专题9 不等式-浙江十年高考(2009-2018)高三数学分类汇编解析版

合集下载

专题11+圆锥曲线-十年高考(2009-2018)之高三数学分项与解读(浙江专版)+Word版含解析

专题11+圆锥曲线-十年高考(2009-2018)之高三数学分项与解读(浙江专版)+Word版含解析

【考情概览】【应试策略】1.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>> E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22((Ⅱ)(i )设)0)(2,(2>m m m P ,由y x 22=可得x y =/, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0>∆,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y ,因为mx y 4100-=,所以直线OD 方程为x m y 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. (ii )由(i )知直线l 方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -, 又21(,),(0,),22m P m F D ))14(2,142(2223+-+m m m m , 所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S ,所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=t tt t t S S , 当211=t,即2=t 时,21S S 取得最大值49,此时22=m ,满足0>∆, 所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(.【应试策略】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 2.如图,已知抛物线,过直线上任一点作抛物线的两条切线,切点分别为.(I )求证:; (II )求面积的最小值.【答案】(1)见解析(2) 面积取最小值【解析】试题分析:(1)设,的斜率分别为,由切线条件,易得,即,由两根之积可得所以;(2),而,同理可得,即,然后求最值即可.(II)由(I)得,所以综上,当时,面积取最小值.【应试策略】圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.3.已知点1,2P t⎛⎫⎪⎝⎭在椭圆22:12xC y+=内,过P的直线l与椭圆C相交于A,B两点,且点P是线段AB的中点,O为坐标原点.(Ⅰ)是否存在实数t,使直线和直线OP的倾斜角互补?若存在,求出的值,若不存在,试说明理由;(Ⅱ)求OAB面积S的最大值.【答案】( Ⅰ)存在;(Ⅱ)max2S=.【解析】试题分析:试题解析:(Ⅰ)存在.由解得,,(或由解得,)当时,显然不符合题意;当时,设直线的斜率为,只需,即,解得,均符合题意.(Ⅱ)由(1)知的方程是,所以,【应试策略】解析几何中存在性问题的求解方法:1.通常采用“肯定顺推法”,将不确定性问题明朗化,其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于特定参数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题的常用方法.【真题展示】一、选择题1.【2018年,浙江卷2】双曲线221 3=x y -的焦点坐标是( )A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)【.答案】B【解析】∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2.【2017年,浙江卷2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B【解析】试题分析:e ==B . 3.【2013年.浙江卷.理9】如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A .32 D 【答案】D【解析】椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形,所以∠F 1AF 2=90°.所以|AF 1|2+|AF 2|2=|F 1F 2|2,所以|AF 1|=2-|AF 2|=2+所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=e ==,故选D . 4. 【2011年.浙江卷.理8】已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则(A)2132a =(B )213a = (C )212b =(D )22b =5. 【2010年.浙江卷.理8】设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF FF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±= 【答案】C【解析】利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题 6.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A. 【解析】11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A. 【考点定位】抛物线的标准方程及其性质7.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【考点】1、椭圆的简单几何性质;2、双曲线的简单几何性质.【易错点睛】计算椭圆1C 的焦点时,要注意222c a b =-;计算双曲线2C 的焦点时,要注意222c a b =+.否则很容易出现错误.8.【2012年.浙江卷.理8】如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )A .3 B .2【答案】B9.【2009年.浙江卷.理9】过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A 【答案】C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,AB BC a b e =∴=∴= 哦;。

(完整word)2009年浙江省高考数学试卷(理科)答案与解析

(完整word)2009年浙江省高考数学试卷(理科)答案与解析

2009年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}【考点】交、并、补集の混合运算.【专题】集合.【分析】欲求两个集合の交集,先得求集合C U B,再求它与Aの交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合の常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”の()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件の判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”の互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”の充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式の混合运算.【专题】数系の扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数の运算和复数の概念,以复数の运算为载体,直接考查了对于复数概念和性质の理解程度.4.(5分)(2009•浙江)在二项式の展开式中,含x4の项の系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式の通项公式求出第r+1项,令xの指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4の项の系数是C52(﹣1)2=10故选项为B【点评】二项展开式の通项是解决二项展开式の特定项问题の工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1Cの中心,则AD与平面BB1C1C所成角の大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间の位置关系.【专题】空间位置关系与距离.【分析】本题考查の知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BCの垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成の角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成の角时,应注意の问题是:(1)先判断直线和平面の位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成の角;②设定﹣﹣论证所作或找到の角为所求の角;③计算﹣﹣常用解三角形の方法求角;④结论﹣﹣点明斜线和平面所成の角の值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出のkの值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示の顺序,逐框分析程序中各变量、各语句の作用可知:该程序の作用是计算满足S=≥100の最小项数【解答】解:根据流程图所示の顺序,程序の运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序の运行结果,是算法这一模块最重要の题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算の类型,又要分析出参与计算の数据(如果参与运算の数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析の结果,选择恰当の数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣の模为边长构成三角形,则它の边与半径为1の圆の公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交の性质;向量の模;平面向量数量积の运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆の半径,进而看半径为1の圆内切于三角形时有三个公共点,对于圆の位置稍一右移或其他の变化,能实现4个交点の情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1の圆有一个位置是正好是三角形の内切圆,此时只有三个交点,对于圆の位置稍一右移或其他の变化,能实现4个交点の情况,但5个以上の交点不能实现.故选B【点评】本题主要考查了直线与圆の位置关系.可采用数形结合结合の方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinaxの图象不可能是()A.B.C.D.【考点】正弦函数の图象.【专题】三角函数の图像与性质.【分析】函数f(x)=1+asinaxの图象是一个正弦曲线型の图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数の周期为:,∵|a|>1,∴T<2π,而D不符合要求,它の振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象の对应关系,故选D.【点评】由于函数の解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题の关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)の右顶点A作斜率为﹣1の直线,该直线与双曲线の两条渐近线の交点分别为B、C.若=,则双曲线の离心率是()A.B.C.D.【考点】直线与圆锥曲线の综合问题;双曲线の简单性质.【专题】圆锥曲线の定义、性质与方程.【分析】分别表示出直线l和两个渐近线の交点,进而表示出和,进而根据=求得a和bの关系,进而根据c2﹣a2=b2,求得a和cの关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线の综合问题.要求学生有较高地转化数学思想の运用能力,能将已知条件转化到基本知识の运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合の包含关系判断及应用.【专题】集合.【分析】理解新の运算,根据新定义A﹣B知道,新の集合A﹣B是由所有属于A但不属于Bの元素组成.【解答】解:Q﹣P是由所有属于Q但不属于Pの元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合の运算,是一道创新题,具有一定の新意.要求学生对新定义のA﹣B有充分の理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}の公比,前n项和为S n,则=15.【考点】等比数列の性质.【专题】等差数列与等比数列.【分析】先通过等比数列の求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式の应用.属基础题.12.(4分)(2009•浙江)若某个几何体の三视图(单位:cm)如图所示,则该几何体の体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同の长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下の长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面の长方体底面是个正方形,边长为3,高为1,易知与下面の长方体体积相等,因此易得该几何体の体积为9×2=18.【点评】本题考查学生の空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3yの最小值是4.【考点】简单线性规划.【专题】不等式の解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点の坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组の可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划の小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点の坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区の电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下の部分0.568 50及以下の部分0.288超过50至200の部分0.598 超过50至200の部分0.318超过200の部分0.668 超过200の部分0.388若某家庭5月份の高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付の电费为148.4元(用数字作答)【考点】分段函数の解析式求法及其图象の作法.【专题】函数の性质及应用.【分析】先计算出高峰时间段用电の电费,和低谷时间段用电の电费,然后把这两个电费相加.【解答】解:高峰时间段用电の电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电の电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月の总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数の函数值の求法,体现了分类讨论の数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理の应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳の能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级の台阶上,若每级台阶最多站2人,同一级台阶上の人不区分站の位置,则不同の站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同の站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DCの中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则tの取值范围是(,1).【考点】平面与平面垂直の性质;棱锥の结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题の破解可采用二个极端位置法,即对于F位于DCの中点时与随着F点到C 点时,分别求出此两个位置のt值即可得到所求の答案【解答】解:此题の破解可采用二个极端位置法,即对于F位于DCの中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此tの取值の范围是(,1)故答案为(,1)【点评】考查空间图形の想象能力,及根据相关の定理对图形中の位置关系进行精准判断の能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应の边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABCの面积;(Ⅱ)若b+c=6,求aの值.【考点】二倍角の余弦;平面向量数量积の运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bcの值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+cの值求得b和c,进而根据余弦定理求得aの值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形の问题.涉及了三角函数中の倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数の概率;(Ⅱ)记ξ为这三个数中两数相邻の组数,(例如:若取出の数1、2、3,则有两组相邻の数1、2和2、3,此时ξの值是2).求随机变量ξの分布列及其数学期望Eξ.【考点】等可能事件の概率;离散型随机变量及其分布列;离散型随机变量の期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含の所有事件是从9个数字中选3个,而满足条件の事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻の组数,则ξの取值为0,1,2,当变量为0时表示不包含相邻の数,结合变量对应の事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含の所有事件是C93,而满足条件の事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻の组数,则ξの取值为0,1,2,当变量为0时表示不包含相邻の数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξの分布列为ξ0 1 2p∴ξの数学期望为.【点评】本题考查离散型随机变量の分布列,求离散型随机变量の分布列和期望是近年来理科高考必出の一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边の等腰直角三角形,E,F,O分别为PA,PB,ACの中点,AC=16,PA=PC=10.(Ⅰ)设G是OCの中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OBの距离.【考点】直线与平面平行の判定;点、线、面间の距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边の等腰直角三角形,O为ACの中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直の三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOEの一个法向量垂直即可,而根据坐标,平面の一个法向量可求,从而得证;对于(II),在第一问の基础上,课设点Mの坐标,利用FM⊥平面BOE求出Mの坐标,而其道OA、OBの距离就是点M 横纵坐标の绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOEの法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点Mの坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点Mの坐标为(8分)在平面直角坐标系xoy中,△AOBの内部区域满足不等式组,经检验,点Mの坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点Mの坐标得点M到OA,OBの距离为.(12分)【点评】本题考查直线与平面の平行の判定以及距离问题,建立了空间坐标系,所有问题就转化为向量の运算,使得问题简单,解决此类问题时要注意空间向量の使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)の右顶点A(1,0),过C1の焦点且垂直长轴の弦长为1.(Ⅰ)求椭圆C1の方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处の切线与C1交于点M,N.当线段APの中点与MNの中点の横坐标相等时,求hの最小值.【考点】圆锥曲线の综合;椭圆の标准方程.【专题】圆锥曲线の定义、性质与方程;圆锥曲线中の最值与范围问题.【分析】(I)根据题意,求出a,bの值,然后得出椭圆の方程.(II)设出M,N,Pの坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求の椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处の切线斜率为y'|x=t=2t,直线MNの方程为y=2tx﹣t2+h,将上式代入椭圆C1の方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同の交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MNの中点の横坐标是x3,则,设线段PAの中点の横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中の△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此hの最小值为1.【点评】本题考查圆锥图象の综合利用,椭圆方程の应用,通过构造一元二次方程,利用根の判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求kの取值范围;(Ⅱ)设函数是否存在k,对任意给定の非零实数x1,存在惟一の非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求kの值;若不存在,请说明理由.【考点】利用导数研究函数の单调性;函数の单调性与导数の关系.【专题】导数の综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数の方法得出,最后再利用导数求出此函数の值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0の情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等の实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0の情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2の值是唯一の;同理,∀x1<0,即存在唯一の非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数の正负与原函数の单调性之间の关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题の综合能力,属于中档题.。

2009年浙江高考文科数学试卷及答案解析(精校版)

2009年浙江高考文科数学试卷及答案解析(精校版)

XC中高考资料绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径如果事件,A B 互斥,那么()()()P A B P A P B +=+一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设{}{},|0,|1,U A x x B x x ==>=>R 则U A B = ð()A .{}|01x x <B .{}|01x x <C .{}|0x x <D .{}|1x x >【测量目标】集合的基本运算(交集与补集).【考查方式】集合的表示(描述法),求集合的补集与交集.【参考答案】B【试题解析】对于{}|1,U B x x =ð因此{}|01U A B x x =< ð.2.“0x >”是“0x ≠”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【测量目标】命题的充分,必要条件.【考查方式】主要考查命题的基本关系以及充分必要条件.【参考答案】A【试题解析】对于“0x >”⇒“0x ≠”;反之不一定成立,因此“0x >”是“0x ≠”的充分而不必要条件.3.设1i z =+(i 是虚数单位),则22z z+=()A .1i+B .1i -+C .1i-D .1i--【测量目标】复数的代数形式的四则运算.【考查方式】给出复数的除法乘方形式,考查复数的代数四则运算.【参考答案】D 【试题解析】对于2222(1i)1i 2i 1i 1iz z +=++=-+=++4.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是()A .若,,l ααβ⊥⊥则l β⊂B .若,,l ααβ 则l β⊂C .若,,l ααβ⊥ 则l β⊥D .若,,l ααβ⊥ 则l β⊥【测量目标】直线与平面位置关系,平面与平面的位置关系.【考查方式】给出线面,面面的部分关系,推导直线与平面的关系.【参考答案】C【试题解析】对于,,A B D 均可能出现l β ,而对于C 是正确的.5.已知向量(1,2),(2,3)-a =b =.若向量c 满足()()+⊥+ c a b,c a b ,则c =()A .77(,93B .77(,39--C .77(,)39D .77(,93--【测量目标】平面向量的坐标运算.【考查方式】给出平面向量满足的关系式,通过平面向量的平行和垂直关系运算求解.【参考答案】D【试题解析】不妨设(,)m n =c ,则()1,2,(3,1)m n +=+++=-a c a b ,对于()+ c a b ,则有3(1)(2)m n -+=+;(步骤1)又()⊥+c a b ,则有30m n -=,则有77,93m n =-=-(步骤2)6.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB交y 轴于点P .若2AP PB =,则椭圆的离心率是()A .2B .2C .13D .12【测量目标】椭圆的简单几何性质,解析几何与平面向量结合.【考查方式】考查解析几何与平面向量结合,数形结合求解离心率.【参考答案】D【试题解析】对于椭圆,因为2AP PB = ,则12,2,2OA OF a c e =∴=∴=7.某程序框图如图所示,该程序运行后输出的k 的值是()A .4B .5C .6D .7【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环k 的值.【参考答案】A【试题解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.8.若函数2()()af x x a x=+∈R ,则下列结论正确的是()A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数【测量目标】全称量词、存在量词、函数奇偶性与单调性的判断.【考查方式】给出函数式,通过对量词的考查结合函数的性质进行考查.【参考答案】C【试题解析】对于0a =时有()2f x x =是一个偶函数9.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数最多为()A .3B .4C .5D .6【测量目标】直线与圆的位置关系.【考查方式】通过三角形边与圆相切来考虑公共点.【参考答案】B【试题解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但4以上的交点不能实现.10.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是()AB C D【测量目标】三角函数的图象.【参考答案】D【试题解析】对于振幅大于1时,三角函数的周期为2π(步骤1)而D 不符合要求,它的振幅大于(步骤2)非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.【测量目标】等比数列的通项,等比数列的前n 和.【考查方式】给出等比数列的公比,考查等比数列前n 和每项的关系.【参考答案】15【试题解析】对于4431444134(1)1,,151(1)a q S q S a a q q a q q --==∴==--12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是3cm .【测量目标】三视图求几何体的体积.【考查方式】给出三视图,求几何体的体积.【参考答案】18【试题解析】该几何体是由二个长方体组成,下面体积为1339⨯⨯=,上面的长方体体积为3319⨯⨯=,因此其几何体的体积为1813.若实数,x y 满足不等式组2,24,0,x y x y x y +⎧⎪-⎨⎪-⎩则23x y +的最小值是.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性目标函数的最小值.【参考答案】4【试题解析】通过画出其线性规划,可知直线23y x z =-+过点()2,0时,()min 234x y +=14.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数..为.【测量目标】频率分布直方图.【考查方式】给出频率分布直方图,通过图表解决问题.【参考答案】30【试题解析】对于在区间[]4,5的频率/组距的数值为0.3,而总数为100,因此频数为30w.w.w.k.s.5.u.c.o.m15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为元(用数字作答).【测量目标】分段函数模型.【考查方式】考查识图能力及数据处理能力,求解.【参考答案】148.4【试题解析】对于应付的电费应分二部分构成,高峰部分为500.5681500.598⨯+⨯;对于低峰部分为500.288500.318⨯+⨯,二部分之和为148.416.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.【测量目标】等比数列的性质,等差数列的性质.【考查方式】通过已知条件进行类比推理求解.【参考答案】81248T T T T ,【试题解析】对于等比数列,通过类比,有等比数列{}n b 的前n 项积为n T ,则4T ,81248,T T T T ,1612T T 成等比数列.17.有20张卡片,每张卡片上分别标有两个连续的自然数,1k k +,其中0,1,2,,19k = .从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14,A ,则()P A =.【测量目标】排列组合及其应用.【考查方式】给出排列组合的方式,求在一定条件下出现A 事件概率.【参考答案】【试题解析】对于大于的点数的情况通过列举可得有5种情况,即7,8;8,9;16,17;17,18;18,19,而基本事件有20种,因此()P A =14三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c,且满足cos25A =,3AB AC =.(I )求ABC △的面积;(II )若1c =,求a 的值.【测量目标】平面向量的线性运算,正弦定理余弦定理,二倍角,同角三角函数的基本关系.【考查方式】给出关于向量的等式,根据数量积的公式将其转化为边与角的关系式,进而求ABC △的面积;给出边c ,根据余弦定理求a 值.【试题解析】(Ⅰ)531552(212cos2cos 22=-⨯=-=A A (步骤1)又(0,π)A ∈,54cos 1sin 2=-=A A ,(步骤2)而3cos 35AB AC AB AC A === ,所以5=bc ,所以ABC △的面积为:254521sin 21=⨯⨯=A bc (步骤3)(Ⅱ)由(Ⅰ)知5=bc ,而1=c ,所以5=b 所以5232125cos 222=⨯-+=-+=A bc c b a (步骤4)19.(本题满分14分)如图,DC ⊥平面ABC ,EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明:PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.【测量目标】线面平行的判定,线面角的求法.【考查方式】线线平行推出线面平行;由几何体中的位置关系,进行求解.【试题解析】(Ⅰ)证明:连接CQ DP ,,在ABE △中,Q P ,分别是AB AE ,的中点,所以12PQ BE ,(步骤1)又12DC BE,所以PQ DC ,又⊄PQ 平面ACD ,DC ⊂平面ACD ,所以PQ 平面ACD (步骤2)(Ⅱ)在ABC △中,BQ AQ BC AC ===,2,所以AB CQ ⊥(步骤3)而DC ⊥平面ABC ,DC EB //,所以⊥EB 平面ABC而⊂EB 平面ABE ,所以平面ABE ⊥平面ABC ,所以⊥CQ 平面ABE (步骤4)由(Ⅰ)知四边形DCQP 是平行四边形,所以CQDP //所以⊥DP 平面ABE ,所以直线AD 在平面ABE 内的射影是AP ,(步骤5)所以直线AD 与平面ABE 所成角是DAP ∠(步骤6)在Rt APD △中,5122222=+=+=DC AC AD ,1sin 2=∠==CAQ CQ DP 所以5551sin ===∠AD DP DAP (步骤7)20.(本题满分14分)设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n ∈N ,其中k 是常数.(I )求1a 及n a ;(II )若对于任意的*m ∈N ,m a ,2m a ,4m a 成等比数列,求k 的值.【测量目标】等差数列的通项和等比数列的性质,等差数列前n 项和.【考查方式】给出n S 的表达式,求{}n a ;{}n a 中部分项呈等比,求解未知数k .【试题解析】(Ⅰ)当1,111+===k S a n ,2212,[(1)(1)]21n n n na S S kn n k n n kn k -=-=+--+-=-+(○1)(步骤1)检验,,1=n (○1)式成立,12+-=∴k kn a n (步骤2)(Ⅱ)m m m a a a 42,, 成等比数列,224m m m a a a ∴= ,即)18)(12()14(2+-+-=+-k km k km k km ,(步骤3)整理得:0)1(=-k mk ,对任意的*m ∈N 成立,10==∴k k 或(步骤4)21.(本题满分15分)已知函数32()(1)(2)f x x a x a a x b =+--++(,)a b ∈R .(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.【测量目标】利用导数判断或求函数的单调区间,函数零点的应用.【考查方式】限定函数的图象过定点处的斜率,解出方程中的未知数;给出函数在区间上的单调性,求未知数的取值范围.【试题解析】(Ⅰ)由题意得)2()1(23)(2+--+='a a x a x x f (步骤1)又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f 解得0=b ,3-=a 或1=a (Ⅱ)由()0f x '=,得1,x a =(步骤4)又()f x 在(1,1)-上不单调,即2311a a a +⎧≠-⎪⎨⎪-<<⎩或211323a a a +⎧-<-<⎪⎪⎨+⎪≠-⎪⎩(步骤5)解得1112a a -<<⎧⎪⎨≠-⎪⎩或5112a a -<<⎧⎪⎨≠-⎪⎩所以a 的取值范围是11(5,)(,1)22---.(步骤6)22.(本题满分15分)已知抛物线C :22(0)x py p =>上一点(,4)A m 到其焦点的距离为174.(I )求p 与m 的值;(II )设抛物线C 上一点P 的横坐标为(0)t t >,过P 的直线交C 于另一点Q ,交x 轴于点M ,过点Q 作PQ 的垂线交C 于另一点N .若MN 是C 的切线,求t 的最小值.【测量目标】抛物线的简单几何性质,直线与抛物线的位置关系,圆锥曲线中的定点定值问题.【考查方式】给出抛物线上一点到焦点的距离,根据准线方程求方程中未知数;根据直线与抛物线直线与直线的关系,求t 的最小值【试题解析】(Ⅰ)由抛物线方程得其准线方程:2py -=,(步骤1)根据抛物线定义点)4,(m A 到焦点的距离等于它到准线的距离,即41724=+p ,解得21=p (步骤2)∴抛物线方程为:y x =2,(步骤3)将)4,(m A 代入抛物线方程,解得2±=m (步骤4)(Ⅱ)由题意知,过点),(2t t P 的直线PQ 斜率存在且不为0,设其为k .(步骤5)则)(:2t x k t y l PQ -=-,当,,02k kt t x y +-==则)0,(2k ktt M +-.(步骤6)联立方程⎩⎨⎧=-=-y x t x k t y 22)(,整理得:0)(2=-+-t k t kx x 即:0)]()[(=---t k x t x ,解得,t x =或t k x -=(步骤7)))(,(2t k t k Q --∴,而QP QN ⊥,∴直线NQ 斜率为k1-(步骤8))]([1)(:2t k x k t k y l NQ ---=--∴,联立方程⎪⎩⎪⎨⎧=---=--y x t k x kt k y 22)]([1)(整理得:0)()(1122=----+t k t k kx k x ,即:0]1)()[(2=+---+t k k t k x kx 0)](][1)([=--+-+t k x t k k kx ,解得:kt k k x 1)(+--=或t k x -=(步骤9)学诚中高考资料第10页共11页]1)([,1)((22k t k k k t k k N +-+--∴,)1()1(1)(]1)([2222222--+-=+--+--+-=∴k t k kt k kkt t k t k k k t k k K NM (步骤10)而抛物线在点N 处切线斜率:kt k k y k k t k k x 2)(21)(---='=+--=切(步骤11) MN 是抛物线的切线,k t k k k t k kt k 2)(2)1()1(2222---=--+-∴,整理得02122=-++t tk k 224(12)0t t ∆=-- ,解得23t -(舍去),或23t ,32min =∴t (步骤12)如需Word 文档请联系作者索取。

2018年高考浙江卷数学试题解析(精编版)(解析版)

2018年高考浙江卷数学试题解析(精编版)(解析版)

2018年高考浙江卷数学试题解析(精编版)(解析版)点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

专题27 不等式选讲丨十年高考数学真题分项汇编(解析版)(共24页)

专题27  不等式选讲丨十年高考数学真题分项汇编(解析版)(共24页)

十年(2014-2023)年高考真题分项汇编—不等式选讲目录题型一:含绝对值不等式的解法...........................................................1题型二:不等式的最值...........................................................................8题型三:含绝对值不等式的成立问题....................................................9题型四:含绝对值函数的图像及其应用..............................................10题型五:不等式证明.. (17)(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.解析:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.2.(2020年高考课标Ⅱ卷理科·第23题)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .解析:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.3.(2020江苏高考·第23题)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦4.(2019·全国Ⅱ·理·第23题)已知函数()()2f x x a x x x a =-+--.()1当1a =时,求不等式()0f x <的解集;()2当(),1x ∈-∞时,()0f x <,求a 的取值范围.【答案】()1(),1-∞;()2[)1,+∞【官方解析】()1当1a =时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.()2因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----所以,a 的取值范围是[1,)+∞.【分析】()1根据1a =,将原不等式化为()1210x x x x -+--<,分别讨论1x <,12x <≤,2x ≥三种情况,即可求出结果;()2分别讨论1a ≥和1a <两种情况,即可得出结果.【解析】()1当1a =时,原不等式可化为()1210x x x x -+--<;当1x <时,原不等式可化为,即()210x ->,显然成立,此时解集为(),1-∞;当12x <≤时,原不等式可化为()()()1210x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为()()()1210x x x x -+--<,即()210x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(),1-∞;()2当1a ≥时,因为(),1x ∈-∞,所以由()0f x <可得()()()20a x x x x a -+--<,即()()10x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,()()()2,1()21,x a a x f x x a x x a -<⎧⎪=⎨--<⎪⎩≤,因为1a x <≤时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[)1,+∞.【点评】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.5.(2019·江苏·第23题)设x ∈R ,解不等式||+|2 1|>2x x -.【答案】见解析【解析】当0x <时,原不等式可化为122x x -+->,解得13x <-;当12x 0≤≤时,原不等式可化为122x x +->,即1x <-,无解;当12x >时,原不等式可化为212x x +->,解得1x >.综上,原不等式的解集为1{|1}3x x x <->或.6.(2015高考数学新课标1理科·第24题)(本小题满分10分)选修4—5:不等式选讲已知函数()12,0f x x x a a =+-->.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.解析:(Ⅰ)当a =1时,不等式f (x )>1化为|x +1|-2|x -1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f (x )>1的解集为2{|2}3x x <<.(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +.由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞).7.(2015高考数学江苏文理·第24题)解不等式|23|2x x ++≥【答案】153x x x ⎧⎫≤-≥-⎨⎬⎩⎭或分析:根据绝对值定义将不等式化为两个不等式组的并集,分别求解即可解析:原不等式可化为3232x x ⎧<-⎪⎨⎪--≥⎩或32332x x ⎧≥-⎪⎨⎪+≥⎩.解得5x ≤-或13x ≥-.综上,原不等式的解集是153x x x ⎧⎫≤-≥-⎨⎬⎩⎭或.8.(2014高考数学课标2理科·第24题)(本小题满分10)选修4-5:不等式选讲.设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【答案】解析:(Ⅰ)11112x x a x a x x a x a a a a a++-=++-≥++-=+≥,仅当1a =时等号成立,所以()f x ≥2.(Ⅱ)()3f =1133335a a a a++-=-++<当03a <<时,()3f =165a a -+<,解得152a +>当3a ≥时,()3f =15a a +<,解得52a +>综上所述,a 的取值范围为15521(,22+.9.(2017年高考数学新课标Ⅰ卷理科·第23题)[选修4—5:不等式选讲]已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围【答案】(1)11712x x ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭;(2)[]1,1-.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[]1,1x ∈-时,()2f x ≥,则()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤,所以a 的取值范围为[]1,1-.【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--<①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤所以不等式()()f x g x ≥的解集为11712xx ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭(2)当[]1,1x ∈-时,()2g x =所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时,()2f x ≥又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()()1212f f -≥⎧⎪⎨≥⎪⎩,得11a -≤≤.所以a 的取值范围为[]1,1-.10.(2017年高考数学课标Ⅲ卷理科·第23题)[选修4—5:不等式选讲](10分)已知函数()12f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(Ⅰ){}1x x ≥;(Ⅱ)5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)因为()3, 11221, 123, 2x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩所以不等式()1f x ≥等价于131x <-⎧⎨-≥⎩或12211x x -≤≤⎧⎨-≥⎩或231x >⎧⎨≥⎩由131x <-⎧⎨-≥⎩⇒x 无解;由1222x x -≤≤⎧⎨≥⎩12x ⇒≤≤;由231x >⎧⎨≥⎩2x ⇒≥综上可得不等式()1f x ≥的解集为[)1,+∞.(2)解法一:先求不等式()2f x x x m ≥-+的解集为空集时m 的取值范围不等式()2f x x x m ≥-+的解集为空集等价于不等式()2m f x x x >-+恒成立记()()2F x f x x x =-+2223, 131, 123, 2x x x x x x x x x ⎧-+-<-⎪-+-≤≤⎨⎪-++>⎩,则()maxm F x >⎡⎤⎣⎦当1x <-时,()()2211131524F x x x x F ⎛⎫=-+-=---<-=- ⎪⎝⎭当12x -≤≤时,()223535312424F x x x x F ⎛⎫⎛⎫=-+-=--+≤=⎪ ⎪⎝⎭⎝⎭当2x >时,()()2211332124F x x x x F ⎛⎫=-++=--+<= ⎪⎝⎭所以()max 3524F x F ⎛⎫==⎡⎤⎪⎣⎦⎝⎭所以不等式()2f x x x m ≥-+的解集为空集时,54m >所以不等式()2f x x x m ≥-+的解集非空时,m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.解法二:原式等价于存在x R ∈,使2()f x x x m -+≥成立,即2max [()]f x x x m-+≥设2()()g x f x x x=-+由(1)知2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-,其开口向下,对称轴112x =>-所以()()11135g x g ≤-=---=-当12x -<<时,()231g x x x =-+-,其开口向下,对称轴为32x =所以()399512424g x g ⎛⎫≤=-+-=⎪⎝⎭当2x ≥时,()23g x x x =-++,其开口向下,对称轴为12x =所以()()24231g x g ≤=-++=综上()max 54g x =⎡⎤⎣⎦所以m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.11.(2016高考数学课标Ⅲ卷理科·第24题)选修4—5:不等式选讲已知函数()2f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()21g x x =-,当R x ∈时,()()3f x g x +≥,求a 的取值范围.【答案】(Ⅰ){}13x x -≤≤;(Ⅱ)[)2,+∞.【解析】(Ⅰ)当2a =时,()222f x x =-+.解不等式2226x -+≤,得13x -≤≤.因此,()6f x ≤的解集为{}13x x -≤≤.(Ⅱ)当R x ∈时,()()2122121f x g x x a a x x a x a a a +=-++--+-+=-+≥当12x =时等号成立.所以当R x ∈时,()()3f x g x +≥等价于13a a -+≥.①当1a ≤时,①等价于13a a -+≥,无解.当1a >时,①等价于13a a -+≥,解得2a ≥所以的取值范围是[)2,+∞.题型二:不等式的最值1.(2018年高考数学江苏卷·第24题)[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【答案】4证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,所以222x y z ++的最小值为4.2.(2014高考数学课标1理科·第24题)选修4—5:不等式选讲若0,0a b >>,且11a b+=.(1)求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【答案】解析:(111a b=+³,得2ab ³,且当a b ==故33a b +³=,且当a b ==∴33a b +的最小值为.(2)由623a b =+³,得32ab £,又由(1)知2ab ³,二者矛盾,所以不存在,a b ,使得236a b +=成立.3.(2015高考数学陕西理科·第24题)(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式x a b +<的解集为{}24x x <<.(Ⅰ)求实数a ,b 的值;+的最大值.【答案】(Ⅰ)3a =-,1b =;(Ⅱ)4.分析:(Ⅰ)先由x a b +<可得b a x b a --<<-,再利用关于x 的不等式x a b +<的解集为{}24x x <<可得a ,b,再利用柯西不等式可得的最大值.解析:(Ⅰ)由||x a b +<,得b a x b a --<<-则2,4,b a b a --=⎧⎨-=⎩解得3a =-,1b =(Ⅱ)=≤4==1=,即1t =时等号成立,故max4=.4.(2015高考数学福建理科·第23题)选修4-5:不等式选讲已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4.(Ⅰ)求a b c ++的值;(Ⅱ)求2221149a b c ++的最小值.【答案】(Ⅰ)4;(Ⅱ)87.解析:(Ⅰ)因为(x)|x ||x ||(x )(x )||a |f a b c a b c b c =++++³+-++=++,当且仅当a x b -#时,等号成立,又0,0a b >>,所以|a b |a b +=+,所以(x)f 的最小值为a b c ++,所以a b c 4++=.(Ⅱ)由(1)知a b c 4++=,由柯西不等式得()()22222114912+3+1164923a b a b c c a b c ⎛⎫⎛⎫++++≥⨯⨯⨯=++= ⎪ ⎪⎝⎭⎝⎭,即222118497a b c ++³.当且仅当1132231b ac ==,即8182,,777a b c ===时,等号成立所以2221149a b c ++的最小值为87.题型三:含绝对值不等式的成立问题1.(2018年高考数学课标Ⅱ卷(理)·第23题)[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】解析:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +-⎧⎪=-<⎨⎪-+>⎩≤ ≤可得()0≥f x 的解集为{}|23≤≤x x -.(2)()1f x ≤等价于|||2|4≥x a x ++-.而|||2||2|≥x a x a ++-+,且当2x =时等号成立,故()1f x ≤等价于|2|4≥a +.由|2|4≥a +可得6≤a -或2≥a ,所以a 的取值范围是(][),62,-∞-+∞ .2.(2018年高考数学课标卷Ⅰ(理)·第23题)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【答案】解析:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫⎪⎝⎭(2)2解析:(1)若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3ax a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.(2)2,()23,x a x af x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与x 轴围成ABC ,ABC 的高为3,,0,,022a a a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以||=AB a ,所以211||222ABC S AB a a =⋅== ,解得2a =.2.(2023年全国乙卷理科·第23题)已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-(2)作出不等式组()60f x yx y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .3.(2020年高考课标Ⅰ卷理科·第23题)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭.【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.4.(2016高考数学课标Ⅰ卷理科·第24题)(本小题满分10分)选修4—5:不等式选讲已知函数(x)123f x x =+--.(I )画出(x)y f =的图像;(II )求不等式(x)1f >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,【官方解答】(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()y f x =如图所示:(II )由()f x 得表达式及图像,当()1f x =时,得1x =或3x =当()1f x =-时,得13x =或5x =故()1f x >的解集为{}13x x <<;()1f x -<的解集为153x x x ⎧⎫<>⎨⎬⎩⎭或()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.【民间解答】(I )如上图所示:(II )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()1f x >当1x -≤,41x ->,解得5x >或3x <1x -∴≤当312x -<<,321x ->,解得1x >或13x <113x -<<∴或312x <<当32x ≥,41x ->,解得5x >或3x <332x <∴≤或5x >综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.5.(2018年高考数学课标Ⅲ卷(理)·第23题)【选修4—5:不等式选讲】(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.【答案】【官方解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.【民间解析】(1)()211f x x x =++-3,112,12132x x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,可作出函数()f x的图象如下图(2)依题意可知()f x ax b ≤+在[)1,+∞上恒成立,在[)0,1上也恒成立当1x ≥时,()3f x x ax b =≤+恒成立即()30a x b -+≥在[)1,+∞上恒成立所以30a -≥,且30a b -+≥,此时3a ≥,3a b +≥当01x ≤<时,()2f x x ax b =+≤+即()120a x b -+-≥恒成立结合3a ≥,可知20b -≥即2b ≥综上可知32a b ≥⎧⎨≥⎩,所以当3a =,2b =时,a b +取得最小值5.题型五:不等式证明1.(2017年高考数学江苏文理科·第24题)[选修4-5:不等式选讲]已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明8.ac bd +≤【答案】解析:证明:由柯西不等式得,直线l 的普通方程为22222()()()ac bd a b c d +++≤.因为224a b +=,2216c d +=,所以2()64ac bd +≤,因此8.ac bd +≤2.(2022年高考全国甲卷数学(理)·第23题)已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】(1)证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;(2)证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥3.(2020年高考课标Ⅲ卷理科·第23题)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.解析:(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.1,,,abc a b c =∴ 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.4.(2019·全国Ⅲ·理·第23题)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a -≥.【答案】(1)43;(2)见详解.【官方解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤-++++⎣⎦故由已知得232(1)(1)143()x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以232(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦故由已知得2222(2)(2)(1)()3a x y z a +-+-+-,当且仅当4122,,333aa a x y z ---===时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +由题设知2(2)133a +,解得3a -≤或1a -≥.【解法2】柯西不等式法(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++-++++=+++=≥,故2224(1)(1)(1)3x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43.(2)2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当4122,,333aa a x y z ---===时等号成立.22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a -≥.【点评】本题两问思路一样,既可用基本不等式,也可用柯西不等式求解,属于中档题型.5.(2019·全国Ⅰ·理·第23题)已知a ,b ,c 为正数,且满足1abc =.证明:(1)222111a b c a b c++++≤;(2)333()()()24a b b c c a +++++≥.【答案】解:(1)因为2222222,2,2a b ab b c bc c a ac +++≥≥≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++++==++≥.所以222111a b c a b c++++≤.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥3(+)(+)(+)a b b c a c =324⨯⨯⨯=≥所以333()()()24a b b c c a +++++≥.6.(2014高考数学辽宁理科·第24题)(本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N .(1)求M ;(2)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.【答案】(1)[0,43];(2)见解析.解析:(1)由f (x )=2|x ﹣1|+x ﹣1≤1可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②.解①求得1≤x ≤43,解②求得0≤x <1.综上,原不等式的解集为[0,43].(2)由g (x )=16x 2﹣8x +1≤4,求得14-≤x ≤34,∴N =[14-,34],∴M ∩N =[0,34].∵当x ∈M ∩N 时,f (x )=1﹣x ,x 2f (x )+x [f (x )]2=xf (x )[x +f (x )]=21142x ⎛⎫-- ⎪⎝⎭≤14,故要证的不等式成立.7.(2014高考数学江苏·第24题)【选修4-5:不等式选讲】已知0,0x y >>,证明:22(1)(1)9x y x y xy ++++≥.【答案】[选修4—4:不等式证明选讲].解析:本小题主要考查本小题满分10分.证法一:因为0,0x y >>,所以210x y ++≥>,故22(1)(1)9x y x y xy ++++≥=.证法二:(柯西不等式)22222(1)(1)(1)(1)(x y x y x y y x y x ++++=++++≥++29xy ≥+=.证法三:因为0,0x y >>,所以212x y x y ++≥+,212y x y x ++≥+.故222(1)(1)(2)(2)2()99x y x y x y y x x y xy xy ++++≥++=-+≥.(江苏苏州褚小光)证法四:因为0,0x y >>,所以212x y x y ++≥+,212y x y x ++≥+.故2222(1)(1)(2)(2)225459x y x y x y y x x y xy xy xy xy ++++≥++=++≥+=.8.(2014高考数学福建理科·第23题)(本小题满分7分)选修4—5:不等式选讲已知定义在R 上的函数21)(+++=x x x f 的最小值为a .(I )求a 的值;(II )若r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p .【答案】选修45-:不等式选讲解析:(I )因为12(1)(x 2)3x x x ++-≥+--=.当且仅当12x -≤≤时,等号成立.所以()f x 的最小值等于3,即3a =.(II )由(I )知3p q r ++=,又因为,,p q r 是正实数,所以22222222111()()(111)()9.p p q r p q r q r ≥⨯+⨯+⨯=++++=++即2223q p r ++≥.9.(2015高考数学新课标2理科·第24题)(本小题满分10分)选修4-5不等式选讲设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>(Ⅱ)>a b c d -<-的充要条件.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.解析:(Ⅰ)因为2a b =++,2c d =++a b c d +=+,ab cd >,得22>>(Ⅱ)(ⅰ)若a b c d -<-,则22()()a b c d -<-.即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>+>,则22+>+,即a b ++>c d ++a b c d +=+,所以ab cd >,于是22()()4a b a b ab -=+-2()4c d cd <+-2()c d =-.因此a b c d -<-,综上,>a b c d -<-的充要条件.10.(2015高考数学湖南理科·第18题)设0,0a b >>,且11a b a b+=+.证明:(1)2a b +≥;(2)22a a +<与22b b +<不可能同时成立.【答案】(1)详见解析;(2)详见解析.分析:(1)将已知条件中的式子可等价变形为1=ab ,再由基本不等式即可得证;(2)利用反证法,假设假设22<+a a 与22<+b b 同时成立,可求得10<<a ,10<<b ,从而与1=ab 矛盾,即可得证解析:由abb a b a b a +=+=+11,0>a ,0>b ,得1=ab ,(1)由基本不等式及1=ab ,有22=≥+ab b a ,即2≥+b a ;(2)假设22<+a a 与22<+b b 同时成立,则由22<+a a 及0>a 得10<<a ,同理10<<b ,从而1<ab ,这与1=ab 矛盾,故22<+a a 与22<+b b 不可能成立.11.(2017年高考数学课标Ⅱ卷理科·第23题)[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤.【答案】【命题意图】不等式证明,柯西不等式【基本解法】(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b ⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b ++=+++=+++-33233332()2()4a b a b a b ≥++-=+=解法三:()()()()()2555533553342a b a b a b a b a b ab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b+-=-≥.当a b =时,等号成立.所以,()()5540a b a b ++-≥,即55()()4a b a b ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2233()()()4()4a b a b a b a b ⎡⎤+≥+⋅+-⎢⎥⎣⎦+=所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤.解法三:因为332a b +=,所以:()()()3333322333843344a b a b a b aa b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以:()()230a b a b -+-≤。

2010到2018年浙江高考试题汇编(第二章不等式)

2010到2018年浙江高考试题汇编(第二章不等式)
14、(2016-2-2)不等式 的解集是()
A、 B、 C、 D、
15、(2016-20-3)若 ,则 的最小值为______。
16、(2017-3-2)
A. B. C. D.
17、(2017-11-2)如图,在数轴上表示的区间是下列那个不等式的解集
A. B. C. D.
18、(2017-26-4)26.若 的最小值为____.
19、(2018-11-3)不等式 的解集是
A. B. C. D.
20、(2018-27-4)函数 的最小值为
5、(2012-3-2)已知 ,则下面式子一定成立的是()
A、 B、 C、 D、
6、(2012-9-2)不等式 的解集为()
A、 B、 C、 D、
7、(2012-23-3)已知 ,则 的最小值为______。
8、(2013-23-3)已知 , , ,则 的最大值等于______。
9、(2013-27-6)比较 与 的大小。
浙江省2010年到2018年高职考
数学试题汇编(不等式)
1、(2010-8-3)若 ,要使 取得最小值,则 必须等于()
A、1 B、 C、 D、2
2、(2010-24-8)解不等式:
3、(2011-18-2)解集为 的不等式(组)是()
A、 B、 C、 D、
4、(2011-19-3)若 ,则 的最大值是______。
10、(2014-4-2)下列不等式(组)解集为 的是()
,则当且仅当 =______时, 的最大值为.
12、(2015-16-2)已知 ,则 的最小值为()
A、 B、2 C、 D、
13、(2015-19-3)不等式 的解集为______(用区间表示)

浙江省2009-2018高考数学分类汇编-理科

浙江省2009-2018高考数学分类汇编-理科

2009—2018年普通高等学校招生全国统一考试浙江卷数学(理)试题分类汇编必修模块数学1(必修)第一章集合与函数概念一、选择题1.[2009浙江理1] 设U=R,,,则( ).A.B.C.D.2.[2010浙江理1]设P={x|x<4},Q={x|x2<4},则().A.P⊆ B.Q⊆ C.P⊆ D.Q⊆3.[2011浙江理1] 设函数f(x)=.若f(a)=4,则实数a=().A.-4或-2 B.-4或2 C.-2或4 D.-2或24.[2012浙江理1]设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则()=().A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)5.[2013浙江理2]设集合S={x|x>-2},T={x|+3x-4≤0},则(S)∪T=().A.(-2,1] B.(-∞,-4] C.(-∞,1] D.[1,+∞)6.[2014浙江理1] 设全集U={x∈N|x≥2},集合A={x∈N|≥5},则A=().A.ΦB.{2} C.{5} D.{2,5}7.[2015浙江理1] 已知集合P={x|-2x≥0},Q={x|1<x≤2},则(P)∩Q=().A.[0,1) B.(0,2] C.(1,2) D.[1,2]8.[2016浙江理1] 已知集合,,则().A.[2,3] B.( -2,3 ] C.[1,2) D.9.[2017浙江1] 已知集合,,那么P∪Q=().A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)10.[2018浙江1] 已知全集U={1,2,3,4,5},A={1,3},则A=().A.ΦB.{1,3} C.{2,4,5} D.{1,2,3,4,5}1.[2011浙江理11]若函数f(x)=-|x+a|为偶函数,则实数a=________.2.[2014浙江理15]设函数若f(f(a))≤2,则实数a的取值范围是________.第二章基本初等函数(Ⅰ)一、选择题1.[2010浙江理10]设函数的集合P=,平面上点的集合Q=,则在同一直角坐标系中,P中函数f(x)的图象恰好经过Q中两个点的函数的个数是().A.4 B.6 C.8 D.102.[2013浙江理3]已知x,y为正实数,则().A.+=+B.+=C.=+D.=3.[2014浙江理7] 在同一直角坐标系中,函数=,=的图象可能是().4.[2017浙江5] 若函数在区间[0,1]上的最大值是M,最小值是m,则M – m().A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关二、填空题1.[2015浙江理10] 已知函数=则-=________,的最小值是________.2.[2015浙江理12] 若=,则+-________.3.[2016浙江理12] 已知.若,,则a= ,b= .1.[2015浙江理18]已知函数=++,,记,是在区间[-1,1]上的最大值.(Ⅰ)证明:当时,,;(Ⅱ)当a,b满足,时,求+的最大值.2.[2016浙江理18] 已知,函数(),,其中,(I)求使得等式()成立的x的取值范围;(II)(i)求()的最小值();(ii)求()在区间上的最大值().第三章函数的应用一、选择题1.[2011浙江理10]设a,b,c为实数,=+++,=+++.记集合==,,==,.若,分别为集合S,T的元素个数,则下列结论不可能的是().A.|S|=1且|T|=0 B.|S|=1且|T|=1 C.|S|=2且|T|=2 D.|S|=2且|T|=3二、填空题1.[2009浙江理14]某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:超过200的部分0.668 超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为元(用数字作答).2.[2018浙江15] 已知,函数f(x)=x4,x≥ ,x24x 3,x< .当时,不等式的解集是,若函数恰有2个零点,则的取值范围是__________。

高三数学复习2009年浙江高考卷(理数)试题word版

高三数学复习2009年浙江高考卷(理数)试题word版

高三数学复习2009年浙江高考卷(理数)试题一、选择题(本大题共10小题,每小题5分,共50分)1. 设集合A={x|x²3x+2=0},集合B={x|x²4=0},则A∩B的结果是()A. {1}B. {2}C. {1, 2}D. ∅2. 若复数z满足|z1|=|z+i|,则z在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 函数f(x)=2x+32^(x1)的单调减区间是()A. (∞, +∞)B. (∞, 1)C. (1, +∞)D. ∅4. 已知数列{an}是等差数列,a1=1,a3=3,则数列的前5项和为()A. 15B. 10C. 20D. 255. 设向量a=(2, 3),向量b=(1, 2),则向量a与向量b的夹角为()A. 30°B. 45°C. 60°D. 90°6. 若直线y=kx+1与圆(x1)²+(y2)²=4相切,则实数k的值为()A. 1B. 1C. 2D. 27. 已知等比数列{bn}中,b1+b3=6,b2+b4=12,则b7的值为()A. 48B. 96C. 192D. 3848. 设函数f(x)=x²+ax+b,若f(x)在区间[1, 1]上的最小值为2,最大值为2,则实数a、b的值分别为()A. a=0, b=2B. a=0, b=2C. a=±2, b=0D. a=±2, b=29. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC的面积为()A. 12B. 24C. 36D. 4810. 若函数f(x)=x²+2ax+a²1在区间(0, 1)上单调递减,则实数a 的取值范围是()A. a<0B. a>0C. a≤0D. a≥0二、填空题(本大题共7小题,每小题4分,共28分)11. 已知数列{cn}的通项公式为cn=2n1,则数列的前n项和为________。

历届浙江高考不等式小题汇编

历届浙江高考不等式小题汇编
历届浙江高考不等式小题汇编(文) x 1 0 的解集是 2006(11)不等式 。. x2 2008(5)已知 a 0, b 0, 且a b 2, 则
1 1 (B) ab (C) a 2 b 2 2 (D) a 2 b 2 3 2 2 2010(15)若正实数 x,y 满足 2x+y+6=xy,则 xy 的最小值是
(A) abΒιβλιοθήκη .2011 (16) 若实数 x, y 满足 x2 y 2 xy 1 , 则 x y 的最大值是___________________________。 2012(9) .若正数 x,y 满足 x 3 y 5xy, 则3x 4 y 的最小值是
A.
24 5
B.
的最小值为(
)
5.已知 a,b 都是正实数,且满足 log4(2a+b)=log2 ������������,则 2a+b 的最小值为( (A)12 (B)10 (C)8 (D)6 6.已知正实数 x,y 满足 xy+2x+y=4,则 x+y 的最小值为 7.已知 2a=3b=6c,k∈Z,不等式
������ +������ ������
28 5
C. 5
D. 6
2013(16).设 a , b ∈R,若 x 0 时恒有 0 x4 x3 ax b ( x2 1)2 ,则 ab 等于______________. 2014(16) .已知实数 a,b,c 满足 a+b+c=0,a2+b2+c2=1,则 a 的最大值是________. 练习: 1.若不等式������ >m 的解集是{x︱0<x<2},则实数 m 的值为( (A)2 (A)6

专题08 数列-十年高考(2009-)之高三数学分项与解读(浙江专版)

专题08 数列-十年高考(2009-)之高三数学分项与解读(浙江专版)

【考情概览】年份题号考点难度层次考查内容,方式,模型等学科素养2018 10 等比数列的性质简单等比数列的通项公式数学计算20 数列的综合问题一般等差中项、等比数列的通项公式与前n项和公式数学计算2017 6 等差数列、充分必要性简单等差数列的性质数学计算、逻辑推理22 数列的综合问题较难数列的概念、递推关系与单调性等基础知识,不等式及其应用数学计算、逻辑推理2016 13 等比数列的定义一般等比数列的前n项和数学计算20 数列、不等式的证明较难数列的概念、递推关系与单调性等基础知识,不等式及其应用数学计算、逻辑推理2015 3 等比数列的概念一般等比数列的前n项和数学计算20 数列、不等式的证明较难数列的概念、累加法、三角不等式数学计算、逻辑推理2014 19 数列、不等式的证明较难数列的概念、递推关系与单调性等基础知识,不等式及其应用数学计算、逻辑推理2013 18 数列的定义、前n项和一般等差等比数列的相关性质、含有绝对值的数列求和数学计算2012 7 命题的真假判断与应用一般数列的函数特性数学建模13 等比数列的性质简单等比数列的通项公式与前n项和公式数学计算2011 19 等差数列的通项公式、不等式的证明较难数列的概念、等差数列的通项公式、不等式及其应用数学计算、逻辑推理2010 3 等比数列的通项公式与前n项和公式一般等比数列的通项公式与前n项和公式数学计算15 等差数列公差d的一般数列的函数特性数学建模取值范围200911等比数列的性质一般等比数列的通项公式与前n 项和公式数学计算【应试策略】1.已知等差数列{}n a 的前项和为n S ,且2142S =,若记2119132aa a nb --=,则数列{}n b ( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列又不是等比数列 【答案】C【应试策略】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔ {}n a 是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔ {}n a 是等差数列;(5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式 若已知首项1a 和末项n a ,则1()2n nn a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 2.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >,其中正确命题的个数为( ) A. 2 B. 3 C. 4 D. 5 【答案】B【应试策略】求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 3.已知数列{}n a 的前n 项和为n S ,若11a =,且12n n Sta =-,其中*n N ∈. (1)求实数t 的值和数列{}n a 的通项公式; (2)若数列{}n b 满足32log n n b a =,求数列11{}n n b b +的前n 项和n T . 【答案】(1)23=t ,13-=n n a ;(2)12121121+=⎪⎭⎫ ⎝⎛+-n n n .【领悟技法】1.公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.2.倒序相加法:类似于等差数列的前n 项和的公式的推导方法,如果一个数列{}n a 的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 若n n n a b c =•,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c b c --=++++,则n qS =122311n n n n b c b c b c b c -+++++两式错位相减并整理即得.4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法: (1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,特别地当1k =时,()11111n n n n =-++; (21k=,特别地当1k ==(3)()()221111212122121n n a n n n n ⎛⎫==+- ⎪-+-+⎝⎭(4)()()()()()1111122112n a n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭ (5))()11(11q p qp p q pq <--= 5.分组转化求和法:有一类数列{}n n a b +,它既不是等差数列,也不是等比数列,但是数列{},{}n n a b 是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.6.并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如()()1nn a f n =-类型,可采用两项合并求解.例如,22222210099989721n S =-+-++-()()()100999897215050=++++++=.7. 在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.对于不能由等差数列、等比数列的前n 项和公式直接求和的问题,一般需要将数列通项的结构进行合理的拆分,转化成若干个等差数列、等比数列的求和.应用公式法求和时,要保证公式使用的正确性,尤其要区分好等差数列、等比数列的通项公式及前n 项和公式.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.【真题展示】一、选择题1.【2018年浙江卷10】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>【答案】B2.【2017年,浙江卷6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C . 3.【2012年.浙江卷.理7】设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列 【答案】C【解析】若{S n }为递增数列,则当n ≥2时,S n -S n -1=a n >0,即n ≥2时,a n 均为正数,而a 1是正数、负数或是零均有可能,故对任意n ∈N *,不一定S n 始终大于0.4.【2010年.浙江卷.文5】设n s 为等比数列{}n a 的前n 项和,2580a a +=则52S S = (A)-11 (B)-8 (C)5(D)11【答案】A【解析】通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选A ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式 5.【2016高考浙江文数】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N , *1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则A .{}n S 是等差数列B .{}2n S 是等差数列 C .{}n d 是等差数列 D .{}2n d 是等差数列【答案】A6.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <> 【答案】B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴d a d a da d a 35)7)(2()3(11121-=⇒++=+,∴d d a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B.7.【2010年.浙江卷.理3】设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52SS =( )(A )11 (B )5 (C )8- (D )11- 【答案】D【解析】通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题 二、填空题9.【2010年.浙江卷.文14】在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是【答案】n n +210.【2009年.浙江卷.文11】设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .【答案】15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--11.【2011年.浙江卷.文17】若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______。

(浙江专版)高考数学分项版解析 专题07 不等式 文-人教版高三全册数学试题

(浙江专版)高考数学分项版解析 专题07 不等式 文-人教版高三全册数学试题

【十年高考】(某某专版)高考数学分项版解析专题07 不等式文一.基础题组1. 【2014年.某某卷.文12】若、y满足和240101x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,则yx+的取值X围是________.【答案】]3,1[【解析】考点:不等式组表示的平面区域,求目标函数的最值,容易题.2..【2012年.某某卷.文14】设z=x+2y,其中实数x,y满足10,20,0,0,x yx yxy-+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩则z的取值X围是__________.【答案】0,72]【解析】不等式组表示的可行域如图阴影部分,结合图象知,O点,C点分别使目标函数取得最小值、最大值,代入得最小值为0,最大值为72.3. 【2011年.某某卷.文3】若实数x y 、满足不等式组2502700,0x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩,则3x y +4的最小值是(A)13 (B)15 (C)20 (D)28 【答案】A4. 【2011年.某某卷.文6】若,a b 为实数,则 “0<ab <1”是“b <a1”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】 D【解析】当10<<ab ,0,0<<b a 时,有a b 1>,反过来ab 1<,当0<a 时,则有1>ab , ∴“10<<ab ”是“ab 1<”的既不充分也不必要条件. 11,,2b a =-=1b a <则1124b a =>=-01ab ≠><<不必要条件,故选D5. 【2010年.某某卷.文7】若实数x ,y 满足不等式组合33023010x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则x y +的最大值为【答案】A【解析】:作出可行域如图阴影部分所示,作出直线0l :x y +=0,平移直线0l ,由图知,当直线z x y =+过A 点时,max z ,由23010x y x y --=⎧⎨-+=⎩解得A(4,5), ∴max z =9,故选A ,6. 【2009年.某某卷.文13】若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是.【答案】 4【解析】通过画出其线性规划,可知直线23y x Z =-+过点()2,0时,()min 234x y += 7. 【2008年.某某卷.文3】已知a ,b 都是实数,那么“22b a >”是“a >b ”的 (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件 【答案】D8. 【2008年.某某卷.文5】0,0a b ≥≥,且2a b +=,则 (A )12ab ≤(B )12ab ≥(C )222a b +≥(D )223a b +≤ 【答案】C【解析】:本小题主要考查不等式的重要不等式知识的运用.由0,0a b ≥≥,且2a b +=,∴222224()22()a b a b ab a b =+=++≤+,∴222a b +≥.9. 【2007年.某某卷.文14】2z x y =+中的x y ,满足约束条件250300x y x x y -+≥⎧⎪-⎨⎪+⎩,≥,≥,则z 的最小值是【答案】53-10. 【2006年.某某卷.文9】在平面直角坐标系中,不等式组20,20,2x y x y x +-≤⎧⎪-+≥⎨⎪≤⎩表示的平面区域的面积是(A)(D)2 【答案】B【解析】不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 所表示的平面区域如下图所示ABC ∆,40242ABC S ∆-⨯== ,所以选B.11. 【2006年.某某卷.文11】不等式102x x +>-的解集是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题9 不等式【考情概览】【应试策略】1.若55ln ,33ln ,22ln ===c b a ,则a,b,c 的大小关系是 . 【答案】b a c >>【应试策略】1、(利用比较法比较两数(式)的大小时,关键在于作差或商后的变形,需要分解因式或者通分等运算,一定化简彻底;2、构造函数法比较大小时,通常考虑所构造的函数图象特征或者函数的性质,尤其要注意利用单调性比较大小.2.若平面区域30{230230x yx yx y+-≥--≤-+≥,夹在两条斜率为1的平行直线之间,则这条平行直线间的距离的最小值是( )A.52【答案】D【解析】作出平面区域如图所示:【应试策略】由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.3.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2224a b ==时取等号). 【应试策略】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解. 注意:形如y =x +a x(a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.【真题展示】1.【2018年浙江卷12】若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________. 【答案】2- 8【解答】不等式组所表示的平面区域如图所示,当42x y ì=ïïíï=-ïî时,3z x y =+取最小值,最小值为2-;当22x y ì=ïïíï=ïî时,3z x y =+取最大值,最大值为8.2.【2017年,浙江卷4】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】试题分析:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划3.【2016高考浙江文数】若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是 ABCD【答案】B【考点】线性规划.4.【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1.若log >1a b ,则 A .(1)(1)0a b --<B .(1)()0a a b -->C .(1)()0b b a --<D .(1)()0b b a -->【答案】D【解析】试题分析:log log 1b a >=a a ,当1>a 时,1b a >>,10,010,0a b a b a b <∴->->->-,,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴-->--<-->当01a <<时,01b a ∴<<<,10,010,0,a b a b a b >∴-<-<-<-,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴-->--<-->观察各选项可知选D.5.【2011年.浙江卷.理5】设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 【答案】B6.【2010年.浙江卷.理7】若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2- (B )1- (C )1 (D )2 【答案】C【解析】将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题7.【2016高考浙江理数】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( ) A ..4 C ..6【答案】C8.【2011年.浙江卷.文3】若实数x y 、满足不等式组2502700,0x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩,则3x y +4的最小值是(A)13 (B)15 (C)20 (D)28 【答案】 A【解析】作出可行域,25032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得, min 334113z =⨯+⨯=,故选A.9.【2015高考浙江,文6】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 【答案】B【解析】由x y z <<,a b c <<,所以()()()ax by cz az by cx a x z c z x ++-++=-+-()()0x z a c =-->,故ax by cz az by cx ++>++;同理,()ay bz cx ay bx cz ++-++()()()()0b z x c x z x z c b =-+-=--<,故ay bz cx ay bx cz ++<++.因为()az by cx ay bz cx ++-++()()()()0a z y b y z a b z y =-+-=--<,故a z b y c x a y b z c x ++<++.故最低费用为az by cx ++.故选B.10.【2012年.浙江卷.文9】若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A .245 B .285C .5D .6 【答案】C11.【2014年.浙江卷.文12】若、y 满足和240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则y x +的取值范围是________.【答案】]3,1[ 【解析】试题分析:不等式组表示的平面区域如图中ABC ∆,令y x z +=,解方程组24010x y x y +-=⎧⎨--=⎩得)1,2(C ,解方程组101x y x --=⎧⎨=⎩得)0,1(B ,平移直线y x z +=经过点C 使得z 取得最大值,即312=+=Max z ,当直线y x z +=经过点)0,1(B 使得z 取得最小值,即101min =+=z , 故y x +的取值范围是]3,1[.12.【2012年.浙江卷.文14】设z =x +2y ,其中实数x ,y 满足10,20,0,0,x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩则z 的取值范围是__________. 【答案】[0,72]13.【2010年.浙江卷.文7】若实数x ,y 满足不等式组合33023010x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则x y +的最大值为【答案】A【解析】作出可行域如图阴影部分所示,作出直线0l :x y +=0,平移直线0l ,由图知,当直线z x y =+过A 点时,max z ,由23010x y x y --=⎧⎨-+=⎩解得A(4,5), ∴max z =9,故选A ,14.【2009年.浙江卷.文13】若实数,x y 满足不等式组2,24,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是 .【答案】 4【解析】通过画出其线性规划,可知直线23y x Z =-+过点()2,0时,()min 234x y += 15.【2015高考浙江,文14】已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩16.【2014年.浙江卷.文16】已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______.【答案】36 【解析】试题分析:因为0=++c b a ,所以)(b a c +-=,所以1)]([222=+-++b a b a ,所以0122222=-++a ab b ,由0)12(24422≥-⨯⨯-=∆a a ,解得3636≤≤-a , 故实数a 的最大值为36. 17.【2013年.浙江卷.文15】设z =kx +y ,其中实数x ,y 满足2,240,240.x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________. 【答案】218.【2013年.浙江卷.文16】设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab =__________. 【答案】-1【解析】令x =1,得0≤1-1+a +b ≤0,整理,得a +b =0,① 令x =-1,得0≤1-(-1)-a +b ≤0,整理,得a -b =2,② 解①②组成的方程组,得1,1.a b =⎧⎨=-⎩∴ab =-1.19.【2011年.浙江卷.文16】若实数,x y 满足221x y xy ++=,则x y +的最大值是________.【答案】3【解析】222221()1()()12x y x y xy x y xy x y +++=⇒+-=⇒+-≤x y ⇒+≤ 20.【2010年.浙江卷.文15】若正实数X ,Y 满足2X+Y+6=XY , 则XY 的最小值是 。

相关文档
最新文档