2018年高考数学二轮复习课时跟踪检测(通用版)(二十一)文 Word版 含答案
配套K12通用版2018年高考数学二轮复习课时跟踪检测二十三文
课时跟踪检测(二十三)A 组——12+4提速练一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e xcos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1 B .1 C .3 D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13 B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x=13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0. 8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)·f (x 2-1),所以0<x +1<x 2-1,解得x >2.9.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得2<x <3或-3<x <-2.10.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 解析:选D 因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e<3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.11.(2017·成都模拟)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t,2处的切线与曲线C 2:y=ex +1-1也相切,则t ln 4e2t的值为( )A .4e 2B .8eC .2D .8解析:选D 由y =tx ,得y ′=12t ·x -12,则曲线C 1在x =4t 时的切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1-1的切点为(x 0,y 0).由y =e x +1-1,得y ′=e x +1,则由e x 0+1=t 4,得切点⎝ ⎛⎭⎪⎫ln t4-1,t 4-1,故切线方程又可表示为y-t 4+1=t 4x -ln t 4+1,即y =t 4x +t 4ln 4t +t 2-1,所以由题意,得t 4ln 4t +t 2-1=1,即t ln 4t+2=8,整理得t ln 4e2t=8,故选D.12.(2018届高三·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .[1,e 2-2]B.⎣⎢⎡⎦⎥⎤1,1e 2+2C.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2D.[)e 2-2,+∞解析:选A 由题意,知方程x 2-a =2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解.设f (x )=2ln x -x 2,则f ′(x )=2x-2x =-x +x -x.易知x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )>0,x ∈[1,e]时f ′(x )<0,所以函数f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在[1,e]上单调递减,所以f (x )极大值=f (1)=-1,又f (e)=2-e 2,f ⎝ ⎛⎭⎪⎫1e =-2-1e2,f (e)<f ⎝ ⎛⎭⎪⎫1e ,所以方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e,e 上有解等价于2-e 2≤-a ≤-1,所以a 的取值范围为[1,e 2-2],故选A.二、填空题13.(2017·张掖模拟)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a的取值范围是________.解析:f ′(x )=x 2-ax +1,∵函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,∴f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,∴⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f,即⎩⎪⎨⎪⎧14-12a +1≤0,9-3a +1≤0,解得a ≥103,∴实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.答案:⎣⎢⎡⎭⎪⎫103,+∞ 14.(2017·山东高考)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①f (x )=2-x;②f (x )=3-x;③f (x )=x 3;④f (x )=x 2+2.解析:设g (x )=e x f (x ),对于①,g (x )=e x ·2-x, 则g ′(x )=(e x ·2-x )′=e x ·2-x(1-ln 2)>0,所以函数g (x )在(-∞,+∞)上为增函数,故①符合要求; 对于②,g (x )=e x ·3-x,则g ′(x )=(e x ·3-x )′=e x ·3-x(1-ln 3)<0,所以函数g (x )在(-∞,+∞)上为减函数,故②不符合要求; 对于③,g (x )=e x ·x 3,则g ′(x )=(e x ·x 3)′=e x ·(x 3+3x 2),显然函数g (x )在(-∞,+∞)上不单调,故③不符合要求; 对于④,g (x )=e x ·(x 2+2),则g ′(x )=[e x·(x 2+2)]′=e x ·(x 2+2x +2)=e x ·[(x +1)2+1]>0, 所以函数g (x )在(-∞,+∞)上为增函数,故④符合要求. 综上,具有M 性质的函数的序号为①④. 答案:①④15.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解析:函数f (x )的导数f ′(x )=e x-m ,即切线斜率k =e x-m ,若曲线C 存在与直线y =e x 垂直的切线,则满足(e x -m )e =-1,即e x -m =-1e 有解,即m =e x +1e 有解,∵e x+1e >1e ,∴m >1e.答案:⎝ ⎛⎭⎪⎫1e ,+∞ 16.(2017·兰州模拟)已知函数f (x )=e x+m ln x (m ∈R ,e 为自然对数的底数),若对任意正数x 1,x 2,当x 1>x 2时都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.解析:函数f (x )的定义域为(0,+∞).依题意得,对于任意的正数x 1,x 2,当x 1>x 2时,都有f (x 1)-x 1>f (x 2)-x 2,因此函数g (x )=f (x )-x 在区间(0,+∞)上是增函数,于是当x >0时,g ′(x )=f ′(x )-1=e x+mx-1≥0,即x (e x -1)≥-m 恒成立.记h (x )=x (e x-1),x >0,则有h ′(x )=(x +1)e x -1>(0+1)e 0-1=0(x >0),h (x )在区间(0,+∞)上是增函数,h (x )的值域是(0,+∞),因此-m ≤0,m ≥0.故所求实数m 的取值范围是[0,+∞).答案:[0,+∞)B 组——能力小题保分练1.(2017·陕西质检)设函数f (x )=x sin x 在x =x 0处取得极值,则(1+x 20)(1+cos 2x 0)的值为( )A .1B .-1C .-2D .2解析:选D f ′(x )=sin x +x cos x ,令f ′(x )=0得tan x =-x ,所以tan 2x 0=x 20,故(1+x 20)(1+cos 2x 0)=(1+tan 2x 0)·2cos 2x 0=2cos 2x 0+2sin 2x 0=2,故选D.2.(2017·开封模拟)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;x 0=2时,y =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A.3.(2017·惠州调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A .(e ,+∞)B .(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e)D.⎝ ⎛⎭⎪⎫1e ,e 解析:选D f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ),所以f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于|ln x |<1,即-1<ln x <1,所以1e<x <e.故选D.4.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z),从而得x 0=⎝⎛⎭⎪⎫k +12m (k ∈Z).所以不等式x 20+[f (x 0)]2<m 2即为⎝⎛⎭⎪⎫k +122m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z.由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.5.若对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,函数f (x )=12x 2-ax -2b 与g (x )=2a ln(x -2)的图象均有交点,则实数b 的取值范围是( )A.⎣⎢⎡⎭⎪⎫1516+12ln 2,+∞B.⎣⎢⎡⎭⎪⎫158+ln 2,+∞C.⎝ ⎛⎭⎪⎫12,1516+12ln 2D.⎝ ⎛⎭⎪⎫1516+12ln 2,+∞ 解析:选A 依题意,原问题等价于对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,关于x 的方程12x 2-ax -2a ln(x -2)=2b 有解.设h (x )=12x 2-ax -2a ln(x -2),则h ′(x )=x -a -2a x -2=xx -a -x -2,所以h (x )在(2,a +2)上单调递减,在(a +2,+∞)上单调递增,当x →2时h (x )→+∞,当x →+∞时,h (x )→+∞,h (a +2)=-12a 2-2a ln a +2,记p (a )=-12a 2-2a ln a +2,则h (x )的值域为[p (a ),+∞),故2b ∈[p (a ),+∞)对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞恒成立,即2b ≥p (a )max ,而p ′(a )=-a -2ln a -2≤-12+2ln 2-2<0,故p (a )单调递减,所以p (a )≤p ⎝ ⎛⎭⎪⎫12=158+ln2,所以b ≥1516+12ln 2,故选A.6.(2017·张掖模拟)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎢⎡⎦⎥⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( ) A.⎝ ⎛⎭⎪⎫π3,4π3B.⎝ ⎛⎭⎪⎫-π3,4π3C.⎝⎛⎭⎪⎫0,π3 D.⎝ ⎛⎭⎪⎫-π3,π3解析:选D 令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x 2,即g (2cos x )>0,∴2cos x >1,又x ∈⎣⎢⎡⎦⎥⎤-π2,3π2,∴x ∈⎝ ⎛⎭⎪⎫-π3,π3.。
2018年高考数学人教A版 文科课时跟踪检测2 含解析 精
课时跟踪检测(二)[高考基础题型得分练]1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数答案:B解析:依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.设x∈R,则“1<x<2”是“|x-2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:由|x-2|<1得1<x<3,所以1<x<2⇒1<x<3;但1<x<3⇒/1<x<2,故选A.3.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3 B.2 C.1 D.0答案:C解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B ⊆∁U C”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要的条件答案:C解析:由Venn图易知充分性成立.反之,A∩B=∅时,由Venn 图(如图)可知,存在A=C,同时满足A⊆C,B⊆∁U C.故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.5.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:m ⊂α,m ∥β⇒/ α∥β,但m ⊂α,α∥β⇒m ∥β, ∴m ∥β是α∥β的必要不充分条件.6.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1答案:A解析:因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}为{a |a ≤0或a >1}的真子集,故选A.7.给定两个命题p ,q ,若綈p 是q 的必要而不充分条件,则p 是綈q 的________条件.答案:充分不必要解析:若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p ⇒/ q ,其逆否命题为p ⇒綈q 但綈q ⇒/ p ,所以p 是綈q 的充分不必要条件.8.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.答案:[0,2]解析:由已知易得{x |x 2-2x -3>0}为{x |x <m -1或x >m +1}的真子集,又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.9.已知函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案:充要解析:若f (x )=13x -1+a 是奇函数,则f (-x )=-f (x ),即f (-x )+f (x )=0,∴13-x -1+a +13x -1+a =2a +3x 1-3x +13x -1=0,即2a +3x -11-3x=0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12,代入得,f (-x )=-f (x ),f (x )是奇函数.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件.[冲刺名校能力提升练]1.已知a ,b ,c ∈R ,命题“如果a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .如果a +b +c ≠3,则a 2+b 2+c 2<3B .如果a +b +c =3,则a 2+b 2+c 2<3C .如果a +b +c ≠3,则a 2+b 2+c 2≥3D .如果a 2+b 2+c 2≥3,则a +b +c =3 答案:A解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故根据否命题的定义知选A.2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( ) A .①和② B .②和③ C .③和④ D .②和④答案:D解析:只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.3.在斜三角形ABC 中,命题甲:A =π6,命题乙:cos B ≠12,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:因为△ABC 为斜三角形,所以若A =π6,则B ≠π3且B ≠π2,所以cos B ≠12且cos B ≠0;反之,若cos B ≠12,则B ≠π3,不妨取B=π6,A =π4,C =7π12,满足△ABC 为斜三角形,故选A.4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案:(2,+∞)解析:A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<2x <8,x ∈R={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A 为B 的真子集, ∴m +1>3,即m >2.5.已知集合B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716, ∵x ∈⎣⎢⎡⎦⎥⎤34,2, ∴716≤y ≤2,∴A =⎩⎨⎧y ⎪⎪⎪⎭⎬⎫716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.。
2018年高考数学二轮复习课时跟踪检测(通用版)(二)文 Word版 含答案
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x +φ).又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A. 3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f (x )=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k +1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选 D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT=1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3解析:选 B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k。
通用版2018年高考数学二轮复习课时跟踪检测二十三文
课时跟踪检测(二十三)A 组——12+4提速练一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0 D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e x cos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1 B .1 C .3 D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13 B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞B .[3,+∞) C .[-2,3] D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x=13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0. 8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)。
通用版2018年高考数学二轮复习课时跟踪检测一文
课时跟踪检测(一)A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 为( ) A .-23B .23C .38D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38,故选C.2.已知向量a =(1,2),b =(2,-3).若向量c 满足c ⊥(a +b ),且b ∥(a -c ),则c =( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-79,73C.⎝ ⎛⎭⎪⎫79,-73D.⎝ ⎛⎭⎪⎫-79,-73解析:选A 设c =(x ,y ),由题可得a +b =(3,-1),a -c =(1-x,2-y ).因为c ⊥(a +b ),b ∥(a -c ),所以⎩⎪⎨⎪⎧3x -y =0,-y +-x =0,解得⎩⎪⎨⎪⎧x =79,y =73,故c =⎝ ⎛⎭⎪⎫79,73.3.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.4.(2017·西安模拟)已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( ) A .5 B .4 C .3D .1解析:选B 因为|a +b |=13,所以|a +b |2=a 2+2a ·b +b 2=13,即9+2×3×|b |cos 120°+|b |2=13,得|b |=4.5.(2018届高三·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( )A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( ) A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0,∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-23AB ―→-13BC ―→,故选D. 7.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( ) A.⎝⎛⎭⎪⎫32,12B.⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)解析:选B 设b =(cos α,sin α)(α∈(0,π)∪(π,2π)),则a ·b =(3,1)·(cos α,sin α)=3cos α+sin α=2sin ⎝⎛⎭⎪⎫π3+α=3,得α=π3,故b =⎝ ⎛⎭⎪⎫12,32.8.(2018届高三·广东五校联考)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-2解析:选A 由|a +b |=|a -b |可得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,所以a ·b =0,即a ·b =(λ,1)·(λ+2,1)=λ2+2λ+1=0,解得λ=-1.9.(2017·惠州调研)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A (OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,即CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→,∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形,故选A.。
通用版2018年高考数学二轮复习课时跟踪检测二十一文
课时跟踪检测(二十一)A 组——12+4提速练一、选择题1.(2017·沈阳质检)函数f (x )=ln(x 2+1)的图象大致是( )解析:选A 函数f (x )的定义域为R ,由f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x )知函数f (x )是偶函数,则其图象关于y 轴对称,排除C ;又由f (0)=ln 1=0,可排除B ,D.故选A.2.(2016·全国卷Ⅲ)已知a =243,b =323,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A a =243=423,b =323,c =2513=523. ∵y =x 23在第一象限内为增函数,又5>4>3,∴c >a >b .3.(2017·福州质检)已知a =16ln 8,b =12ln 5,c =ln 6-ln 2,则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B 因为a =16ln 8,b =12ln 5,c =ln 6-ln 2,所以a =ln 2,b =ln 5,c =ln62=ln 3.又对数函数y =ln x 在(0,+∞)上为单调递增函数,由2<3<5,得ln2<ln 3<ln 5,所以a <c <b ,故选B.4.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),故选C.5.某公司为激励创新,计划逐年加大研发资金投入,若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2020年B .2021年C .2022年D .2023年解析:选B 设2017年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n >200,得1.12n>2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2021年开始,该公司投入的研发资金开始超过200万元.6.函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是( ) A .0 B .1 C .2D .4解析:选C 当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍去)或x =-2,即在区间(-∞,0]上,函数只有一个零点.当x >0时,f (x )=2x -6+ln x ,f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增,而f (1)=-4<0,f (e)=2e -5>0,f (1)·f (e)<0,从而f (x )在(0,+∞)上只有一个零点.故函数f (x )的零点个数是2.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 8.(2017·贵阳检测)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域包含(0,+∞),因此对于方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围9.(2018届高三·河北五校联考)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n的最小值为( )A .2 2B .4 C.52D .92解析:选D 由函数y =log a (x +3)-1(a >0,且a ≠1)知,当x =-2时,y =-1,所以A 点的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2n m ·m n =92,当且仅当m =n =23时等号成立.所以2m +1n 的最小值为92,故选D.10.(2017·长春质检)已知定义域为R 的函数f (x )的图象经过点(1,1),且对任意实数x 1<x 2,都有f x 1-f x 2x 1-x 2>-2,则不等式f (log 2|3x -1|)<3-log 2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 令F (x )=f (x )+2x ,由对任意实数x 1<x 2,都有f x 1-f x 2x 1-x 2>-2,可得f (x 1)+2x 1<f (x 2)+2x 2,即F (x 1)<F (x 2),所以F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,f (log 2|3x-1|)<3-log 2|3x-1|等价于f (log 2|3x-1|)+2log 2|3x-1|<3,令t =log 2|3x -1|,则f (t )+2t <3,即F (t )<3,所以t <1,即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1,且x ≠0.故选A.11.(2017·石家庄模拟)已知函数f (x )=⎩⎪⎨⎪⎧x ln 1+x +x 2,x ≥0,-x ln 1-x +x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]解析:选D 若x >0,则-x <0,f (-x )=x ln(1+x )+x 2=f (x ),同理可得x <0时,f (-x )=f (x ),所以f (x )为偶函数.当x ≥0时,易知f (x )=x ln(1+x )+x 2为增函数,所以不等式f (-a )+f (a )≤2f (1)等价于2f (a )≤2f (1),即f (a )≤f (1),亦即f (|a |)≤f (1),则|a |≤1,12.(2017·合肥质检)设函数f (x )=⎩⎪⎨⎪⎧x -a 2+e ,x ≤2,xln x+a +10,x >2,(e 是自然对数的底数),若f (2)是函数f (x )的最小值,则a 的取值范围是( )A .[-1,6]B .[1,4]C .[2,4]D .[2,6]解析:选D 当x >2时,f (x )=x ln x +a +10,f ′(x )=ln x -1ln x 2,令f ′(x )>0,解得x >e ,令f ′(x )<0,解得x <e ,所以f (x )在(2,e)上单调递减,在(e ,+∞)上单调递增,即函数f (x )在x >2时的最小值为f (e);当x ≤2时,f (x )=(x -a )2+e 是对称轴方程为x =a 的二次函数,欲使f (2)是函数的最小值,则⎩⎪⎨⎪⎧a ≥2,f 2≤f e ,即⎩⎪⎨⎪⎧a ≥2,2-a2+e≤e+a +10,解得2≤a ≤6,故选D.二、填空题13.(2017·广州模拟)已知函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤0,1-log 2x ,x >0,若|f (a )|≥2,则实数a 的取值范围是________.解析:当a ≤0时,1-a ≥1,所以21-a≥2,即|f (a )|≥2恒成立;当a >0时,由|f (a )|≥2可得|1-log 2a |≥2,所以1-log 2a ≤-2或1-log 2a ≥2,解得a ≥8或0<a ≤12.综上,实数a的取值范围是⎝⎛⎦⎥⎤-∞,12∪[8,+∞). 答案:⎝⎛⎦⎥⎤-∞,12∪[8,+∞) 14.(2017·宝鸡质检)设函数f (x )=⎩⎪⎨⎪⎧2-x,x <1,log 2x ,x ≥1,若函数y =f (x )-k 有且只有两个零点,则实数k 的取值范围是________.解析:∵当x <1时,2-x >12,当x ≥1时,log 2x ≥0,依题意函数y =f (x )的图象和直线y=k 的交点有两个,∴k >12.答案:⎝ ⎛⎭⎪⎫12,+∞15.(2018届高三·广西三市联考)已知在(0,+∞)上函数f (x )=⎩⎪⎨⎪⎧-2,0<x <1,1,x ≥1,则不等式log 2x -(log 144x -1)·f (log 3x +1)≤5的解集为________.解析:原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -⎝ ⎛⎭⎪⎫log 144x -1≤5或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2log 144x -1≤5,解得1≤x ≤4或13<x <1,∴原不等式的解集为⎝ ⎛⎦⎥⎤13,4. 答案:⎝ ⎛⎦⎥⎤13,416.(2017·沈阳模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m=9.答案:9B 组——能力小题保分练1.(2017·长沙模拟)对于满足0<b ≤3a 的任意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca的取值范围是( ) A.⎝ ⎛⎦⎥⎤1,74 B .(1,2] C .[1,+∞)D .(2,+∞)解析:选 D 依题意,对于方程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c <b 24a,从而a +b -c a >a +b -b 24a a =1+b a -14⎝ ⎛⎭⎪⎫b a 2,对满足0<b ≤3a 的任意实数a ,b 恒成立.令t =ba ,因为0<b ≤3a ,所以0<t ≤3.因此1+b a -14⎝ ⎛⎭⎪⎫b a 2=-14t 2+t +1=-14(t -2)2+2∈(1,2],故a +b -c a>2.故选D.2.(2017·云南检测)已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选 D f (x )=2 017-(x -a )·(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d, 所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.3.已知f (x )是定义在R 上且以2为周期的偶函数,当0≤x ≤1时,f (x )=x 2.如果函数g (x )=f (x )-(x +m )有两个零点,则实数m 的值为( )A .2k (k ∈Z)B .2k 或2k +14(k ∈Z)C .0D .2k 或2k -14(k ∈Z)解析:选D 令g (x )=0得f (x )=x +m .①考虑函数f (x )在[0,1]上的图象,因为两个端点分别为(0,0),(1,1),所以过这两点的直线方程为y =x ,此时m =0;②考虑直线y =x +m 与f (x )=x 2(x ∈[0,1])的图象相切,与区间(1,2]上的函数图象相交,则此时直线与函数f (x )也是两个交点,即g (x )仍然有两个零点,可求得此时m =-14,切线方程为y =x -14.综上,由f (x )是定义在R 上且以2为周期的偶函数,得m =2k 或m =2k -14(k ∈Z).4.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≥0,log 3-x ,x <0,函数g (x )=[f (x )]2+f (x )+t ,t ∈R ,则下列判断不正确的是( )A .若t =14,则g (x )有一个零点B .若-2<t <14,则g (x )有两个零点C .若t <-2,则g (x )有四个零点D .若t =-2,则g (x )有三个零点解析:选C 作出函数f (x )的图象如图所示,当t =14时,由[f (x )]2+f (x )+t =0得f (x )=-12,结合图象知g (x )有一个零点,故A 正确;当-2<t <14时,由[f (x )]2+f (x )+t =0知f (x )的一个值小于-12,另一个值大于-12小于1,结合图象知g (x )有两个零点,故B 正确;当t <-2时,由[f (x )]2+f (x )+t =0知f (x )的一个值小于-2,另一个值大于1,结合图象知g (x )有三个零点,故C 不正确;当t =-2时,f (x )=1或-2,结合图象知,g (x )有三个零点,故D 正确.5.(2018届高三·广东五校联考)已知e 为自然对数的底数,若对任意的x 1∈[0,1],总存在唯一的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成立,则实数a 的取值范围是( )A .[1,e]B .(1,e]C.⎝ ⎛⎦⎥⎤1+1e ,eD.⎣⎢⎡⎦⎥⎤1+1e ,e 解析:选C 令f (x 1)=a -x 1,则f (x 1)=a -x 1在x 1∈[0,1]上单调递减,且f (0)=a ,f (1)=a -1.令g (x 2)=x 22e x 2,则g ′(x 2)=2x 2e x 2+x 22e x 2=x 2e x 2(x 2+2),且g (0)=0,g (-1)=1e,g (1)=e.若对任意的x 1∈[0,1],总存在唯一的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成立,即f (x 1)=g (x 2),则f (x 1)=a -x 1的最大值不能大于g (x 2)的最大值,即f (0)=a ≤e,因为g (x 2)在[-1,0]上单调递减,在(0,1]上单调递增,所以当g (x 2)∈⎝ ⎛⎦⎥⎤0,1e 时,存在两个x 2使得f (x 1)=g (x 2).若只有唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则f (x 1)的最小值要比1e 大,所以f (1)=a -1>1e ,即a >1+1e ,故实数a 的取值范围是1+1e,e ,故选C.6.已知函数f (x )=⎩⎪⎨⎪⎧-x x +1,-1<x ≤0,x ,0<x ≤1与g (x )=a (x +1)的图象在(-1,1]上有2个交点,若方程x -1x=5a 的解为正整数,则满足条件的实数a 的个数为________.解析:在同一坐标系中作出函数f (x )与g (x )的图象,结合图象可知,实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12.由x -1x =5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0可得a =0,不满足题意;当x=2时,由h(2)=4-10a-1=0可得a=310≤12,满足题意;当x=3时,由h(3)=9-15a-1=0可得a=815>12,不满足题意.又函数y=x-1x在(0,+∞)上单调递增,故满足条件的实数a的个数为1.答案:1。
通用版2018年高考数学二轮复习课时跟踪检测二十六理
课时跟踪检测(二十六)一、选择题1.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2B .2 2C .4D .4 2解析:选B 因为直线ax +by =1经过点(1,2),所以a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当a =2b =12时等号成立.2.(2018届高三·湖南五市十校联考)已知函数f (x )=x +sin x (x ∈R),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤14,34 B.⎣⎢⎡⎦⎥⎤14,1 C .[1,32-3]D.⎣⎢⎡⎭⎪⎫13,+∞ 解析:选A 函数f (x )=x +sin x (x ∈R)为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在其定义域内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即x 2-4x +1≤-y 2+2y -3,化简得(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为上半圆及其内部,如图所示.令k =y x +1=yx --,其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13--=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max=34,故选A. 3.(2017·石家庄质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( ) A .-1 B .-52+17C.13D .-75解析:选 D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.4.(2017·沈阳质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1,|log 2x -,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( )A .4B .5C .6D .7解析:选A 令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0的根的问题.令y =f (t )-2t -32=0,即f (t )=2t +32,如图①,由数形结合得t 1=0,1<t 2<2,如图②,再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以y =f [f (x )]-2f (x )-32共有4个零点.故选A.5.(2018届高三·湖北七市(州)联考)已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f n -4a n +1(n ∈N *)的最小值为( )A.374 B.358 C.283 D.485解析:选A 二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a =1,又a <0,∴a =-4,f (x )=x 2+4x ,∴f n -4a n +1=n 2+4n +16n +1=n +2+n ++13n +1=n +1+13n +1+2≥2n +113n +1+2=213+2,当且仅当n +1=13n +1,即n =13-1时等号成立,又n ∈N *,∴当n =4时,f n -4a n +1=485,n=3时,f n -4a n +1=374<485,∴最小值为374,故选A.6.(2018届高三·广东省五校联考)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f (x )g ′(x )>f ′(x )g (x ),f (x )=a x ·g (x )(a >0,a ≠1),fg+f -g -=52.在有穷数列⎩⎨⎧⎭⎬⎫f n gn (n =1,2,…,10)中,任意取正整数k (1≤k ≤10),则前k 项和大于1516的概率是( ) A.15 B.25 C.35 D.45解析:选C 由f (x )=a x·g (x ),可得a x=f xg x,⎣⎢⎡⎦⎥⎤f x g x ′=f xg x -f x gx[g x2<0,所以f xg x为减函数,所以0<a <1.由f g+f -g -=52,可得a +1a =52,解得a =12或a =2,又0<a <1,所以a =12.当a =12时,f n g n=⎝ ⎛⎭⎪⎫12n 是以12为首项,12为公比的等比数列,则前k 项和为12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12k =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 1-12=1-⎝ ⎛⎭⎪⎫12k .由1-⎝ ⎛⎭⎪⎫12k >1516可得k >4,即当5≤k ≤10时,前k 项和大于1516,故所求的概率为10-410=610=35,故选C. 二、填空题7.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x +λ)+λf (x )=0对任意实数x 都成立,则称f (x )是一个“λ伴随函数”.有下列关于“λ伴随函数”的结论:①f (x )=0是常数函数中唯一的“λ伴随函数”; ②f (x )=x 不是“λ伴随函数”; ③f (x )=x 2是一个“λ伴随函数”; ④“12伴随函数”至少有一个零点.其中不正确的是________.(填序号)解析:对于①,若f (x )=c ≠0,则取λ=-1,此时f (x +λ)+λf (x )=f (x -1)-f (x )=c -c =0,则f (x )=c ≠0是“-1伴随函数”,①错误;对于②,当f (x )=x 时,若f (x )是“λ伴随函数”,则f (x +λ)+λf (x )=0,即(x +λ)+λx =0对任意x 成立,易知不存在这样的λ,所以f (x )=x 不是“λ伴随函数”,②正确;对于③,若f (x )=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=0对任意实数x 都成立,易知不存在这样的λ,所以f (x )=x 2不是“λ伴随函数”,③错误;对于④,若f (x )是“12伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,有f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12均为0,则函数有零点,若f (0),f ⎝ ⎛⎭⎪⎫12均不为零,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知,函数在⎝ ⎛⎭⎪⎫0,12上一定有零点,④正确.答案:①③8.(2017·南昌模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧3x -2y -3≤0,x -3y +6≥0,2x +y -2≥0,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为________.解析:设在这两个实数x ,y 之间插入三个实数a 1,a 2,a 3,即x ,a 1,a 2,a 3,y 构成等差数列,所以这个等差数列后三项的和为a 2+a 3+y =x +y2+x +y2+y2+y =34(x +3y ),令z =x +3y ,作出不等式组表示的可行域,如图中阴影部分所示,将直线x +3y =0平移至A 处时,z 取最大值.由⎩⎪⎨⎪⎧3x -2y -3=0,x -3y +6=0,解得A (3,3),所以z max =3+3×3=12.所以(a 2+a 3+y )max =34(x+3y )max =34×12=9.答案:99.设定义在(0,+∞)上的单调函数f (x ),对任意的x ∈(0,+∞)都有f [f (x )-log 2x ]=3.若方程f (x )+f ′(x )=a 有两个不同的实数根,则实数a 的取值范围是________.解析:由于函数f (x )是单调函数,因此不妨设f (x )-log 2x =t ,则f (t )=3,再令x =t ,则f (t )-log 2t =t ,得log 2t =3-t ,解得t =2,故f (x )=log 2x +2,f ′(x )=1x ln 2.构造函数g (x )=f (x )+f ′(x )-a =log 2x +1x ln 2-a +2,∵方程f (x )+f ′(x )=a 有两个不同的实数根,∴g (x )有两个不同的零点.g ′(x )=1x ln 2-1x 2ln 2=1ln 2⎝ ⎛⎭⎪⎫x -1x 2,当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,又当x →0时,g (x )→+∞,当x →+∞时,g (x )→+∞,则若使g (x )有两个零点,必有g (x )min =g (1)=1ln 2-a +2<0,得a >1ln 2+2,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫1ln 2+2,+∞.答案:⎝⎛⎭⎪⎫1ln 2+2,+∞三、解答题10.(2017·福州模拟)已知函数f (x )=e x-ax +b (a ,b ∈R). (1)若f (x )在x =0处的极小值为2,求a ,b 的值;(2)设g (x )=f (x )+ln(x +1),当x ≥0时,g (x )≥1+b ,试求a 的取值范围. 解:(1)f ′(x )=e x-a , ∵f (x )在x =0处的极小值为2,∴⎩⎪⎨⎪⎧f =0,f =2,即⎩⎪⎨⎪⎧1-a =0,1+b =2,解得⎩⎪⎨⎪⎧a =1,b =1.(2)∵g (x )=f (x )+ln(x +1)=e x-ax +b +ln(x +1), ∴g ′(x )=1x +1+e x-a , 设h (x )=1x +1+e x -a ,则h ′(x )=e x-1x +2,当x ≥0时,e x≥1,1x +2≤1,∴h ′(x )=e x-1x +2≥0,∴h (x )=1x +1+e x-a 在[0,+∞)上为增函数. ∴h (x )≥h (0)=2-a ,即g ′(x )=1x +1+e x-a ≥2-a . ∴当a ≤2时,g ′(x )≥0,∴g (x )=e x-ax +b +ln(x +1)在[0,+∞)上为增函数, ∴当x ≥0时,g (x )≥g (0)=1+b ,符合题意;当a >2时,有h (0)=2-a <0,h (ln a )=11+ln a>0,h (0)·h (ln a )<0,则存在x 0∈(0,ln a ),使得h (x 0)=0,于是g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,则有g (x 0)<g (0)=1+b , 此时g (x )≥1+b 不恒成立,不符合题意. 综上,可得实数a 的取值范围为(-∞,2]. 11.(2017·张掖模拟)设函数f (x )=x 22-a ln x .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间和极值;(3)若函数f (x )在区间(1,e 2]内恰有两个零点,试求a 的取值范围. 解:(1)当a =1时,f (x )=x 22-ln x ,则f ′(x )=x -1x ,所以f ′(1)=0,又f (1)=12,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -12=0×(x -1),即y =12.(2)由f (x )=x 22-a ln x ,得f ′(x )=x -a x =x 2-ax(x >0).①当a ≤0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,函数既无极大值,也无极小值;②当a >0时,由f ′(x )=0,得x =a 或x =-a (舍去). 于是,当x 变化时,f ′(x )与f (x )的变化情况如下表:a-ln a2函数f (x )在x =a 处取得极小值f (a )=a-ln a2,无极大值.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞),函数f (x )既无极大值也无极小值;当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞),函数f (x )有极小值a-ln a2,无极大值.(3)当a ≤0时,由(2)知函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(1,e 2]内至多有一个零点,不合题意.当a >0时,由(2)知,当x ∈(0,a )时,函数f (x )单调递减;当x ∈(a ,+∞)时,函数f (x )单调递增,函数f (x )在(0,+∞)上的最小值为f (a )=a-ln a2.若函数f (x )在区间(1,e 2]内恰有两个零点,则需满足⎩⎪⎨⎪⎧1<a <e 2,fa,f ,f2,即⎩⎪⎨⎪⎧1<a <e 4,a -ln a2<0,12>0,e 42-2a ≥0,整理得⎩⎪⎨⎪⎧1<a <e 4,a >e ,a ≤e 44,所以e<a ≤e44.故所求a 的取值范围为⎝ ⎛⎦⎥⎤e ,e 44. 12.(2017·石家庄质检)已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值. 解:(1)F ′(x )=f ′(x )-g ′(x )=mx +1-1x +2=m x +-1x +2(x >-1). 当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m,函数F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减;令F ′(x )>0,得x >-1+1m,函数F (x )在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.(2)函数f (x )=m ln(x +1)的图象在点(a ,m ln(a +1))处的切线方程为y -m ln(a +1)=m a +1(x -a ),即y =m a +1x +m ln(a +1)-ma a +1.函数g (x )=xx +1的图象在点⎝ ⎛⎭⎪⎫b ,b b +1处的切线方程为y -bb +1=1b +2(x -b ),即y =1b +2x +b 2b +2.因为y =f (x )与y =g (x )的图象有且仅有一条公切线,所以⎩⎪⎨⎪⎧m a +1=1b +2, ①m a +-ma a +1=b2b +2, ②有唯一一对(a ,b )满足这个方程组,且m >0.由①得:a +1=m (b +1)2,代入②,消去a ,整理得: 2m ln(b +1)+2b +1+m ln m -m -1=0,关于b (b >-1)的方程有唯一解. 令g (b )=2m ln(b +1)+2b +1+m ln m -m -1, 则g ′(b )=2m b +1-2b +2=2[m b +-1]b +2, 因为m >0,所以g (b )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增,所以g (b )min =g ⎝ ⎛⎭⎪⎫-1+1m =m -m ln m -1,因为b →+∞时,g (b )→+∞,b →-1时,g (b )→+∞, 所以只需m -m ln m -1=0.令σ(m )=m -m ln m -1,则σ′(m )=-ln m 在(0,+∞)上为单调递减函数,且m =1时,σ′(m )=0,即σ(m )max =σ(1)=0,所以m =1时,关于b 的方程2m ln(b +1)+2b +1+m ln m -m -1=0有唯一解,此时a =b =0,公切线方程为y =x .。
2018版高考数学(人教A版理科)一轮复习课时跟踪检测21含答案
课时跟踪检测(二十一)1.计算:tan 15°+错误!=()A.错误!B.2C.4 D.2错误!答案:C解析:tan 15°+错误!=错误!+错误!=sin215°+cos215°sin 15°cos 15°=错误!=4.2.已知tan α=-错误!,则sin 2α=( )A.错误!B.-错误!C.-错误!D.错误!答案:B解析:sin 2α=错误!=错误!=错误!=-错误!.3.已知sin错误!=错误!,-错误!〈α〈0,则cos错误!的值是( )A。
错误!B.错误!C.-错误!D.1答案:C解析:由已知得cos α=错误!,sin α=-错误!,cos错误!=错误!cos α+错误!sin α=-错误!.4.tan 错误!-错误!=()A.4 B.-4C.2 3 D.-23答案:D解析:∵tan 错误!=tan错误!=错误!=错误!=2-错误!,∴tan 错误!-错误!=2-错误!-错误!=-2错误!。
5.已知cos错误!=错误!,则sin错误!的值是()A.错误!B.错误!C.-错误!D.-错误!答案:A 解析:sin错误!=sin错误!=cos错误!错误!-θ错误!=错误!。
6.在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C =1-错误!,则角A的值为()A。
错误!B.错误!C.π2D.错误!答案:A解析:由题意知,sin A=-错误!cos B·cos C=sin(B+C)=sin B·cos C+cos B·sin C,等式-错误!cos B·cos C=sin B·cos C+cos B·sin C两边同除以cos B·cos C,得tan B+tan C=-错误!,又tan (B+C)=错误!=-1=-tan A,即tan A=1,所以A=错误!。
2018年高考数学二轮复习专题(通用版)课时跟踪检测十一文科数学(含答案)
课时跟踪检测(十一)一、选择题1.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:选 C 由三视图知,该几何体是一个长方体的一半再截去一个三棱锥后得到的,如图所示,该几何体的体积V =12×4×3×5-13×12×4×3×(5-2)=24,故选C.2.(2017·西安模拟)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12 cm ,深2 cm 的空穴,则该球的表面积是( )A .100π cm 2B .200π cm 2C.400π3cm 2D .400π cm 2解析:选D 设球的半径为r ,如图所示阴影部分以上为浸入水中部分,由勾股定理可知,r 2=(r -2)2+62,解得r =10.所以球的表面积为4πr2=4π×100=400π cm 2.3.(2018届高三·湖南五市十校联考)圆锥的母线长为L ,过顶点的最大截面的面积为12L 2,则圆锥底面半径与母线长的比rL的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎭⎪⎫0,22 D.⎣⎢⎡⎭⎪⎫22,1 解析:选D 设圆锥的高为h ,过顶点的截面的顶角为θ,则过顶点的截面的面积S =12L 2sinθ,而0<sin θ≤1,所以当sin θ=1,即截面为等腰直角三角形时取最大值,故圆锥的轴截面的顶角必须大于或等于90°,得L >r ≥L cos 45°=22L ,所以22≤r L<1.4.(2017·太原模拟)如图,已知在多面体ABC DEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .8解析:选B 过点C 作CM ∥AB ,过点B 作BM ∥AC ,且BM ∩CM =M ,取DG 的中点N ,连接FM ,FN ,CN ,CF ,如图所示.易知ABMC DEFN 是长方体,且三棱锥F BCM 与三棱锥C FGN 的体积相等,故几何体的体积等于长方体的体积4.故选B.5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:选B 设圆柱底面圆半径为r 尺,高为h 尺,依题意,圆柱体积V =πr 2h ≈3×r 2×1313=2 000×1.62,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.6.(2017·沈阳质检)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD=CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD ,PQ ⊥QR .设AB =BD =CD =1,CP =x (0≤x ≤1),则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =AP AC =3-x3,所以QR =3-x 3,所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3,又由题知PR ⊥BD ,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,结合选项知选A.二、填空题7.有一个倒圆锥形容器,它的轴截面是顶角的余弦值为0.5的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为________.解析:如图所示,作出轴截面,因轴截面是顶角的余弦值为0.5的等腰三角形,所以顶角为60°,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π·(3r )23r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π⎝ ⎛⎭⎪⎫33h 2·h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .答案:315r8.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为________.解析:设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°=2,因为OO 1⊥平面ABC ,所以OA 2=OO 21+r 2,即R 2=⎝ ⎛⎭⎪⎫32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π.答案:64π9.(2017·云南调研)已知四棱锥P ABCD 的所有顶点都在体积为500π81的球面上,底面ABCD是边长为2的正方形,则四棱锥P ABCD 体积的最大值为________.。
[推荐学习]通用版2018年高考数学二轮复习课时跟踪检测二十理
课时跟踪检测(二十)一、选择题1.若过点P (2,1)的直线l 与圆C :x 2+y 2+2x -4y -7=0相交于两点A ,B ,且∠ACB =60°(其中C 为圆心),则直线l 的方程是( )A .4x -3y -5=0B .x =2或4x -3y -5=0C .4x -3y +5=0D .x =2或4x -3y +5=0解析:选B 由题意可得,圆C 的圆心为C (-1,2),半径为23,因为∠ACB =60°,所以△ABC 为正三角形,边长为23,所以圆心C 到直线l 的距离为3.若直线l 的斜率不存在,则直线l 的方程为x =2,与圆相交,且圆心C 到直线l 的距离为3,满足条件;若直线l 的斜率存在,设l :y -1=k (x -2),则圆心C 到直线l 的距离d =|3k +1|k 2+1=3,解得k =43,所以此时直线l 的方程为4x -3y -5=0.2.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0 B .x 2+y 2-x +7y -16=0 C .x 2+y 2-4x +4y +9=0 D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0,即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0,其圆心坐标为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.3.(2017·洛阳统考)已知双曲线E :x 24-y 22=1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,则l 的方程为( )A .4x +y -1=0B .2x +y =0C .2x +8y +7=0D .x +4y +3=0解析:选C 依题意,设点A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214-y 212=1,x 224-y222=1,两式相减得x 21-x 224=y 21-y 222,即y 1-y 2x 1-x 2=12×x 1+x 2y 1+y 2.又线段AB 的中点坐标是⎝ ⎛⎭⎪⎫12,-1,因此x 1+x 2=1,y 1+y 2=-2,x 1+x 2y 1+y 2=-12,则y 1-y 2x 1-x 2=-14,即直线AB 的斜率为-14,直线l 的方程为y +1=-14⎝⎛⎭⎪⎫x -12,即2x +8y +7=0,故选C.4.(2017·云南统考)抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若OA ―→·AF ―→=-4,则点A 的坐标是( )A .(-1,2)或(-1,-2)B .(1,2)或(1,-2)C .(1,2)D .(1,-2)解析:选B 设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-p2.曲线E 的方程可化为(x -3)2+(y +2)2=16,由题意知圆心E 到准线的距离d =3+p2=4,解得p =2,所以抛物线M 的方程为y 2=4x ,F (1,0).设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA ―→=⎝ ⎛⎭⎪⎫y 204,y 0,AF ―→=⎝ ⎛⎭⎪⎫1-y 204,-y 0,所以OA ―→·AF ―→=y 204⎝ ⎛⎭⎪⎫1-y 204-y 20=-4,解得y 0=±2,所以x 0=1,所以点A 的坐标为(1,2)或(1,-2),故选B.5.(2017·成都模拟)已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB ―→|=2,OC ―→=53OA―→-23OB ―→.若M 是线段AB 的中点,则OC ―→·OM ―→的值为( ) A .3 B .2 3 C .2D .-3解析:选 A 由条件易知△OAB 为正三角形,OA ―→·OB ―→=|OA ―→|·|OB ―→|·cos π3=2.又由M 为AB 的中点,知OM ―→=12(OA ―→+OB ―→),所以OC ―→·OM ―→=⎝ ⎛⎭⎪⎫53 OA ―→-23OB ―→·12(OA ―→+OB ―→)=12⎝ ⎛⎭⎪⎫53|OA ―→|2+OA ―→·OB ―→-23|OB ―→|2=3.6.(2017·武昌调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF ―→与FB ―→反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:选C 由题可知,双曲线的实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=b a ,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan 2α=|AB ||OA |,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan 2α=-2tan α1-tan 2α=|AB ||OA |=m 34m =43,解得b a=2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =c a= 5. 二、填空题7.设P ,Q 分别为圆x 2+y 2-8x +15=0和抛物线y 2=4x 上的点,则P ,Q 两点间的最小距离是________.解析:由题意知,圆的标准方程为(x -4)2+y 2=1,则圆心C (4,0),半径为1.由题意知P ,Q 间的最小距离为圆心C (4,0)到抛物线上的点的最小距离减去半径1.设以(4,0)为圆心,r 为半径的圆的方程为(x -4)2+y 2=r 2,与y 2=4x 联立,消去y 整理得,x 2-4x +16-r 2=0,令Δ=16-4(16-r 2)=0,解得r =23,所以|PQ |min =23-1.答案:23-18.(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:法一:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知 |AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .联立⎩⎪⎨⎪⎧x 2a 2-y 2b2=1,x 2=2py消去x ,得a 2y 2-2pb 2y +a 2b 2=0, 所以y 1+y 2=2pb 2a 2,所以2pb2a2=p ,即b 2a 2=12,故b a =22, 所以双曲线的渐近线方程为y =±22x . 法二:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p.由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,得k AB =y 2-y 1x 2-x 1=b 2x 1+x 2a 2y 1+y 2=b 2a 2·x 1+x 2p ,则b 2a 2·x 1+x 2p =x 2+x 12p , ∴b 2a 2=12,故b a =22, ∴双曲线的渐近线方程为y =±22x . 答案:y =±22x 9.(2017·洛阳统考)已知抛物线C :x 2=4y 的焦点为F ,直线AB 与抛物线C 相交于A ,B 两点,若2OA ―→+OB ―→-3OF ―→=0,则弦AB 中点到抛物线C 的准线的距离为________.解析:依题意得,抛物线的焦点F (0,1),准线方程是y =-1,因为2(OA ―→-OF ―→)+(OB ―→-OF ―→)=0,即2FA ―→+FB ―→=0,所以F ,A ,B 三点共线.设直线AB :y =kx +1(k ≠0),A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0,则x 1x 2=-4;①又2FA ―→+FB ―→=0,因此2x 1+x 2=0.②由①②解得x 21=2,x 22=8,弦AB 的中点到抛物线C 的准线的距离为12[]y 1++y 2+=12(y 1+y 2)+1=18(x 21+x 22)+1=94.答案:94三、解答题10.(2017·合肥质检)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M ⎝⎛⎭⎪⎫1,233,离心率为33. (1)求椭圆E 的标准方程;(2)若A 1,A 2分别是椭圆E 的左、右顶点,过点A 2作直线l 与x 轴垂直,点P 是椭圆E 上的任意一点(不同于椭圆E 的四个顶点),连接PA 1交直线l 于点B ,点Q 为线段A 2B 的中点,求证:直线PQ 与椭圆E 只有一个公共点.解:(1)依题意得,⎩⎪⎨⎪⎧e =c a =33,1a +43b =1,a 2=b 2+c 2,解得⎩⎨⎧a =3,b =2,c =1,∴椭圆E 的标准方程为x 23+y 22=1.(2)证明:设P (x 0,y 0)(x 0≠0且x 0≠±3),则直线PA 1的方程为y =y 0x 0+3(x +3),令x =3, 得B ⎝⎛⎭⎪⎫3,23y 0x 0+3, 则线段A 2B 的中点Q ⎝⎛⎭⎪⎫3,3y 0x 0+3,∴直线PQ 的斜率k PQ =y 0-3y 0x 0+3x 0-3=x 0y 0x 20-3. ①∵P 是椭圆E 上的点,∴x 203+y 202=1,即x 2=3⎝ ⎛⎭⎪⎫1-y 202,代入①式,得k PQ =-2x 03y 0,∴直线PQ 的方程为y -y 0=-2x 03y 0(x -x 0),将其与椭圆方程联立, 得⎩⎪⎨⎪⎧y -y 0=-2x03y 0x -x 0,x 23+y 22=1.又2x 20+3y 20=6,整理得x 2-2x 0x +x 20=0, ∵Δ=0,∴直线PQ 与椭圆E 相切,即直线PQ 与椭圆E 只有一个公共点.11.(2018届高三·广西三市联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝ ⎛⎭⎪⎫1,32,∴1a 2+94b 2=1, ①∵椭圆C 关于直线x =c 对称的图形过坐标原点, ∴a =2c ,∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝ ⎛⎭⎪⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎪⎨⎪⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0), ∴y 1+y 2=-3m 3m 2+4,∴y 0=y 1+y 22=-3m m 2+,∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m4m 2+4.当m =0时,k =0; 当m ≠0时,k =m4m 2+4=14m +4m, ∵⎪⎪⎪⎪⎪⎪4m +4m =4|m |+4|m |≥8,∴0<1⎪⎪⎪⎪⎪⎪4m +4m ≤18, ∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综上可知,直线MA 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-18,18.12.已知F 1,F 2为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上,且|PF 1|+|PF 2|=4.(1)求椭圆E 的方程;(2)过F 1的直线l 1,l 2分别交椭圆E 于A ,C 和B ,D ,且l 1⊥l 2,问是否存在常数λ,使得1|AC |,λ,1|BD |成等差数列?若存在,求出λ的值,若不存在,请说明理由.解:(1)∵|PF 1|+|PF 2|=4, ∴2a =4,a =2.∴椭圆E :x 24+y 2b 2=1.将P ⎝ ⎛⎭⎪⎫1,32代入可得b 2=3,∴椭圆E 的方程为x 24+y 23=1.(2)①当AC 的斜率为零或斜率不存在时,1|AC |+1|BD |=13+14=712;②当AC 的斜率k 存在且k ≠0时,设AC 的方程为y =k (x +1),代入椭圆方程x 24+y 23=1,并化简得(3+4k 2)x 2+8k 2x +4k 2-12=0. 设A (x 1,y 1),C (x 2,y 2), 则x 1+x 2=-8k23+4k ,x 1·x 2=4k 2-123+4k 2.|AC |=1+k 2|x 1-x 2|=+k2[x 1+x 22-4x 1x 2]=+k 23+4k2.∵直线BD 的斜率为-1k,∴|BD |=12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-1k 23+4⎝ ⎛⎭⎪⎫-1k 2=+k 23k 2+4.∴1|AC |+1|BD |=3+4k2+k 2+3k 2+4+k 2=712. 综上,2λ=1|AC |+1|BD |=712,∴λ=724.故存在常数λ=724,使得1|AC |,λ,1|BD |成等差数列.。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测21Word版含解析
课时跟踪检测(二十一)[高考基础题型得分练]1.[2017·河北张家口模拟]计算:tan 15°+1tan 15°=( ) A. 2 B .2 C .4 D .2 2答案:C解析:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =sin 215°+cos 215°sin 15°cos 15°=112sin 30°=4. 2.[2017·江西九江一模]已知tan α=-35,则sin 2α=( ) A.1517 B .-1517 C .-817 D.817答案:B解析:sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=2×⎝ ⎛⎭⎪⎫-35⎝ ⎛⎭⎪⎫-352+1=-1517. 3.[2017·山西四校联考]已知sin ⎝⎛⎭⎪⎫π2+α=12,-π2<α<0,则cos ⎝⎛⎭⎪⎫α-π3的值是( )A.12B.23C .-12D .1答案:C解析:由已知,得cos α=12,sin α=-32, cos ⎝ ⎛⎭⎪⎫α-π3=12cos α+32sin α=-12. 4.[2017·山东济宁期末]tan π12-1tan π12等于( )A .4B .-4C .2 3D .-2 3答案:D解析:∵tan π12=tan ⎝⎛⎭⎪⎫π3-π4=tan π3-tan π41+tan π3·tan π4=3-11+3=2-3,∴tan π12-1tan π12=2-3-12-3=-2 3.5.[2016·广东广州二测]已知cos ⎝ ⎛⎭⎪⎫π12-θ=13,则sin ⎝ ⎛⎭⎪⎫5π12+θ的值是( )A.13 B.223 C .-13 D .-223答案:A解析:sin ⎝ ⎛⎭⎪⎫5π12+θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-θ =cos (π12-θ )=13.6.[2017·甘肃兰州检测]在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4 B.π3 C.π2 D.3π4答案:A解析:由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A , 即tan A =1,所以A =π4.7.[2016·陕西宝鸡模拟]已知cos ⎝⎛⎭⎪⎫π4+θcos ⎝⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值为________.答案:58解析:因为cos ⎝⎛⎭⎪⎫π4+θcos ⎝⎛⎭⎪⎫π4-θ=⎝ ⎛⎭⎪⎫22cos θ-22sin θ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=⎝⎛⎭⎪⎫1-cos 2θ22+⎝ ⎛⎭⎪⎫1+cos 2θ22=116+916=58. 8.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.答案:-142解析:解法一:∵sin α=12+cos α, ∴sin α-cos α=12,∴2sin ⎝⎛⎭⎪⎫α-π4=12,∴sin ⎝ ⎛⎭⎪⎫α-π4=24.又∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α-π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴cos ⎝ ⎛⎭⎪⎫α-π4=144, ∴cos 2α=-sin 2⎝ ⎛⎭⎪⎫α-π4 =-2sin ⎝ ⎛⎭⎪⎫α-π4cos ( α-π4 ) =-2×24×144=-74, ∴cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-7424=-142.解法二:∵sin α=12+cos α, ∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14, ∴2sin αcos α=34, ∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α =1+34=72,∴cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=(cos α+sin α)(cos α-sin α)22(sin α-cos α) =-2(sin α+cos α)=-142.9.[2017·安徽合肥质检]已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值.解:(1)∵cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝⎛⎭⎪⎫2α+π3=-14,∴sin ⎝ ⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=12.(2)∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α∈⎝⎛⎭⎪⎫2π3,π,又由(1)知sin 2α=12, ∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.10.[2017·湖南常德模拟]已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝ ⎛⎭⎪⎫θ+π8的值. 解:(1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角),∴f (x )min =-2+m 2=-2,∴m = 2. 由题意知函数f (x )的最小正周期为π, ∴2πω=π,∴ω=2. (2)由(1),得f (x )=2sin 2x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65, ∴sin ⎝ ⎛⎭⎪⎫θ+π4=35,∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-1-sin 2⎝ ⎛⎭⎪⎫θ+π4 =-45,∴sin θ=sin ⎝ ⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4cos π4-cos ( θ+π4 )sin π4=7210,∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4=2sin ⎝ ⎛⎭⎪⎫2θ+π2=2cos 2θ=2(1-2sin 2θ)=2×⎣⎢⎡⎦⎥⎤1-2×⎝⎛⎭⎪⎫72102=-4825. [冲刺名校能力提升练]1.[2017·河北模拟]已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32答案:D解析:由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74, ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin 2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.2.[2017·安徽十校联考]已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( ) A.1+358 B.1+538 C.1-358 D.1-538答案:A解析:由7sin α=2cos 2α,得7sin α=2(1-2sin 2α), 即4sin 2α+7sin α-2=0,解得sin α=-2(舍去)或sin α=14, 又由α为锐角,可得cos α=154, ∴sin ⎝ ⎛⎭⎪⎫α+π3=12sin α+32cos α=1+358,故选A.3.[2017·福建宁德一模]已知α为第二象限角,sin α+cos α=33,则cos 2α=________.答案:-53解析:∵sin α+cos α=33,两边平方,得1+sin 2α=13,∴sin 2α=-23, ∴(sin α-cos α)2=1-sin 2α=53, ∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=153,∴cos 2α=-(sin α-cos α)(sin α+cos α) =-153×33=-53.4.[2017·河北承德二模]已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x 4,函数f (x )=m·n . (1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足a cos C +12c =b ,求f (2B )的取值范围.解:f (x )=3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12.(1)由f (x )=1,可得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,则cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=2sin 2⎝ ⎛⎭⎪⎫x2+π6-1=-12.(2)由余弦定理及a cos C +c2=b ,可得 b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =π3, ∴B +C =2π3.又∵△ABC 是锐角三角形,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,∴π3<B +π6<2π3, 又f (2B )=sin ⎝ ⎛⎭⎪⎫B +π6+12, ∴1+32<f (2B )≤32.∴f (2B )的取值范围是⎝ ⎛⎦⎥⎤1+32,32.。
2018年高考数学二轮复习课时跟踪检测(通用版)(二十四)文 Word版 含答案
课时跟踪检测(二十四)1.(2016·全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1).(1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围.解:(1)f (x )的定义域为(0,+∞).当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2. 故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1 x +1>0. 设g (x )=ln x -a x -1 x +1, 则g ′(x )=1x -2a x +1 2=x 2+2 1-a x +1x x +1 2,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1- a -1 2-1,x 2=a -1+ a -1 2-1. 由x 2>1和x 1x 2=1得0<x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<g (1)=0.综上,a 的取值范围是(-∞,2].2.已知函数f (x )=ln x +t x -s (s ,t ∈R).(1)讨论f (x )的单调性及最值;(2)当t =2时,若函数f (x )恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4. 解:(1)f ′(x )=x -t x 2(x >0), 当t ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,f (x )无最值;当t >0时,由f ′(x )<0,得x <t ,由f ′(x )>0,得x >t ,f (x )在(0,t )上单调递减,在(t ,+∞)上单调递增,故f (x )在x =t 处取得最小值,最小值为f (t )=ln t +1-s ,无最大值.(2)∵f (x )恰有两个零点x 1,x 2(0<x 1<x 2),∴f (x 1)=ln x 1+2x 1-s =0,f (x 2)=ln x 2+2x 2-s =0, 得s =2x 1+ln x 1=2x 2+ln x 2,∴2 x 2-x 1 x 1x 2=ln x 2x 1, 设t =x 2x 1>1,则ln t =2 t -1 tx 1,x 1=2 t -1 t ln t, 故x 1+x 2=x 1(t +1)=2 t 2-1 t ln t , ∴x 1+x 2-4=2⎝ ⎛⎭⎪⎫t 2-1t -2ln t ln t ,记函数h (t )=t 2-1t-2ln t , ∵h ′(t )= t -1 2t 2>0, ∴h (t )在(1,+∞)上单调递增,∵t >1,∴h (t )>h (1)=0,又t =x 2x 1>1,ln t >0,故x 1+x 2>4成立.3.(2017·宝鸡质检)函数f (x )=ln x -12ax 2-2x . (1)若a =8,求f (x )的单调区间;(2)若a >-1,对任意的a ,总存在某个x 0∈[2,3],使得f (x 0)-b <0成立,求实数b 的取值范围.解:(1)f ′(x )=-8x 2+2x -1x=- 4x -1 2x +1 x(x >0), x ∈⎝ ⎛⎭⎪⎫0,14时,f ′(x )>0,f (x )单调递增; x ∈⎝ ⎛⎭⎪⎫14,+∞时,f ′(x )<0,f (x )单调递减. 故f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,14, 单调递减区间为⎝ ⎛⎭⎪⎫14,+∞. (2)首先,对于任意a ∈(-1,+∞),都存在某个x 0∈[2,3],使得f (x 0)-b <0成立,则b >⎝ ⎛⎭⎪⎫ln x 0-12ax 20-2x 0max , 因为函数h (a )=ln x 0-12ax 20-2x 0=-12x 20a -2x 0+ln x 0在(-1,+∞)上是减函数, 所以h (a )<h (-1)=12x 20-2x 0+ln x 0, ∴b ≥12x 20-2x 0+ln x 0. 其次,存在x 0∈[2,3],使得不等式b ≥12x 20-2x 0+ln x 0成立,于是b ≥ ⎝ ⎛⎭⎪⎫12x 2-2x +ln x min , 令g (x )=12x 2-2x +ln x , 则g ′(x )=x -2+1x = x -1 2x≥0, 所以函数g (x )在[2,3]上是增函数,于是g (x )min =g (2)=ln 2-2,故b ≥ln 2-2,即b 的取值范围是[ln 2-2,+∞).4.(2017·广州模拟)已知函数f (x )=ln x +a x (a >0).(1)若函数f (x )有零点,求实数a 的取值范围;(2)证明:当a ≥2e时,f (x )>e -x . 解:(1)由题意知,函数f (x )=ln x +a x的定义域为(0,+∞). 由f (x )=ln x +a x ,得f ′(x )=1x -a x 2=x -a x 2. 因为a >0,所以x ∈(0,a )时,f ′(x )<0;x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.所以f (x )min =f (a )=ln a +1.又f (1)=ln 1+a =a >0,所以当ln a +1≤0,即0<a ≤1e时,函数f (x )有零点. 所以实数a 的取值范围为⎝ ⎛⎦⎥⎤0,1e .(2)证明:要证当a ≥2e时,f (x )>e -x , 即证当x >0,a ≥2e 时,ln x +a x>e -x , 即证x ln x +a >x e -x.令h (x )=x ln x +a ,则h ′(x )=ln x +1.当0<x <1e 时,h ′(x )<0;当x >1e 时,h ′(x )>0, 所以函数h (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. 所以h (x )min =h ⎝ ⎛⎭⎪⎫1e =-1e +a . 故当a ≥2e 时,h (x )≥-1e +a ≥1e. ① 令φ(x )=x e -x ,则φ′(x )=e -x -x e -x =e -x (1-x ).当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0.所以函数φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(x )max =φ(1)=1e. 故当x >0时, φ(x )≤1e . ②显然,不等式①②中的等号不能同时成立.故当a ≥2e时,f (x )>e -x . 5.(2017·惠州调研)已知函数f (x )=1x+a ln x (a ≠0,a ∈R). (1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围.解:(1)当a =1时,f (x )=1x +ln x ,f ′(x )=-1x 2+1x =x -1x 2. f (x )的定义域为(0,+∞),由f ′(x )<0得0<x <1,由f ′(x )>0,得x >1.所以当x =1时,f (x )取得极小值f (1)=1,无极大值,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,即f (x )在区间(0,e]上的最小值小于0.由已知得,f ′(x )=-1x 2+a x =ax -1x 2,且a ≠0, 当a <0时,f ′(x )<0恒成立,即f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e =1e+a , 由1e +a <0,得a <-1e ,即a ∈⎝⎛⎭⎪⎫-∞,-1e . 当a >0时,令f ′(x )=0,得x =1a. ①若e≤1a ,即0<a ≤1e时,则f ′(x )≤0对x ∈(0,e]恒成立,所以f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e =1e+a >0, 显然,f (x )在区间(0,e]上的最小值小于0不成立.②若0<1a <e ,即a >1e 时,则当0<x <1a时,f ′(x )<0, 当1a<x ≤e 时,f ′(x )>0, 故函数f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增. 所以f (x )在区间(0,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a, 由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a=a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞). 综上可知,a ∈⎝ ⎛⎭⎪⎫-∞,-1e ∪()e ,+∞.。
2018年高考数学二轮复习课时跟踪检测(通用版)(二十二)文 Word版 含答案
课时跟踪检测(二十二)A 组——12+4提速练一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当 x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R 上定义运算:x ⊗y =x (1-y ).若不等式(x -a )⊗(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:选C 由题知(x -a )⊗(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.3.已知正数a ,b 的等比中项是2,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6解析:选C 由正数a ,b 的等比中项是2,可得ab =4,又m =b +1a ,n =a +1b,所以m+n =a +b +1a +1b =a +b +a +b ab =54(a +b )≥54×2ab =5,当且仅当a =b =2时等号成立,故m +n 的最小值为5.4.(2017·合肥质检)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y的最大值为( )A .5B .6 C.132D .7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即⎝ ⎛⎭⎪⎫32,52时,z 取得最大值,z max =32+2×52=132,故选C.5.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3, 所以z =x -y 的取值范围是[-3,2].6.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.7.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( ) A .8 B .4 C .2D .1解析:选B ∵a 2+b 2+c 2=4,∴2ab +2bc +2ac ≤(a 2+b 2)+(b 2+c 2)+(a 2+c 2)=2(a 2+b 2+c 2)=8,∴ab +bc +ac ≤4(当且仅当a =b =c =233时等号成立),∴ab +bc +ac 的最大值为4.8.(2017·惠州调研)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,故选B.9.当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx-y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,y -4=x ,得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2),由⎩⎪⎨⎪⎧ x +2y =2,x -7y =2,得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0),由⎩⎪⎨⎪⎧y -4=x ,x -7y =2,得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1),要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A.12万元C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线z =3x +4y 过点B (2,3)时,z 取最大值18,故该企业每天可获得的最大利润为18万元.11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞) 解析:选B 由题可知,1=1x +4y ≥24xy=4xy,即xy ≥4,于是有m 2-3m >x +y4≥xy≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,解得m <-1或m >4,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.(2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-4716,2 B.⎣⎢⎡⎦⎥⎤-4716,3916 C .[-23,2]D.⎣⎢⎡⎦⎥⎤-23,3916 解析:选A 法一:根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x2+a 恒成立,结合图象,只需x 2-x +3≥-⎝ ⎛⎭⎪⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x 2+3+a =0,Δ=⎝ ⎛⎭⎪⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a ,又x 2+2x ≥2,当且仅当x 2=2x,即x =2时等号成立,所以a ≤2. 综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-4716,2.法二:关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 在R 上恒成立等价于-f (x )≤a +x2≤f (x ),即-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立,令g (x )=-f (x )-x2.若x ≤1,则g (x )=-(x 2-x +3)-x2=-x 2+x2-3=-⎝ ⎛⎭⎪⎫x -142-4716,当x =14时,g (x )max =-4716;若x >1,则g (x )=-⎝ ⎛⎭⎪⎫x +2x -x 2=-⎝ ⎛⎭⎪⎫3x 2+2x ≤-23,当且仅当3x 2=2x ,且x >1,即x =233时,等号成立,故g (x )max =-2 3. 综上,g (x )max =-4716.令h (x )=f (x )-x2,若x ≤1,则h (x )=x 2-x +3-x 2=x 2-32x +3=⎝ ⎛⎭⎪⎫x -342+3916, 当x =34时,h (x )min =3916;若x >1,则h (x )=x +2x -x 2=x 2+2x≥2,当且仅当x 2=2x,且x >1,即x =2时,等号成立,故h (x )min =2. 综上,h (x )min =2.。
通用版2018年高考数学二轮复习课时跟踪检测二十一理
课时跟踪检测(二十一)A 组——12+4提速练一、选择题 1.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:选C 由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,π+x ,x ≤0,则下列结论正确的是( )A .函数f (x )是偶函数B .函数f (x )是减函数C .函数f (x )是周期函数D .函数f (x )的值域为[-1,+∞)解析:选D 由函数f (x )的解析式,知f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数.当x >0时,f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x ) ∈[-1,1].所以函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).故选D.3.(2017·合肥模拟) 函数y =x 2ln |x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D.4.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象.因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A ,C ,D ,故选B.5.(2017·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x|x |D .y =x -1x解析:选D 选项A ,B 是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.故选D.6.(2017·陕西质检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( ) A .-1 B .0 C .1D .-2解析:选B 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-[-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,故选B.7.函数y =ln |x |x 2+1x2在[-2,2]上的图象大致为( )解析:选B 当x ∈(0,2]时,函数y =ln |x |+1x 2=ln x +1x2,x 2>0恒成立,令g (x )=ln x +1,则g (x )在(0,2]上单调递增,当x =1e时,y =0,则当x ∈⎝⎛⎭⎪⎫0,1e时,y =ln x +1x2<0,x ∈⎝ ⎛⎦⎥⎤1e,2时,y =ln x +1x 2>0,∴函数y =ln x +1x 2在(0,2]上只有一个零点1e,排除A ,C ,D ,只有选项B 符合题意.8.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数. 因为f (x )在R 上单调递增,f (0)=0, 所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3), 20.8<2=log 24<log 25.1<log 28=3, 所以b <a <c .9.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.故选D.10.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0,若方程f (x )=x +a有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A x ≤0时,f (x )=2-x-1, 0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故当x >0时,f (x )是周期函数,f (x )的图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).11.(2018届高三·广西三市联考)已知函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧e x ,x ≤4,4e 5-x,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),则m 的取值范围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2C .(ln 2,2]D.⎝ ⎛⎦⎥⎤1,72+ln 2解析:选D 作出函数y 1=e|x -2|和y =g (x )的图象,如图所示,由图可知当x =1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e5-x,得e2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.12.(2017·洛阳统考)已知函数f (x )=⎩⎪⎨⎪⎧a -x +4-2a ,x <1,1+log 2x ,x ≥1.若f (x )的值域为R ,则实数a 的取值范围是( )A .(1,2]B .(-∞,2]C .(0,2]D .[2,+∞)解析:选A 依题意,当x ≥1时,f (x )=1+log 2x 单调递增,f (x )=1+log 2x 在区间[1,+∞)上的值域是[1,+∞).因此,要使函数f (x )的值域是R ,则需函数f (x )在(-∞,1)上的值域M ⊇(-∞,1).①当a -1<0,即a <1时,函数f (x )在(-∞,1)上单调递减,函数f (x )在(-∞,1)上的值域M =(-a +3,+∞),显然此时不能满足M ⊇(-∞,1),因此a <1不满足题意;②当a -1=0,即a =1时,函数f (x )在(-∞,1)上的值域M ={2},此时不能满足M ⊇(-∞,1),因此a =1不满足题意;③当a -1>0,即a >1时,函数f (x )在(-∞,1)上单调递增,函数f (x )在(-∞,1)上的值域M =(-∞,-a +3),由M ⊇(-∞,1)得{ a >1,-a +3≥1,解得1<a ≤2.综上所述,满足题意的实数a 的取值范围是(1,2],故选A.二、填空题13.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:614.(2017·陕西质检)已知函数f (x )=1|x |-1,下列关于函数f (x )的结论:①y =f (x )的值域为R ;②y =f (x )在(0,+∞)上单调递减; ③y =f (x )的图象关于y 轴对称;④y =f (x )的图象与直线y =ax (a ≠0)至少有一个交点. 其中正确结论的序号是________.解析:函数f (x )=1|x |-1=⎩⎪⎨⎪⎧1x -1,x ≥0,1-x -1,x <0,其图象如图所示,由图象可知f (x )的值域为(-∞,-1)∪(0,+∞),故①错;f (x )在(0,1)和(1,+∞)上单调递减,而在(0,+∞)上不是单调的,故②错;f (x )的图象关于y 轴对称,故③正确;由于f (x )在每个象限都有图象,所以与过原点的直线y =ax (a ≠0)至少有一个交点,故④正确.答案:③④15.(2017·惠州调研)已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个结论: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中正确结论的序号为________.解析:f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝ ⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝ ⎛⎭⎪⎫-32+x ,又f ⎝ ⎛⎭⎪⎫-32+x =-f ⎝ ⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故正确结论的序号为①②③.答案:①②③16.(2017·合肥质检)函数f (x )=-x 3+3x 2-ax -2a ,若存在唯一的正整数x 0,使得f (x 0)>0,则a 的取值范围是________.解析:由f (x )>0可得,a (x +2)<-x 3+3x 2,原问题等价于不等式a (x +2)<-x 3+3x2的解集中只包含唯一的正整数,结合函数g (x )=a (x +2),h (x )=-x 3+3x 2的图象(图略)可知唯一的正整数只可能是1或2.若x 0=1,则⎩⎪⎨⎪⎧a >0,gh ,gh ,即⎩⎪⎨⎪⎧a >0,4a ≥4,3a <2,解得a ∈∅;若x 0=2,则⎩⎪⎨⎪⎧a >0,gh ,g h,即⎩⎪⎨⎪⎧a >0,4a <4,解得23≤a <1,3a ≥2,答案:⎣⎢⎡⎭⎪⎫23,1 B 组——能力小题保分练1.(2017·郑州质检)函数f (x )=1-2x1+2x cos x 的图象大致为()解析:选C 依题意,f (-x )=1-2-x 1+2-x cos(-x )=2x-2-x 2x+2-xcos x =2x-12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x <0,cos x >0,f (x )<0,结合选项知,C 正确,故选C.2.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).3.(2017·成都模拟)已知函数f (x )=a x(a >0,a ≠1)的反函数的图象经过点⎝⎛⎭⎪⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (π)<g (2)<g (3)C .g (2)<g (3)<g (π)D .g (2)<g (π)<g (3)解析:选C 因为函数f (x )的反函数的图象经过点⎝⎛⎭⎪⎫22,12,所以函数f (x )的图象经过点⎝ ⎛⎭⎪⎫12,22,所以a 12=22,即a =12,函数f (x )在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且g (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知在[-2,6]上距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选C.4.(2017·广州模拟)已知函数f (x )=x 3-32x 2+34x +18,则20161k f =∑ ⎝ ⎛⎭⎪⎫k 2 017的值为( )A .0B .504C .1 008D .2 016解析:选B 因为f (1-x )=(1-x )3-32(1-x )2+34(1-x )+18=-x 3+32x 2-34x +38,所以f (x )+f (1-x )=x 3-32x 2+34x +18-x 3+32x 2-34x +38=12,所以2 0161k f =∑⎝ ⎛⎭⎪⎫k 2 017=f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017=1 008×⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=1 008×12=504.故选B. 5.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =________.解析:依题意得,曲线y =f (x )即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.答案:236.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④2f (x )d x =π+12. 其中判断正确的序号是________.(写出所有正确的序号)解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每过4个单位长度图象重复出现一次,且在区间[2,3]上其函数值随x 增大而增大,所以①②正确,③错误;又函数图象与直线x =0,x =2,x 轴围成的图形由一个半径为2、圆心角为π4的扇形,一个半径为1、圆心角为π2的扇形和一个直角边长为1的等腰直角三角形组成,其面积S =18×π×2+14×π+12=π+12,所以④正确.答案:①②④。
(课标通用)2018年高考数学一轮复习课时跟踪检测21理
课时跟踪检测(二十一)[高考基础题型得分练]1.[2017·河北张家口模拟]计算:tan 15°+1tan 15°=( )A. 2 B .2 C .4 D .2 2答案:C解析:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15°=sin 215°+cos 215°sin 15°cos 15°=112si n 30°=4. 2.[2017·江西九江一模]已知tan α=-35,则sin 2α=( )A.1517B .-1517C .-817D .817答案:B解析:sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=2×⎝ ⎛⎭⎪⎫-35⎝ ⎛⎭⎪⎫-352+1=-1517.3.[2017·山西四校联考]已知sin ⎝ ⎛⎭⎪⎫π2+α=12,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π3的值是( )A.12 B .23 C .-12D .1答案:C解析:由已知得cos α=12,sin α=-32,cos ⎝⎛⎭⎪⎫α-π3=12cos α+32sin α=-12.4.[2017·山东济宁期末]tan π12-1tanπ12=( )A .4B .-4C .2 3D .-2 3答案:D解析:∵tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tan π3-tanπ41+tan π3·tanπ4=3-11+3=2-3, ∴tan π12-1tanπ12=2-3-12-3=-2 3. 5.[2016·广东广州二测]已知cos ⎝ ⎛⎭⎪⎫π12-θ=13,则sin ⎝ ⎛⎭⎪⎫5π12+θ的值是( ) A.13 B .223C .-13D .-223答案:A 解析:sin ⎝ ⎛⎭⎪⎫5π12+θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-θ= cos (π12-θ )=13. 6.[2017·甘肃兰州检测]在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tanC =1-2,则角A 的值为( )A.π4B .π3C .π2D .3π4答案:A解析:由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sinC ,等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.7.[2016·陕西宝鸡模拟]已知cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值为________.答案:58解析:因为cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=⎝⎛⎭⎪⎫22cos θ-22sin θ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=⎝ ⎛⎭⎪⎫1-cos 2θ22+⎝ ⎛⎭⎪⎫1+cos 2θ22=116+916=58. 8.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________. 答案:-142解析:解法一:∵sin α=12+cos α,∴sin α-cos α=12,∴2sin ⎝ ⎛⎭⎪⎫α-π4=12,∴sin ⎝ ⎛⎭⎪⎫α-π4=24.又∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α-π4∈⎝ ⎛⎭⎪⎫-π4,π4, ∴cos ⎝⎛⎭⎪⎫α-π4=144, ∴cos 2α=-sin 2⎝ ⎛⎭⎪⎫α-π4=-2sin ⎝ ⎛⎭⎪⎫α-π4·cos ( α-π4 )=-2×24×144=-74, ∴cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-7424=-142.解法二:∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α =1+34=72, ∴cos 2αsin ⎝ ⎛⎭⎪⎫α-π4= cos α+sin α cos α-sin α22sin α-cos α=-2(sin α+cos α)=-142. 9. 如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos Asin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D2的值.(1)证明:tan A 2=sin A2cos A 2=2sin 2A22sin A 2cosA 2=1-cos Asin A .(2)解:由A +C =180°,得C =180°-A ,D =180°-B . 由(1),有tan A 2+tan B 2+tan C 2+tan D2=1-cos A sin A +1-cos B sin B +1-cos 180°-A sin 180°-A +1-cos 180°-Bsin 180°-B=2sin A +2sin B. 连接BD (图略).在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A ,在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A ,则cos A =AB 2+AD 2-BC 2-CD 22 AB ·AD +BC ·CD =62+52-32-422 6×5+3×4=37. 于是sin A =1-cos 2A = 1-⎝ ⎛⎭⎪⎫372=2107. 连接AC ,同理可得cos B =AB 2+BC 2-AD 2-CD 22 AB ·BC +AD ·CD =62+32-52-422 6×3+5×4 =119,于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=61019.所以tan A 2+tan B 2+tan C2+tan D2=2sin A +2sin B =2×7210+2×19610=4103.10.[2017·湖南常德模拟]已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝ ⎛⎭⎪⎫θ+π8的值.解:(1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2. 由题意知,函数f (x )的最小正周期为π, ∴2πω=π,∴ω=2. (2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65,∴sin ⎝ ⎛⎭⎪⎫θ+π4=35.∵θ∈⎝⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-1-sin 2⎝⎛⎭⎪⎫θ+π4=-45,∴sin θ=sin ⎝⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4cos π4-cos ( θ+π4 )sin π4=7210,∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4 =2sin ⎝ ⎛⎭⎪⎫2θ+π2=2cos 2θ =2(1-2sin 2θ)=2⎣⎢⎡⎦⎥⎤1-2×⎝⎛⎭⎪⎫72102=-4825. [冲刺名校能力提升练]1.[2017·河北模拟]已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=( )A.23 B .43 C .34 D .32答案:D解析:由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74, ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin 2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.2.[2017·安徽十校联考]已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358 B .1+538C .1-358D .1-538答案:A解析:由7sin α=2cos 2α,得7sin α=2(1-2sin 2α), 即4sin 2α+7sin α-2=0,解得sin α=-2(舍去)或sin α=14,又由α为锐角,可得cos α=154, ∴sin ⎝ ⎛⎭⎪⎫α+π3=12sin α+32cos α=1+358, 故选A.3.[2017·福建宁德一模]已知α为第二象限角,sin α+cos α=33,则cos 2α=________.答案:-53解析:∵sin α+cos α=33, 两边平方,得1+sin 2α=13,∴sin 2α=-23,∴(sin α-cos α)2=1-sin 2α=53,∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=153, ∴cos 2α=-(sin α-cos α)(sin α+cos α) =-153×33=-53. 4.化简下列各式: (1)1-sin 20°sin 10°-221+cos 20°;(2)1+sin θ1-sin θ-1-sin θ1+sin θ;(3)1+cos α+cos 2α+cos 3αcos 2α-sin2α2.解:(1)原式=cos 10-sin 10° 2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.(2)原式=⎝ ⎛⎭⎪⎫sin θ2+cos θ22⎝ ⎛⎭⎪⎫sin θ2-cos θ22-⎝ ⎛⎭⎪⎫sin θ2-cos θ22⎝⎛⎭⎪⎫sin θ2+cos θ22=⎪⎪⎪⎪⎪⎪sin θ2+cos θ2⎪⎪⎪⎪⎪⎪sin θ2-cos θ2-⎪⎪⎪⎪⎪⎪sin θ2-cos θ2⎪⎪⎪⎪⎪⎪sin θ2+cos θ2 =⎝ ⎛⎭⎪⎫sin θ2+cos θ22-⎝ ⎛⎭⎪⎫sin θ2-cos θ22⎪⎪⎪⎪⎪⎪sin θ2-cos θ2⎪⎪⎪⎪⎪⎪sin θ2+cos θ2=4sin θ2cosθ2⎪⎪⎪⎪⎪⎪sin 2θ2-cos 2θ2=2sin θ|cos θ|.(3)原式= 1+cos 2α +cos 2α-α +cos 2α+α cos 2α-1-cos α2=2cos 2α+2cos 2αcos α2cos 2α+cos α-12 =2cos α cos α+cos 2α2cos 2α+cos α-12=2cos α cos α+2cos 2α-1 2cos 2α+cos α-12 =4cos α.。
通用版高考数学二轮复习课时跟踪检测十八文2.doc
课时跟踪检测(十八)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值;(2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 0-qy 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -消去y 得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k2.x 0=8k 23+4k 2,y 0=-6k3+4k2. 消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.3.(2017·宁波模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点P (-2,0)与点(1,1).(1)求椭圆的方程;(2)过P 点作两条互相垂直的直线PA ,PB ,交椭圆于A ,B ,求证:直线AB 经过定点.解:(1)由题意得,⎩⎪⎨⎪⎧4a 2+0b2=1,1a 2+1b 2=1,解得a 2=4,b 2=43,椭圆的方程为x 24+3y24=1.(2)证明:由对称性知,若存在定点,则必在x 轴上, 当k PA =1时,l PA :y =x +2,∴⎩⎪⎨⎪⎧y =x +2,x 2+3y 2=4,∴x 2+3(x 2+4x +4)=4⇒x =-1. 以下验证:定点为(-1,0),由题意知,直线PA ,PB 的斜率均存在,设直线PA 的方程为y =k (x +2),A (x A ,y A ),B (x B ,y B ). 则x 2+3k 2(x 2+4x +4)=4⇒x A =2-6k 21+3k2,y A =4k1+3k2, 同理x B =2k 2-6k 2+3,y B =-4kk 2+3,则y Ax A +1=4k 3-3k 2=y B x B +1,得证. 4.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 2x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km 1+2k 2,x 1x 2=m 2-1+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).5.(2017·台州模拟)如图,已知椭圆C :x 24+y 2=1,过点P (1,0)作斜率为k 的直线l ,且直线l 与椭圆C 交于两个不同的点M ,N .(1)设点A (0,2),k =1,求△AMN 的面积;(2)设点B (t,0),记直线BM ,BN 的斜率分别为k 1,k 2.问是否存在实数t ,使得对于任意非零实数k ,(k 1+k 2)·k 为定值?若存在,求出实数t 的值及该定值;若不存在,请说明理由.解:(1)当k =1时,直线l 的方程为y =x -1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =x -1,得x =0或x =85,当x =0时,y =-1, 当x =85时,y =35,不妨设N (0,-1),M ⎝ ⎛⎭⎪⎫85,35.所以|AN |=3.所以S △AMN =12×3×85=125.(2)由题意知,直线MN 的方程为y =k (x -1), 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -,得(1+4k 2)x 2-8k 2x +4k 2-4=0.所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.由k 1=y 1x 1-t,k 2=y 2x 2-t,得(k 1+k 2)·k =k ⎝ ⎛⎭⎪⎫y 1x 1-t +y 2x 2-t=k 2⎝ ⎛⎭⎪⎫x 1-1x 1-t +x 2-1x 2-t=k 2x 1-tx 2-+x 2-t x 1-x 1-t x 2-t=k 2[2x 1x 2-t +x 1+x 2+2t ]x 1x 2-t x 1+x 2+t 2=k 2t -k2-8t +4t 2+t 2-4. 若2t -8=0,则t =4,(k 1+k 2)·k =0为定值. 若2t -8≠0,则当t 2-4=0, 即t =±2时,(k 1+k 2)·k =2t -84-8t +4t2为定值.所以当t =4时,(k 1+k 2)·k =0; 当t =2时,(k 1+k 2)·k =-1; 当t =-2时,(k 1+k 2)·k =-13.。
2018年高考数学二轮复习课时跟踪检测(通用版)(四)理 Word版 含答案
课时跟踪检测(四)1.(2018届高三·西安八校联考)已知△ABC 内接于单位圆,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos A =c cos B +b cos C .(1)求cos A 的值;(2)若b 2+c 2=4,求△ABC 的面积.解:(1)∵2a cos A =c cos B +b cos C ,∴2sin A cos A =sin C cos B +sin B cos C ,即2sin A cos A =sin(B +C )=sin A .又0<A <π,∴sin A ≠0.∴2cos A =1,∴cos A =12. (2)由(1)知cos A =12,∴sin A =32. ∵a sin A=2,∴a =2sin A = 3. 由a 2=b 2+c 2-2bc cos A ,得bc =b 2+c 2-a 2=4-3=1,∴S △ABC =12bc sin A =12×1×32=34.2.(2017·兰州模拟)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0.(1)求角A 的大小;(2)若a =25,b =2,求△ABC 的面积S .解:(1)∵a sin B +b cos A =0,∴sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,∴sin B ≠0,∴sin A +cos A =0,∴2sin ⎝⎛⎭⎪⎫A +π4=0,而A 为三角形的内角,∴A =3π4. (2)在△ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ×⎝ ⎛⎭⎪⎫-22,解得c =-42(舍)或c =22, ∴S =12bc sin A =12×2×22×22=2. 3.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos 30°=74,故PA =72. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin 150°=sin αsin 30°-α, 化简得3cos α=4sin α.所以tan α=34,即tan ∠PBA =34. 4.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B 2. (1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .解:(1)由题设及A +B +C =π得sin B =8sin 2B2, 即sin B =4(1-cos B ),故17cos 2B -32cos B +15=0,解得cos B =1517,cos B =1(舍去). (2)由cos B =1517,得sin B =817, 故S △ABC =12ac sin B =417ac . 又S △ABC =2,则ac =172. 由余弦定理及a +c =6得 b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.5.如图,已知D 是△ABC 的边BC 上一点.(1)若cos ∠ADC =-210,∠B =π4,且AB =DC =7,求AC 的长; (2)若∠B =π6,AC =25,求△ABC 面积的最大值. 解:(1)因为cos ∠ADC =-210, 所以cos ∠ADB =cos(π-∠ADC )=-cos ∠ADC =210,所以sin ∠ADB =7210. 在△ABD 中,由正弦定理,得AD =AB ·sin∠B sin ∠ADB =7×227210=5, 所以在△ACD 中,由余弦定理,得AC =AD 2+DC 2-2AD ·DC cos ∠ADC =52+72-2×5×7×⎝ ⎛⎭⎪⎫-210=74+7 2. (2)在△ABC 中,由余弦定理,得AC 2=20=AB 2+BC 2-2AB ·BC cos ∠B =AB 2+BC 2-3AB ·BC ≥(2-3)AB ·BC ,所以AB ·BC ≤202-3=40+203, 所以S △ABC =12AB ·BC sin ∠B ≤10+53, 所以△ABC 面积的最大值为10+5 3.。
(通用版)2018年高考数学二轮复习课时跟踪检测(二十六)理
课时跟踪检测(二十六)一、选择题1.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2B .2 2C .4D .4 2解析:选B 因为直线ax +by =1经过点(1,2),所以a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当a =2b =12时等号成立.2.(2018届高三·湖南五市十校联考)已知函数f (x )=x +sin x (x ∈R),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤14,34 B.⎣⎢⎡⎦⎥⎤14,1 C .[1,32-3]D.⎣⎢⎡⎭⎪⎫13,+∞ 解析:选A 函数f (x )=x +sin x (x ∈R)为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在其定义域内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即x 2-4x +1≤-y 2+2y -3,化简得(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为上半圆及其内部,如图所示.令k =y x +1=yx --,其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13--=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max=34,故选A. 3.(2017·石家庄质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( ) A .-1 B .-52+17C.13D .-75解析:选 D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.4.(2017·沈阳质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1,|log 2x -,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( )A .4B .5C .6D .7解析:选A 令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0的根的问题.令y =f (t )-2t -32=0,即f (t )=2t +32,如图①,由数形结合得t 1=0,1<t 2<2,如图②,再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以y =f [f (x )]-2f (x )-32共有4个零点.故选A.5.(2018届高三·湖北七市(州)联考)已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f n -4a n +1(n ∈N *)的最小值为( )A.374 B.358 C.283 D.485解析:选A 二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a =1,又a <0,∴a =-4,f (x )=x 2+4x ,∴f n -4a n +1=n 2+4n +16n +1=n +2+n ++13n +1=n +1+13n +1+2≥2n +13n +1+2=213+2,当且仅当n +1=13n +1,即n =13-1时等号成立,又n ∈N *,∴当n =4时,f n -4a n +1=485,n=3时,f n -4a n +1=374<485,∴最小值为374,故选A.6.(2018届高三·广东省五校联考)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f (x )g ′(x )>f ′(x )g (x ),f (x )=a x ·g (x )(a >0,a ≠1),fg+f -g -=52.在有穷数列⎩⎨⎧⎭⎬⎫f n gn (n =1,2,…,10)中,任意取正整数k (1≤k ≤10),则前k 项和大于1516的概率是( ) A.15 B.25 C.35 D.45解析:选C 由f (x )=a x·g (x ),可得a x=f xg x,⎣⎢⎡⎦⎥⎤f x g x ′=f xg x -f x gx[g x2<0,所以f xg x为减函数,所以0<a <1.由f g+f -g -=52,可得a +1a =52,解得a =12或a =2,又0<a <1,所以a =12.当a =12时,f n g n=⎝ ⎛⎭⎪⎫12n 是以12为首项,12为公比的等比数列,则前k 项和为12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12k =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 1-12=1-⎝ ⎛⎭⎪⎫12k .由1-⎝ ⎛⎭⎪⎫12k >1516可得k >4,即当5≤k ≤10时,前k 项和大于1516,故所求的概率为10-410=610=35,故选C. 二、填空题7.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x +λ)+λf (x )=0对任意实数x 都成立,则称f (x )是一个“λ伴随函数”.有下列关于“λ伴随函数”的结论:①f (x )=0是常数函数中唯一的“λ伴随函数”; ②f (x )=x 不是“λ伴随函数”; ③f (x )=x 2是一个“λ伴随函数”; ④“12伴随函数”至少有一个零点.其中不正确的是________.(填序号)解析:对于①,若f (x )=c ≠0,则取λ=-1,此时f (x +λ)+λf (x )=f (x -1)-f (x )=c -c =0,则f (x )=c ≠0是“-1伴随函数”,①错误;对于②,当f (x )=x 时,若f (x )是“λ伴随函数”,则f (x +λ)+λf (x )=0,即(x +λ)+λx =0对任意x 成立,易知不存在这样的λ,所以f (x )=x 不是“λ伴随函数”,②正确;对于③,若f (x )=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=0对任意实数x 都成立,易知不存在这样的λ,所以f (x )=x 2不是“λ伴随函数”,③错误;对于④,若f (x )是“12伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,有f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12均为0,则函数有零点,若f (0),f ⎝ ⎛⎭⎪⎫12均不为零,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知,函数在⎝ ⎛⎭⎪⎫0,12上一定有零点,④正确.答案:①③8.(2017·南昌模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧3x -2y -3≤0,x -3y +6≥0,2x +y -2≥0,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为________.解析:设在这两个实数x ,y 之间插入三个实数a 1,a 2,a 3,即x ,a 1,a 2,a 3,y 构成等差数列,所以这个等差数列后三项的和为a 2+a 3+y =x +y2+x +y2+y2+y =34(x +3y ),令z =x +3y ,作出不等式组表示的可行域,如图中阴影部分所示,将直线x +3y =0平移至A 处时,z 取最大值.由⎩⎪⎨⎪⎧3x -2y -3=0,x -3y +6=0,解得A (3,3),所以z max =3+3×3=12.所以(a 2+a 3+y )max =34(x+3y )max =34×12=9.答案:99.设定义在(0,+∞)上的单调函数f (x ),对任意的x ∈(0,+∞)都有f [f (x )-log 2x ]=3.若方程f (x )+f ′(x )=a 有两个不同的实数根,则实数a 的取值范围是________.解析:由于函数f (x )是单调函数,因此不妨设f (x )-log 2x =t ,则f (t )=3,再令x =t ,则f (t )-log 2t =t ,得log 2t =3-t ,解得t =2,故f (x )=log 2x +2,f ′(x )=1x ln 2.构造函数g (x )=f (x )+f ′(x )-a =log 2x +1x ln 2-a +2,∵方程f (x )+f ′(x )=a 有两个不同的实数根,∴g (x )有两个不同的零点.g ′(x )=1x ln 2-1x 2ln 2=1ln 2⎝ ⎛⎭⎪⎫x -1x 2,当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,又当x →0时,g (x )→+∞,当x →+∞时,g (x )→+∞,则若使g (x )有两个零点,必有g (x )min =g (1)=1ln 2-a +2<0,得a >1ln 2+2,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫1ln 2+2,+∞.答案:⎝⎛⎭⎪⎫1ln 2+2,+∞三、解答题10.(2017·福州模拟)已知函数f (x )=e x-ax +b (a ,b ∈R). (1)若f (x )在x =0处的极小值为2,求a ,b 的值;(2)设g (x )=f (x )+ln(x +1),当x ≥0时,g (x )≥1+b ,试求a 的取值范围. 解:(1)f ′(x )=e x-a , ∵f (x )在x =0处的极小值为2,∴⎩⎪⎨⎪⎧f =0,f =2,即⎩⎪⎨⎪⎧1-a =0,1+b =2,解得⎩⎪⎨⎪⎧a =1,b =1.(2)∵g (x )=f (x )+ln(x +1)=e x-ax +b +ln(x +1), ∴g ′(x )=1x +1+e x-a , 设h (x )=1x +1+e x -a ,则h ′(x )=e x-1x +2,当x ≥0时,e x≥1,1x +2≤1,∴h ′(x )=e x-1x +2≥0,∴h (x )=1x +1+e x-a 在[0,+∞)上为增函数. ∴h (x )≥h (0)=2-a ,即g ′(x )=1x +1+e x-a ≥2-a . ∴当a ≤2时,g ′(x )≥0,∴g (x )=e x-ax +b +ln(x +1)在[0,+∞)上为增函数, ∴当x ≥0时,g (x )≥g (0)=1+b ,符合题意;当a >2时,有h (0)=2-a <0,h (ln a )=11+ln a>0,h (0)·h (ln a )<0,则存在x 0∈(0,ln a ),使得h (x 0)=0,于是g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,则有g (x 0)<g (0)=1+b , 此时g (x )≥1+b 不恒成立,不符合题意. 综上,可得实数a 的取值范围为(-∞,2]. 11.(2017·张掖模拟)设函数f (x )=x 22-a ln x .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间和极值;(3)若函数f (x )在区间(1,e 2]内恰有两个零点,试求a 的取值范围. 解:(1)当a =1时,f (x )=x 22-ln x ,则f ′(x )=x -1x ,所以f ′(1)=0,又f (1)=12,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -12=0×(x -1),即y =12.(2)由f (x )=x 22-a ln x ,得f ′(x )=x -a x =x 2-ax(x >0).①当a ≤0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,函数既无极大值,也无极小值;②当a >0时,由f ′(x )=0,得x =a 或x =-a (舍去). 于是,当x 变化时,f ′(x )与f (x )的变化情况如下表:a-ln a2函数f (x )在x =a 处取得极小值f (a )=a-ln a2,无极大值.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞),函数f (x )既无极大值也无极小值;当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞),函数f (x )有极小值a-ln a2,无极大值.(3)当a ≤0时,由(2)知函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(1,e 2]内至多有一个零点,不合题意.当a >0时,由(2)知,当x ∈(0,a )时,函数f (x )单调递减;当x ∈(a ,+∞)时,函数f (x )单调递增,函数f (x )在(0,+∞)上的最小值为f (a )=a-ln a2.若函数f (x )在区间(1,e 2]内恰有两个零点,则需满足⎩⎪⎨⎪⎧1<a <e 2,fa,f ,f2,即⎩⎪⎨⎪⎧1<a <e 4,a -ln a2<0,12>0,e 42-2a ≥0,整理得⎩⎪⎨⎪⎧1<a <e 4,a >e ,a ≤e 44,所以e<a ≤e44.故所求a 的取值范围为⎝ ⎛⎦⎥⎤e ,e 44. 12.(2017·石家庄质检)已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值. 解:(1)F ′(x )=f ′(x )-g ′(x )=mx +1-1x +2=m x +-1x +2(x >-1). 当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m,函数F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减;令F ′(x )>0,得x >-1+1m,函数F (x )在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.(2)函数f (x )=m ln(x +1)的图象在点(a ,m ln(a +1))处的切线方程为y -m ln(a +1)=m a +1(x -a ),即y =m a +1x +m ln(a +1)-ma a +1.函数g (x )=xx +1的图象在点⎝ ⎛⎭⎪⎫b ,b b +1处的切线方程为y -bb +1=1b +2(x -b ),即y =1b +2x +b 2b +2.因为y =f (x )与y =g (x )的图象有且仅有一条公切线,所以⎩⎪⎨⎪⎧m a +1=1b +2, ①m a +-ma a +1=b2b +2, ②有唯一一对(a ,b )满足这个方程组,且m >0.由①得:a +1=m (b +1)2,代入②,消去a ,整理得: 2m ln(b +1)+2b +1+m ln m -m -1=0,关于b (b >-1)的方程有唯一解. 令g (b )=2m ln(b +1)+2b +1+m ln m -m -1, 则g ′(b )=2m b +1-2b +2=2[m b +-1]b +2, 因为m >0,所以g (b )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增,所以g (b )min =g ⎝ ⎛⎭⎪⎫-1+1m =m -m ln m -1,因为b →+∞时,g (b )→+∞,b →-1时,g (b )→+∞, 所以只需m -m ln m -1=0.令σ(m )=m -m ln m -1,则σ′(m )=-ln m 在(0,+∞)上为单调递减函数,且m =1时,σ′(m )=0,即σ(m )max =σ(1)=0,所以m =1时,关于b 的方程2m ln(b +1)+2b +1+m ln m -m -1=0有唯一解,此时a =b =0,公切线方程为y =x .。
2018年高中数学全一册课时跟踪检测(打包21套)新人教A版选修2_2
课时跟踪检测(一)变化率问题导数的概念层级一学业水平达标1.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆B.抛物线C.椭圆D.直线解析:选D 当f(x)=b时,瞬时变化率li m△x-0ΔyΔx=li m△x-0b-bΔx=0,所以f(x)的图象为一条直线.2.设函数y=f(x)=x2-1,当自变量x由1变为1.1时,函数的平均变化率为( ) A.2.1 B.1.1C.2 D.0解析:选A ΔyΔx=f 1.1 -f 11.1-1=0.210.1=2.1.3.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b解析:选C f′(x0)=li m△x-0f x0+Δx -f x0Δx=li m△x-0(a+b²Δx)=a.4.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( ) A.6 B.18C.54 D.81解析:选B ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-3²32=18Δt+3(Δt)2.∴ΔsΔt=18+3Δt.∴li m△x-0ΔsΔt=li m△x-0(18+3Δt)=18,故应选B.5.已知f(x)=x2-3x,则f′(0)=( )A.Δx-3 B.(Δx)2-3Δx C.-3 D.0解析:选C f′(0)=li m△x-0 0+Δx 2-3 0+Δx -02+3³0Δx=li m△x-0 Δx 2-3ΔxΔx=li m△x-0(Δx-3)=-3.故选C.6.设f (x )=ax +4,若f ′(1)=2,则a =________. 解析:∵f ′(1)=li m △x -0 f 1+Δx -f 1Δx=li m △x -0a 1+Δx +4- a +4Δx=a ,∴a =2.答案:27.汽车行驶的路程s 和时间t 之间的函数图象如图,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为________.解析:v 1=k OA ,v 2=k AB ,v 3=k BC , 由图象知k OA <k AB <k BC . 答案:v 1<v 2<v 38.球的半径从1增加到2时,球的体积平均膨胀率为______. 解析:∵Δy =43π³23-43π³13=28π3,∴Δy Δx =28π32-1=28π3. 答案:28π39.质点按规律s (t )=at 2+1做直线运动(s 单位:m ,t 单位:s).若质点在t =2时的瞬时速度为8 m /s ,求常数a 的值.解:∵Δs =s (2+Δt )-s (2)=[a (2+Δt )2+1]-(a ³22+1)=4a Δt +a (Δt )2,∴Δs Δt =4a +a Δt ,∴在t =2时,瞬时速度为li m △x -0ΔsΔt=4a,4a =8,∴a =2. 10.已知函数f (x )=⎩⎪⎨⎪⎧-1x ,x >0,1+x 2,x ≤0求f ′(4)²f ′(-1)的值.解:当x =4时,Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx 4+Δx +2.∴Δy Δx =124+Δx 4+Δx +2. ∴li m Δx →0 Δy Δx =li m Δx →0124+Δx 4+Δx +2 =12³4³ 4+2 =116.∴f ′(4)=116.当x =-1时,Δy Δx =f -1+Δx -f -1Δx=1+ -1+Δx 2-1- -12Δx =Δx -2,由导数的定义,得f ′(-1)=li m Δx →0 (Δx -2)=-2, ∴f ′(4)²f ′(-1)=116³(-2)=-18.层级二 应试能力达标1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx等于( ) A .4 B .4x C .4+2ΔxD .4+2(Δx )2解析:选 C Δy Δx =f 1+Δx -f 1 Δx =2 1+Δx 2-4+2Δx =2 Δx 2+4ΔxΔx =2Δx +4.2.甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,则在[0,t 0]这个时间段内,甲、乙两人的平均速度v 甲,v 乙的关系是( )A .v 甲>v 乙B .v 甲<v 乙C .v 甲=v 乙D .大小关系不确定解析:选B 设直线AC ,BC 的斜率分别为k AC ,k BC ,由平均变化率的几何意义知,s 1(t )在[0,t 0]上的平均变化率v 甲=k AC ,s 2(t )在[0,t 0]上的平均变化率v 乙=k BC .因为k AC <k BC ,所以v 甲<v 乙.3.若可导函数f (x )的图象过原点,且满足li m Δx →0 f ΔxΔx=-1,则f ′(0)=( ) A .-2B .-1C .1D .2解析:选B ∵f (x )图象过原点,∴f (0)=0, ∴f ′(0)=li m Δx →0 f 0+Δx -f 0 Δx =li m Δx →0 f ΔxΔx=-1, ∴选B.4.已知f (x )=2x ,且f ′(m )=-12,则m 的值等于( )A .-4B .2C .-2D .±2解析:选D f ′(x )=li m △x -0f x +Δx -f x Δx =-2x 2,于是有-2m 2=-12,m 2=4,解得m =±2.5.已知函数f (x )=-x 2+x 在区间[t,1]上的平均变化率为2,则t =________. 解析:∵Δy =f (1)-f (t )=(-12+1)-(-t 2+t )=t 2-t , ∴Δy Δx =t 2-t 1-t =-t . 又∵ΔyΔx =2,∴t =-2. 答案:-26.一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1. 解析:Δs Δt =7 t 0+Δt 2+8- 7t 20+8 Δt =7Δt +14t 0,当li m Δx →0 (7Δt +14t 0)=1时,t =t 0=114. 答案:1147.枪弹在枪筒中运动可以看作匀加速运动,如果它的加速度是5.0³105m/s 2,枪弹从枪口射出时所用时间为1.6³10-3s ,求枪弹射出枪口时的瞬时速度.解:位移公式为s =12at 2,∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2,∴Δs Δt =at 0+12a Δt ,∴li m Δx →0 Δs Δt =li m Δx →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0, 已知a =5.0³105m/s 2,t 0=1.6³10-3s ,∴at 0=800 m/s. 所以枪弹射出枪口时的瞬时速度为800 m/s.8.设函数f (x )在x 0处可导,求下列各式的值.(1) li m Δx →0 f x 0-m Δx -f x 0Δx;(2li m Δx →0f x 0+4Δx -f x 0+5ΔxΔx.解:(1) li m Δx →0 f x 0-m Δx -f x 0Δx=-m li m Δx →0 f x 0-m Δx -f x 0-m Δx=-mf ′(x 0).(2)原式 =li m Δx →0 f x 0+4Δx -f x 0 -[f x 0+5Δx -f x 0 ]Δx=li m Δx →0f x 0+4Δx -f x 0 Δx -li m Δx →0 f x 0+5Δx -f x 0Δx =4li m Δx →0f x 0+4Δx -f x 0 4Δx -5li m Δx →0 f x 0+5Δx -f x 0 5Δx=4f ′(x 0)-5f ′(x 0)=-f ′(x 0).课时跟踪检测(二) 导数的几何意义层级一 学业水平达标1.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率,当切线垂直于x 轴时,切线的斜率不存在,但存在切线.2.曲线f (x )=-2x在点M (1,-2)处的切线方程为( )A .y =-2x +4B .y =-2x -4C .y =2x -4D .y =2x +4解析:选C Δy Δx =-21+Δx +2Δx =21+Δx ,所以当Δx →0时,f ′(1)=2,即k =2.所以直线方程为y +2=2(x -1).即y =2x -4.故选C.3.曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫1,-53处切线的倾斜角为( )A .1B.π4C.5π4 D .-π4解析:选B ∵y ′=li m Δx →0 ⎣⎢⎡⎦⎥⎤13 x +Δx 3-2-⎝ ⎛⎭⎪⎫13x 3-2Δx=li m Δx →0 ⎣⎢⎡⎦⎥⎤x 2+x Δx +13 Δx 2=x 2,∴切线的斜率k =y ′|x =1=1. ∴切线的倾斜角为π4,故应选B.4.曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1解析:选A ∵y ′|x =1=li m Δx →0 a 1+Δx 2-a ³12Δx= li m Δx →0 2a Δx +a Δx2Δx =li m Δx →0 (2a +a Δx )=2a , ∴2a =2,∴a =1.5.过正弦曲线y =sin x 上的点⎝ ⎛⎭⎪⎫π2,1的切线与y =sin x 的图象的交点个数为( ) A .0个 B .1个 C .2个D .无数个解析:选D 由题意,y =f (x )=sin x , 则f ′⎝ ⎛⎭⎪⎫π2=li m Δx →0 sin ⎝ ⎛⎭⎪⎫π2+Δx -sinπ2Δx=li m Δx →0 cos Δx -1Δx . 当Δx →0时,cos Δx →1,∴f ′⎝ ⎛⎭⎪⎫π2=0.∴曲线y =sin x 的切线方程为y =1,且与y =sin x 的图象有无数个交点. 6.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由导数的几何意义得f ′(1)=12,由点M 在切线上得f (1)=12³1+2=52,所以f (1)+f ′(1)=3.答案:37.已知曲线f (x )=x ,g (x )=1x过两曲线交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为____________________.解析:由⎩⎪⎨⎪⎧y =xy =1x,得⎩⎪⎨⎪⎧x =1,y =1,∴两曲线的交点坐标为(1,1). 由f (x )=x , 得f ′(x )=li m △x →01+Δx -1Δx =li m Δx →0 11+Δx +1=12, ∴y =f (x )在点(1,1)处的切线方程为y -1=12(x -1).即x -2y +1=0, 答案:x -2y +1=08.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________. 解析:设f (x )=y =x 2-3x ,切点坐标为(x 0,y 0), f ′(x 0)=li m Δx →0 x 0+Δx 2-3 x 0+Δx -x 20+3x 0Δx =li m Δx →0 2x 0Δx -3Δx + Δx 2Δx=2x 0-3=1,故x 0=2, y 0=x 20-3x 0=4-6=-2,故切点坐标为(2,-2).答案:(2,-2)9.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解:根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 2),则y ′|x =x 0=li m Δx →0 x 0+Δx 2-x 2Δx=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728.10.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切,求a 的值及切点的坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0),∵Δy Δx = x 0+Δx 3-2 x 0+Δx 2+3- x 30-2x 20+3 Δx =(Δx )2+(3x 0-2)Δx +3x 20-4x 0.∴当Δx →0时,Δy Δx →3x 20-4x 0,即f ′(x 0)=3x 20-4x 0,由导数的几何意义,得3x 20-4x 0=4, 解得x 0=-23或x 0=2.∴切点的坐标为⎝ ⎛⎭⎪⎫-23,4927或(2,3), 当切点为⎝ ⎛⎭⎪⎫-23,4927时, 有4927=4³⎝ ⎛⎭⎪⎫-23+a ,∴a =12127, 当切点为(2,3)时,有3=4³2+a ,∴a =-5, 当a =12127时,切点为⎝ ⎛⎭⎪⎫-23,4927;a =-5时,切点为(2,3).层级二 应试能力达标1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.2.已知曲线y =2x 3上一点A (1,2),则点A 处的切线斜率等于( ) A .0 B .2 C .4D .6解析:选 D Δy =2(1+Δx )3-2³13=6Δx +6(Δx )2+2(Δx )3,li m Δx →0ΔyΔx =li m Δx →0[2(Δx )2+6Δx +6]=6,故选D.3.设f (x )存在导函数,且满足li m Δx →0f 1 -f 1-2Δx2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2解析:选B li m Δx →0 f 1 -f 1-2Δx2Δx=li m Δx →0 f 1-2Δx -f 1-2Δx=f ′(x )=-1.4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为( ) A.13 B.23 C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x=1=3,由条件知,3³a b =-1,∴a b =-13.5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则li m Δx →0f 1+Δx -f 1Δx=______.解析:由导数的概念和几何意义知, li m Δx →0f 1+Δx -f 1 Δx =f ′(1)=k AB =0-42-0=-2.答案:-26.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f 1f ′ 0的最小值为________.解析:由导数的定义,得f ′(0)=li m Δx →0f Δx -f 0Δx=li m Δx →0 a Δx 2+b Δx +c -cΔx=li m Δx →0 (a ²Δx +b )=b . 又因为对于任意实数x ,有f (x )≥0,则⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,所以ac ≥b 24,所以c >0.所以f 1f ′ 0=a +b +c b ≥b +2ac b ≥2bb=2. 答案:27.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx ,若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.解:∵f ′(x )=li m Δx →0 Δy Δx =li m Δx →0 a x +Δx 2+1- ax 2+1Δx =2ax , ∴f ′(1)=2a ,即切线斜率k 1=2a .∵g ′(x )=li m Δx →0 Δy Δx =li m Δx →0 x +Δx 3+b x +Δx - x 3+bx Δx =3x 2+b ,∴g ′(1)=3+b ,即切线斜率k 2=3+b . ∵在交点(1,c )处有公共切线,∴2a =3+b .又∵a +1=1+b ,即a =b ,故可得⎩⎪⎨⎪⎧a =3,b =3.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解:∵Δy Δx = x +Δx 2+1-x 2-1Δx =2x +Δx ,∴y ′=li m Δx →0ΔyΔx =li m Δx →0(2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又∵切线过点(1,a ),且y 0=x 20+1, ∴a -(x 20+1)=2x 0(1-x 0), 即x 20-2x 0+a -1=0.∵切线有两条, ∴Δ=(-2)2-4(a -1)>0,解得a <2.故存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线,a 的取值范围是 (-∞,2).课时跟踪检测(三)几个常用函数的导数和基本初等函数的导数公式层级一 学业水平达标1.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条D .不确定解析:选B ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有2条. 2.曲线y =e x在点A (0,1)处的切线斜率为( )A .1B .2C .eD.1e解析:选A 由条件得y ′=e x,根据导数的几何意义,可得k =y ′|x =0=e 0=1.3.已知f (x )=-3x 53,则f ′(22)=( ) A .10 B .-5x 23C .5D .-10解析:选D ∵f ′(x )=-5x 53,∴f ′(22)=-5³223³23=-10,故选D.4.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3解析:选A 若α=2,则f (x )=x 2,∴f ′(x )=2x , ∴f ′(-1)=2³(-1)=-2适合条件.故应选A. 5. 曲线y =13x 3在x =1处切线的倾斜角为( )A .1B .-π4C.π4D.5π4解析:选C ∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.6.曲线y =ln x 在点M (e,1)处的切线的斜率是________,切线方程为____________. 解析:∵y ′=(ln x )′=1x ,∴y ′|x =e =1e .∴切线方程为y -1=1e (x -e),即x -e y =0.答案:1ex -e y =07.已知f (x )=a 2(a 为常数),g (x )=ln x ,若2x [f ′(x )+1]-g ′(x )=1,则x =________.解析:因为f ′(x )=0,g ′(x )=1x,所以2x [f ′(x )+1]-g ′(x )=2x -1x=1.解得x =1或x =-12,因为x >0,所以x =1.答案:18.设坐标平面上的抛物线C :y =x 2,过第一象限的点(a ,a 2)作抛物线C 的切线l ,则直线l 与y 轴的交点Q 的坐标为________.解析:显然点(a ,a 2)为抛物线C :y =x 2上的点,∵y ′=2x ,∴直线l 的方程为y -a 2=2a (x -a ).令x =0,得y =-a 2,∴直线l 与y 轴的交点的坐标为(0,-a 2). 答案:(0,-a 2) 9.求下列函数的导数:(1)y =x 8;(2)y =4x;(3)y =log 3x ;(4)y =sin ⎝⎛⎭⎪⎫x +π2;(5)y =e 2.解:(1)y ′=(x 8)′=8x8-1=8x 7.(2)y ′=(4x)′=4x ln 4. (3)y ′=(log 3x )′=1x ln 3. (4)y ′=(cos x )′=-sin x . (5)y ′=(e 2)′=0.10.已知P (-1,1),Q (2,4)是曲线y =x 2上的两点, (1)求过点P ,Q 的曲线y =x 2的切线方程. (2)求与直线PQ 平行的曲线y =x 2的切线方程.解:(1)因为y ′=2x ,P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y ′|x =-1=-2, 过Q 点的切线的斜率k 2=y ′|x =2=4,过P 点的切线方程:y -1=-2(x +1),即2x +y +1=0. 过Q 点的切线方程:y -4=4(x -2),即4x -y -4=0. (2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y ′|x =x 0=2x 0=1, 所以x 0=12,所以切点M ⎝ ⎛⎭⎪⎫12,14, 与PQ 平行的切线方程为:y -14=x -12,即4x -4y -1=0.层级二 应试能力达标1.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( ) A.12523B.110523C.25523D.110523解析:选B ∵s ′=15t -45.∴当t =4时,s ′=15²1544=110523 .2.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2解析:选C ∵y =ln x 的导数y ′=1x,∴令1x =12,得x =2,∴切点为(2,ln 2).代入直线y =12x +b ,得b =ln 2-1.3.在曲线f (x )=1x 上切线的倾斜角为34π的点的坐标为( )A .(1,1)B .(-1,-1)C .(-1,1)D .(1,1)或(-1,-1)解析:选D 因为f (x )=1x ,所以f ′(x )=-1x 2,因为切线的倾斜角为34π,所以切线斜率为-1,即f ′(x )=-1x2=-1,所以x =±1,则当x =1时,f (1)=1;当x =-1时,f (1)=-1,则点坐标为(1,1)或(-1,-1). 4.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1²x 2²…²x n 的值为( )A. 1nB.1n +1C.nn +1D .1解析:选B 对y =xn +1(n ∈N *)求导得y ′=(n +1)x n. 令x =1,得在点(1,1)处的切线的斜率k =n +1,∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1,∴x 1²x 2²…²x n =12³23³34³…³n -1n ³n n +1=1n +1, 故选B.5.与直线2x -y -4=0平行且与曲线y =ln x 相切的直线方程是________. 解析:∵直线2x -y -4=0的斜率为k =2, 又∵y ′=(ln x )′=1x ,∴1x =2,解得x =12.∴切点的坐标为⎝ ⎛⎭⎪⎫12,-ln 2. 故切线方程为y +ln 2=2⎝ ⎛⎭⎪⎫x -12.即2x -y -1-ln 2=0. 答案:2x -y -1-ln 2=06.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是________________.解析:∵y ′=12x ,∴切线方程为y -a =12a (x -a ),令x =0,得y =a2,令y =0,得x =-a ,由题意知12²a2²a =2,∴a =4.答案:47.已知曲线方程为y =f (x )=x 2,求过点B (3,5)且与曲线相切的直线方程. 解:设切点P 的坐标为(x 0,x 20).∵y =x 2,∴y ′=2x ,∴k =f ′(x 0)=2x 0, ∴切线方程为y -x 20=2x 0(x -x 0).将点B (3,5)代入上式,得5-x 20=2x 0(3-x 0), 即x 20-6x 0+5=0,∴(x 0-1)(x 0-5)=0, ∴x 0=1或x 0=5,∴切点坐标为(1,1)或(5,25),故所求切线方程为y -1=2(x -1)或y -25=10(x -5), 即2x -y -1=0或10x -y -25=0.8.求证:双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数. 证明:设P (x 0,y 0)为双曲线xy =a 2上任一点.∵y ′=⎝ ⎛⎭⎪⎫a 2x ′=-a 2x 2. ∴过点P 的切线方程为y -y 0=-a 2x 20(x -x 0).令x =0,得y =2a2x 0;令y =0,得x =2x 0.则切线与两坐标轴围成的三角形的面积为 S =12²⎪⎪⎪⎪⎪⎪2a 2x 0²|2x 0|=2a 2. 即双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a 2.课时跟踪检测(四) 导数的运算法则层级一 学业水平达标1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为( ) A .1 B. 2 C .-1D .0解析:选A ∵f (x )=ax 2+c ,∴f ′(x )=2ax , 又∵f ′(1)=2a ,∴2a =2,∴a =1.2.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′=2(x +1)²(x -1)+(x +1)2=3x 2+2x -1,∴y ′|x =1=4.3.曲线f (x )=x ln x 在点x =1处的切线方程为( ) A .y =2x +2 B .y =2x -2 C .y =x -1D .y =x +1解析:选C ∵f ′(x )=l n x +1,∴f ′(1)=1,又f (1)=0,∴在点x =1处曲线f (x )的切线方程为y =x -1.4. 已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194B.174C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.5.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 6.曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′|x =1=3³12-1=2. ∴切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=07.已知曲线y 1=2-1x与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0=________.解析:由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 2-2x 0+2,所以3x 20-2x 0+2x 2=3,所以x 0=1. 答案:18.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 解析:∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4³22+22,得f ′⎝ ⎛⎭⎪⎫π4=2-1.∴f (x )=(2-1)cos x +sin x .∴f ⎝ ⎛⎭⎪⎫π4=1. 答案:19.求下列函数的导数: (1)y =x sin 2x ;(2)y =e x+1e x -1;(3)y =x +cos xx +sin x;(4)y =cos x ²sin 3x .解:(1)y ′=(x )′sin 2x +x (sin 2x )′=sin 2x +x ²2sin x ²(sin x )′=sin 2x +x sin 2x .(2)y ′= e x +1 ′ e x -1 - e x +1 e x-1 ′e x -1 2=-2e xe x -12 . (3)y ′= x +cos x ′ x +sin x - x +cos x x +sin x ′x +sin x 2= 1-sin x x +sin x - x +cos x 1+cos xx +sin x 2=-x cos x -x sin x +sin x -cos x -1x +sin x2. (4)y ′=(cos x ²sin 3x )′=(cos x )′sin 3x +cos x (sin 3x )′ =-sin x sin 3x +3cos x cos 3x =3cos x cos 3x -sin x sin 3x .10.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解:∵f (x )的图象过点P (0,1),∴e =1. 又∵f (x )为偶函数,∴f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e . ∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2, ∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1. ∴a =52,c =-92.∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.层级二 应试能力达标1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0解析:选B ∵f ′(x )=4ax 3+2bx 为奇函数,∴f ′(-1)=-f ′(1)=-2. 2.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C 函数的导数为f ′(x )=ex -1+x ex -1=(1+x )ex -1,当x =1时,f ′(1)=2,即曲线y =x e x -1在点(1,1)处切线的斜率k =f ′(1)=2,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e -1B .-1C .-e -1D .-e解析:选C ∵f (x )=2xf ′(e)+ln x , ∴f ′(x )=2f ′(e)+1x,∴f ′(e)=2f ′(e)+1e ,解得f ′(e)=-1e ,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C ∵f (x )=x 2-2x -4ln x , ∴f ′(x )=2x -2-4x>0,整理得 x +1 x -2 x>0,解得-1<x <0或x >2,又因为f (x )的定义域为(0,+∞),所以x >2.5.已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________________. 解析:∵y =ln(x +a ),∴y ′=1x +a ,设切点为(x 0,y 0), 则y 0=2x 0-1,y 0=ln(x 0+a ),且1x 0+a=2, 解之得a =12ln 2.答案:12ln 26.曲线y =x2x -1在点(1,1)处的切线为l ,则l 上的点到圆x 2+y 2+4x +3=0上的点的最近距离是____________.解析:y ′=-12x -12,则y ′| x =1=-1,∴切线方程为y -1=-(x -1),即x+y -2=0,圆心(-2,0)到直线的距离d =22,圆的半径r =1,∴所求最近距离为22-1.答案:22-17.已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.(1)求a ,b 的值;(2)如果曲线y =f (x )的某一切线与直线l :y =-14x +3垂直,求切点坐标与切线的方程.解:(1)∵f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a , 由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6, 解得a =1,b =-16.(2)∵切线与直线y =-14x +3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14, 或y 0=-1-1-16=-18.则切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.8.设f n (x )=x +x 2+…+x n-1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎝ ⎛⎭⎪⎫0, 23内有且仅有一个零点(记为a n ),且0<a n -12<2n3n +1. 解:(1)由题设f n ′(x )=1+2x +…+nx n -1.所以f n ′(2)=1+2³2+…+(n -1)2n -2+n ²2n -1,①则2f n ′(2)=2+2³22+…+(n -1)2n -1+n ²2n,②①-②得,-f n ′(2)=1+2+22+…+2n -1-n ²2n=1-2n1-2-n ²2n =(1-n )²2n-1, 所以f n ′(2)=(n -1)²2n+1. (2)因为f (0)=-1<0,f n ⎝ ⎛⎭⎪⎫23=23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23-1=1-2³⎝ ⎛⎭⎪⎫23n ≥1-2³⎝ ⎛⎭⎪⎫232>0,因为x ≥0,n ≥2.所以f n (x )=x +x 2+…+x n-1为增函数,所以f n (x )在⎝ ⎛⎭⎪⎫0, 23内单调递增, 因此f n (x )在⎝⎛⎭⎪⎫0, 23内有且仅有一个零点a n . 由于f n (x )=x -x n +11-x-1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23.所以0<a n -12=12a n +1n <12³⎝ ⎛⎭⎪⎫23n +1=2n 3n +1.课时跟踪检测(五) 函数的单调性与导数层级一 学业水平达标1.下列函数中,在(0,+∞)内为增函数的是( ) A .y =sin x B .y =x e xC .y =x 3-xD .y =ln x -x解析:选B B 中,y ′=(x e x)′=e x+x e x=e x(x +1)>0在(0,+∞)上恒成立,∴y =x e x 在(0,+∞)上为增函数.对于A 、C 、D 都存在x >0,使y ′<0的情况.2.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎦⎥⎤-∞,13C.⎣⎢⎡⎭⎪⎫13,+∞ D.⎝⎛⎭⎪⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.3.函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1]D .(-∞,-1]和[1,+∞)解析:选A y ′=4x 3-4x ,令y ′<0,即4x 3-4x <0,解得x <-1或0<x <1,所以函数的单调递减区间为(-∞,-1)和(0,1),故应选A.4.函数y =x ln x 在(0,5)上的单调性是( ) A .单调递增 B .单调递减C .在⎝ ⎛⎭⎪⎫0, 1e 上单调递减,在⎝ ⎛⎭⎪⎫1e , 5上单调递增D .在⎝ ⎛⎭⎪⎫0, 1e 上单调递增,在⎝ ⎛⎭⎪⎫1e , 5上单调递减 解析:选C 由已知得函数的定义域为(0,+∞). ∵y ′=ln x +1,令y ′>0,得x >1e .令y ′<0,得x <1e.∴函数y =x ln x 在⎝ ⎛⎭⎪⎫0, 1e 上单调递减,在⎝ ⎛⎭⎪⎫1e , 5上单调递增. 5.若函数y =a (x 3-x )的单调减区间为⎝ ⎛⎭⎪⎫-33, 33,则a 的取值范围是( ) A .(0,+∞) B .(-1,0) C .(1,+∞)D .(0,1)解析:选A y ′=a (3x 2-1)=3a ⎝ ⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33. 当-33<x <33时,⎝⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33<0, 要使y =a (x 3-x )在⎝ ⎛⎭⎪⎫-33, 33上单调递减, 只需y ′<0,即a >0.6.函数f (x )=cos x +32x 的单调递增区间是________.解析:因为f ′(x )=-sin x +32>0,所以f (x )在R 上为增函数.答案:(-∞,+∞)7.若函数y =13ax 3-12ax 2-2ax (a ≠0)在[-1,2]上为增函数,则a ∈________.解析:y ′=ax 2-ax -2a =a (x +1)(x -2)>0, ∵当x ∈(-1,2)时,(x +1)(x -2)<0,∴a <0. 答案:(-∞,0)8.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是 .解析:∵y ′=-4x 2+a ,且y 有三个单调区间, ∴方程y ′=-4x 2+a =0有两个不等的实根, ∴Δ=02-4³(-4)³a >0,∴a >0.答案:(0,+∞)9.已知函数f (x )=13x 3+ax 2+bx ,且f ′(-1)=-4,f ′(1)=0.(1)求a 和b ;(2)试确定函数f (x )的单调区间. 解:(1)∵f (x )=13x 3+ax 2+bx ,∴f ′(x )=x 2+2ax +b ,由⎩⎪⎨⎪⎧f ′ -1 =-4,f ′ 1 =0,得⎩⎪⎨⎪⎧1-2a +b =-4,1+2a +b =0.解得a =1,b =-3.(2)由(1)得f (x )=13x 3+x 2-3x .f ′(x )=x 2+2x -3=(x -1)(x +3).由f ′(x )>0得x >1或x <-3; 由f ′(x )<0得-3<x <1.∴f (x )的单调递增区间为(-∞,-3),(1,+∞),单调递减区间为(-3,1). 10.已知a ≥0,函数f (x )=(x 2-2ax )e x.设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.解:f ′(x )=(2x -2a )e x +(x 2-2ax )e x=e x [x 2+2(1-a )x -2a ].令f ′(x )=0,即x 2+2(1-a )x -2a =0. 解得x 1=a -1-1+a 2,x 2=a -1+1+a 2, 令f ′(x )>0,得x >x 2或x <x 1, 令f ′(x )<0,得x 1<x <x 2. ∵a ≥0,∴x 1<-1,x 2≥0.由此可得f (x )在[-1,1]上是单调函数的充要条件为x 2≥1,即a -1+1+a 2≥1,解得a ≥34.故所求a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞. 层级二 应试能力达标1.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)解析:选A 在(0,+∞)内,f ′(x )=12x +1x >0,所以f (x )在(0,+∞)内是增函数,所以有f (2)<f (e)<f (3).2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )解析:选C 由f ′(x )的图象知,x ∈(-∞,0)时,f ′(x )>0,f (x )为增函数,x ∈(0,2)时,f ′(x )<0,f (x )为减函数,x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.只有C 符合题意,故选C.3.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.4.设函数F (x )=f xex是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e2 016f (0) C .f (2)<e 2f (0),f (2 016)<e 2 016f (0) D .f (2)>e 2f (0),f (2 016)<e2 016f (0) 解析:选C ∵函数F (x )=f xex的导数F ′(x )=f ′ x e x -f x e xe x2=f ′ x -f xex<0,∴函数F (x )=f xex是定义在R 上的减函数,∴F (2)<F (0),即f 2 e2<f 0e,故有f (2)<e 2f (0).同理可得f (2 016)<e2 016f (0).故选C.5.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________.解析:设g (x )=f (x )-2x -4,则g ′(x )=f ′(x )-2.∵对任意x ∈R ,f ′(x )>2,∴g ′(x )>0. ∴g (x )在R 上为增函数.又g (-1)=f (-1)+2-4=0,∴x >-1时,g (x )>0.∴由f (x )>2x +4,得x >-1. 答案:(-1,+∞)6.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.解析:∵f (x )在(-1,+∞)上为减函数, ∴f ′(x )≤0在(-1,+∞)上恒成立, ∵f ′(x )=-x +b x +2,∴-x +bx +2≤0, ∵b ≤x (x +2)在(-1,+∞)上恒成立,g (x )=x (x +2)=(x +1)2-1,∴g (x )min =-1,∴b ≤-1. 答案:(-∞,-1]7.已知x >0,证明不等式ln(1+x )>x -12x 2成立.证明:设f (x )=ln(1+x )-x +12x 2,其定义域为(-1,+∞),则f ′(x )=11+x -1+x =x21+x .当x >-1时,f ′(x )>0, 则f (x )在(-1,+∞)内是增函数. ∴当x >0时,f (x )>f (0)=0.∴当x >0时,不等式ln(1+x )>x -12x 2成立.8.已知函数f (x )=x 3-ax -1.(1)是否存在实数a ,使f (x )在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由.(2)证明:f (x )=x 3-ax -1的图象不可能总在直线y =a 的上方. 解:(1)已知函数f (x )=x 3-ax -1, ∴f ′(x )=3x 2-a ,由题意知3x 2-a ≤0在(-1,1)上恒成立, ∴a ≥3x 2在x ∈(-1,1)上恒成立. 但当x ∈(-1,1)时,0<3x 2<3,∴a ≥3, 即当a ≥3时,f (x )在(-1,1)上单调递减. (2)证明:取x =-1,得f (-1)=a -2<a ,即存在点(-1,a -2)在f (x )=x 3-ax -1的图象上,且在直线y =a 的下方. 即f (x )的图象不可能总在直线y =a 的上方.课时跟踪检测(六) 函数的极值与导数层级一 学业水平达标1.已知函数y =f (x )在定义域内可导,则函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件解析:选B 根据导数的性质可知,若函数y =f (x )在这点处取得极值,则f ′(x )=0,即必要性成立;反之不一定成立,如函数f (x )=x 3在R 上是增函数,f ′(x )=3x 2,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立.故函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的必要不充分条件,故选B.2.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D 由f ′(x )=-2x 2+1x =1x ⎝ ⎛⎭⎪⎫1-2x =0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减;当x >2时,f ′(x )>0,f (x )单调递增.故x =2为f (x )的极小值点.3.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( )A .(2,3)B .(3,+∞)C .(2,+∞)D .(-∞,3)解析:选B 因为函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,又f ′(x )=6x 2+2ax +36,所以f ′(2)=0解得a =-15.令f ′(x )>0,解得x >3或x <2,所以函数的一个递增区间是(3,+∞).4.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )解析:选C 由题意可得f ′(-2)=0,而且当x ∈(-∞,-2)时,f ′(x )<0,此时xf ′(x )>0;排除B 、D ,当x ∈(-2,+∞)时,f ′(x )>0,此时若x ∈(-2,0),xf ′(x )<0,若x ∈(0,+∞),xf ′(x )>0,所以函数y =xf ′(x )的图象可能是C.5.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A.427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.6.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =______________.解析:∵f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0.∴a =-23.答案:-237.函数f (x )=ax 2+bx 在x =1a处有极值,则b 的值为________.解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a处有极值,∴f ′⎝ ⎛⎭⎪⎫1a =2a ²1a+b =0,即b =-2.答案:-28.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0).如图,则下列说法中不正确的是________.(填序号)①当x =32时,函数f (x )取得最小值;②f (x )有两个极值点;③当x =2时函数值取得极小值; ④当x =1时函数取得极大值.解析:由图象可知,x =1,2是函数的两极值点,∴②正确;又x ∈(-∞,1)∪(2,+∞)时,y >0;x ∈(1,2)时,y <0,∴x =1是极大值点,x =2是极小值点,故③④正确.答案:①9.设a 为实数,函数f (x )=e x-2x +2a ,x ∈R ,求f (x )的单调区间与极值. 解:由f (x )=e x-2x +2a ,x ∈R 知f ′(x )=e x-2,x ∈R.令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞); 且f (x )在x =ln 2处取得极小值.极小值为f (ln 2)=2(1-ln 2+a ),无极大值.10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. 解:(1)由已知,f ′(x )=3ax 2+2bx +c ,且f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数. ∴当x =-1时,函数取得极大值f (-1)=1; 当x =1时,函数取得极小值f (1)=-1.层级二 应试能力达标1.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3D .-1,-3解析:选A ∵f ′(x )=3ax 2+b ,由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.2.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .(-1,2)B .(-3,6)C .(-∞,-3)∪(6,+∞)D .(-∞,-1)∪(2,+∞)解析:选C f ′(x )=3x 2+2ax +a +6,∵f (x )有极大值与极小值,∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6.3.设a ∈R ,若函数y =e x+ax (x ∈R)有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a <-1eD .a >-1e解析:选A ∵y =e x+ax ,∴y ′=e x+a .令y ′=e x+a =0,则e x=-a ,∴x =ln(-a ).又∵x >0,∴-a >1,即a <-1.4.已知函数f (x )=e x(sin x -cos x ),x ∈(0,2 017π),则函数f (x )的极大值之和为( )A.e 2π1-e 2 018πe 2π-1B.e π 1-e 2 016π1-e 2πC.e π 1-e 1 008π1-e2πD.e π1-e 1 008π1-eπ解析:选 B f ′(x )=2e xsin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2 017π),∴0<(2k +1)π<2 017π,∴0≤k <1 008,k ∈Z. ∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2。
2018年高考数学二轮复习课时跟踪检测(通用版)(十八)文 Word版 含答案
课时跟踪检测(十八)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值;(2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2= y 0-q y 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -2消去y 得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k ,x 1x 2=16k 2-483+4k .x 0=8k 23+4k 2,y 0=-6k3+4k2.消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.3.(2017·宁波模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点P (-2,0)与点(1,1).(1)求椭圆的方程;(2)过P 点作两条互相垂直的直线PA ,PB ,交椭圆于A ,B ,求证:直线AB 经过定点.解:(1)由题意得,⎩⎪⎨⎪⎧4a 2+0b 2=1,1a 2+1b 2=1,解得a 2=4,b 2=43,椭圆的方程为x 24+3y24=1.(2)证明:由对称性知,若存在定点,则必在x 轴上, 当k PA =1时,l PA :y =x +2,∴⎩⎪⎨⎪⎧y =x +2,x 2+3y 2=4,∴x 2+3(x 2+4x +4)=4⇒x =-1. 以下验证:定点为(-1,0),由题意知,直线PA ,PB 的斜率均存在,设直线PA 的方程为y =k (x +2),A (x A ,y A ),B (x B ,y B ). 则x 2+3k 2(x 2+4x +4)=4⇒x A =2-6k 21+3k2,y A =4k1+3k2, 同理x B =2k 2-6k 2+3,y B =-4kk 2+3,则y Ax A +1=4k 3-3k 2=y B x B +1,得证. 4.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km 1+2k 2,x 1x 2=2 m 2-11+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).5.(2017·台州模拟)如图,已知椭圆C :x 24+y 2=1,过点P (1,0)作斜率为k 的直线l ,且直线l 与椭圆C 交于两个不同的点M ,N .(1)设点A (0,2),k =1,求△AMN 的面积;(2)设点B (t,0),记直线BM ,BN 的斜率分别为k 1,k 2.问是否存在实数t ,使得对于任意非零实数k ,(k 1+k 2)·k 为定值?若存在,求出实数t 的值及该定值;若不存在,请说明理由.解:(1)当k =1时,直线l 的方程为y =x -1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =x -1,得x =0或x =85,当x =0时,y =-1, 当x =85时,y =35,不妨设N (0,-1),M ⎝ ⎛⎭⎪⎫85,35.所以|AN |=3.所以S △AMN =12×3×85=125.(2)由题意知,直线MN 的方程为y =k (x -1), 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -1 ,得(1+4k 2)x 2-8k 2x +4k 2-4=0.所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.由k 1=y 1x 1-t,k 2=y 2x 2-t,得(k 1+k 2)·k =k ⎝ ⎛⎭⎪⎫y 1x 1-t +y 2x 2-t=k 2⎝⎛⎭⎪⎫x 1-1x 1-t +x 2-1x 2-t=k 2[ x 1-t x 2-1 + x 2-t x 1-1 ] x 1-t x 2-t=k 2[2x 1x 2- t +1 x 1+x 2 +2t ]x 1x 2-t x 1+x 2 +t 2=k 2 2t -8k 2 4-8t +4t 2 +t 2-4. 若2t -8=0,则t =4,(k 1+k 2)·k =0为定值. 若2t -8≠0,则当t 2-4=0, 即t =±2时,(k 1+k 2)·k =2t -84-8t +4t为定值.所以当t =4时,(k 1+k 2)·k =0; 当t =2时,(k 1+k 2)·k =-1; 当t =-2时,(k 1+k 2)·k =-13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(二十一)A 组——12+4提速练一、选择题1.(2017·沈阳质检)函数f (x )=ln(x 2+1)的图象大致是( )解析:选A 函数f (x )的定义域为R ,由f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x )知函数f (x )是偶函数,则其图象关于y 轴对称,排除C ;又由f (0)=ln 1=0,可排除B ,D.故选A.2.(2016·全国卷Ⅲ)已知a =243,b =323,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A a =243=423,b =323,c =2513=523. ∵y =x 23在第一象限内为增函数,又5>4>3,∴c >a >b .3.(2017·福州质检)已知a =16ln 8,b =12ln 5,c =ln 6-ln 2,则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B 因为a =16ln 8,b =12ln 5,c =ln 6-ln 2,所以a =ln 2,b =ln 5,c =ln62=ln 3.又对数函数y =ln x 在(0,+∞)上为单调递增函数,由2<3<5,得ln2<ln 3<ln 5,所以a <c <b ,故选B.4.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),故选C.5.某公司为激励创新,计划逐年加大研发资金投入,若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2020年B .2021年C .2022年D .2023年解析:选B 设2017年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n >200,得1.12n>2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2021年开始,该公司投入的研发资金开始超过200万元.6.函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是( ) A .0 B .1 C .2D .4解析:选C 当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍去)或x =-2,即在区间(-∞,0]上,函数只有一个零点.当x >0时,f (x )=2x -6+ln x ,f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增,而f (1)=-4<0,f (e)=2e -5>0,f (1)·f (e)<0,从而f (x )在(0,+∞)上只有一个零点.故函数f (x )的零点个数是2.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 8.(2017·贵阳检测)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞)解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域包含(0,+∞),因此对于方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围9.(2018届高三·河北五校联考)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n的最小值为( )A .2 2B .4 C.52D .92解析:选D 由函数y =log a (x +3)-1(a >0,且a ≠1)知,当x =-2时,y =-1,所以A 点的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2n m ·m n =92,当且仅当m =n =23时等号成立.所以2m +1n 的最小值为92,故选D.10.(2017·长春质检)已知定义域为R 的函数f (x )的图象经过点(1,1),且对任意实数x 1<x 2,都有f x 1 -f x 2 x 1-x 2>-2,则不等式f (log 2|3x -1|)<3-log 2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 令F (x )=f (x )+2x ,由对任意实数x 1<x 2,都有f x 1 -f x 2x 1-x 2>-2,可得f (x 1)+2x 1<f (x 2)+2x 2,即F (x 1)<F (x 2),所以F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,f (log 2|3x-1|)<3-log 2|3x-1|等价于f (log 2|3x-1|)+2log 2|3x-1|<3,令t =log 2|3x -1|,则f (t )+2t <3,即F (t )<3,所以t <1,即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1,且x ≠0.故选A.11.(2017·石家庄模拟)已知函数f (x )=⎩⎪⎨⎪⎧x ln 1+x +x 2,x ≥0,-x ln 1-x +x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]解析:选D 若x >0,则-x <0,f (-x )=x ln(1+x )+x 2=f (x ),同理可得x <0时,f (-x )=f (x ),所以f (x )为偶函数.当x ≥0时,易知f (x )=x ln(1+x )+x 2为增函数,所以不等式f (-a )+f (a )≤2f (1)等价于2f (a )≤2f (1),即f (a )≤f (1),亦即f (|a |)≤f (1),则|a |≤1,12.(2017·合肥质检)设函数f (x )=⎩⎪⎨⎪⎧x -a 2+e ,x ≤2,xln x +a +10,x >2,(e 是自然对数的底数),若f (2)是函数f (x )的最小值,则a 的取值范围是( )A .[-1,6]B .[1,4]C .[2,4]D .[2,6]解析:选D 当x >2时,f (x )=x ln x +a +10,f ′(x )=ln x -1ln x 2,令f ′(x )>0,解得x >e ,令f ′(x )<0,解得x <e ,所以f (x )在(2,e)上单调递减,在(e ,+∞)上单调递增,即函数f (x )在x >2时的最小值为f (e);当x ≤2时,f (x )=(x -a )2+e 是对称轴方程为x =a 的二次函数,欲使f (2)是函数的最小值,则⎩⎪⎨⎪⎧a ≥2,f 2 ≤f e ,即⎩⎪⎨⎪⎧a ≥2,2-a 2+e≤e+a +10,解得2≤a ≤6,故选D.二、填空题13.(2017·广州模拟)已知函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤0,1-log 2x ,x >0,若|f (a )|≥2,则实数a 的取值范围是________.解析:当a ≤0时,1-a ≥1,所以21-a≥2,即|f (a )|≥2恒成立;当a >0时,由|f (a )|≥2可得|1-log 2a |≥2,所以1-log 2a ≤-2或1-log 2a ≥2,解得a ≥8或0<a ≤12.综上,实数a的取值范围是⎝⎛⎦⎥⎤-∞,12∪[8,+∞). 答案:⎝⎛⎦⎥⎤-∞,12∪[8,+∞) 14.(2017·宝鸡质检)设函数f (x )=⎩⎪⎨⎪⎧2-x,x <1,log 2x ,x ≥1,若函数y =f (x )-k 有且只有两个零点,则实数k 的取值范围是________.解析:∵当x <1时,2-x >12,当x ≥1时,log 2x ≥0,依题意函数y =f (x )的图象和直线y=k 的交点有两个,∴k >12.答案:⎝ ⎛⎭⎪⎫12,+∞15.(2018届高三·广西三市联考)已知在(0,+∞)上函数f (x )=⎩⎪⎨⎪⎧-2,0<x <1,1,x ≥1,则不等式log 2x -(log 144x -1)·f (log 3x +1)≤5的解集为________.解析:原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -⎝ ⎛⎭⎪⎫log 144x -1≤5或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2 log 144x -1 ≤5,解得1≤x ≤4或13<x <1,∴原不等式的解集为⎝ ⎛⎦⎥⎤13,4. 答案:⎝ ⎛⎦⎥⎤13,416.(2017·沈阳模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m=9.答案:9B 组——能力小题保分练1.(2017·长沙模拟)对于满足0<b ≤3a 的任意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca的取值范围是( ) A.⎝ ⎛⎦⎥⎤1,74 B .(1,2] C .[1,+∞)D .(2,+∞)解析:选 D 依题意,对于方程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c <b 24a,从而。