浙大化工原理第九章-气体吸收-第四次课

合集下载

化工原理第九章 吸收

化工原理第九章 吸收
20.6.19
p
* A
cA H

cA* HpA
H——溶解度系数 ,单位:kmol/m3·Pa或kmol/m3·atm。
H是温度的函数,H值随温度升高而减小。
易溶气体H值大,难溶气体H值小。
溶解度系数H与亨利系数E间的关系
pA*
cA H
,
pA*
ExA, xA
cA c
E
c H
设溶液的密度为 kg / m3,浓度为 c kmol / m3 ,则
20.6.19
气相: 液相:
yA
nA n
xA
nA n
yA yB yN 1 xA xB xN 1
质量分数与摩尔分数的关系:
xA
nA n
mw A
/ MA
mw A / M A mw B / MB mw N
/ MN
wA/M A
wA/M A wB/MB wN/M N
20.6.19
第二节 气液相平衡
一、气体的溶解度 二、亨利定律 三、气液相平衡与吸收过程 的关系
20.6.19
一、气体的溶解度
1、气体在液体中溶解度的概念
气体在液相中的溶解度 :气体在液体中的饱和浓度 cA*
表明一定条件下吸收过程可能达到的极限程度。
2、溶解度曲线
对于单组分物理吸收,由相律知
f c 2 322 3
2、质量比与摩尔比
质量比:混合物中某组分A的质量与惰性组分B
(不参加传质的组分)的质量之比。 wA mA mB
摩尔比:混合物中某组分的摩尔数与惰性组分摩 尔数之比。
气相:
YA
nA nB
液相: X A
nA nB
20.6.19

(完整版)化工原理习题第四部分吸收答案

(完整版)化工原理习题第四部分吸收答案

第四部分气体吸收一、填空题1.物理吸收操作属于传质过程。

理吸收操作是一组分通过另一停滞组分的单向扩散。

2.操作中的吸收塔,若使用液气比小于设计时的最小液气比,则其操作结果是达不到要求的吸收分离效果。

3.若吸收剂入塔浓度X2降低,其它操作条件不变,吸收结果将使吸收率增大。

4.若吸收剂入塔浓度X2降低,其它操作条件不变,则出口气体浓度降低。

5.含SO2为10%(体积)的气体混合物与浓度c为0.02 kmol/m3的SO2水溶液在一个大气压下相接触。

操作条件下两相的平衡关系为p*=1.62c (大气压),则SO2将从气相向液相转移。

6.含SO2为10%(体积)的气体混合物与浓度c为0.02 kmol/m3的SO2水溶液在一个大气压下相接触。

操作条件下两相的平衡关系为p*=1.62c (大气压),以气相组成表示的传质总推动力为0.0676 atm 大气压。

7.总传质系数与分传质系数之间的关系为l/K L=l/k L+H/k G,其中l/k L为液膜阻力。

8.总传质系数与分传质系数之间的关系为l/K L=l/k L+H/k G,当气膜阻力H/k G 项可忽略时,表示该吸收过程为液膜控制。

9.亨利定律的表达式之一为p*=Ex,若某气体在水中的亨利系数E值很大,说明该气体为难溶气体。

10.亨利定律的表达式之一为p*=Ex,若某气体在水中的亨利系数E值很小,说明该气体为易溶气体。

11.低浓度气体吸收中,已知平衡关系y*=2x,k x a=0.2 kmol/m3.s,k y a =2 l0-4 kmol/m3.s,则此体系属气膜控制。

12.压力增高,温度降低,将有利于吸收的进行。

13.某操作中的吸收塔,用清水逆流吸收气体混合物中A组分。

若y1下降,L、V、P、T等不变,则回收率减小。

14.某操作中的吸收塔,用清水逆流吸收气体混合物中A组分。

若L增加,其余操作条件不变,则出塔液体浓度降低。

15.吸收因数A 在Y-X 图上的几何意义是 操作线斜率与平衡线斜率之比 。

浙大化工原理第九章-气体吸收-第五次课

浙大化工原理第九章-气体吸收-第五次课

yAi
xB=0 xA=0
中等反应速率,不可 逆反应的化学吸收
化学吸收 (Chemical absorption) 化学吸收历程 (2)反应速率快、不可逆
气液 界面
yA xAi
气液 界面
yA
xB
xB
yAi
xB=0 xA=0
yAi =0
快速反应的化学吸收
液 相 中 xB 足够高、
传递速率
又快时
化学吸收 (Chemical absorption) 化学吸收历程
适用范围: ReG = 2×103~3.5×104,ScG = 0.6~2.5,P = 101~303 kPa(绝压)
模型参数:
应用场合
湿壁塔
0.023
0.83
0.44
填料塔
0.066
0.8
0.33
传质系数
D — 溶质在气相中的分子扩散系数 m2/s; P/pm— 气相漂流因子; kg — 气相传质系数 kmol/(m2skPa) ; R — 通用气体常数 kJ/ (kmolK ) ; l — 特征尺寸 m ;
同),溶质在界面上溶解,溶质A在液相中传递并与
液相中组分
相界面
B发生反应。 吸收剂
pA 气相主体
液相主体
pA
界面
cA
pAi cAi
cA 物理吸收
气体
气相扩散
化学吸收 液相扩散
化学吸收 (Chemical absorption) 化学吸收历程 (1)反应速率中等、不可逆
气液
界面
PQ
yA
反应区
xAi
xB
DAB
cAi cA
气速 m/s);
传质系数

化工原理吸收塔的计算

化工原理吸收塔的计算

填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG

Y1 dY Y2 Y Y *

Y1 Y2 (Y Y *)m
气相组成变化 平均传质推动力
• 传质单元数的意义:
反映了取得一定吸收效果的难易程度。
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义:
H OG

G Kya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,
反映了吸收设备效能的高低。
•传质单元高度影响因素:
填料性能、流动状况
四、吸收塔的操作计算 1.吸收过程的强化
Y1
Y*1
Y2
T △Y2
Y*2
O X2
B △Y1
X1
吸收推动力 NA 吸收阻力
目标:提高吸收过程的推动力; 降低吸收过程的阻力。
从L、G、m、X2、Y1、Y2着手。
其它因素: 1)降低吸收剂入口温度; 2)提高吸收的压力; 3)提高流体流动的湍动程度; 4)改善填料的性能。
Y1 dY Y2 Y
NOG

Y1 Y1
Y2 Y2
ln
Y1 Y2
X1
NOG

Y1 Y2 Ym
Ym (Y1 Y2)/ ln Y1 / Y2
注意: •平均推动力法适用于平衡线为直线,逆流、并流 吸收皆可。 •平衡线与操作线平行时,
Ym Y1 Y2 X m X1 X 2

化工原理 第九章 气体吸收

化工原理 第九章  气体吸收

第一节概述一、什么是吸收?吸收是利用气体混合物中各组分在某种溶剂中溶解度的差异,而将气体混合物中组分加以分离的单元操作。

溶质: 气体混合物中能溶解的组分称为溶质,以A表示;惰性组分: 不溶或微溶组分称为惰性组分或载体,以B表示;溶剂: 吸收过程所用的溶剂称为吸收剂,以S表示;吸收液: 所得的溶液称为吸收液。

二、吸收在石油化工中的应用(1)回收有用组分(2)制取液态产品(3)净化气体(废气治理)三、吸收的工艺流程四、吸收分类按溶质和溶剂之间是否发生明显的化学反应吸收按溶于溶剂的组分数吸收按吸收过程是否发生明显的温度变化吸收五、吸收剂的选择1.溶解度大;2.选择性好;3.挥发度低;4.粘度低;5.无毒、无腐蚀;6.吸收剂应尽可能不易燃、不易发泡、价廉易得、稳定。

第二节吸收过程的相平衡关系一、气体在液体中的溶解度在一定的温度与压力下、使气体混合物与一定量的溶剂接触,气相中的溶质便向液相中的溶质转移,直至液相中溶质达到饱和为止,这时,我们称之为达到了相平衡状态。

达到了相平衡状态时气相中溶质的分压,成平衡分压;液相中溶质的浓度称为平衡浓度(或溶解度)。

大量实验表明,溶解度和气相中溶质的分压有关。

从图上可以看出:分压高,溶解度大温度高,溶解度小吸收操作应在低温高压下进行,脱吸应在高温、低压下进行二、亨利定律1.亨利定律在一定的温度下,当总压不很高(<500kpa)时,稀溶液上方溶质的平衡分压与该溶质在液相中的摩尔分率成正比,其表达式如下式中------溶质在气相中的平衡分压,KN/m2;------溶质在液相中的摩尔分率;E------亨利系数,。

式(9-1)称为亨利(Henry)定律。

亨利系数E值由实验测定,常见物系的E值可由有关手册查出。

当物系一定时,亨利系数随温度而变化。

一般说来,值随温度升高而增大,这说明气体的溶解度随温度升高而减小,易溶气体值小,难溶气体的值大。

2.用溶解度系数表示的亨利定律若将亨利定律表示成溶质在液相中的摩尔浓度与其在气相中的平衡分压之间的关系,则可写成如下形式(9-2)式中C──液相中溶质的摩尔浓度,kmol/m3H──溶解度系数,溶液中溶质的摩尔浓度和摩尔分率及溶液的总摩尔浓度之间的关系为(9-3)把上式代入式(9-2)可得将上式与式(9-1)比较,可得(9-4)溶液的总摩尔浓度可用1m3溶液为基准来计算,即(9-5)式中──溶液的密度(kg/m3)──溶液的摩尔质量。

化工原理chapter9气体吸收自测题

化工原理chapter9气体吸收自测题

气体吸收单元自测题一、填空题1、吸收操作的依据是,以达到分离气体混合物的目的。

2、Henry定律的表达式为p e=E·x,若某气体在水中的亨利系数E值很大,说明该气体为气体。

3、由于吸收过程中气相中溶质分压总是溶质的平衡分压,因此吸收操作线总是在平衡线的。

4、在1atm、20℃下某低浓度气体混合物被清水吸收,若气膜传质系数为k G=0.1kmol/(m2.h.atm),液膜传质系数k L=0.25kmol/(m2.h.atm),溶质的溶解度系数H=150kmol/(m3.atm),则该溶质为气体,气相总传质系数K Y= kmol/(m2.h.△Y)。

5、解吸时,溶质由向传递,压力温度将有利于解吸。

6、双膜理论的基本论要点。

对气膜控制体系,传质阻力主要集中在相中,对液膜控制体系,传质阻力主要集中在相中。

7、在吸收过程中,若提高吸剂用量,对气膜控制的物系,体积总传质系数K Y a,对液膜控制的物系,体积总传质系数K Y a。

8、吸收操作中增加吸收剂用量,操作线的斜率,吸收推动力。

9、当吸收剂用量为最小用量时,则所需填料层高度将为。

10、在常压逆流操作的填料塔中,用纯溶剂吸收混合气中的溶质。

已知进塔气相组成Y1为0.02(摩尔比),操作液气比为(L/G)=0.9,气液平衡关系为Y=1.0X,则溶质组分的回收率最大可达。

11、脱吸因数可表示为,吸收因数可表示为。

12、低浓度逆流吸收操作中,当气体进口含量y1下降,其它条件不变时,则气体出口含量y2,液体出口含量x1,被吸收溶质总量,回收率η,平均推动力△y m,N OL。

(增大、减小、不变、不确定)13、低浓度逆流吸收操作中,其它条件不变而入塔液体含x2下降,则N OL,出塔液体x1,出塔气体y2。

(增大、减小、不变、不确定)14、低浓度逆流吸收塔设计中,若气体流量、进出口组成及液体进口组成一定,减小吸收剂用量,传质推动力将,设备费用将。

(增大、减小、不变)二、选择题1、吸收操作的作用是分离( )。

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u、压强p不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原则的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反应。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。

化工原理吸收

化工原理吸收

说明:1、 p*、x 、E(亨利系数,压强单位 )
推导:1m3:
2、适用于 t 一定,理想溶液。E为该 t 下纯溶质p°;
溶质[kmol/m3]
3、用于难溶、较难溶气体(或易溶稀溶液);
溶剂
4、难溶气体,E为常数;

5、E由实验测定,查手册(P78); 6、E=f (T),T E (即T CA* ),
等分子反向扩散:NA=JA 单向扩散: NA=JA+总体流动 2、NA计算式 N-总体流动的通量,[A、B总物质量/m2.s]; 其中,A、B的通量各为:
若扩散在气相:
积分:
z
0
解得:
则:
pB2 pB1

式中:
1、2两截面上物质B分压的对数平均值,kpa。
-漂流因数,无因次。
说明:①与(2-16)比较,多P/PBm , ②pA (pB )
(3)kG~ky关系 P总压不高时, p=Py 及pi=Pyi
ky= PkG (2-35)
2、液膜吸收速率方程式
yi-溶质A在相界面处的摩尔分率。
ky-气膜吸收系数 [kmol/(m2.s)] 1/ky为气膜阻力, * 1/ky与(y-yi)相对应。

(1)
kL—液膜吸收系数,kmol/(m2.s.kmol/m3)或m/s。
5、 小结 1、两类吸收速率方程式
膜系数相对应的速率式 总系数相对应的速率式
膜吸收速率方程式 总吸收速率方程式
方程式
吸收系数
推动力
膜系数:kG[kmol/(m2.s.kpa)] kL[kmol/(m2.s.kmol/m3)或m/s。]
ky [kmol/(m2.s)] Kx[kmol/(m2.s)]

化工原理讲稿气体吸收课件

化工原理讲稿气体吸收课件
y ye=f(x)
ye
y
M
o
对解吸而言:
xe
xx
若保持液相浓度x不变,气相浓度y最高只能升到与之相平
衡的浓度ye,即 ymax=ye; 若保持气相浓度y不变,则液相浓度x最低也只能降到与气
相浓度y相平衡的浓度xe,即 xmin=xe。
第二节 吸收过程的相平衡关系
3.传质过程的推动力
未达平衡的两相接触会发生相际间传质(吸收或解吸),离平衡浓度越远,
气, p2
液, x2
吸收塔
混合气体, p1
液, x1
例题3
含溶质A 且摩尔分率为x=0.2的溶液与压力为 2atm, y=0.15的气体等温接触,平衡关系为:pe=1.2x(atm), 则此时将发生 过程。用气相组成和液相组成表示 的总传质推动力分别为Δy= ,Δx= (摩尔分 率)。如系统温度略有增高,则Δy将 。如系统总 压略有增高,则Δx将 。
大量实验表明,溶解度与平衡分压有关。
第二节 吸收过程的相平衡关系
2.溶解度曲线
第二节 吸收过程的相平衡关系
结论:
➢气体的气相分压(组成)越高,溶解度越大
➢气体的温度越高,溶解度越小
启示:吸收操作应在低温、高压下进行; 脱吸操作应在高温、低压下进行。
第二节 吸收过程的相平衡关系
二、亨利定律(Henry’s law)
第二节 吸收过程的相平衡关系
2.传质过程的限度
对吸收而言: 若保持液相浓度x不变,气相 y 浓度y最低只能降到与之相平
y
衡的浓度ye,即ymin=ye; 若保持气相浓度y不变,则液 相浓度x最高也只能升高到与 ye 气相浓度y相平衡的浓度xe,
o
即xmax=xe。

《化工原理》课程复习大纲

《化工原理》课程复习大纲

《化工原理》课程学习资料继续教育学院《化工原理》课程复习大纲一、考试要求本课程是在学生学完预修课程: 高等数学、物理学和物理化学等课程学习的基础上开设的一门专业基础课,是一门工程学科的课程。

使学生掌握研究化工生产中各种单元操作的基本原理,过程设备和计算方法。

培养学生具有运用课程有关理论来分析和解决化工生产过程中常见实际问题的能力。

并为后续专业课程的学习打下必要的基础。

教学要求:熟练掌握最基本的单元操作的基本概念和基础理论,对单元过程的典型设备具备基础的判断和选择能力;掌握本大纲所要求的单元操作的常规计算方法,常见过程的计算和典型设备的设计计算或选型;熟悉运用过程的基本原理,根据生产上的具体要求,对各单元操作进行调节;了解化工生产的各单元操作中的故障,能够寻找和分析原因,并提出消除故障和改进过程及设备的途径。

据此,本课程的考试着重基本知识考查和应用能力考查两个方面,包括识记、理解、应用三个层次。

各层次含义如下:识记:指学习后应当记住的内容,包括概念、原则、方法的含义等。

这是最低层次的要求。

理解:指在识记的基础上,全面把握基本概念、基本原则、基本方法,并能表达其基本内容和基本原理,能够分析和说明相关问题的区别与联系。

这是较高层次的要求。

应用:指能够用学习过的知识分析、计算和处理涉及一两个知识点或多个知识点的会计问题,包括简单应用和综合应用。

二、考试方式闭卷笔试,时间120分钟三、考试题型●选择题:20%●填空题:20%●计算题:60%四、考核的内容和要求(基本要求、重点、难点)第一章流体流动基本要求:熟练掌握流体静力学基本方程式,连续性方程式和柏努利方程式及其应用;正确理解流体的流动类型和流动阻力的概念;掌握流体流动阻力的计算,简单管路的设计型计算和输送能力的核算。

了解测速管,文丘里流量计,孔板流量计和转子流量计的工作原理和基本计算。

重点:流体流动过程中的基本原理及流体在管内的流动规律;柏努利方程式的应用;流体在管道内的流动阻力产生的原因和摩擦阻力的计算;简单管路的计算。

《化工原理》课程教学大纲

《化工原理》课程教学大纲

《化工原理》课程教学大纲第一部分大纲说明一、课程性质及任务《化工原理》是化学工程专业极为重要的的专业基础课,通过本课程的学习,使学生掌握化工单元操作的基本原理、计算方法、典型设备以及有关的化学工程实用知识。

并能用以分析和解决工程技术中的一般问题。

以便对现行的化学工业生产过程进行管理,使设备能正常运转,进而对现行的生产过程及设备作各种改进以提高其效率,从而使生产获得最大限度的经济效益。

为深入学习本专业后续课程及从事化工专业的实际工作打下基础。

二、与其他课程的关系先修高等数学、无机化学、有机化学、分析化学、物理化学等课程。

后续课程为化工设备机械基础、化工仪表、有机化工、石油炼制等专业课程。

三、教学总体要求基本概念:流体流动、输送机械、沉降、过滤、传热、精馏、吸收、干燥等。

基本知识:化工单元操作的基本原理基本技能:一般单元操作的操作能力、典型设备计算选用能力、因次分析法、实验测定法等重点:流体流动、传热、精馏、吸收等难点:阻力计算、对流传热计算、吸收速率计算等四、课程的教学方法和教学形式建议1、本课程的工程性、实践性较强,环节多,因此,教学形式以讲授为主。

2、为加强和落实动手能力的培养,充分重视实践性教学环节,保证上机操作、实验等不少于36课时,课程设计不少于60课时。

五、教学要求的层次课程的教学要求在每一章教学内容之后给出,大体分为了解、理解和熟练掌握三个层次。

了解一般为扩展知识面,知道即可;理解是能正确表达有关概念、掌握定律、计算、结构和方法;熟练掌握是在理解的基础上加以灵活运用。

第二部分教学内容及要求一、课程教学总学时数课程教学总学时数144学时(不含课程设计60课时),其中实验36学时。

二、教材与教学环节1、参考教材:天津大学《化工原理》、李云倩编《化工原理》2、授课内容以教材为主,教材担负起形成整个课程体系系统性和完整性的任务,是学生学习的主要媒体形式。

因此教材要概念清晰、条理分明、深入浅出、便于自学,并要注意加强导学。

化工原理CH9 吸收

化工原理CH9 吸收
三个串联传质环节:
气体 液体
气膜 液膜
气体侧的对流传质
pG
组成
界面溶解 液体侧的对流传质
NAG
气相主体
pi NAL
Ci
传质方向 液相主体
《化工原理》电子教案/第五章
CL
G
L
z
距离
双膜模型 17/97
二、吸收速率方程
N AG kG
pG pi
pG pi 1
一、物料衡算和操作线方程 二、吸收剂用量的确定 三、塔径的计算 四、填料层高度的计算
2
《化工原理》电子教案/目录
目录
第九章 吸收
习题课 第四节 二元低浓气体吸收(或脱吸)的计算
五、高浓气体吸收 六、解吸
第五节 其他类型的吸收简介 第九章小结
第三版第18次印刷的教材更正
3
《化工原理》电子教案/目录
第九章 吸收
1.0
O2
0.9 pA=723cA
0.8
0.7
0.6 难溶体系
0.5
0.4
0.3
0.2
0.1
CO2
pA=25.5cA
说明:
(1)不同气体的溶解 度差异很大
SO 2
溶解度适中体系
(2)对于稀溶液或极 稀溶液,溶解度曲线近 似为直线,即
pA=0.36cA pA=0.0136cA
易溶NH体3 系
c
A
H
pA
获取方法: 通常由实验测定。可从有关手册中查得。
影响因素: T,H
P在几个大气压范围内 对H影响可忽略。其他 情况下,一般P ,H 思考:H越大,表明越易溶还是越难溶? 如 图 , H 越 大 , 表 明 在 相 同 的 pA 下 cA*越大,故越易溶。

化工原理第九章(hg)

化工原理第九章(hg)

双流型
多流型
阶梯流型
DJ 塔盘
新型塔板、填料
规整填料 塑料丝网波纹填料
散装填料 塑料鲍尔环填料
JCV浮阀 (改进 型双流喷射浮阀)
普通型JCV浮阀
与塔板固定方法
强化过程的措施:
设备?

工艺?
概述
吸收流程
(1)单一吸收塔流程 (2)多塔吸收流程
(a)气、液串联(逆流)
(b)气体串联、液体并联(逆流)
气体
H2 N2 空气 CO2
E×10-3/Mpa
0
10℃ 20℃ 30℃ 40℃ 50℃ 60℃ 70℃ 80℃
5.87 6.44 6.92 7.38 7.61 7.75 7.75 7.71 7.65
5.35 6.77 8.15 9.36 10.5 11.4 12.2 12.7 12.8
4.38 5.56 6.73 7.81 8.82 9.59 10.2 10.6 10.8
吸收分类:
物理吸收(physical absorption) 化学吸收(chemical absorption)
非等温吸收 等温吸收
单组分吸收 多组分吸收
低浓度吸收 高浓度吸收
概述(Introduction)
什么是吸收? 利用气体混合物中各组分 在液体溶剂中溶解度的差异-----推动力 分离气体混合物(目的)的操作称为吸收。
以液相为基准
在气体 Y2 Y2 Y2 0.00401 kmolA/ kmolB以气相为基准
出口处:
X 2

X
2

X2

0.00159
kmolA/ kmolB
以液相为基准
(2)

化工原理课件 气体吸收

化工原理课件 气体吸收



> 0时,z=0(相界面处): cA = cAi :气液平
衡 τ延长,A通过非定态扩散方式不断地向流体单元 中渗透,时间越长,渗透越深,但τ有限 0时,旧的流体单元被新的所置换回到液相主 体中:(流体单元深处):cA = cA0; 流体单元不断被更换,每批流体单元在界面更新 的时间都一样 界面无阻力,气液两相达平衡


NA=ky(y-yi), NA=kx(x-xi) 定态过程:相界面无物质积累 则进出相界面的传质速率相等,浓度梯度 自动调整 且界面上无传质阻力:气液两相呈相平衡

N
A

y yi 1 ky

xi x 1 kx

当稀溶液遵循亨利定律:yi = mx
N
A

y y i ( xi x)m 1 ky m kx
2、对流传质:
(1)定义: 指壁面(或相界面)与运动流体之间,或 两个有限互溶的运动流体之间的传质

包括: 湍流主体与相界面之间的涡流扩散 分子扩散
(2)对流传质的类型:
a、根据流体的流动发生原因: 强制对流传质: 工业传质单元操作:蒸馏、吸收、萃取 又分强制层流、强制湍流

假定(要点):



流动状态气液两相相互接触时,气液两相间存在 着稳定的相界面,两侧各有一个很薄的静止膜。 A分子通过两层膜的传质方式:定态的分子扩散 相界面处流体湍动消失,气液两相处于相平衡状 态,界面无阻力; 膜外的气液两相主体中,由于流体的强烈湍动, 各处浓度均匀一致; 重点:在于传质阻力集中在两个静止膜层内,可 用分子扩散理论进行数学描述,对是否存在主体 流动都微分方程,费克第二定律 平均对流传质系数:

浙大化工原理第九章-气体吸收-第五次课

浙大化工原理第九章-气体吸收-第五次课

化学吸收 (Chemical absorption)
1 C pA H 1 K eC B
pA CA H
反应平衡常数 Ke越大,气相平衡分压 pA越低。 当化学反应为不可逆时,气相平衡分压为零或者说 相平衡常数m=0。 因此,可以说化学反应的存在,增加了可容组分的 溶解度。传质推动力增大。
4W Re L a L
Ga
3 gl3 L 2 L
a —填料比表面积m2/m3 ;kc — 液膜传质系数,m/s; cSm/c —液相漂流因子; l — 特征尺寸,取填料直径m; G —重力加速度,m/s2; L — 液体的粘度,N· s/m2; L —液体的密度 kg/m3; D’ —溶质在液相中的分子扩散系数 m2/s; W —液体的空塔质量速度,kg/(m2· s)。
化学吸收 (Chemical absorption) 化学吸收历程
气相中可溶组分向气液界面传递(此与物理吸收相 同),溶质在界面上溶解,溶质 A在液相中传递并与 液相中组分 相界面 p 气相主体 液相主体 B发生反应。 吸收剂
A
pA cA
pAi
界面
cAi cA 物理吸收 化学吸收
气体
气相扩散
液相扩散
解吸塔的计算
解吸方法
降低气体溶解度(减压、加温)和降低气相主体的 溶质分压(如气提或汽提)都有利于解吸过程的进行。 减压解吸 应用解吸剂进行解吸 气提:惰性气体 汽提:水蒸气
解吸塔的计算
浓端
工业解吸过程通常是将 溶液由塔顶引入,惰性气 体或蒸汽由塔底引入,使 两相在塔内逆流接触传质。 适用于吸收操作的设备同 样适用于解吸操作。 前述的气液传质理论和 吸收过程的计算方法均可 用于解吸过程,相对应的 计算式形式也类似。

化工原理气体吸收共39页文档

化工原理气体吸收共39页文档
45、自己的饭量自己知道。——苏联

化工原理气体吸收
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬

化工原理第九章气体吸收的基本概述

化工原理第九章气体吸收的基本概述

1 11
K x mk y kx
1 1 m Ky ky kx
mK y K x
吸收传质理论与传质速率方程
吸收传质理论与传质速率方程
相平衡关系为曲线
设平衡曲线段 PQ 与 QR 的割线的斜率分别为 mL 和 mG
y
斜率
=-kx/ky y*=f(x)
y A
R
mG
yi
mL
Q
y*
P
o
x
xi x* x
[例题]
气相传质阻力占总阻力的比例
1
1
ky 5.31104 89.3%
1
1
K y 4.74104
液相传质阻力占总阻力的比例
m
1.2
kx 5.33103 10.7%
1
1
K y 4.74104
作业
第56页: 9.4
和比摩尔分数。
吸收传质理论与传质速率方程
注意:气相传质系数虽然单位不同,数值也不同,但可根 据组成表示法的相互关系进行换算。 例:根据 p=Py,有
N A kg ( p pi ) kg P( y yi ) k y ( y yi )
k y Pk g
kY

ky (1 Y )(1 Yi )

X)
Xi 1
X kX
吸收传质理论与传质速率方程
同样,根据各种表示法的相互关系可推得
kX cmkc
kX

(1
kx X )(1 X i )
式中 cm 为液相的总摩尔浓度。 液相浓度很低时:
kX kx kx cmkc
对流传质系数
Sh f (Re,Sc )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HOG
V KY a
NOG111ln11AY Y12 Y Y22**1A
A
5
吸收塔的计算
吸收塔的设计型计算
设计型计算的命题
设计要求:求达到指定分离要求所需的塔高
给定条件:Y1,V,相平衡关系,分离要求(Y2或)
设计条件的选择
(1)流向选择 一般选择逆流,Ym较 大。
(2)吸收剂进口浓度的选择 技 术 上 : X 2 m a x =X2* , Ym=0,H→∞。
大家好
1
第九章 气体吸收 Gas Absorption
2
吸收塔的计算
高浓度气体吸收填料层高度的计算 高浓度气体吸收的特点
➢ 气、液相流率沿塔高是变化的 ➢ 吸收过程是非等温的
吸收的溶质量大,产生的溶解热能使两相温度显著 升高,相平衡关系也将沿塔高变化。温度升高, 对吸收不利,但可以增加传质分系数。 ➢ 传质系数沿塔高变化大。
Y Y1
Y2
o
X2 X2*
Y*=f(X)
X1 X
6
吸收塔的计算
吸收塔的设计型计算
(2)吸收剂进口浓度的选择 经济上:X2↓,Z↓,设备 费↓,但解吸操作费↑。 须优化选择。
(3)吸收剂用量的选择
L1.1~2.0L
V
Vmin
L Y1Y2 Vmin X1,maxX2
Y Y1
Y2 o X2’ X2
Y*=f(X) X1 X
Y*=f(X),流动方式,KYa或KXa。 计算目的:L,X1。
13
吸收塔的计算
计算方法
联立求解上节所列方程(计算公式)。 一般情况下,由于相平衡方程和吸收过程方程(填 料层高度计算式)的非线性,须试差或迭代。 当相平衡方程在操作范围内可视为直线时,第一类 命题可将基本方程线性化,但第二类命题仍须试差。
14
吸收塔的计算
【例9-7】某填料吸收塔用溶质含量为0.02(比摩尔分数, 下同)的溶剂吸收混合气中的可溶组分,采用的液气比为 3.2,气体入塔溶质的含量为2.0%,回收率可达95%。已 知在操作范围内物系的平衡关系为Y=2X,吸收过程为气 膜控制,总体积传质系数KYa与气体摩尔流率的0.8次方成 正比。受前后工序操作状况的影响,该吸收塔的工艺参数 也常有波动,试对以下几种情况进行计算。 (1)当解吸不良使吸收剂入塔含量增高至0.04时,溶质 的回收率下降至多少?塔内传质推动力有何变化? (2)气体流率增加20%,而溶剂量以及气、液进口组成 不变,溶质的回收率有何变化?单位时间被吸收的溶质量 增加多少? (3)入塔气体溶质含量增高至2.5%时,为保证气体出塔 组成不变,吸收剂用量应增加为原用量的多少倍? 15
解:空塔气速为0.8m/s时,塔内径为
D 4 V u S3 4 . 10 .5 4 0.8 50 7.94 m 20.9m 4
8
吸收塔的计算
塔的横截面积 D 20.9240.69 m 24
44
进塔惰性气体摩尔流率
V0 .55 277 ( 1 3 0 .0) 50 .02 k1 m /6 sol 2.4 2298
Ym
(Y1
Y1)(Y2 Y2*
lnY1 Y2
Y1* Y2*
)
(0.052l6n01..0658206.011.698) 5( 0.00.109051050)0.00639 0.001050
11
吸收塔的计算 传质单元数
N OG Y 1 Ym Y20.00 5 .0 2 0 0 .066031 9 80 .05 .05
出塔气体的丙酮含量
Y 2 Y 1 1 0 .0 5 1 0 2 .9 6 0 8 .009 105
吸收塔的计算 最小液气比
V L mi nX Y 1 1 * Y X 220.0 0.05 52 0 /.1 0 2 .6 60 681 1.0 65 5
实际液气比
L1.6L 1.61.652.64 V Vmin
塔底排出水中丙酮的含量
X 1V (Y 1L Y 2)(0.05 2 .6 0 2 .0 4 60)1 0 0 .05 195
10
吸收塔的计算
传质单元高度
H OG KY V a0.00.2 01 0 2.65 19 61 4.4m 5
对数平均推动力
7
吸收塔的计算
【例9-5】设计一瓷环填料塔,以吸收混合气中的丙酮, 吸收剂为清水。进塔气在操作条件下(101.3kPa, 25ºC)的流量为0.557m3/s,其丙酮含量为5% (mol%),要求塔内吸收率达98%,设计可取液气 比为最小液气比的1.6倍。操作条件下,物系相平衡关 系为Y=1.68X,气相总体积传质系数KYa为 0.0215kmol/(s·m3)。若气体空塔速度为0.8m/s,求塔 径及所需填料层高度。
填料层高度 Z H O N O G G 1 .4 8 5 .0 1 6 .7 m 1
12
吸收塔的计算
吸收塔的操作型计算
操作型计算的命题 (1)第一类命题(求操作结果)
给定条件:Z(及其他有关尺寸),V,L,Y1,X2, Y*=f(X),流动方式,KYa或KXa。
计算目的:Y2(),X1。
(2)第二类命题(求操作条件) 给定条件:Z(及其他有关尺寸),V,Y1,Y2,X2,
4
吸收塔的计算
计算公式(低浓度气体吸收)
全塔物料衡算式
L
V Y 1 Y 2 L X 1 X 2 V
1.1~2.0L
Vmin
相平衡关系
YfX
填料层高度计算式
L Y1Y2 Vmin X1,maxX2
ZHON GOG KY V aY Y 21Yd Y Y*
ZHON LOL KX L aX X21X* dX X
3
吸收塔的计算
吸收过程为组分A通过停滞组分B的扩散过程。按双 膜理论,气相传质系数
液相传质系数
kyR DT p P P Bm ky 0p P Bm ky 01 1 ym
kx
kx0
1
1 xm
低浓度吸收时,漂流因子近似等于1,因而传质系数与浓 度无关。高浓度吸收时,漂流因子的影响不可忽略,因而 传质系数与浓度有关,而浓度是沿塔高变化的,所以传质 系数亦沿塔高变化。液相漂流因子常可忽略。 另外,沿塔高流动状态的变化也将导致传质系数的变化。
吸收塔的计算
【例9-7】
已知
X2 0.02 Y1 2.0% 95%
Y2X
L V
3.2
吸收过程为气膜控制
KYaVs0.8
相关文档
最新文档