[0,2a],值域为⎣⎢⎡⎦⎥⎤0,34a2.第3课时 函数的单调性一、 填空题1. 下列四个函数中,在(0,+∞)上为增函数的是______.(填序号)① f(x)=3-x ;② f(x)=x 2-3x ;③ f(x)=-1x +1;④ f (x)=-|x|.答案:③解析:分别画出四个函数的图象易知y =x 2-3x 在⎝ ⎛⎭⎪⎫32,+∞上递增,y =3-x 在(0,+∞)上递减,y =-|x|在(0,+∞)上递减,y =-1x +1在(-1,+∞)上递增.2. 若函数f(x)=(k 2-3k +2)x +b 在R 上是减函数,则实数k 的取值范围为____________.答案:(1,2)解析:由题意得k 2-3k +2<0,∴ 1<k<2.3. 函数f(x)=x2-2x -3的单调增区间为________. 答案:[3,+∞)解析:∵ t =x 2-2x -3≥0,∴ x ≤-1或x ≥3.当x ∈(-∞,-1]时,t 递减,f(x)递减;当x ∈[3,+∞)时,t 递增,f(x)递增.∴ 当x ∈(-∞,-1]时,f(x)是减函数;当x ∈[3,+∞)时,f(x)是增函数.4. 已知函数f(x)是定义在(-2,2)上的减函数.若f(m -1)>f(2m -1),则实数m 的取值范围是____________.答案:0<m <32解析:由题意得⎩⎪⎨⎪⎧-2<m -1<2,-2<2m -1<2,m -1<2m -1,解得0<m <32.5. 已知y =x 2+2(a -2)x +5在区间(4,+∞)上是增函数,则实数a 的取值范围是____________.答案:a ≥-2解析:对称轴为x =2-a ,2-a ≤4,a ≥-2.6. 函数y =|1+2x|+|2-x|的单调减区间为________.答案:⎝⎛⎦⎥⎤-∞,-12 解析:将函数y =|1+2x|+|2-x|改写成分段函数y =⎩⎪⎨⎪⎧-3x +1,x∈⎝⎛⎦⎥⎤-∞,-12,x +3,x∈⎝ ⎛⎭⎪⎫-12,2,3x -1,x∈[2,+∞).画出函数的图象容易得出其在⎝⎛⎦⎥⎤-∞,-12上为单调减函数.7. 已知函数f(x)=ax 2-x +1在(-∞,2)上是递减的,则a 的取值范围是____________.答案:⎣⎢⎡⎦⎥⎤0,14 解析:当a =0时,f(x)=-x +1在(-∞,2)上是递减的;当a ≠0时,要使f(x)在(-∞,2)上单调递减,则⎩⎪⎨⎪⎧a>0,12a≥2,解得0<a ≤14.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤0,14.8. 已知f(x)=xx -a(x ≠a),若a>0且f(x)在(1,+∞)内单调递减,则实数a 的取值范围是________.答案:(0,1]解析:任取x 1,x 2∈(1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=x1x1-a -x2x2-a=-a (x1-x2)(x1-a )(x2-a ),因为x 1<x 2,且a>0,所以要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0恒成立.又x ∈(1,+∞),所以a ≤1.综上,实数a 的取值范围是0<a ≤1.9. 已知函数f(x)=⎩⎪⎨⎪⎧x2+4x ,x≥0,4x -x2,x <0.若f(2-a 2)>f(a),则实数a 的取值范围是____________.答案:(-2,1)解析:由f(x)=⎩⎪⎨⎪⎧(x +2)2-4,x≥0,-(x -2)2+4,x <0的图象知f(x)在(-∞,+∞)上是单调递增函数,由f(2-a 2)>f(a)得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.二、 解答题10. 利用单调性的定义证明函数y =x +2x +1在(-1,+∞)上是递减函数.证明:设x 1>x 2>-1,则x 2-x 1<0,y 1-y 2=x1+2x1+1-x2+2x2+1=x2-x1(x1+1)(x2+1),∵ x 1>x 2>-1,x 1+1>0,x 2+1>0,x 2-x 1<0,∴ x2-x1(x1+1)(x2+1)<0,即y 1-y 2<0.∴y 1<y 2. ∴ y =x +2x +1在(-1,+∞)上是递减函数.11. 讨论函数f(x)=axx2-1(a>0)在x ∈(-1,1)上的单调性.解:设-1<x 1<x 2<1,则f(x 1)-f(x 2)=ax1x21-1-ax2x22-1=ax1x22-ax 1-ax 2x21+ax 2(x21-1)(x22-1)=a (x2-x1)(x1x2+1)(x21-1)(x22-1).∵ -1<x 1<x 2<1,∴ x 2-x 1>0,x 1x 2+1>0,(x21-1)(x22-1)>0. ∵ a>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴ 函数f(x)在(-1,1)上为减函数.12. 已知函数f(x)=1a -1x(a>0,x>0).(1) 求证:f(x)在(0,+∞)上是单调递增函数;(2) 若f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1) 证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.∵ f(x 2)-f(x 1)=⎝ ⎛⎭⎪⎫1a -1x2-⎝ ⎛⎭⎪⎫1a -1x1=1x1-1x2=x2-x1x1x2>0,∴ f(x 2)>f(x 1),∴ f(x)在(0,+∞)上是单调递增函数.(2) 解:∵ f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2, 又f(x)在⎣⎢⎡⎦⎥⎤12,2上单调递增, ∴ f ⎝ ⎛⎭⎪⎫12=12,f(2)=2,解得a =25.13. 已知函数f(x)对任意的m ,n ∈R ,都有f(m +n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1) 求证:f(x)在R 上是增函数;(2) 若f(3)=4,解不等式f(a 2+a -5)<2.(1) 证明:设x 1,x 2∈R ,且x 1<x 2,∴ x 2-x 1>0. ∵ 当x>0时,f(x)>1, ∴ f(x 2-x 1)>1.f(x 2)=f[(x 2-x 1)+x 1]=f(x 2-x 1)+f(x 1)-1, ∴ f(x 2)-f(x 1)=f(x 2-x 1)-1>0,∴f(x 1)<f(x 2), ∴ f(x)在R 上为增函数.(2) 解:∵ m ,n ∈R ,不妨设m =n =1,∴ f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴ f(1)=2,∴ f(a 2+a -5)<2=f(1). ∵ f(x)在R 上为增函数,∴ a 2+a -5<1,解得-3<a<2.第4课时 函数的奇偶性及周期性一、 填空题1. 已知奇函数f(x)的定义域为(-2a ,a 2-3),则a =________. 答案:3解析:(-2a)+(a 2-3)=0,且⎩⎪⎨⎪⎧a2-3>0,-2a <0.得a =3.2. 若函数f(x)=x +ax2+bx +1在[-1,1]上是奇函数,则f(x)的解析式为______________.答案:f(x)=xx2+1解析:∵ f(-x)=-f(x),∴ f(-0)=-f(0),f(0)=0, ∴ a 1=0,∴ a =0,即f(x)=x x2+bx +1.∵f(-1)=-f(1),即-12-b =-12+b,∴ b =0.∴ f(x)=xx2+1.3. 已知函数f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=x 2-2x ,则f(x)的解析式为f(x)=________.答案:x(|x|-2)解析:设x ≤0,则-x ≥0,∵ 当x ≥0时,f(x)=x 2-2x ,∴ f(-x)=(-x)2-2(-x)=x 2+2x.又f(x)是奇函数,∴ f(-x)=-f(x),∴ f(x)=-(x 2+2x),∴ f(x)=⎩⎪⎨⎪⎧x2-2x (x≥0),-x2-2x (x<0),即f(x)=x(|x|-2)(x ∈R ).4. 设f(x)=g(x)+5,g(x)为奇函数,且f(-7)=-17,则f(7)=________. 答案:27解析:由f(-7)=-17得g(-7)=-22,根据g(x)为奇函数得g(7)=22,而f(7)=g(7)+5,所以f(7)=22+5=27.5. 设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f(x)=⎩⎪⎨⎪⎧-4x2+2,-1≤x<0,x ,0≤x<1,则f ⎝ ⎛⎭⎪⎫32=_______.答案:1解析:由题意可知f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1. 6. 定义在(-1,1)上的奇函数f(x)在整个定义域上都是减函数,若f(1-a)+f(1-3a)<0,则实数a 的取值范围是____________.答案:⎝ ⎛⎭⎪⎫0,12 解析:原不等式化为f(1-3a)<-f(1-a),∵ f(x)是奇函数,∴ -f(1-a)=f(a -1),∴ 原不等式化为f(1-3a)<f(a -1).∵ f(x)是减函数,∴ 1-3a >a -1,∴ a <12①.又f(x)的定义域为(-1,1), ∴ ⎩⎪⎨⎪⎧-1<1-a <1,-1<1-3a <1,解得0<a <23 ②.由①和②得实数a 的取值范围是⎝ ⎛⎭⎪⎫0,12. 7. 已知f(x)与g(x)都是定义在R 上的奇函数,若F(x)=af(x)+bg(x)+3,且F(-2)=5,则F(2)=______.答案:1解析:F(-2)+F(2)=a[f(-2)+f(2)]+b[g(2)+g(-2)]+6=6,∴ F(2)=1. 8. 若定义在R 上的偶函数f(x)满足f(x +1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:① f(x)是周期函数;② f(x)的图象关于直线x =1对称; ③ f(x)在[0,1]上是增函数; ④ f(x)在[1,2]上是减函数; ⑤ f(2)=f(0).其中正确的是________.(填序号) 答案:①②⑤解析:∵ f(x +1)=-f(x),∴ f(x)=-f(x +1)=f(x +1+1)=f(x +2),∴ f(x)是周期为2的函数,①正确.∵ f(x +2)=f(x)=f(-x),∴ f(x)=f(2-x),∴ y =f(x)的图象关于直线x =1对称,②正确.∵ f(x)为偶函数,且在[-1,0]上是增函数,∴ f(x)在[0,1]上是减函数.又f(x)的对称轴为x =1,∴ f(x)在[1,2]上为增函数,且f(2)=f(0),故③④错误,⑤正确.9. 已知函数f(x)是定义在R 上的奇函数,且当x ≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是__________.答案:{x|x >4}解析:由题意得f(x)=⎩⎪⎨⎪⎧-x2-3x ,x≤0,x2-3x ,x >0,f(x -1)=⎩⎪⎨⎪⎧-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0,即f(x -1)=⎩⎪⎨⎪⎧-x2-x +2,x≤1,x2-5x +4,x >1.所以不等式f(x -1)>-x +4可化为⎩⎪⎨⎪⎧-x2-x +2>-x +4,x≤1,或⎩⎪⎨⎪⎧x2-5x +4>-x +4,x >1, 解得x >4.10. 设函数f(x)=x 3+2x 2,若函数g(x)的图象与f(x)的图象关于点(2,1)对称,则函数g(x)的解析式为____________________.答案:g(x)=x 3-14x 2+64x -94解析:设P(x ,y)是f(x)图象上任意一点,∴ y =x 3+2x 2①,P 关于点(2,1)的对称点为Q(x ′,y ′),则 ⎩⎪⎨⎪⎧x +x′2=2,y +y′2=1,即⎩⎪⎨⎪⎧x =4-x′,y =2-y′,代入①得2-y ′=(4-x ′)3+2(4-x ′)2,化简得y ′=(x ′)3-14(x ′)2+64x ′-94,即g(x)=x 3-14x 2+64x -94. 二、 解答题11. 已知函数y =f(x)的定义域为R ,且对任意a ,b ∈R ,都有f(a +b)=f(a)+f(b),且当x>0 时,f(x)<0恒成立,求证:(1) 函数y =f(x)是R 上的减函数; (2) 函数y =f(x)是奇函数.证明:(1) 设x 1>x 2,则x 1-x 2>0,而f(a +b)=f(a)+f(b),∴ f(x 1)=f(x 1-x 2+x 2)=f(x 1-x 2)+f(x 2)<f(x 2),∴ 函数y =f(x)是R 上的减函数.(2) 由f(a +b)=f(a)+f(b)得f(x -x)=f(x)+f(-x),即f(x)+f(-x)=f(0),而f(0)=0,∴ f(-x)=-f(x),即函数y =f(x)是奇函数.12. 已知f(x)是定义在[-6,6]上的奇函数,f(x)在[0,3]上是x 的一次函数,在[3,6]上是x 的二次函数,且满足f(x)≤f(5)=3,f(6)=2,求f(x)的解析式.解:∵ 函数f(x)在[3,6]上是x 的二次函数,且满足f(x)≤f(5)=3,∴当 x ∈[3,6]时可设f(x)=a(x -5)2+3.由f(6)=2得a(6-5)2+3=2,解得a =-1,∴ 当x ∈[3,6]时,f(x)=-(x -5)2+3=-x 2+10x -22,∴ f(3)=-9+30-22=-1.∵ f(x)在[0,3]上是x 的一次函数,且据奇函数知f(0)=0,∴ 当x ∈[0,3]时,可设f(x)=kx(k 为常数).由f(3)=-1得3k =-1,∴ k =-13,∴ 当x ∈[0,3]时,f(x)=-13x ,∴ f(x)=⎩⎪⎨⎪⎧-13x ,x∈[0,3],-(x -5)2+3,x∈(3,6].又f(x)是奇函数,∴ f(x)=⎩⎪⎨⎪⎧(x +5)2-3,x∈[-6,-3),-13x ,x∈[-3,3],-(x -5)2+3,x∈(3,6].13. 函数f(x)的定义域为D ={x|x ≠0},且满足对于任意x 1,x 2∈D ,都有f(x 1·x 2)=f(x 1)+f(x 2).(1) 求f(1)的值;(2) 判断f(x)的奇偶性并证明你的结论;(3) 如果f(4)=1,f(3x +1)+f(2x -6)≤3,且f(x)在(0,+∞)上是增函数,求x 的取值范围.解:(1) ∵ 对于任意x 1,x 2∈D ,都有f(x 1·x 2)=f(x 1)+f(x 2),∴ 令x 1=x 2=1,得f(1)=2f(1),∴ f(1)=0.(2) f(x)为偶函数.令x 1=x 2=-1,有f(1)=f(-1)+f(-1),∴ f(-1)=12f(1)=0.令x 1=-1,x 2=x 有f(-x)=f(-1)+f(x),∴ f(-x)=f(x),∴ f(x)为偶函数.(3) 依题意有f(4×4)=f(4)+f(4)=2,f (16×4)=f(16)+f(4)=3, ∵ f(3x +1)+f(2x -6)≤3, ∴f((3x +1)(2x -6))≤f(64). ∵ f(x)为偶函数,∴ f(|(3x +1)(2x -6)|)≤f(64).∵ f(x)在(0,+∞)上是增函数,f(x)的定义域为D , ∴ 0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x<-13或-13<x<3.∴ x 的取值范围是{x ⎪⎪⎪-73≤x<-13或-13<x<3或3<x ≤5}.第5课时 指数、对数运算一、 填空题1. 设a ≥0,计算(36a9)2·(63a9)2的结果是________.答案:a 2解析:在底数不小于零的前提下,幂指数与根指数的公因数可以直接约分.2. 化简32-6227+⎝ ⎛⎭⎪⎫-3232-3-(102)2-42的结果是________. 答案:9解析:先将式子中的根式逐个进行化简,然后进行运算即可.原式=3-827+⎝ ⎛⎭⎪⎫-1132-3-216=-23+113+6=9.点评:对多个根式组成的式子进行化简,我们解题的一般原则:先算根号内的,然后进行根式运算;在进行根式运算时,要注意根指数为奇数的情况,如3a :若a>0,则3a>0;若a<0,则3a<0.但对根指数为偶数的根式,如a ,只有当a ≥0时,a 才有意义.3. log 29×log 34=__________. 答案:4解析:log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.4. 方程1+3-x1+3x=3的解是________.答案:x =-1解析:3-x·3x+3-x 1+3x=3-x=3,x =-1.5. 若f(10x)=x ,则f(5)=________. 答案:lg 5解析:由题意得10x= 5,故x =lg 5,即f(5)=lg 5.6. 设f(x)=4x 4x +2,那么f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫311+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 答案:5解析:∵ f(x)=4x 4x +2=1-24x +2,∴ f(x)+f(1-x)=1-24x +2+1-241-x +2=2-24x +2-241-x +2=2-24x +2-4x 2+4x =1.∴ f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫311+…+f ⎝ ⎛⎭⎪⎫1011=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+[f ⎝ ⎛⎭⎪⎫511+f ⎝ ⎛⎭⎪⎫611]=5. 7. 若对数式log (a -2)(5-a)有意义,则实数a 的取值范围是____________. 答案:(2,3)∪(3,5)解析:由题意得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,即⎩⎪⎨⎪⎧a >2,a ≠3,a <5,∴ 2<a<5且a ≠3. 8. 已知a 23=⎝ ⎛⎭⎪⎫232(a >0),则log 23a =________. 答案:3解析:由a 23=49得a =⎝ ⎛⎭⎪⎫4932=[(23)2]32=(23)3,所以log 23a =3.9. 若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小顺序是___________.答案:c<a<b解析:a =ln 2,b =ln 33,c =ln 55,则55=1052,2=1025,∴ 55< 2.又2=68,33=69,∴ 33> 2.故c <a <b.二、 解答题10. 已知a =27,b =52,求a 32b2-9b 43a 32b -2-6a 34b -13+9b 43·b3a 34+3b 53的值.解:由于a 32b -2-6a 34b -13+9b 43=(a 34b -1-3b 23)2,且a 34<a<b<3b 53,∴ a 34b -1<3b 23,∴ 原式=a 32-9b 103(3b 23-a 34b -1)2·ba 34+3b 53=(a 34+3b 53)(a 34-3b 53)b (3b 23-a 34b -1)(a 34+3b 53)=(a 34-3b 53)b 3b 23-a 34b -1=-b 2=-50.11. 已知a >1,且a +a -1=3,求下列各式的值.(1) a 12-a -12;(2) a -a -1;(3) (a 12-a -12)(a2+a -2-4)a4-a -4.解:(1) (a 12-a -12)2=a +a -1-2=1.∵ a >1,∴ a 12-a -12=1.(2) 由a +a -1=3,得a 2+a -2+2=9,即a 2+a -2=7,∴ (a -a -1)2=a 2+a -2-2=5.∵ a >1,∴ a -a -1= 5.(3) (a 12-a -12) (a2+a -2-4)a4-a -4=(a 12-a -12)(a2+a -2-4)(a -a -1)(a +a -1)(a2+a -2)=1×(7-4)5×3×7=535. 12. 设x>1,y>1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.解:因为x>1,y>1,所以log x y>0.令t =log x y ,则log y x =1t .所以原式可化为2t -2t+3=0,解得t =12或t =-2(舍去),即log x y =12,所以y =x.所以T =x 2-4y 2=x 2-4x =(x-2)2-4,由于x>1,所以当x =2,y =2时,T 取最小值,最小值为-4.13. 设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.解:依题意,得⎩⎪⎨⎪⎧logaC +logbC =3,logaC×logbC=1,从而⎩⎪⎨⎪⎧1logCa +1logCb =3,1logCa ×1logCb=1.即⎩⎪⎨⎪⎧logCa +logCb =3,logCa×logCb=1.所以(log C a -log C b)2=(log C a +log C b)2-4log C a ×log C b =32-4=5,所以 log C a -log C b=± 5.又log a b C =1logC a b=1logCa -logCb =±55,所以log a b C 的值为±55.点评:本题将对数运算、换底公式、根与系数的关系综合于一起,是对学生数学运算能力、应用能力的综合考查.如何利用对数的运算性质,在已知条件和待求的式子间建立联系是解决本题的关键.第6课时 指 数 函 数一、 填空题1. 函数f(x)=2x -4的定义域为__________. 答案:[2,+∞)解析:由2x-4≥0,得x ≥2.2. 函数y =3-|x -2|的单调递增区间是__________. 答案:(-∞,2]解析:y =⎝ ⎛⎭⎪⎫13|x -2|,t =|x -2|的单调减区间(-∞,2]就是所给函数的单调增区间. 3. 函数y =ex -1ex +1的值域是________.答案:(-1,1)解析:y =ex -1ex +1,则e x=1+y 1-y>0,则-1<y<1.4. 若指数函数y =a x在[-1,1]上的最大值与最小值的差是1,则底数a =____________.答案:5±12解析:若0<a <1,则a -1-a =1,即a 2+a -1=0,解得a =-1+52或a =-1-52(舍去);若a >1,则a -a -1=1,即a 2-a -1=0,解得a =1+52或a =1-52(舍去).综上,a =5±12. 5. 要使g(x)=3x +1+t 的图象不经过第二象限,则实数t 的取值范围是_________. 答案:t ≤-3解析:要使g(x)=3x +1+t 的图象不经过第二象限,只要g(0)=31+t ≤0,即t ≤-3.6. 函数y =3x 与y =-3-x的图象关于__________对称. 答案:原点解析:由y =-3-x 得-y =3-x,(x ,y)→(-x ,-y),即关于原点对称.7. 若关于x 的方程⎝ ⎛⎭⎪⎫34x =3a +25-a 有负根,则实数a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫34,5 解析:函数y =⎝ ⎛⎭⎪⎫34x 的定义域为R ,由于方程⎝ ⎛⎭⎪⎫34x =3a +25-a 有负根,所以应有3a +25-a >1,解得34<a<5.8. 已知函数y =a 2x +2a x-1(a >0且a ≠1)在区间[-1,1]上的最大值是14,则a =__________.答案:3或13解析:设t =a x ,t ∈(0,+∞),则y =t 2+2t -1=(t +1)2-2=f(t),对称轴方程为t =-1.当0<a <1时,∵ -1≤x ≤1,∴ a ≤t ≤1a ,此时,y 关于t 单调递增,∴ y max =f ⎝ ⎛⎭⎪⎫1a =1a2+2a -1=14,即1a2+2a -15=0,∴ a =13或a =-15(舍去);当a >1时,∵ -1≤x ≤1,∴ 1a≤t ≤a ,此时,y 关于t 单调递增,∴ y max =f(a)=a2+2a -1=14,即a 2+2a -15=0,∴ a =3或a =-5(舍去).综上,a =3或a =13.9. 设函数f(x)=⎩⎪⎨⎪⎧3x -1,x <1,2x , x≥1.则满足f(f(a))=2f(a)时a 的取值范围是____________.答案:⎣⎢⎡⎭⎪⎫23,+∞ 解析:由f(f(a))=2f(a)可知f(a)≥1,则⎩⎪⎨⎪⎧a≥1,2a≥1或⎩⎪⎨⎪⎧a <1,3a -1≥1,解得a ≥23.二、 解答题10. 求函数y =4x -2·2x+5,x ∈[0,2]的最大值和最小值.解:令t =2x ,则t ∈[1,4].y =t 2-2t +5,t ∈[1,4].∵ y =t 2-2t +5在区间t ∈[1,4]上是单调递增函数,∴ t =1即x =0时,y 有最小值4,t =4即x =2时,y 有最大值13.11. 已知f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12(x ≠0).(1) 判断f(x)的奇偶性; (2) 求证:f(x)>0.(1) 解:∵f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12=x 2·2x +12x -1,f(-x)=-x 2·2-x +12-x -1=x 2·2x +12x -1=f(x),∴ f(x)为偶函数.(2) 证明:f(x)=x 2·2x +12x -1,当x>0时,2x -1>0,即f(x)>0;当x<0时,2x-1<0,即f(x)>0,∴ f(x)>0.12. 已知9x -10·3x+9≤0,求函数y =⎝ ⎛⎭⎪⎫14x -1-4·⎝ ⎛⎭⎪⎫12x +2的最大值和最小值.解:由9x -10·3x +9≤0得(3x -1)(3x-9)≤0,解得1≤3x≤9,∴ 0≤x ≤2. 令⎝ ⎛⎭⎪⎫12x =t ,则14≤t ≤1,y =4t 2-4t +2=4⎝ ⎛⎭⎪⎫t -122+1,当t =12时,y min =1,此时,x =1;当t =1时,y max =2,此时,x =0.13. 已知函数f(x)=2x(x ∈R ),且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.(1) 求g(x),h(x)的解析式;(2) 若不等式2a·g(x )+h(2x)≥0对任意x ∈[1,2]恒成立,求实数a 的取值范围.解:(1) 由⎩⎪⎨⎪⎧f (x )=g (x )+h (x )=2x ,f (-x )=g (-x )+h (-x )=2-x ,得⎩⎪⎨⎪⎧g (x )+h (x )=2x ,-g (x )+h (x )=2-x , 解得g(x)=12(2x -2-x),h(x)=12(2x +2-x ).(2) 由2a·g(x )+h(2x)≥0,得a(2x -2-x)+12(22x +2-2x )≥0对任意x ∈[1,2]恒成立.令t =2x -2-x ,由于t 在x ∈[1,2]上单调递增,所以t =2x -2-x ∈⎣⎢⎡⎦⎥⎤32,154.因为22x+2-2x =(2x -2-x )2+2=t 2+2,所以a ≥-t2+22t =-12⎝ ⎛⎭⎪⎫t +2t 在t ∈⎣⎢⎡⎦⎥⎤32,154上恒成立.设φ(t)=-12⎝ ⎛⎭⎪⎫t +2t ,t ∈⎣⎢⎡⎦⎥⎤32,154,由φ′(t)=-12⎝ ⎛⎭⎪⎫1-2t2=2-t22t2<0,知φ(t)在t ∈⎣⎢⎡⎦⎥⎤32,154上为单调减函数,所以[φ(t)]max =φ⎝ ⎛⎭⎪⎫32=-1712,所以a ≥-1712.第7课时 对 数 函 数一、 填空题1. 在下列四个图象中,能够表示函数y =a x与y =-log a x(a>0,a ≠1)在同一坐标系中的图象的是________.(填序号)答案:①解析:将y =-log a x(a>0,a ≠1)首先改为y =log 1ax(a>0,a ≠1),结合函数的定义域首先排除②,当a>1时,0<1a<1,函数y =a x单调递增,y =log 1ax 单调递减,①中图象正确,③中图象错误,当0<a<1时,1a>1,函数y =a x单调递减,y =log 1ax 单调递增,④中图象错误.2. 函数y =ln(x 2-x -2)的定义域是________. 答案:(-∞,-1)∪(2,+∞)解析:由x 2-x -2>0,解得x >2或x<-1.3. 函数f(x)=log 2(-x 2+22)的值域为________.答案:⎝⎛⎦⎥⎤-∞,32 解析:由-x 2+22≤22,得f(x)≤log 222=32,函数f(x)的值域为⎝⎛⎦⎥⎤-∞,32.4. 函数f(x)=1-2log6x 的定义域为__________.答案:(0,6]解析:由1-2log 6x ≥0,得log 6x ≤12,即0<x ≤6,故所求的定义域为(0,6].5. 函数y =ln(1-x)的图象大致为________.(填序号)答案:③解析:由1-x>0,知x<1,排除①②;设t =1-x(x<1),因为t =1-x 为减函数,而y=ln t 为增函数,所以y =ln(1-x)为减函数,故选③.6. 已知函数y =log 12(x 2-2kx +k)的值域为R ,则实数k 的取值范围是____________.答案:(-∞,0]∪[1,+∞)解析:要想满足题意,则t =x 2-2kx +k 要能取到所有正实数,抛物线要与坐标轴有交点,所以Δ=4k 2-4k ≥0,解得k ≥1或k ≤0.7. 已知3是不等式log a (1+x)>log a (2x +3)的一个解,则此不等式的解集为____________.答案:{x|x >-1}解析:将x =3代入不等式log a (1+x)>log a (2x +3),得log a 4>log a 9,则0<a<1.可得⎩⎪⎨⎪⎧1+x >0,2x +3>0,1+x <2x +3,解得x >-1.则不等式的解集为{x|x >-1}.8. 设f(x)=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,且在x =0处有意义,则使f(x)<0的x 的取值范围是________.答案:(-1,0)解析:∵ f(x)为奇函数,且在x =处有意义,∴ f(0)=0,解得a =-1.∴ f(x)=lg 1+x 1-x .令f(x)<0,则0<1+x1-x<1,∴ x ∈(-1,0).9. 若函数y =log 2(x 2-ax -a)在区间(-∞,1-3)上是减函数,则实数a 的取值范围是________.答案:[2-23,2]解析:令u =g(x)=x 2-ax -a ,∵ 函数y =log 2u 在区间(-∞,1-3)上为单调增函数,∴ u =g(x)=x 2-ax -a 在区间(-∞,1-3)上是单调减函数,且满足u>0,∴ ⎩⎪⎨⎪⎧a 2≥1-3,g (1-3)≥0,解得2-23≤a ≤2. 二、 解答题10. 已知函数f(x)=log 12(x 2-2ax +3).(1) 若函数f(x)的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2) 若函数f(x)的定义域为R ,值域为(-∞,-1],求实数a 的值; (3) 若函数f(x)在(-∞,1]上为单调增函数,求实数a 的取值范围.解:(1) 由x 2-2ax +3>0的解集为(-∞,1)∪(3,+∞),得2a =1+3,所以a =2,即实数a 的值为2.(2) 因为f(x)的定义域为R ,所以y =x 2-2ax +3>0在R 上恒成立.由Δ<0,得-3<a <3,又f(x)的值域为(-∞,-1],则f(x)max =-1,所以y =x 2-2ax +3的最小值为y min =2,由y =x 2-2ax +3=(x -a)2+3-a 2,得3-a 2=2,所以a 2=1,所以a =±1.(3) f(x)在(-∞,1]上为单调增函数,则y =x 2-2ax +3在(-∞,1]上为单调减函数,且y>0,所以⎩⎪⎨⎪⎧a≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a≥1,a<2,即1≤a<2.所以实数a 的取值范围是[1,2).11. 已知f(x)=log a x(a>0且a ≠1).如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f(x)|≤1成立,试求a 的取值范围.解:因为f(x)=log a x ,所以y =|f(x)|的图象如图.由图知,要使x ∈⎣⎢⎡⎦⎥⎤13,2时恒有|f(x)|≤1, 只需⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫13≤1,即-1≤log a 13≤1, 即log a a -1≤log a 13≤log a a.当a>1时,得a -1≤13≤a ,即a ≥3;当0<a<1时,得a -1≥13≥a ,即0<a ≤13.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞). 12. 已知f(x)=2+log 3x ,x ∈[1,9],求y =f 2(x)+f(x 2)的最大值及y 取最大值时x 的值.解:∵ f(x)=2+log 3x ,∴ y =f 2(x)+f(x 2)=(2+log 3x)2+2+log 3x 2=(log 3x)2+6log 3x +6=(log 3x +3)2-3. ∵ 函数f(x)的定义域为[1,9],∴ 要使函数y =f 2(x)+f(x 2)有意义,必须使⎩⎪⎨⎪⎧1≤x2≤9,1≤x≤9,∴ 1≤x ≤3,∴ 0≤log 3x ≤1,∴ 6≤(log 3x +3)2-3≤13.当log 3x =1,即x =3时,y max =13.∴ 当x =3时,函数y =f 2(x)+f(x 2)取最大值13.13. 已知函数f(x)=log a (x +1)-log a (1-x),a>0且a ≠1. (1) 求f(x)的定义域;(2) 判断f(x)的奇偶性并予以证明; (3) 若a>1,求使f(x)>0的x 的解集.解:(1) f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x>0,解得-1<x<1.故所求函数f(x)的定义域为{x|-1<x<1}.(2)由(1)知f(x)的定义域为{x|-1<x<1},且f(-x)=log a (-x +1)-log a (1+x)=-[log a (x +1)-log a (1-x)]=-f(x),故f(x)为奇函数.(3) 因为当a>1时,f(x)在定义域{x|-1<x<1}内是增函数,所以f(x)>0,即x +11-x>1,解得0<x<1.所以使f(x)>0的x 的解集是{x|0<x<1}.第8课时 二次函数与幂函数一、 填空题1. 函数y =x 2+bx +c(x ∈[0,+∞))是单调函数,则b 的取值范围是____________. 答案:[0,+∞)解析:考虑对称轴和区间端点,结合二次函数图象易得-b2≤0,故b ≥0.2. 若函数f(x)是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12的值为________. 答案:13解析:依题意设f(x)=x α(α∈R ),则有4α2α=3,即2α=3,得α=log 23,则f(x)=xlog 23,于是f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log23=2-log 23=2log 213=13.3. 已知n ∈{-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-15n ,则n 的值为________. 答案:-1或2解析:可以逐一进行检验,也可利用幂函数的单调性求解.4. 已知函数f(x)=ax 2+(1-3a)x +a 在区间[1,+∞)上单调递增,则实数a 的取值范围是________.答案:[0,1]解析:若a =0,则f(x)=x ,满足题意;若a ≠0,则a >0且-1-3a2a≤1,解得0<a ≤1,所以0≤a ≤1.5. 已知a =x α,b =x α2,c =x 1α,x ∈(0,1),α∈(0,1),则a ,b ,c 的大小顺序是__________.答案:c<a<b解析:∵ α∈(0,1),∴ 1α>α>α2.又∵ x ∈(0,1),∴ x 1α<x α<x α2,即c<a<b.6. 若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤32,3 解析:因为函数y =x 2-3x -4即y =(x -32)2-254,其图象的对称轴为直线x =32,其最小值为-254,并且当x =0及x =3时,y =-4,若定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则32≤m ≤3. 7. 已知幂函数f(x)=xm 2-2m -2(m ∈N )为奇函数且在区间(0,+∞)上是单调减函数,则m =________.答案:1解析:由幂函数f(x)=xm 2-2m -2在区间(0,+∞)上是单调减函数,得m 2-2m -2<0,又m ∈N ,故m =0,m =1,m =2,当m =0和2时,f(x)=x -2为偶函数,当m =1时,f(x)=x -3为奇函数,故m =1.8. 设函数f(x)=⎩⎪⎨⎪⎧-2, x >0,x2+bx +c ,x≤0.若f(-4)=f(0),f(-2)=0,则关于x 的不等式f(x)≤1的解集为____________.答案:{x|-3≤x ≤-1或x>0}解析:由f(-4)=f(0),得b =4.又f(-2)=0,可得c =4,∴ ⎩⎪⎨⎪⎧x≤0,x2+4x +4≤1或⎩⎪⎨⎪⎧x >0,-2≤1,可得-3≤x ≤-1或x>0. 9. 如图,已知二次函数y =ax 2+bx +c(a ,b ,c 为实数,a ≠0)的图象过点C(t ,2),且与x 轴交于A ,B 两点.若AC ⊥BC ,则a =________.答案:-12解析:设y =a(x -x 1)(x -x 2),由图象过点C(t ,2)可得a(t -x 1)(t -x 2)=2.又AC ⊥BC ,利用斜率关系得2t -x1·2t -x2=-1,所以a =-12.二、 解答题10. 已知函数h(x)=(m 2-5m +1)x m +1为幂函数,且为奇函数. (1)求m 的值;(2)求函数g(x)=h(x)+1-2h (x )在x ∈⎣⎢⎡⎦⎥⎤0,12上的值域. 解:(1)∵ 函数h(x)=(m 2-5m +1)x m +1为幂函数, ∴m 2-5m +1=1,解得m =0或5. ∵函数h(x)为奇函数,∴m =0.(2)由(1)可知h(x)=x ,∴ g(x)=x +1-2x ,x ∈⎣⎢⎡⎦⎥⎤0,12. 令1-2x =t ,则t ∈[0,1],g(x)=f(t)=-12t 2+t +12,可求得其值域为⎣⎢⎡⎦⎥⎤12,1.从而函数g(x)在x ∈⎣⎢⎡⎦⎥⎤0,12上的值域为⎣⎢⎡⎦⎥⎤12,1. 11. 已知关于x 的函数y =(m +6)x 2+2(m -1)x +m +1的图象与x 轴总有交点. (1) 求m 的取值范围;(2) 若函数图象与x 轴的两个交点的横坐标的倒数和等于-4,求m 的值. 解:(1) 当m +6=0,即m =-6时,函数y =-14x -5与x 轴有一个交点;当m +6≠0,即m ≠-6时,有Δ=4(m -1)2-4(m +6)(m +1)=4(-9m -5)≥0,解得m ≤-59,即当m ≤-59且m ≠-6时,函数图象与x 轴有一个或两个交点. 综上可知,当m ≤-59时,此函数的图象与x 轴总有交点.(2) 设x 1,x 2是方程(m +6)x 2+2(m -1)x +m +1=0的两个根,则x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵ 1x1+1x2=-4,即x1+x2x1x2=-4,∴ -2(m -1)m +1=-4,解得m =-3.当m =-3时,m +6≠0,Δ>0,符合题意,∴ m 的值是-3.12. 已知函数f(x)=ax -32x 2的最大值不大于16,又当x ∈⎣⎢⎡⎦⎥⎤14,12时,f(x)≥18,求实数a 的值.解:f(x)=-32⎝ ⎛⎭⎪⎫x -a 32+16a 2,f(x)max =16a 2≤16,得-1≤a ≤1,函数f(x)的对称轴是直线x =a 3.当-1≤a<34时,f(x)在⎣⎢⎡⎦⎥⎤14,12上单调递减,而f(x)≥18,即f(x)min =f ⎝ ⎛⎭⎪⎫12=a 2-38≥18,即a ≥1,与-1≤a<34矛盾,即不存在;当34≤a ≤1时,14≤a 3≤13,且13<14+122=38,即f(x)min=f ⎝ ⎛⎭⎪⎫12=a 2-38≥18,即a ≥1,又34≤a ≤1,故a =1.综上,a =1.13. 设f(x)=-14x 2+x +2k ⎝⎛⎭⎪⎫k∈R,k≤32,是否存在实数m ,n(m<n),使得当x ∈[m ,n]时,f(x)的值域恰好为[2m ,2n]?若存在,求出m ,n 的值,若不存在,请说明理由.解:f(x)=-14(x -2)2+2k +1,当x ∈R 时,f(x)max =2k +1,从而2n ≤2k +1≤4,故n ≤2.f(x)在[m ,n]上单调递增,从而⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧m2+4m -8k =0,n2+4n -8k =0.显然m ,n 是关于t 的方程t 2+4t -8k =0的两个根.Δ=16+32k ,(1) 当Δ<0,即k<-12时,方程无实根;(2) 当Δ=0,即k =-12时,方程有两个相等实根,即m =n 与m<n 矛盾;(3) 当Δ>0,即32≥k>-12时,方程有两个不等实根,且⎩⎨⎧m =-2-21+2k ,n =-2+21+2k.综上,当k ≤-12时,不存在这样的m ,n ;当32≥k>-12时,方程有两不等实根,且⎩⎨⎧m =-2-21+2k ,n =-2+21+2k.综上,当k ≤-12时,不存在这样的m ,n ;当32≥k>-12时,方程有两不等实根,且⎩⎨⎧m =-2-21+2k ,n =-2+21+2k.第9课时 函数的图象 一、 填空题1. 已知f(x)的图象恒过(1,1)点,则f(x -4)的图象恒过____________. 答案:(5,1)解析:(解法1)由f(x)的图象恒过(1,1)点知f(1)=1,即f(5-4)=1,故函数f(x -4)的图象恒过点(5,1).(解法2)f(x -4)的图象可由f(x)的图象向右平移4个单位而得到,(1,1)向右平移4个单位后变为(5,1).2. 为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点__________________.答案:向左平移3个单位长度,再向下平移1个单位长度解析:∵ y =lg x +310=lg(x +3)-1,∴ 将y =lg x 的图象上所有的点向左平移3个单位长度得到y =lg(x +3)的图象,再将y =lg(x +3)的图象上所有的点向下平移1个单位长度得到y =lg(x +3)-1的图象.3. 下列函数图象中,正确的有________.(填序号)。
2019版一轮优化探究理数(苏教版)练习:第二章 第二节 函数的定义域和值域 Word版含解析
一、填空题1.函数f (x )=x 2-2x +c 在[-2,2]上的最大值是________.解析:因为二次函数f (x )的对称轴为x =1并且开口向上,所以在区间[-2,2]上的最大值为f (-2)=8+c .答案:8+c2.若f (x )的定义域为[-2,3],则f (x )+log 2(x 2-3)的定义域为________. 解析:∵f (x )的定义域为-2≤x ≤3,由log 2(x 2-3)≥0,则x 2-3≥1,x ≥2或x ≤-2.即f (x )+log 2(x 2-3)的定义域为2≤x ≤3或x =-2.答案:{-2}∪{x |2≤x ≤3}3.y =133x -9-|x |-2的定义域为________.解析:依题意⎩⎨⎧|x |-2≥03x -9≠0, 由此解得x ≤-2或x ≥2,且x ≠3,即函数的定义域是{x ∈R|x ≤-2或2≤x <3或x >3}.答案:{x ∈R|x ≤-2或2≤x <3或x >3}4.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________. 解析:若m =0,则f (x )=x -43的定义域为R ;若m ≠0,则Δ=16m 2-12m <0,得0<m <34,综上可知,所求的实数m 的取值范围为[0,34).答案:[0,34)5.函数y =|x +2|+(x -3)2的值域为________.解析:y =|x +2|+(x -3)2=|x +2|+|x -3| =⎩⎨⎧ -2x +1 (x ≤-2),5 (-2<x <3),2x -1 (x ≥3).当x ≤-2时,-2x +1≥-2×(-2)+1=5;当x ≥3时, 2x -1≥2×3-1=5,∴y ≥5.答案:[5,+∞)6.函数y =log 2 (4-x )的定义域是________.解析:由⎩⎨⎧ 4-x >0log 2 (4-x )≥0, 即⎩⎨⎧4-x >04-x ≥1,得x ≤3. 答案:(-∞,3]7.已知函数f (x )=x +p x -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+p x -1+1≥2p +1,当且仅当x =p +1时,取等号,则2p +1=4,解得p =94.答案:948.对a ,b ∈R ,记min {a ,b }=⎩⎨⎧a (a <b ),b (a ≥b ),函数f (x )=min ⎩⎨⎧⎭⎬⎫12x ,-|x -1|+2(x ∈R)的最大值为________.解析:y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.答案:19.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.解析:[a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1. 答案:1二、解答题10.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.解析:(1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R ,函数值均为非负数,∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32,∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-(a +32)2+174(a ∈[-1,32]).∵二次函数g (a )在[-1,32]上单调递减,∴g (32)≤g (a )≤g (-1),即-194≤g (a )≤4,∴g (a )的值域为[-194,4].11.已知函数y =log a (ax 2+2x +1).(1)若此函数的定义域为R ,求a 的取值范围;(2)若此函数的定义域为(-∞,-2-2)∪(-2+2,+∞),求a 的值.解析:(1)ax 2+2x +1>0,Δ=4-4a ,∵定义域为R.∴a >0,Δ<0,∴a >1.(2)由题意,ax 2+2x +1>0的解集为(-∞,-2-2)∪(-2+2,+∞).∴⎩⎪⎨⎪⎧ -2a =-4,1a =2,∴a =12.12.设f (x )=2x 2x +1,g (x )=ax +5-2a (a >0). (1)求f (x )在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0, 1],使得g (x 0)=f (x 1)成立,求a 的取值范围.解析:(1)(导数法) f ′(x )=4x (x +1)-2x 2(x +1)2=2x 2+4x (x +1)2≥0在x ∈[0,1]上恒成立. ∴f (x )在[0,1]上单调递增,∴f (x )在[0,1]上的值域为[0,1].(2)f (x )在[0,1]上的值域为[0,1],g (x )=ax +5-2a (a >0)在x ∈[0,1]上的值域为[5-2a,5-a ].由条件,只需[0,1]⊆[5-2a,5-a ],∴⎩⎨⎧ 5-2a ≤05-a ≥1⇒52≤a ≤4.。
2019版一轮优化探究理数第二章 第一节 函数及其表示练习
一、填空题1.已知f (x )=⎩⎨⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f (43)+f (-43)的值等于________. 解析:f (43)=12;f (-43)=f (-13)+1=f (23)+2 =52,f (43)+f (-43)=3. 答案:32.已知f (1-x 1+x )=1-x 21+x 2,则f (x )的解析式可取为________.解析:(换元法)令t =1-x 1+x ,由此得x =1-t 1+t ,所以f (t )=1-(1-t 1+t )21+(1-t 1+t )2=2t1+t 2,从而f (x )的解析式可取为2x1+x 2. 答案:2x1+x 23.设f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x 2,|x |>1,则f [f (12)]=________. 解析:f [f (12)]=f (-32)=413. 答案:4134.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R),f (1)=2,则f (-3)等于________. 解析:令x =-3,y =1, 则f (-2)=f (1)+f (-3)-6.又∵f (1)=2,∴f (-3)=f (-2)+4.令x =-2,y =1,则f (-1)=f (1)+f (-2)-4, ∴f (-2)=f (-1)+2.令x =-1,y =1,f (0)=f (-1)+f (1)-2. 又x =y =0时,f (0)=0,∴f (-1)=0, ∴f (-3)=f (-2)+4=f (-1)+6=6. 答案:65.已知函数f (x )=ax +b x -4(a ,b 为常数),f (lg 2)=0,则f (lg 12)=________. 解析:由题意得f (lg 2)=a lg 2+b lg 2-4=0,有a lg 2+b lg 2=4,则f (lg 12)=a lg 12+b lg 12-4=-a lg 2-b lg 2-4=-8.答案:-86.定义在R 上的函数f (x )满足f (m +n 2)=f (m )+2[f (n )]2,m ,n ∈R ,且f (1)≠0,则f (2 014)=________.解析:令m =n =0,得f (0+02)=f (0)+2[f (0)]2,所以f (0)=0;令m =0,n =1, 得f (0+12)=f (0)+2[f (1)]2,由于f (1)≠0,所以f (1)=12;令m =x ,n =1, 得f (x +12)=f (x )+2[f (1)]2, 所以f (x +1)=f (x )+2×(12)2, 即f (x +1)=f (x )+12,这说明数列{f (x )}(x ∈Z)是首项为12,公差为12的等差数列,所以f (2 014)=12+(2 014-1)×12=1 007. 答案:1 0077.已知f (2x +1)=lg x ,则f (x )=________.解析:令2x +1=t (t >1),则x =2t -1,∴f (t )=lg 2t -1(t >1),f (x )=lg 2x -1(x >1). 答案:lg2x -1(x >1)8.函数f (x )在闭区间[-1,2]上的图象如图所示,则函数的解析式为________.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤29.已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a, 0},f :x → x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b =________.解析:由题意可知ba =0,a =1,解得a =1,b =0,所以a +b =1. 答案:1 二、解答题10.已知f (x )=x 2-1,g (x )=⎩⎨⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]和g [f (2)]的值; (2)求f [g (x )]和g [f (x )]的表达式. 解析:(1)由已知,g (2)=1,f (2)=3, ∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2. (2)当x >0时,g (x )=x -1, 故f [g (x )]=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f [g (x )]=(2-x )2-1=x 2-4x +3,∴f [g (x )]=⎩⎨⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0,故g [f (x )]=f (x )-1=x 2-2; 当-1<x <1时, f (x )<0, 故g [f (x )]=2-f (x )=3-x 2.∴g [f (x )]=⎩⎨⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1. 11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图象.解析:当0≤x ≤2时,△OEF 的高EF =12x , ∴S =12x ·12x =14x 2;当2<x ≤3时,△BEF 的高EF =3-x , ∴S =12×3×1-12(3-x )·(3-x ) =-12x 2+3x -3; 当x >3时,S =32.∴S =f (x )=⎩⎪⎨⎪⎧x 24(0≤x ≤2)-12x 2+3x -3(2<x ≤3)32(x >3).函数图象如图所示.12.已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)若有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析式.解析:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.又f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易验证该函数满足题设条件.综上,函数f(x)的解析式为f(x)=x2-x+1.。
2019版高考数学(文)一轮狂刷练:第2章函数、导数及其应用2-1a含解析
=16-35=-19,f(5)=25-35=-10,f(6)=36-35=1,f(7)=49-35=14,f(8) =64-35=29, f(9)=81-35=46, f(10)=100-35=65.故正确答案应填-26,14,65. 12.(2018·厦门一模)已知函数 f(x)= 1-2ax+3a,x<1, 2x-1,x≥1
A.(-9,+∞) C.[-9,+∞) 答案 B
B.(-9,1) D.[-9,1) 1-x>0, 1-lg 1-x>0
解析 f[f(x)]=f[lg (1-x)]=lg [1-lg (1-x)],则 故选 B.
⇒-9<x<1.
5.若函数 y=f(x)的定义域是[0,1],则函数 F(x)=f(x+a)+f(2x+a)(0<a<1)的 定义域是( ) a - ,1-a B. 2 1-a -a, D. 2 1-a a .故选 A. ⇒- ≤x≤ 2 2 ) 1 ,1 B. 2 1 ,+∞ D. 2 a 1-a - , A. 2 2 C.[-a,1-a] 答案 A 解析 0≤x+a≤1, 0≤2x+a≤1
2019版高考数学文一轮复习教师用书:第二章 第一节 函
第一节函数及其表示1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然有几部分组成,但它表示的是一个函数.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)函数是一种特殊的映射.( )(4)若A =R ,B =(0,+∞),f :x →y =|x |,则对应f 可看作从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2) B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.3.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x +1D .y =x 2+1解析:选B 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数,故选B.4.下列图形中可以表示为以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C A 选项,函数定义域为M ,但值域不是N ,B 选项,函数定义域不是M ,值域为N ,D 选项,集合M 中存在x 与集合N 中的两个y 对应,不能构成函数关系.故选C.5.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 故a =±1. 答案:±16.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,则x =1t (t ≠0),即f (t )=1t 2+5t ,∴f (x )=5x +1x 2(x ≠0). 答案:5x +1x 2(x ≠0)考点一 函数的定义域 (基础送分型考点——自主练透)[考什么·怎么考]1.(2018·石家庄模拟)函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.(2018·济南模拟)函数f (x )=1(log 2x )2-1的定义域为________________.解析:要使函数f (x )有意义,则(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝⎛⎭⎫0,12∪(2,+∞). 答案:⎝⎛⎭⎫0,12∪(2,+∞) [题型技法] 已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.考法(二) 抽象函数的定义域3.已知函数f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是________.解析:由题意知⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,解得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 答案:[1,3]4.已知函数y =f (x 2-1)的定义域为[-3,3 ],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3 ],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2][题型技法] 抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[怎样快解·准解]1.如何避免失误(1)函数f (g (x ))的定义域指的还是x 的取值范围,而不是g (x )的取值范围.(如第4题) (2)求函数定义域时,对函数解析式先不要化简,求出定义域后,一定要将其写成集合或区间的形式.若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.(如第2题)2.重要的知识结论要熟记常见基本初等函数定义域的基本要求: (1)分式函数中分母不等于零;(2)偶次根式函数的被开方式大于或等于0; (3)一次函数、二次函数的定义域均为R ; (4)y =x 0的定义域是{x |x ≠0};(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R ; (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞); (7)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z . 考点二 求函数的解析式 (重点保分型考点——师生共研)(1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求函数f (x )的解析式. (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. (4)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式.解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞). (2)令2x +1=t ,得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x ∈(1,+∞).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3.[解题师说]1.依题型准确选用4种方法速求函数解析式(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围.(如典题领悟第1题、第2题)(2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).[冲关演练]1.(尝试用换元法解题)如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0且x ≠1时,f (x )等于( ) A.1x B.1x -1 C.11-xD.1x -1解析:选B 令1x =t ,得x =1t (t ≠0且t ≠1), ∴f (t )=1t1-1t =1t -1(t ≠0且t ≠1),∴f (x )=1x -1(x ≠0且x ≠1). 2.(尝试用待定系数法解题)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x解析:选A 设所求函数解析式为f (x )=ax 3+bx 2+cx +d (a ≠0), 则f ′(x )=3ax 2+2bx +c (a ≠0), 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .3.(尝试用配凑法解题)已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2 C .x 2-x +1D .x 2+x +1解析:选C f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1, 所以f (x )=x 2-x +1. 4.(尝试用解方程组法解题)已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x (x ≠0).答案:2x -1x(x ≠0)考点三 分段函数 (题点多变型考点——追根溯源)角度(一) 求值问题1.已知函数f (x )=⎩⎪⎨⎪⎧2cos πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫43的值为( ) A .-1 B .1 C.32D.52解析:选B 依题意得f ⎝⎛⎭⎫43=f ⎝⎛⎭⎫13+1=f ⎝⎛⎭⎫-23+1+1=2cos ⎝⎛⎭⎫-2π3+2=2×⎝⎛⎭⎫-12+2=1.[题型技法] 求分段函数的函数值的方法求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;当出现f (f (a ))的形式时,应从内到外依次求值;当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.角度(二) 求参数或自变量的值(或范围)2.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ [题型技法]求分段函数的参数或自变量的值(或范围)的方法求某条件下参数或自变量的值(或范围),先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.[题“根”探求]1.已知f (x )={ log 3x ,x >0, a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2,解得b =1; f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.2.设函数f (x )=⎩⎨⎧ ⎝⎛⎭⎫12x -7,x <0, r(x ,x ≥0,)若f (a )<1,则实数a的取值范围是( )A.()-∞,-3 B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:选C 若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综合可得-3<a <1.故选C.3.(2018·铜陵模拟)设函数f (x )={ x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由已知得f (1)=3,当x ≥0时,由f (x )>f (1)得x 2-4x +6>3, 解得0≤x <1或x >3.当x <0时,由f (x )>f (1)得x +6>3, 解得-3<x <0.综上所述,不等式f (x )>f (1)的解集是(-3,1)∪(3,+∞).(一)普通高中适用作业A 级——基础小题练熟练快1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.2.(2018·濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 解析:选D 由1-2x >0,且x +1≠0,得x <12且x ≠-1,所以函数f (x )=log 2(1-2x )+1x +1的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12. 3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.已知f (x )={ 2x ,x >0, f (x +1),x ≤0,则f ⎝⎛⎭⎫43+ f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B 由题意得f ⎝⎛⎭⎫43=2×43=83, f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43, 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.5.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点,∴{ a +b +c =1, a -b +c =5, c =0,解得{ a =3, b =-2, c =0,∴g (x )=3x 2-2x .6.已知函数f (x )={ 2x,x ≤1, log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A .0B .4C .0或4D .1或3解析:选C 当x 0≤1时,由f (x 0)=2x 0=1,得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1,得x 0-1=3,则x 0=4 (满足x 0>1),故选C.7.函数f (x )=ln(x +1)+(x -2)0的定义域为________.解析:要使函数有意义,需满足{ x +1>0, x -2≠0,解得x >-1且x ≠2,所以该函数的定义域为(-1,2)∪(2,+∞).答案:(-1,2)∪(2,+∞)8.设函数f (x )=⎩⎨⎧1x ,x >1, -x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:∵f (2)=12,∴f (f (2))=f ⎝⎛⎭⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), ∴f (x )∈[-3,+∞).答案:-52[-3,+∞)9.(2018·张掖一诊)已知函数f (x )={ 2x,x >0, x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2>0,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-310.已知函数f (x )={ x 2+2ax ,x ≥2, 2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=9+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)B 级——中档题目练通抓牢1.(2018·石家庄质检)设函数f (x )={ 2x +n ,x <1, log 2x ,x ≥1,若f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=2,则实数n 的值为( )A .-54B .-13C.14D.52解析:选D 因为f ⎝⎛⎭⎫34=2×34+n =32+n , 当32+n <1,即n <-12时, f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=2⎝⎛⎭⎫32+n +n =2, 解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时, f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=log 2⎝⎛⎭⎫32+n =2,即32+n =4, 解得n =52,符合题意,故选D.2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C 由x 2+1=1,得x =0,由x 2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.3.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎨⎧x ,0<x <1, 0,x =1, -1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足题意;对于②,f ⎝⎛⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎨⎧1x ,0<1x <1, 0,1x =1, -x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎨⎧1x,x >1, 0,x =1, -x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.4.已知f (x )=⎩⎨⎧12x +1,x ≤0, -(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0, f(12x +1≥-1)或{ x >0, -(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]5.(2018·锦州模拟)已知函数f (x 2-3)=lg x 2x 2-4,则f (x )的定义域为________.解析:设t =x 2-3(t ≥-3),则x 2=t +3,所以f (t )=lgt +3t +3-4=lg t +3t -1,由t +3t -1>0,得t >1或t <-3,因为t ≥-3,所以t >1,即f (t )=lg t +3t -1的定义域为(1,+∞),故函数f (x )的定义域为(1,+∞).答案:(1,+∞)6.设函数f (x )={ ax +b ,x <0, 2x,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得{ -2a +b =3, -a +b =2,解得{ a =-1, b =1,所以f (x )={ -x +1,x <0, 2x,x ≥0.(2)函数f (x )的图象如图所示.7.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (m)与汽车的车速x (km/h)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (m)与汽车的车速x (km/h)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2 m ,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4, f(602200+60m +n =18.6,)解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70 km/h. C 级——重难题目自主选做1.(2017·山东高考)设f (x )={ x ,0<x <1, 2(x -1),x ≥1.若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则f (3,5)=.解析:由题表得f (x ,y )={ x ,x =y , x -y ,x >y , x +y ,x <y .可知f (3,5)=5+3=8.∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立; 当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:8 {1,2}(二)重点高中适用作业A 级——保分题目巧做快做1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.2.(2018·濮阳一高第二次检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 解析:选D 由1-2x >0,且x +1≠0,得x <12且x ≠-1,所以函数f (x )=log 2(1-2x )+1x +1的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12. 3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2018·石家庄质检)设函数f (x )={ 2x +n ,x <1, log 2x ,x ≥1,若f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=2,则实数n 的值为( )A .-54B .-13C.14D.52解析:选D 因为f ⎝⎛⎭⎫34=2×34+n =32+n , 当32+n <1,即n <-12时, f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=2⎝⎛⎭⎫32+n +n =2, 解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时,f ⎝⎛⎭⎫f ⎝⎛⎭⎫34=log 2⎝⎛⎭⎫32+n =2,即32+n =4, 解得n =52,符合题意,故选D.5.(2017·山东高考)设f (x )={ x ,0<x <1, 2(x -1),x ≥1.若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6. 6.(2018·西安八校联考)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1, logf(12x ,x >1,)则f (f (4))=________.解析:依题意得f (4)=log 124=-2,所以f (f (4))=f (-2)=2-2=14.答案:147.函数f (x )=ln (2x -x 2)x -1的定义域为________.解析:要使原函数有意义,则{ 2x -x 2>0, x -1≠0,解得0<x <2,且x ≠1.所以函数f (x )=ln (2x -x 2)x -1的定义域为(0,1)∪(1,2).答案:(0,1)∪(1,2)8.已知函数f (x )={ x 2+2ax ,x ≥2, 2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=9+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9.如图,已知点A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积.解:(1)因为点B (1,4)在反比例函数y =mx 上,所以m =4. 又因为点A (n ,-2)在反比例函数y =m x =4x 上,所以n =-2.又因为A (-2,-2),B (1,4)是一次函数y =kx +b 上的点,则{ -2k +b =-2, k +b =4,解得{ k =2, b =2,即y =2x +2,所以反比例函数的解析式为y =4x ,一次函数的解析式为y =2x +2. (2)因为y =2x +2,令x =0,得y =2,所以C (0,2), 所以△AOC 的面积S =12×2×2=2.10.设函数f (x )={ ax +b ,x <0, 2x,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得{ -2a +b =3, -a +b =2,解得{ a =-1, b =1,所以f (x )={ -x +1,x <0, 2x,x ≥0.(2)函数f (x )的图象如图所示.B 级——拔高题目稳做准做1.(2018·山西名校联考)设函数f (x )=lg(1-x ),则函数f (f (x ))的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞)D .[-9,1)解析:选B f (f (x ))=f (lg(1-x ))=lg[1-lg(1-x )],则{ 1-x >0, 1-lg (1-x )>0⇒-9<x <1.2.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎨⎧1x,x >1, 0,x =1, -x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.3.设函数f (x )={ 3x -1,x <1, 2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围为________.解析:由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1, 所以a ≥23,所以23≤a <1.当a ≥1时,有2a ≥1, 所以a ≥0,所以a ≥1.综上,a 的取值范围为⎣⎡⎭⎫23,+∞. 答案:⎣⎡⎭⎫23,+∞ 4.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则f (3,5)=________,使不等式f (2x ,x )≤4成立的x 的集合是________.解析:由题表得f (x ,y )={ x ,x =y , x -y ,x >y , x +y ,x <y .可知f (3,5)=5+3=8.∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立; 当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:8 {1,2}5.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨为3.00元.某月甲、乙两用户共交水费y 元,已知甲、乙两用户该月用水量分别为5x (吨),3x (吨).(1)求y 关于x 的函数;(2)若甲、乙两用户该月共交水费26.40元,分别求出甲、乙两户该月的用水量和水费. 解:(1)当甲的用水量不超过4吨时,即5x ≤4,x ≤45时,乙的用水量也不超过4吨,y =(5x +3x )×1.8=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4且5x >4,45<x ≤43时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8; 当乙的用水量超过4吨时,即3x >4,x >43时,y =2×4×1.8+3(5x -4)+3(3x -4)=24x -9.6,所以y =⎩⎨⎧14.4x ,0≤x ≤45, 20.4x -4.8,45<x ≤43, 24x -9.6,x >43.(2)由于y =f (x )在各段区间上均单调递增, 当x ∈⎣⎡⎦⎤0,45时,y ≤f ⎝⎛⎭⎫45<26.4; 当x ∈⎝⎛⎦⎤45,43时,y ≤f ⎝⎛⎭⎫43<26.4; 当x ∈⎝⎛⎭⎫43,+∞时,令24x -9.6=26.4, 解得x =1.5.所以甲户用水量为5x =7.5吨,所交水费为y 甲=4×1.80+3.5×3.00=17.70(元); 乙户用水量为3x =4.5吨,所交水费y 乙=4×1.80+0.5×3.00=8.70(元).6.已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z ,使得f (m )=f ([m ]),则称函数f (x )是Ω函数.(1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是否是Ω函数(只需写出结论); (2)已知f (x )=x +a x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解:(1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)法一:取k =1,a =32∈(1,2),则令[m ]=1,m =a 1=32,此时f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫⎣⎡⎦⎤32=f (1), 所以f (x )是Ω函数.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =a k ,则一定有m -[m ]=a k -k =a -k 2k ∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.法二:取k =1,a =12∈(0,1),则令[m ]=-1,m =-12,此时f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫⎣⎡⎦⎤-12=f (-1), 所以f (x )是Ω函数.证明:设k ∈N *,取a ∈(k 2-k ,k 2),令[m ]=-k ,m =-a k ,则一定有m -[m ]=-a k-(-k )=k 2-a k∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。
2019版高考数学(文)一轮狂刷练:第2章函数、导数及其应用2-5a含解析
A.9B.10
C.11D.18
答案B
解析依题意,在坐标平面内画出函数y=f(x)与y=|lgx|的大致图象(如图),由图象可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lgx|的零点个数是10,故选B.
B.f(bx)≥f(cx)
C.f(bx)>f(cx)
D.大小关系随x的不同而不同
答案A
解析∵f(1+x)=f(1-x),
∴f(x)图象的对称轴为直线x=1,由此得b=2.
又f(0)=3,∴c=3.
∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.
若x≥0,则3x≥2x≥1,
∴f(3x)≥f(2x).
[基础送分提速狂刷练]
一、选择题
1.给出下列结论:
①当a<0时,(a2) =a3;
② =|a|(n>1,n∈N*,n为偶数);
③函数f(x)=(x-2) -(3x-7)0的定义域是 x≥2且x≠ };
④若5a=0.3,0.7b=0.8,则ab>0.
其中正确的是()
A.①②B.②③
C.③④D.②④
答案B
∴x0∈(1,2).故选B.
3.(2017·北京模拟)已知函数f(x)=ax,其中a>0且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于()
A.1B.a
C.2D.a2
答案A
解析∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,∴x1+x2=0.
优化探究高三一轮人教A文科数学复习第二章函数、导数
A 组 考点基础演练一、选择题1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lgx 100解析:因为y =(x -1)2=|x -1|,y =x -1x -1=x -1(x >1),y =2lg x 2=4lg |x |,故选D.答案:D2.(2015年烟台模拟)函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0得-1<x ≤2,且x ≠0.答案:B3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12 B.45 C .2D .9解析:∵x <1,f (x )=2x +1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2. 答案:C4.(2013年高考陕西卷)设[x ]表示不大于x 的最大整数,则对任意实数x ,有( ) A .[-x ]=-[x ] B.⎣⎡⎦⎤x +12=[x ] C .[2x ]=2[x ]D .[x ]+⎣⎡⎦⎤x +12=[2x ]解析:令x =1.1,[-1.1]=-2,而-[1.1]=-1,所以A 错; 令x =-12,⎣⎡⎦⎤-12+12=0,⎣⎡⎦⎤-12=-1,所以B 错; 令x =0.5,[2x ]=1,2[x ]=0, 所以C 错;故选D. 答案:D5.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③. 答案:B 二、填空题6.(2013年高考福建卷)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. 解析:∵f ⎝⎛⎭⎫π4=-tan π4=-1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. 答案:-27.已知映射f :A →B ,其中A =[0,1],B =R ,对应关系是f :x →log 12(2-x )-⎝⎛⎭⎫13x ,对于实数k∈B ,在集合A 中不存在元素与之相对应,则k 的取值范围是________.解析:因为y =log 12(2-x ),y =-⎝⎛⎭⎫13x在区间[0,1]上都为增函数,故f (x )=log 12(2-x )-⎝⎛⎭⎫13x 在区间[0,1]上是增函数,故f (x )∈⎣⎡⎦⎤-2,-13. 对于实数k ∈B ,在集合A 中不存在元素与之相对应,则k 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-13,+∞. 答案:(-∞,-2)∪⎝⎛⎭⎫-13,+∞ 8.(2014年温州模拟)已知f (x )=⎩⎨⎧x 12,x ∈[0,+∞),|sin x |,x ∈⎝⎛⎭⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝⎛⎭⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π6三、解答题9.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )=0的两实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解析:∵f (2+x )=f (2-x ), ∴f (x )的图象的对称轴是直线x =2. 设f (x )=a (x -2)2+k (a ≠0). 则由f (0)=3,可得k =3-4a , ∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10, ∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a . ∴a =1且满足Δ>0. ∴f (x )=x 2-4x +3.10.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (分)的关系.试写出y =f (x )的函数解析式.解析:当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧ b 1=030k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115,b 1=0∴y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=260k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110b 2=-2,∴y =110x -2.综上,f (x )=⎩⎨⎧115x , x ∈[0,30]2, x ∈(30,40).110x -2, x ∈[40,60]B 组 高考题型专练 1.(2014年高考山东卷)函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:∵f (x )有意义,∴⎩⎨⎧log 2x -1>0,x >0.∴x >2,∴f (x )的定义域为(2,+∞). 答案:C2.(2014年高考安徽卷)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或8解析:令x +1=0,得x 1=-1;令2x +a =0,得x 2=-a2.①当-1>-a2,即a >2时,f (x )=⎩⎨⎧-3x -a -1,x <-a2,x +a -1,-a 2≤x ≤-1,3x +a +1,x >-1,其大致图象如图所示,则f min (x )=f ⎝⎛⎭⎫-a 2=-a2+a -1=3,解得a =8. ②当-1<-a2,即a <2时,f (x )=⎩⎨⎧-3x -a -1,x <-1,-x +1-a ,-1≤x ≤-a 2,3x +a +1,x >-a2,其大致图象如图所示,则f min (x )=f ⎝⎛⎭⎫-a 2=-⎝⎛⎭⎫-a2+1-a =3, 解得a =-4.③当-1=-a2,即a =2时,f (x )=3|x +1|≥0,不符合题意. 综上所述,a =-4或8. 答案:D3.(2014年高考新课标全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:当x <1时,由f (x )=e x -1≤2,解得x ≤1+ln 2,又x <1,所以x 的取值范围是x <1;当x ≥1时,由f (x )=x 13≤2,解得x ≤8,又x ≥1,所以x 的取值范围是1≤x ≤8.综上,x 的取值范围是x ≤8,即(-∞,8].答案:(-∞,8]4.(2014年高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:∵f (x )的周期为2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12.又∵当x ∈[-1,0)时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:15.(2014年高考浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0,若f (f (a ))=2,则a =________.解析:当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0, 于是f (f (a ))=f (a 2+2a +2) =-(a 2+2a +2)2,令-(a 2+2a +2)2=2,显然无解; 当a >0时,f (a )=-a 2<0,于是f (f (a ))=f (-a 2)=(-a 2)2+2(-a 2)+2=a 4-2a 2+2, 令a 4-2a 2+2=2,解得a=2(a=0,-2舍去).综上,a的取值为 2.答案:2。
全国近年高考数学一轮复习第2章函数、导数及其应用第1讲函数及其表示学案(2021年整理)
(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第1讲函数及其表示学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第2章函数、导数及其应用第1讲函数及其表示学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第1讲函数及其表示学案的全部内容。
第1讲函数及其表示板块一知识梳理·自主学习[必备知识]考点1 函数与映射的概念考点2 函数的三要素函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:自变量x的取值构成的集合;(2)值域:函数值的集合{f(x)|x∈A}.考点3 函数的表示法表示函数的常用方法有:解析法、列表法、图象法.考点4 分段函数若函数在定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[必会结论]1.函数问题允许多对一,但不允许一对多.与x轴垂直的直线和一个函数的图象至多有1个交点.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=f(x)的图象与直线x=a最多有2个交点.()(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(4)若A=R,B={x|x〉0},f:x→y=|x|,其对应是从A到B的映射.()答案(1)×(2)√(3)×(4)×2.[课本改编]下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x答案C解析只有C不满足,∵f(2x)=2x+1,而2f(x)=2x+2,∴f(2x)≠2f(x).3.[2018·唐山统考]函数y=x3-x+错误!的定义域为()A.[0,3]B.[1,3]C.[1,+∞) D.[3,+∞)答案B解析由x(3-x)≥0得0≤x≤3,由x-1≥0得x≥1,所以定义域为[1,3].选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.已知f (x )=⎩⎨⎧
-cos (πx ),x >0,
f (x +1)+1,x ≤0,
则f (43)+f (-4
3)的值等于________. 解析:f (43)=12;f (-43)=f (-13)+1=f (2
3)+2 =52,f (43)+f (-4
3)=3. 答案:3
2.已知f (1-x 1+x )=1-x 21+x 2
,则f (x )的解析式可取为________.
解析:(换元法)令t =1-x 1+x ,由此得x =1-t 1+t ,所以f (t )=1-(1-t 1+t )
21+(1-t 1+t )
2=2t
1+t 2
,从而
f (x )的解析式可取为2x
1+x 2
. 答案:2x
1+x 2
3.设f (x )=⎩⎪⎨⎪
⎧
|x -1|-2,|x |≤1,1
1+x 2,|x |>1,
则f [f (1
2)]=________. 解析:f [f (12)]=f (-32)=4
13. 答案:4
13
4.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R),f (1)=2,则f (-3)等于________. 解析:令x =-3,y =1, 则f (-2)=f (1)+f (-3)-6.
又∵f (1)=2,∴f (-3)=f (-2)+4.
令x =-2,y =1,则f (-1)=f (1)+f (-2)-4, ∴f (-2)=f (-1)+2.
令x =-1,y =1,f (0)=f (-1)+f (1)-2. 又x =y =0时,f (0)=0,∴f (-1)=0, ∴f (-3)=f (-2)+4=f (-1)+6=6. 答案:6
5.已知函数f (x )=ax +b x -4(a ,b 为常数),f (lg 2)=0,则f (lg 1
2)=________. 解析:由题意得f (lg 2)=a lg 2+b lg 2-4=0,有a lg 2+b lg 2=4,则f (lg 12)=a lg 1
2+b lg 12-4=-a lg 2-b lg 2-4=-8.
答案:-8
6.定义在R 上的函数f (x )满足f (m +n 2)=f (m )+2[f (n )]2,m ,n ∈R ,且f (1)≠0,则f (2 014)=________.
解析:令m =n =0,得f (0+02)=f (0)+2[f (0)]2,所以f (0)=0;令m =0,n =1, 得f (0+12)=f (0)+2[f (1)]2,
由于f (1)≠0,所以f (1)=1
2;令m =x ,n =1, 得f (x +12)=f (x )+2[f (1)]2, 所以f (x +1)=f (x )+2×(12)2
, 即f (x +1)=f (x )+1
2,
这说明数列{f (x )}(x ∈Z)是首项为12,公差为12的等差数列,所以f (2 014)=1
2+(2 014-1)×1
2=1 007. 答案:1 007
7.已知f (2
x +1)=lg x ,则f (x )=________.
解析:令2x +1=t (t >1),则x =2
t -1,
∴f (t )=lg 2t -1(t >1),f (x )=lg 2x -1(x >1). 答案:lg
2
x -1
(x >1)
8.函数f (x )在闭区间[-1,2]上的图象如图所示,则函数的解析式为________.
答案:f (x )=⎩⎪⎨⎪
⎧
x +1,-1≤x <0,-1
2x ,0≤x ≤2
9.已知a 、b 为实数,集合
M =⎩⎨⎧⎭
⎬⎫
b a ,1,N ={a,0},f :x → x 表示把集合M 中的
元素x 映射到集合N 中仍为x ,则a +b =________.
解析:由题意可知b
a =0,a =1,解得a =1,
b =0,所以a +b =1. 答案:1 二、解答题
10.已知f (x )=x 2
-1,g (x )=⎩⎨⎧
x -1,x >0,
2-x ,x <0,
(1)求f [g (2)]和g [f (2)]的值; (2)求f [g (x )]和g [f (x )]的表达式. 解析:(1)由已知,g (2)=1,f (2)=3, ∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2. (2)当x >0时,g (x )=x -1, 故f [g (x )]=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,
故f [g (x )]=(2-x )2-1=x 2-4x +3,
∴f [g (x )]=⎩⎨⎧
x 2
-2x ,x >0,
x 2-4x +3,x <0.
当x >1或x <-1时,f (x )>0,
故g [f (x )]=f (x )-1=x 2-2; 当-1<x <1时, f (x )<0, 故g [f (x )]=2-f (x )=3-x 2.
∴g [f (x )]=⎩
⎨⎧
x 2
-2,x >1或x <-1,
3-x 2
,-1<x <1. 11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图象.
解析:当0≤x ≤2时,△OEF 的高EF =1
2x , ∴S =12x ·
12x =14x 2
;
当2<x ≤3时,△BEF 的高EF =3-x , ∴S =12×3×1-1
2(3-x )·(3-x ) =-1
2x 2+3x -3; 当x >3时,S =3
2.
∴S =f (x )=⎩⎪⎨⎪⎧
x 2
4(0≤x ≤2)
-1
2x 2
+3x -3(2<x ≤3)
32(x >3)
.
函数图象如图所示.
12.已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );
(2)若有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析式.
解析:(1)因为对任意x∈R有
f(f(x)-x2+x)=f(x)-x2+x,
所以f(f(2)-22+2)=f(2)-22+2,
又f(2)=3,从而f(1)=1.
又f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.
(2)因为对任意x∈R,
有f(f(x)-x2+x)=f(x)-x2+x,
又有且仅有一个实数x0,使得f(x0)=x0,
故对任意x∈R,有f(x)-x2+x=x0.
在上式中令x=x0,有f(x0)-x20+x0=x0.
又因为f(x0)=x0,
所以x0-x20=0,
故x0=0或x0=1.
若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.
若x0=1,则有f(x)=x2-x+1,易验证该函数满足题设条件.
综上,函数f(x)的解析式为f(x)=x2-x+1.。