3-2-2 向量法在空间平行关系中的应用
(整理版)空间向量在平行中的应用
空间向量在平行中的应用向量是研究图形性质的有力工具,任何一个空间向量都可用三个不在同一平面内的向量来表示,从而使得对空间图形性质的研究代数化,以棱柱、棱锥为依托,与空间角、距离等有关的问题,可采用空间向量的知识求解。
我们可以以空间不共面的〔特别是过一顶点的互相垂直的〕三个向量为基底,证共线、共面问题,线面平行问题。
例1、正方体1111D C B A ABCD -中,点E 、F 、G 、H 、K 、M 分别为所有棱的中点,如图,求证:EF 、GH 、KM 共面。
分析:证EF 、GH 、KM 共面,等价于证0=++KM GH EF . 证明:设c BB b BF a BE 2,,1===, 那么a b EF c GC -==,1,.,c b KM a c GH --=+=所以.0)(=--+++-=++c b a c a b KM GH EF所以MK HG EF +=,因为GH 与KM 不共线,所以KM GH EF ,,是共面向量 故EF 、GH 、KM 共面。
例2、如图,四边形ABCD ,ABEF 为两个正方形,M 、N 分别在其对角线BF 和AC 上,且FM =AN ,求证:MN//平面EBC.证明:在正方形ABCD ,ABEF 中,因为BE =AB ,FM =AN ,FB =AC ,所以存在实数λ,使.,AC AN BF MF λλ==所以EB AD AB BA BE AC EB BF AN FA MF MN ++++=++=++=)(λλλ .)1()()(BC BE BE BC BE EB AD BE λλλλ+-=-+=++=所以BC BE MN ,,共面,因为M 、N 不在平面EBC 内,所以MN//平面EBC.点评:向量p 与两个不共线的向量a 、b 共面的充要条件是存在实数对x ,y 使p =xa +yb ,利用共面向量定理可以证明线面平行问题。
例3、正方体1111D C B A ABCD -中,求证://1BD A 平面.11D CB证明:如图,分别以D D C D A D 11111,,三边所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,那么)1,0,0(),1,1,0(),0,1,1(),0,0,1(11D C B A ,那么)1,0,1(),1,0,1(11--C B D A ,所以C B D A 11//,即直线C B D A 11//,所以//1D A 平面.11D CB同理可证//1B A 平面.11D CB 又 D A 111A B A ,所以//1BD A 平面.11D CB点评:由于三种平行关系可以相互转化,所以此题可用逻辑推理来证明,用向量法将逻辑论证转化为代数问题的计算,在应用向量法时需要合理地建立空间直角坐标系。
空间向量的应用(一) 平行与垂直与垂直
第32页
高考调研 ·高三总复习·数学(理)
思考题2 (2017·济南质检)如图,在三棱锥P-ABC中, AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD 上.
第33页
高考调研 ·高三总复习·数学(理)
已知BC=8,PO=4,AO=3,OD=2. (1)证明:AP⊥BC; (2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥ 平面BMC.
∴n⊥M→P,在选项 A 中,M→P=(1,4,1),∴n·M→P=0.
第10页
高考调研 ·高三总复习·数学(理)
5.已知A→B=(2,2,1),A→C=(4,5,3),则平面ABC的单
位法向量为( )
A.(13,-23,23)
B.(-13,23,-23)
C.±(13,-23,23)
D.(23,13,-23)
第11页
高考调研 ·高三总复习·数学(理)
答案 C 解析 设平面 ABC 的法向量 n=(x,y,z), 则AA→→BC··n=n=0,0,即24xx++25yy++z3=z=0,0. 令 z=1,得xy==-12,1.∴n=(12,-1,1). ∴平面 ABC 的单位法向量为±|nn|=±(13,-23,23).
第25页
高考调研 ·高三总复习·数学(理)
∴P→M·Q→N=14[c-(a-b)][c+(a-b)] =14[c2-(a-b)2]=14(|O→C|2-|B→A|2). ∵|A→B|=|O→C|,∴P→M·Q→N=0,即P→M⊥Q→N. ∴PM⊥QN.
第26页
高考调研 ·高三总复习·数学(理)
(2)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1. 【证明】 以 D 为原点,D→A,D→C,D→D1分别为 x,y,z 轴建 立空间直角坐标系,设正方体的棱长为 1,则 B(1,1,0),D1(0,0, 1),A(1,0,0),B1(1,1,1),C(0,1,0).
家教辅导师高级证书培训思维导图-空间中的平行关系和垂直关系 doc
空间中的平行关系和垂直关系思维导图是家教辅导师高级培训标准中的一个能力要求,获得家教辅导师高级培训证书的家教老师都经过思维导图的训练,并能把思维导图运用到教学活动中。
本节主要是运用思维导图来解析空间中的平行关系和垂直关系,这是高中数学最基础的内容,同时也是高考的重点。
一、空间中的平行关系线线平行 平行 线面平行 面面平行 1、直线与平面平行定义:直线与平面没有公共点,则直线与平面平行。
判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和 这个平面平行。
符号语言表示:ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄证法一:∵a ∥b ,∴a 、b 确定一个平面,设为β. ∴a ⊂β,b ⊂β∵a ⊄α,a ⊂β ∴α和β是两个不同平面. ∵b ⊂α且b ⊂β ∴α∩β=b 假设a 与α有公共点P则P ∈α∩β=b ,即点P 是a 与b 的公共点,这与已知a ∥b 矛盾 ∴假设错误,故a ∥α.证法二:假设直线a 与平面α有公共点P , 则点P ∈b 或点P ∉b若点P ∈b ,则a ∩b =P ,这与a ∥b 矛盾. 若点P ∉b ,又b ⊂α,a ∩α=P由于与平面相交的直线和这个平面内不过交点的直线是异面直线 ∴a 、b 异面,这与a ∥b 也矛盾 综上所述,假设错误,故a ∥α.证法三:假设a ∩α=P . ∵a ∥b , ∴P ∉b在面α内过P 作c ∥b 则c ∥a ,这与a ∩c =P 矛盾. ∴假设错误,故a ∥α. 证法四:∵a ∥b ,∴a 、b 确定一个平面,设为β∴a ⊂β,b ⊂β ∵a ⊄α,a ⊂β∴α、β是两个不同的平面∵b ⊂α,又b ⊂β ∴α∩β=b∵a 与b 没有公共点 ∴a 与α没有公共点 (若有公共点,公共点必在b 上,则与a ∥b 矛盾). ∴a ∥α.性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.符号语言表示:b a b a ////⇒⎪⎭⎪⎬⎫=⋂⊂αββαα⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂⇒⎭⎬⎫⊂⇒=⋂ββφααβαb a b a a b b // 证明:⇒a ∥b2、平面与平面平行定义:两个平面没有公共点就叫做两个平面平行。
3-2-2 向量法在空间平行关系中的应用
CC1 的中点,求证:四边形 B1EDF 是平行四边形.
第三章
3.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-1
[分析]
→ 欲证四边形 B1EDF 是平行四边形,只须证B1E=
→ → → FD(或B1F=ED),利用长方体中棱的平行关系和中点 E、F 可 用加减运算法则证明.
[证明]
以 D 为原点,DA、DC、DD1 为 x 轴、y 轴、z 轴
建立直角坐标系如图. 1 设正方体棱长为 1,则 B(1,1,0),M(1,1, ),C(0,1,0), 2 A1(1,0,1), ∵N 是 A1C 中点,
1 1 1 → → 1 1 1 → ∴N2,2,2,DB=(1,1,0),NM=2,2,0=2DB,
λv1+μv2 对 β 内任一向量 a,有 a=____________.· 学习指导 · 人教A版 · 数学 · 选修2-1
重点难点展示
第三章
3.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-1
重点:用直线的方向向量与平面的法向量来表示空间中的 平行关系;共面向量定理与线面平行的联系. 难点:如何实现线面位置关系与向量运算的联系.
∴四边形 B1EDF 是平行四边形.
第三章
3.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-1
正方体 ABCD-A1B1C1D1 中, M、 分别是棱 BB1 和对 点 N 角线 CA1 的中点,求证:MN∥BD.
第三章
3.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-1
空间向量与平行关系
《空间向量与平行关系》教学目标:知识与技能:掌握线线平行,线面平行,面面平行的传统,基底,坐标方法.过程与方法:在简单例题中利用这三种方法,循序渐进,慢慢熟练掌握.情感与价值:通过对线,面平行,两种方法的比较.发现其中的数学规律,学会总结,慢慢理解加深对数学的认识.教育目标:数学课到底教什么?一教知识:传授人类在历史发展的过程中对各类事物观察、归纳、推演和论证过的共有的和特有的稳定属性,即事物在变化过程中保持的不变性。
如三角形(类),其内角和为180度(共有属性),而多边形的外角和为360度(更高层面的总结).二教方法和思想:引导学生重演知识的发生发展的过程,感受人类先哲们探索的艰辛,体会数学先驱们天才的思想,从而学会观察事物,提出问题并加以解决,让数学知识这“冰冷的美丽唤出火热的思考”。
三引导学生融会贯通:简化记忆,构建起自己的数学结构,即总结出自己解决问题的“中途点”,以期能站在前人的肩膀上思考和分析问题.教学难点:线,面平行传统方法的回顾处理办法:在学案进行复习巩固教学重点:用向量解决线,面平行问题处理办法:通过例题循序渐进教学设计一.(复习回顾)2.方向向量:在空间中直线的方向上用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量.法向量:垂直于平面的向量(非零向量)向量垂直:0=⋅⇔⊥→→→→b a b a (两非零向量)“思考为什么要强调两非零向量”?二.新知引入:向量法1.设直线m l ,的方向向量分别为→→b a ,,平面βα,的法向量分别为→→v u ,,则:Rb a b a m l ∈=⇔⇔→→→→λλ,∥∥0=⋅⇔⊥⇔→→→→u a u a l α∥Rv u v u ∈=⇔⇔→→→→λλβα,∥∥1.线线平行①设直线n m ,的方向向量分别为→→b a ,,根据下列条件判断直线n m ,的位置关系:()2,1,2--=→a ()6,3,6--=→b ,()2,1,2--=→a ()2,1,2--=→b ,②已知→1e ,→2e 是空间任意两个非零向量,根据下列条件判断直线n m ,的位置关系:→→→-=2132e e a →→→+-=2132e e b →→→-=2132e e a →→→-=2164e e b 2.线面平行①设直线l 的方向向量为→a ,平面α的法向量为→u ,且直线l 不在平面α内.若0=⋅→→u a ,则()A.l α∥B.l ⊂αC.l ⊥αD.l ⊂α或l α∥②设直线l 的方向向量为→a ,平面α的法向量为→u ,若0=⋅→→u a ,则()A.l α∥B.l ⊂αC.l ⊥αD.l ⊂α或l α∥③设直线m 的方向向量为→a ,平面σ的法向量为,→u 直线m 不在平面α内.根据下列条件判断直线m 与平面σ的位置关系:()5,2,2-=→a ()4,46-=→,u ()5,2,2-=→a ()2,23-=→,u 3.面面平行①设平面βα,的法向量分别为→→v u ,,根据下列条件判断直线βα,的位置关系()2,2,1-=→u ()4,4,2--=→v ()6,6,3-=→u ()4,4,2--=→v ②设平面σ的法向量为(1,2,-2),平面β的法向量为(-1,-2,k ),若βα∥,则k =()A.2B.-4C.4D.-2在处理空间立体几何类题目的时候,可以考虑用这3种方法⎪⎩⎪⎨⎧⎩⎨⎧)坐标(空间直角坐标系基底向量法传统方法.2.1下面就从这个题目简单的体会一下三种方法处理问题的过程吧.例.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)(2)∥1FC 平面ADE(3)平面ADE ∥平面FB C 11方法一:(传统方法)证明:(1)过E 点作1CC 的垂线,与1CC 交于点O ,连接DO1111D C B A ABCD -是正方体则有=∥EO BC =∥AD ,即四边形AEOD 为平行四边形.∴DOAE ∥ E 分别是1BB 的中点,即O 为中点1CC 又因为F 为1DD 的中点,即FD =∥1OC ,即四边形1FDOC 为为平行四边形.∴DO FC ∥1,即AEFC ∥1(2)由(1)可知,AEFC ∥1则⇒⎪⎭⎪⎬⎫⊄⊂ADE FC ADE AE AEFC 平面平面∥11∥1FC 平面ADE(3)AD C B AD BC BC C B ∥∥∥1111⇒⎭⎬⎫,AED C B AED C B AED AD AD C B 平面∥平面平面∥111111⇒⎪⎭⎪⎬⎫⊄⊂由(2)可知∥1FC 平面ADE ,则AEDB FC AED C F AED C B C C B FC B FC C B B FC FC 平面∥平面平面∥平面∥平面平面1111111111111111⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂1.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)(2)∥1FC 平面ADE(3)平面ADE ∥平面FB C 11(1)解:法2(用“基底”)法3(用“坐标”)由于(2),(3)用基底不便于处理问题,所以(2)(3)在此处采用“坐标法”(2)解:因为1111D C B A ABCD -是正方体,可以−→−DA ,−→−DC ,−→−1DD 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .(3)。
( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)
解析:(1)∵a=(1,-3,-1),b=(8,2,2) ∴a·b=8-6-2=0,∴a⊥b,∴l1⊥l2. (2)∵u=(1,3,0),v=(-3,-9,0), ∴v=-3u,∴u∥v,∴α∥β. (3)∵a=(1,-4,-3),u=(2,0,3), ∴a与u既不共线,也不垂直, ∴l与平面α斜交.
[证明] 如图所示建立空间直角坐标系D-xyz,则有D(0,0,0), A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1), B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1).
(1)设n1=(x1,y1,z1)是平面ADE的法向量, 则n1⊥D→A,n1⊥A→E, 即nn11··DA→→EA==22yx11+=z01,=0,
设平面SCD的法向量为n=(1,y,z), 则n·D→C=(1,y,z)·(1,2,0)=1+2y=0, ∴y=-12. 又n·D→S=(1,y,z)·(-1,0,2)=-1+2z=0, ∴z=12. ∴n=1,-12,12即为平面SCD的一个法向量.
探究三 利用空间向量证明平行关系 [典例3] 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中 点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
G→En=(x,y,z)是平面EFG的法向量,
n·G→E=0, 则n·G→F=0.
∴--2xx-+y+y+2zz==00,.
∴xy==zz., ∴n=(z,z,z),令z=1,此时n=(1,1,1), 所以平面EFG的一个法向量为(1,1,1).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道将来要得到 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门,成长的地方; 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己,才能战胜困难! 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔,然后放下。“雁 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得起打击;丢得起面 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则,坚持守底气;淡 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心想要事事求顺意, 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。我们的梦想在哪里? 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的宽道上!珍惜每一分 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要感叹你失去或未得到; 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境之人,不做苟且之事, 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态,得失了无忧,来去都 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才是永恒的美。意逐白云 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可;累时,闲是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限制我们的,不是周遭 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多少委屈,一笑而泯之。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴米之忧烦;世外桃源祥 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为虚名所累;做事要头 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求,多一点警醒。傲不可 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华洗礼,在自观中走向 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面上看是人脉的差距, 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定命运。知恩感恩,是 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致, 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩感恩,是很重要的一 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他这样一想、 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口, 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有�
第57讲 空间的平行关系
第57讲空间的平行关系【考点解读】1.理解直线与平面的位置关系,理解线面平行、面面平行的定义,掌握线面平行、面面平行判定定理及性质定理,并能灵活运用.2.掌握空间的平行关系的互相转化,并能灵活应用.3.规范推理、论证等解题程序,培养并提升逻辑推理能力.【知识扫描】1.直线和平面的位置关系、、.直线在平面内,有公共点.直线和平面相交,有公共点.直线和平面平行,公共点.直线与平面平行、直线与平面相交称为直线在平面外.2.直线和平面平行的判定定理如果平面外和这个平面内平行,那么这条直线和这个平面平行.(记忆口诀:线线平行线面平行)3.直线和平面平行的性质定理如果一条直线和一个平面,经过平面和这个平面相交,那么这条直线和交线平行.(记忆口诀:线面平行线线平行)4.两个平面的位置关系:5.两个平面平行的判定定理如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.(记忆口诀:线面平行,则面面平行)6、两个平面平行的性质定理如果两个平行平面同时与第三个平面相交,那么它所有的平行.(记忆口诀:面面平行,则线线平行)7.两个平行平面距离和两个平行平面同时的直线,叫做两个平面的公垂线,公垂线夹在平行平面间的部分叫做两个平面的,两个平行面的公垂线段的,叫做两个平行平面的距离.【考计点拨】牛刀小试:1.用a、b、c表示三条不同的直线,y表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥y,b∥y,则a∥b;④若a⊥y,b⊥y,则a∥b.A. ①②B. ②③C. ①④D.③④2.在空间,下列命题正确的是(A )平行直线的平行投影重合 (B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案D 。
【命题意图】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,基础题。
空间几何中的平行与垂直关系
空间几何中的平行与垂直关系在空间几何中,平行与垂直关系是两种重要的几何关系。
它们在解决几何问题、计算坐标和推导定理等方面起着至关重要的作用。
通过研究平行和垂直关系,我们可以更好地理解空间中的几何性质,并应用于实际问题的求解。
1. 平行关系平行关系是指两条或多条直线在空间中永远不会相交。
在平行线之间不存在任何交点,它们的方向相同或者互为反向。
为了表示平行关系,我们可以使用"//"符号,如AB // CD。
在三维空间中,平行关系的判断可以通过以下方法确定:- 斜率法:对于两条直线L1和L2,如果它们的斜率相等,则L1与L2平行。
具体计算时,我们可以求两条直线上某一点的斜率,如果斜率相等,则可以判断它们是平行的。
- 向量法:如果两条直线的方向向量是平行的,则它们是平行的。
我们可以通过求取两条直线的方向向量,然后比较它们是否平行来判断平行关系。
平行关系的性质:- 平行线具有相同的斜率。
- 平行线之间的距离是恒定的,任意两点到另一条直线的距离相等。
- 平行线与平面的交线是平行的。
2. 垂直关系垂直关系是指两条直线或直线与平面的交线之间的关系。
在垂直关系中,直线或直线段与垂直交线之间的夹角为90度。
在三维空间中,判断垂直关系的方法有:- 向量法:如果两条直线的方向向量相互垂直,则它们是垂直的。
通过计算两条直线的方向向量,然后判断它们是否相互垂直。
- 斜率法:如果两条直线的斜率的乘积为-1,则它们是垂直的。
具体计算时,我们可以求两条直线上某一点的斜率,然后计算斜率的乘积,如果结果为-1,则可以判断它们是垂直的。
垂直关系的性质:- 垂直关系是相互垂直的直线或者直线与平面之间的关系。
在直角坐标系中,垂直关系可以表示为两直线斜率的乘积为-1。
- 垂直交线之间的夹角为90度。
- 垂直关系通常用于解决与直角、垂直性质相关的问题,例如计算两直线之间的距离、垂直偏移等。
总结:在空间几何中,平行与垂直关系是两种重要的几何关系。
3-2-2 向量法在空间平行关系中的应用
能力拓展提升一、选择题9.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k =( )A .2B .-4C .4D .-2[答案] C[解析] ∵α∥β,∴1-2=2-4=-2k ,∴k =4,故选C.10.如果直线l 的方向向量是a =(-2,0,1),且直线l 上有一点P 不在平面α内,平面α的法向量是b =(2,0,4),那么( )A .l ⊥αB .l ∥αC .l ⊂αD .l 与α斜交 [答案] B[解析] ∵a ·b =-4+4=0, ∴a ⊥b ,又∵l ⊄α,∴l ∥α. 二、解答题11.在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,F 为PC 的中点,点E 在PD 上,且PEED =2,求证:BF ∥平面AEC .[证明] ∵BF →=BC →+12CP →=AD →+12(CD →+DP →)=AD →+12CD →+32DE →=AD →+12(AD →-AC →)+32(AE →-AD →)=32AE →-12AC →,∴BF →、AE →、AC →共面.又BF ⊄平面AEC ,从而BF ∥平面AEC .12.如图,已知正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、M 、N 分别是正方体六个表面的中心,证明平面EFG ∥平面HMN .[证明] 如图,建立空间直角坐标系D -xyz ,设正方体的棱长为2,易得E (1,1,0),F (1,0,1),G (2,1,1),H (1,1,2),M (1,2,1),N (0,1,1).∴EF →=(0,-1,1),EG →=(1,0,1), HM →=(0,1,-1),HN →=(-1,0,-1).设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面EFG 、平面HMN 的法向量,由⎩⎨⎧ m ·EF →=0m ·EG →=0⇒⎩⎪⎨⎪⎧-y 1+z 1=0x 1+z 1=0, 令x 1=1,得m =(1,-1,-1).由⎩⎨⎧n ·HM →=0n ·HN →=0⇒⎩⎪⎨⎪⎧y 2-z 2=0-x 2-z 2=0. 令x 2=1,得n =(1,-1,-1). ∴m =n ,即平面EFG ∥平面HMN .13.如图,在正方体AC 1中,O 为底面ABCD 的中心,P 是DD 1的中点.设Q 是CC 1上的点.当点Q 在什么位置时,平面D 1BQ ∥平面P AO?[解析] 建立如图所示的空间直角坐标系D -xyz ,设正方体棱长为2,则O (1,1,0),A (2,0,0),P (0,0,1),B (2,2,0),D 1(0,0,2).再设Q (0,2,c ),∴OA →=(1,-1,0),OP →=(-1,-1,1),BQ →=(-2,0,c ),BD 1→=(-2,-2,2).设平面P AO 的法向量为n 1=(x ,y ,z ),则⎩⎨⎧n 1·OA →=0,n 1·OP →=0,⇒⎩⎪⎨⎪⎧x -y =0,-x -y +z =0.令x =1,则y =1,z =2.∴平面P AO 的一个法向量为n 1=(1,1,2).若平面D 1BQ ∥平面P AO ,那么n 1也是平面D 1BQ 的一个法向量. ∴n 1·BQ →=0,即-2+2c =0,∴c =1, 这时n 1·BD 1→=-2-2+4=0,故当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .14.如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,点E 在PD 上,且PE ED =2 1.在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.[证明] 以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直平面P AD 的直线为x 轴,建立空间直角坐标系(如图),则由题设条件知,相关各点的坐标分别为A (0,0,0),B (32a ,-12a,0),C (32a ,12a,0),D (0,a,0),P (0,0,a ),E (0,23a ,13a ),∴AE →=(0,23a ,13a ),AC →=(32a ,12a,0),AP →=(0,0,a ),PC →=(32a ,12a ,-a ),BP →=(-32a ,12a ,a ).设点F 是棱PC 上的点,PF →=λPC →=(32aλ,12aλ,-aλ),其中0<λ<1.则BF →=BP →+PF =(-32a ,12a ,a )+(32aλ,12aλ,-aλ) =(32a (λ-1),12a (1+λ),a (1-λ)), 令BF →=λ1AC →+λ2AE →,得⎩⎪⎨⎪⎧32a (λ-1)=32a λ1,12a (1+λ)=12a λ1+23a λ2,a (1-λ)=13a λ2.即⎩⎪⎨⎪⎧λ-1=λ1,1+λ=λ1+43λ2,1-λ=13λ2.解得λ=12,λ1=-12,λ2=32, 即当λ=12时,BF →=-12AC →+32AE →,即F 是PC 的中点时,BF →、AC →、AE →共面,又BF ⊄平面AEC , ∴当F 是棱PC 的中点时,BF ∥平面AEC .。
高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案
3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。
立体几何 向量法
立体几何向量法
在立体几何中,向量法是一种常用的求解问题和证明定理的方法。
通过引入向量概念,可以将几何问题转化为向量运算,从而简化推导过程。
在向量法中,我们将空间中的点表示为位置向量,线段或向量则表示为起点到终点的差向量。
利用向量的性质,可以进行向量加法、减法、数量乘法等运算,从而得到几何对象之间的关系。
对于平面几何,向量法可以用来证明和推导平行关系、垂直关系、共线关系等。
例如,两条平行线可以表示为它们的方向向量相等,两条垂直线可以表示为它们的方向向量互为内积为零。
在空间几何中,向量法可以用来证明和推导线段的长度、角的大小、平面的交角等。
例如,两个线段的长度可以通过计算它们的差向量的模长得到,两个平面的交角可以通过计算它们的法向量之间的夹角得到。
此外,向量法还可以应用于立体图形的计算和分析。
例如,利用向量法可以求解三角形的面积、四面体的体积,以及判断点是否在多面体内部等。
总之,向量法是立体几何中一种重要的分析和解题方法,通过引入向量概念和运算,可以简化问题的推导过程,提高几何问题的求解效率。
8.7空间向量在立体几何中的应用——证明平行与垂直
1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。
3.2.1-立体几何中的向量方法(1)---平行、垂直
2
uuur DC
1
uuur DE
3
3
uuuur uuur uuur 所以MN、DC、DE共面
但MN 平面CDE 故MN // 平面CDE
垂直关系:
ur ur
设直线
l1 , l2
的方向向量分别为
uur uur
e1 , e2
,平面
线1线,垂2直的法l1 向量l2 分别eu为ur1rn1euu,urr2n2,eu则 urr1
(2)找出(求出)平面内的两个不共线的
向量的坐标a (a1,b1, c1),b (a2,b2, c平2 )面的法向量
(3)根据法向量的定义建立关于x,
y,
z的 不惟一,合理
取值即可。
方程组
r nr n
• •
r ar b
0 0
aa12
x x
b1 b2
y y
c1z c2z
0时 ,e // n
a1 a2
b1 b2
c1 c2
uur uur
uur uur
面面垂直 1 2 n1 n2 n1 n2 0.
例7.在正方体 ABCD A1B1C1D1 中,E、F分别是BB1,,
CD中点,求证:D1F
平面ADE
uuur uuur
uuuur
e1
l1
n1
ur uur ur uur l1 // 1 e1 n1 e1 n1 0
n1
1 n2
2
uur uur uur uur
1 // 2 n1 // n2 n1 n2
空间向量的应用平行,垂直
,
解
得
x 2a 3
y 2 a, 3
za
N
(
2a 3
,
2a 3
,
a)
B
C
z
同理:M(a, 2a , a ) 33
MN ( a ,0, 2a ) 33
(1)ED ( a ,0, a) 2
C1
x B1
MN 2 ED MN // ED,即MN // ED 3
D N
A
M
D1
Ey
A1
(2)设面BB1C1C的一个法向量为n
A
D1
E
C1
N
B1 F
D
C
B
练2习:
C'
B'
在三棱柱ABC A' B 'C '中,
A'
底面是正三角形,AA' 底面ABC,
A'C AB ',求证:BC ' AB '
C
B
A
练2习:
C'
B'
在三棱柱ABC A' B 'C '中,
A'
底面是正三角形,AA' 底面ABC,
A'C AB ',求证:BC ' AB '
设底面边长为2,高为h,
如图建立空间直角坐标系. C
B
A( 3,0,0), B(0,1,0),C(0,1,0).
A
uAuu'ur( 3,0, h), B'(0uu,1uu,rh),C'(0,1, h). uuuur
AB ' ( 3,1, h), A'C ( 3, 1, h), BC ' (0, 2, h)
空间向量知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b=+=+u u u r u u u r u u u r v r ;BA OA OB a b=-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x y x 其中(4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b rr 不共线,p r与向量,a b rr 共面的条件是存在实数,x y 使p xa yb =+r r r。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>(++++=y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c r r r不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。
3-2 空间向量与平行关系
→
→
→
→
→
【变式3】 如图所示,在四棱锥S- ABCD中,
底面ABCD为正方形,侧棱SD⊥底面 ABCD ,E、F分别为AB、SC的中点. 求证:EF∥平面SAD
题型三
利用空间向量证明平行问题
【例3】 (12分)已知正方体ABCD-A1B1C1D1的棱长为2,E、
F分别是BB1、DD1的中点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
证明
如图所示建立空间直角坐标系
D-xyz, 则有D(0,0,0)、A(2,0,0),C(0,
2,0),C1(0,2,2),E(2,2,1),
平面与平面平行的判定定理
一个平面内的两条相交直线与另一个平面平行, 则这两个平面平行。 a β , b β , a b P, a∥ α, b∥ α 定理的推论 ∥ β α. 如果一个平面内有两条相交直线分别平行于 另一个平面内的两条相交直线,那么这两个平面平行
a
β
c P b
α
d
第1课时 空间向量与平行关系
题型一
【例1】
利用方向向量和法向量判定线面位置关系
根据下列各条件,判断相应的直线与直线、平面与
平面、直线与平面的位置关系. (1)直线l1、l2的方向向量分别是 a=(1,-3,-1),b=(8,2,2);
(2)平面α、β的法向量分别是
u=(1,3,0),v=(-3,-9,0); (3)直线l的方向向量、平面α的法向量分别是 a=(1,-4,-3),μ=(2,0,3); (4)直线l的方向向量、平面α的法向量分别是
提示
实际应用中,直线的方向向量即把线段看作有向线段时表示的
向量,平面的法向量一般可建系后用待定系数法求出.
用向量法证明平行关系
课题: 3.2.1 用向量法证明平行关系编制人:刘本松、张文武、王伟洁 审核人: 领导签字: 【使用说明】1.用20分钟仔细研读课本P95-P98,认真限时完成问题导学预习自测;2.具体要求:(1)用向量表示直线或点在直线上的位置;(2)用向量方法证明直线与直线平行、直线与平面平行、平面与平面平行;【学习目标】 1.掌握用向量法证明平行关系,提高概念理解和应用能力;2.独立思考,合作学习,探究向量法研究空间平行问题的规律方法;3.激情投入,形成扎实严谨的数学思维品质.【课前预习】一、重点:用向量证明空间的平行关系; 难点:空间向量在证明平行关系中的应用. 二、问题导学1.类比平面内直线的向量参数方程,写出空间直线的向量参数方程.思考:当12t =时,线段AB 中点M 的向量表达式是2.设1v 和2v分别是直线1l 和2l 的方向向量,则由向量共线的条件,得12//l l 或1l 和2l 重合的充要条件是什么?//l α或l 在α内的充要条件是什么?//αβ或α与β重合的充要条件是什么?三、练一练:1、已知点3(3,4,0),(2,5,5),OA 5A B BC =而且,其中O 为坐标原点,点C 的坐标为2、1l 的方向向量为1(1,2,3)v = ,2l 的方向向量为2(,4,6)v λ=,若12//l l ,则λ等于3、已知A B C ,,三点不共线,对平面ABC 外任一点O ,满足下面条件的点M 是否一定在平面ABC 内? 2OM OA OB OC =--(四)我的疑问:【课内探究】一、讨论、展示、点评、质疑探究一:用向量表示直线或点在直线上的位置已知点(2,3,0),(1,3,2)A B -,以AB的方向为正向,在直线AB 上建立一条数轴,,P Q 为轴上的两点,且满足条件:(1):2AQ QB =-;(2):2:3AP PB =.求点P 和点Q 的坐标.拓展1:已知点(3,4,0),(2,5,5),(0,3,5)A B C ,且ABCD 是平行四边形,则顶点D 的坐标拓展2:已知O 为坐标原点,四面体OABC 的顶点(0,3,5),(2,2,0),(0,5,0)A B C ,直线//BD CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.【规律方法总结】探究二:用向量法证明空间中的平行关系如图,已知正方体''''ABCD A B C D -,点,M N 分别是面对角线'A B 与面对角线''AC 的中点.求证:'//MN AD 侧面;'//MN AD ,并且'12MN AD =.拓展1(AB )已知矩形ABCD 和矩形ADEF ,AD 为公共边,但是它们不在同一个平面上,点,M N 分别在对角线,BD AE 上,且11,33BM BD AN AE ==.证明:直线//CDE MN 平面.拓展2(A )在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,,PD DC = E 是PC 的中点.用向量法证明//PA EDB 平面.【规律方法总结】二、课堂小结:1.知识与方法方面:2.数学思想方法方面:ABCD'A 'B 'C 'D MNABCDPEABCDEFM N。
空间直线关系
空间直线关系在几何学中,空间直线关系是指两条直线在三维空间中的相互位置和关系。
研究空间直线关系有助于我们理解和解决几何问题,同时也在其他学科中有广泛应用。
本文将介绍几种常见的空间直线关系,并探讨它们的性质和特点。
一、平行关系平行是空间直线关系中最基本的关系之一。
两条直线平行意味着它们在平面上永远不会相交。
在三维空间中,要判断两条直线是否平行,可以使用以下方法:1. 斜率:如果两条直线的斜率相等或者它们都没有斜率(即为垂直于某个平面的直线),那么它们是平行的。
2. 向量:在三维空间中,两条直线平行意味着它们的方向向量平行。
因此,比较两条直线的方向向量可以判断它们是否平行。
二、垂直关系垂直是另一种常见的空间直线关系。
两条直线垂直意味着它们在平面上相交成直角。
要判断两条直线是否垂直,可以使用以下方法:1. 斜率:如果两条直线的斜率的乘积为-1,那么它们是垂直的。
这是因为斜率为k的直线与斜率为-1/k的直线垂直。
2. 向量:在三维空间中,两条直线垂直意味着它们的方向向量相互垂直。
因此,比较两条直线的方向向量的内积可以判断它们是否垂直。
三、相交关系除了平行和垂直关系,两条直线还可以相交。
在三维空间中,两条直线相交可能有以下三种情况:1. 交点:两条直线有且仅有一个交点。
可以通过解方程组来找到交点的具体坐标。
2. 重合:两条直线重合意味着它们完全重合,无法区分。
在这种情况下,两条直线有无数个交点。
3. 平面交:两条直线在某个平面上相交,但不一定相交于一点。
这种情况下,两条直线可以有一个或无穷多个交点。
四、异面关系不同平面上的直线之间也存在一种关系称为异面关系。
异面关系意味着两条直线不在同一个平面上,因此它们无法相交。
要判断两条直线是否异面,可以使用以下方法:1. 方向向量:比较两条直线的方向向量和法向量,如果它们不在同一个平面上,那么直线是异面的。
2. 向量积:计算两条直线的方向向量的向量积,如果向量积不为零,那么直线异面。
借助向量法,巧解平行题
借助向量法,巧解平行题
李贞庆
【期刊名称】《中学数学:高中版》
【年(卷),期】2022()4
【摘要】利用空间向量来判定空间问题中的线、面平行关系,是判定或证明此类问题的一类比较常见的技巧方法,结合常见的线面平行、面面平行以及创新应用等问题类型加以实例剖析,总结方法规律与破解技巧.
【总页数】2页(P80-81)
【作者】李贞庆
【作者单位】安徽省怀宁中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.一题多法,巧解平面向量问题
2.借助图像法,巧解中职物理题
3.几何法巧解向量题
4.用比较法巧解平行条件应用题
5.巧作基准平行线简解一类向量题
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础巩固强化
一、选择题
1.l ,m 是两条直线,方向向量分别为a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),若l ∥m ,则( )
A .x 1=x 2,y 1=y 2,z 1=z 2
B .x 1=kx 2,y 1=py 2,z =qz 2
C .x 1x 2+y 1y 2+z 1z 2=0
D .x 1=λx 2,y 1=λy 2,z 1=λz 2 [答案] D
[解析] 由向量平行的充要条件可得.
2.平面α的一个法向量为v 1=(1,2,1),平面β的一个法向量为v 2=(-2,-4,-2),则平面α与平面β( )
A .平行
B .垂直
C .相交
D .不确定
[答案] A
[解析] 由v 1∥v 2故可判断α∥β.
3.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点且|AC →||AB →|=1
3,
则点C 的坐标为( )
A .(72,-12,52)
B .(3
8,-3,2) C .(103,-1,73) D .(52,-72,32) [答案] C
[解析] ∵C 在线段AB 上,∴设C (x ,y ,z ),则(x -4,y -1,z -3)=1
3(2-4,-5-1,1-3),
即⎩⎪⎨⎪
⎧
x -4=-2
3,
y -1=-2,
z -3=-23,
解得⎩⎪⎨⎪
⎧
x =103,
y =-1,
z =73.
故选C. 二、填空题
4.若AB →=λCD →+uCE →
(λ,u ∈R ),则直线AB 与平面CDE 的位置关系是________.
[答案] AB ∥平面CDE 或AB ⊂平面CDE
5.已知A 、B 、C 三点的坐标分别为A (1,2,3),B (2,-1,1),C (3,λ,λ),若AB →⊥AC →
,则λ等于________.
[答案] 14
5
[解析] AB →=(1,-3,-2),AC →
=(2,λ-2,λ-3), ∵AB →⊥AC →, ∴AB →·AC →=0,
∴2-3(λ-2)-2(λ-3)=0,解得λ=145. 三、解答题
6.如图,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是P A 、BD 上的点,且PM MA =BN ND =5 8.
求证:直线MN ∥平面PBC . [证明] MN →=MP →+PB →+BN →
=-PM →+PB →+BN → =-513P A →+PB →+513BD →
=-513(BA →-BP →
)+PB →+513(BA →+BC →) =513BP →-BP →+513BC →=513BC →-813BP →, ∴MN →与BC →、BP →共面,∴MN →
∥平面BCP , ∵MN ⊄平面BCP ,∴MN ∥平面BCP .
7.已知三棱锥P -ABC ,D 、E 、F 分别为棱P A 、PB 、PC 的中点,求证平面DEF ∥平面ABC .
[证明] 证法一:如图.
设PD →=a ,PE →=b ,PF →=c ,则由条件知,P A →=2a ,PB →=2b ,PC →=2c ,
设平面DEF 的法向量为n ,则n ·DE →=0,n ·DF →
=0, ∴n ·(b -a )=0,n ·(c -a )=0,
∴n ·AB →=n ·(PB →-P A →)=n ·(2b -2a )=0,n ·AC →=n ·(PC →-P A →)=n ·(2c -2a )=0,∴n ⊥AB →,n ⊥AC →,
∴n 是平面ABC 的法向量, ∴平面DEF ∥平面ABC .
证法二:设PD →=a ,PE →=b ,PF →=c ,则P A →=2a ,PB →=2b ,PC →
=2c ,
∴DE →=b -a ,DF →=c -a ,AB →=2b -2a ,AC →
=2c -2a , 对于平面ABC 内任一直线l ,设其方向向量为e ,由平面向量基
本定理知,存在惟一实数对(x ,y ),使e =xAB →+yAC →
=x (2b -2a )+y (2c -2a )=2x (b -a )+2y (c -a )=2xDE →+2yDF →,∴e 与DE →、DF →
共面,
即e ∥平面DEF ,
∴l ⊄平面DEF ,∴l ∥平面DEF . 由l 的任意性知,平面ABC ∥平面DEF . 8.
四边形ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =2,AD =1.在如图所示的坐标系A -xyz 中,分别求平面SCD 和平面SAB 的一个法向量.
[解析] A (0,0,0),D (1,0,0),C (2,2,0),S (0,0,2).
∵AD ⊥平面SAB ,∴AD →
=(1,0,0)是平面SAB 的一个法向量. 设平面SCD 的法向量为n =(1,y ,z ), 则n ·DC →=(1,y ,z )·(1,2,0)=1+2y =0, ∴y =-12.
又n ·DS →=(1,y ,z )·(-1,0,2)=-1+2z =0,
∴z=1 2.
∴n=(1,-1
2,
1
2)即为平面SCD的一个法向量.。