相遇问题(相遇、追及)专题一
相遇及追及问题(含答案)
.相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= _________ 分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _________ 分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________ 分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________ 分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________ )秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________ 分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________ 点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________ .9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________ 圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________ 分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________ 分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm 的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________ 次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
小升初行程问题专项训练之相遇问题追及问题
小升初行程问题专项训练之相(Xiang)遇问题追及问题一(Yi)、基(Ji)本公式:1、路(Lu)程=速(Su)度×时间2、相(Xiang)遇问题:相遇路程=速度(Du)和×相(Xiang)遇时间3、追及问题:相差路程=速度差×追及时间二、行程问题(一)-----相遇问题例题:1.老李和老刘同时从两地相对出发,老李步行每分钟走8米,老刘骑自行车的速度是老李步行的3倍,经过5分钟后两人相遇,问这两地相距多少米?2.在一条笔直的公路上,王辉和李明骑车从相距900米的A、B两地同时出发,王辉每分钟行200米,李明每分钟行250米,经过多少时间两人相距2700米?(分析各种情况)3.客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。
问甲、乙两地相距多千米?4.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米?5.甲村、乙村相距6千米,小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问小张和小王两人的速度各是多少?6. 小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
他们离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。
问他们两人第四次相遇的地点离乙村有多远?(相遇指迎面相遇)7.甲、乙两辆汽车同时从东西两地相向开(Kai)出,甲每小时行56千(Qian)米,乙每小时行48千米,两车(Che)在离两地中点32千米处相遇。
问:东西两(Liang)地间的距离是多少千米?8.甲、乙两地相(Xiang)距15千米,小聪和小明分别从甲、乙两地同时相向而(Er)行,2小(Xiao)时后在离中点0.5千米处相遇,求(Qiu)小聪和小明的速度。
小学奥数专题——第1讲:相遇问题与追及问题(老师版)
小学奥数专题——第1讲:相遇问题与追及问题(老师版)本文介绍了相遇问题和追及问题的基本概念和计算方法。
速度是指单位时间内所经过的路程,而路程、时间和速度是行程问题中最重要的三个量。
常用的数量单位包括米、千米、秒、分钟和小时等。
文章通过例题的形式,让读者更好地理解了相关概念和计算方法。
例1中,甲乙两地相距XXX,一辆汽车原计划用8小时从甲地到乙地。
但实际上汽车在行驶一半路程后发生故障,在途中停留了1小时。
问题要求计算汽车每小时应该行驶多少千米,以及在后一半路程中每小时应该行驶多少千米。
解答中,第一问的计算公式为路程÷时间=速度,即360÷8=45千米/时。
第二问中,后一半路程为180千米,行驶时间为总时间8小时减去前半程行驶时间5小时再减去故障停留时间1小时,即3小时;所以后半程的速度为180÷3=60千米/时。
例2中,A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行。
问题要求计算甲从A走到B需要多长时间,以及两人从出发到相遇需要多长时间。
解答中,第一问的计算公式为路程÷速度=时间,即4800÷60=80分钟。
第二问中,两人从出发到相遇的路程和为4800米,速度和为60+100=160米/分,所以相遇时间为4800÷160=30分钟。
最后,例题中还有一道关于慢跑和赛跑的问题。
XXX练慢跑,12分钟跑了3000米,问题要求计算跑米需要多少分钟,以及如果XXX每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米。
解答中,第一问的计算公式同样为路程÷速度=时间,即÷250=100分钟;第二问中,每天跑10分钟,一个月共30天,所以总跑步距离为250×10×30=米,即75千米。
文章中没有明显的格式错误或有问题的段落,只需要进行小幅度的改写即可。
简答:公共汽车和小轿车相向而行,路程和为350千米,速度和为40+60=100千米/小时。
专题:追及和相遇问题
专题:追及和相遇问题一.相遇问题(1)相向运动的物体,当各自发生的位移大小之和等于初始时刻两物体的距离时及相遇。
例1. 一辆轿车违章超车,以108 km/h 的速度驶入左侧逆行车道时,猛然发现正前方80 m 处一辆卡车正以72 km/h 的速度迎面驶来,两车司机同时刹车,刹车时加速度大小都是10 m/s 2。
两司机的反应时间(即司机从发现险情到实施刹车所经历的时间)都是Δt,试问Δt 为何值,才能保证两车不相撞。
(2)同向运动的物体追及即相遇二.常见追及问题的种类: 1.速度小者追速度大者类型 图象说明匀加速追匀速①V1〉V2时,后面物体与前面物体间距离增大; ②V1=V2时,后面物体与前面物体间距离达到最大。
最大距离为x 0+Δx ③V1<V2以后,后面物体与前面物体间距离减小; ④能追及且只能相遇一次,相遇时有X 后=X 前+X0共同点:速度相等时二者间有最大距离匀速追匀减速匀加速追匀减速说明:①表中的Δx 是开始追及以后,前面物体因速度大而比后面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离;2.速度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当V1=V2时刻: ①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇 共同点:速度相等时二者间有最小距离匀速追匀加速匀减速追匀加速总结论:速度相等是能否追上,两者间有最大距离,最小距离的临界条件: 说明:①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离; ③t 2-t 0=t 0-t 1;④v 1是前面物体的速度,v 2是后面物体的速度.例2:一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?例3.汽车前方S=120m有一自行车正以6m/s的速度匀速前进,汽车以18m/s的速度追赶自行车,若两车在同一条公路不同车道上作同方向的直线运动,求:(1)经多长时间,两车第一次相遇?(2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2m/s2,则再经多长时间两车第二次相遇?例4.一辆长途客车正在以v=16 m/s的速度匀速行驶,突然,司机看见车的正前方s=36 m处有一只小狗(如图甲),司机立即采取制动措施.从司机看见小狗到长途客车开始做匀减速直线运动的时间间隔Δt=0.5 s.若从司机看见小狗开始计时(t=0),在4.5s末速度减为0。
追击和相遇问题专题
追击和相遇问题1.速度大者追速度小者:【例1】一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近。
快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止。
试判断两车是否会相碰。
★解析:两车速度相等恰追及前车,这是恰不相碰的临界情况,因此只要比较两车等速时的位移关系,即可明确是否相碰。
因快车减速运动的加速度大小为:222/1.020002202s m s v a =⨯==快故快车刹车至两车等速历时: s a v v t 1201.0820=-=-=慢快 该时间内两车位移分别是:m at t v s 16801201.021120202122=⨯⨯-⨯=-=快快 m t v s 9601208=⨯==慢慢因为s 快>s 货+s 0=1560 m ,故两车会发生相撞。
针对训练:火车以速率V 1向前行驶,司机突然发现在前方同一轨道上距车为S 处有另一辆火车,它正沿相同的方向以较小的速率V 2作匀速运动,于是司机立即使车作匀减速运动,加速度大小为a ,要使两车不致相撞,求出a 应满足关式。
★解析:速度相等时,位移也相等则恰好不撞,at 21υυ-= a S a 21221212υυυυυυυ-⋅+=-⋅+ 解得:S a 2)(221υυ-=,则要求Sa 2)(221υυ-≥ 2.速度小者追速度大者:【例2】一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s 的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s 后警车发动起来,并以2.5m/s 2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?★解析:(l )警车在追赶货车的过程中,当两车速度相等时.它们的距离最大,设警车发动后经过t 1时间两车的速度相等.则.11042.5t =s=s s 货=(5.5+4)×10m = 95ms 警22111 2.54m 20m 22=at ==⨯⨯ 所以两车间的最大距离△s =s 货-s 警=75m (2) v 0=90km/h=25m/s ,当警车刚达到最大速度时,运动时间225s 10s 2.5t == s 货’=(5.5+10)×10m=155ms 警’=22211 2.510m 125m 22at ==⨯⨯ 因为s 货’>s 警’,故此时警车尚未赶上货车,且此时两本距离△s’=s 货’-s 警’=30m警车达到最大速度后做匀速运动,设再经过△t 时间迫赶上货车.则:m 2s s't==-∆∆v v所以警车发动后耍经过212s t=t +t=∆才能追上货车。
追及相遇问题专题
追击和相遇问题1.相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2. 解相遇和追击问题的关键:“两个关系,一个条件” 〔1〕时间关系 :0t t t B A ±=〔2〕位移关系:0A B x x x =±〔3〕速临界条件:两者速度相等——是物体间能否追上、恰好防止相碰、〔两者〕距离最大、最小的临界条件,也是分析判断的切入点。
3. 相遇和追击问题剖析:(一)追及问题〔设甲追乙,两物体初始时刻相距0x 〕1.第一类:速度小者加速追速度大者〔如做初速度为零的匀加速物体追匀速运动物体〕 (1)两者速度相等前间距在增大,当两者速度相等时有最大距离,之后两者距离减小 (2)当两者位移满足甲乙x x x =+0时,则追上2.第二类:速度大者减速追速度小者〔如做匀减速直线运动追匀速运动〕 (1)开始追及后,两者间距减小 (2)当两者速度相等时:① 假设两者位移差满足0-x x x x ==∆乙甲,则甲恰好追上乙,且只相遇一次〔防止碰撞的条件〕② 假设两者位移差满足0-x x x x <=∆乙甲,则不能追上,两者存在最小间距为甲乙x x x -0+③ 假设两者位移差满足0-x x x x >=∆乙甲,则会相遇两次3、分析追及问题的注意点:⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵假设被追赶的物体做匀减速运动,一定要注意追上前该物.........................体是否已经停止运动。
.......... ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。
(二)、相遇问题⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。
⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
相遇及追及问题
相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= _________ 分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _________ 分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________ 分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________ 分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________ )秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________ 分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________ 点时,停车场内第一次出现无车辆8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________ .9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________ 圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________ 分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________ 分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm 的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________ 次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
追及相遇问题专题
追及相遇问题1、A火车以V1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B 正以V2=10m/s速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动。
要使两车不相撞,a应满足什么条件?2、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2 的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。
试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?3、汽车正以10 m/s的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以4 m/s的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6 m/s2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?4、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速为v=120km/h。
假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要0.50s(即反应时间),刹车时汽车所受阻力是车重的0.40倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离?5、酒后驾车严重威胁交通安全.其主要原因是饮酒会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成制动距离(从发现情况到汽车停止的距离)变长,假定汽车以108 km/h的速度匀速行驶,刹车时汽车的加速度大小为8 m/s2,正常人的反应时间为0.5 s,饮酒人的反应时间为1.5 s,试问:(1)驾驶员饮酒后的反制距离比正常时多几米?(2)饮酒的驾驶员从发现情况到汽车停止需多少时间?6、甲、乙两车相距为s,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为V0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系。
7、甲、乙两车在同一条平直公路上行驶,甲车以v1=10m/s的速度做匀速运动,经过车站A 时关闭油门以a1=4m/s2的加速度匀减速前进。
追及和相遇问题 (1)
2.追及、相遇问题的一般分析思路: (1)根据对两物体运动过程的分析,画出两 物体运动的示意图。 (2)根据两物体的运动性质,分别列出两物 体的位移方程,注意要将两物体运动时间的 关系反映在方程中。 (3)由运动示意图找出两物体位移间的关联 方程,这是解题关键。 (4)联立方程求解,并对结果进行简单分析。
(3)做匀速直线运动的物体追做匀加速直线 运动的物体(v0匀>v0加)。 ①若当v加=v匀时,两者仍没有到达同一位置, 则不能追上,且此时有最小距离。 ②若当v加=v匀时,两者恰好到达同一位置,则 恰好能追上,且只能相遇一次。 ③若当两者到达同一位置时有v加<v匀,若两 者共线运动,则会碰撞,若两者平行不共线运 动,则两者有两次相遇的机会。
2.甲、乙两汽车沿同一平直公路同向匀速 行驶,甲车在前,乙车在后,它们行驶的速度 分别为16m/s和18m/s。已知甲车紧急刹车 时的加速度a1大小为3m/s2,乙车紧急刹车时 的加速度a2大小为4m/s2,乙车司机的反应时 间为0.5s,求为保证两车在紧急刹车过程中 不相撞,甲、乙两车行驶过程中至少应保持 多大距离? 【解题指南】解答本题应把握以下两点: (1)乙车在司机的反应时间内仍做匀速运动。 (2)甲、乙两车不相撞的临界条件。
5.追及和相遇问题的几种情况: (1)做匀加速直线运动的物体追做匀速直线 运动的物体。 ①这种情况肯定能追上,且相遇一次。 ②两者之间在追上前距离最大的条件为 v加=v匀。
(2)做匀减速直线运动的物体追做匀速直线 运动的物体(v0减>v0匀)。 ①若当v减=v匀时,两者仍没到达同一位置,则 不能追上,且此时有最小距离。 ②若当v减=v匀时,两者正好在同一位置,则恰 能追上,且只能相遇一次。 ③若当两者到达同一位置时有v减>v匀,若两 者共线运动,则会碰撞,若两者平行不共线 运动,则两者有两次相遇的机会。
高中物理追击、追及和相遇问题
高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
专题一 运动图象 追及相遇问题 (共61张PPT)
3.[追及相遇问题](多选)如图所示,Ⅰ、Ⅱ分别是甲、乙两小 球从同一地点沿同一直线运动的vt图线,根据图线可以判断 ( CD ) A.甲、乙两小球做的是初速度方向相反的匀变速直线运动, 加速度大小相等,方向相同 B.两球在t=8 s时相距最远 C.两球在t=2 s时刻速率相等 D.两球在t=8 s时相遇
A.第4 s初物体运动的加速度为2 m/s2 B.前8 s内物体运动的位移为32 m C.0~4 s与4~6 s内物体速度方向相反 D.0~4 s与4~6 s内物体的平均速度相等
4.[对xt图象的理解]甲、乙两车在同一条直道上行驶,它们运 动的位移x随时间t变化的关系如图所示,已知乙车做匀变速直线 运动,其图线与t轴相切于10 s 处,则下列说法中正确的是( C A.甲车的初速度为零 B.乙车的初位置在x0=60 m处 C.乙车的加速度大小为1.6 m/s2 D.5 s时两车相遇,此时甲车速度较大 )
[变式3]
在一大雾天,一辆小汽车以30 m/s的速度行驶在
高速公路上,突然发现正前方30 m处有一辆大卡车以10 m/s的 速度同方向匀速行驶,小汽车紧急刹车,刹车过程中刹车失灵 . 如图所示,a、b分别为小汽车和大卡车的vt图线,以下说法 正确的是(
C
)
A.因刹车失灵前小汽车已减速,不会追尾 B.在t=5 s时追尾 C.在t=3 s时追尾 D.由于初始距离太近,即使刹车不失灵也会追尾
考向1 根据图象分析物理过程 [典例4] (2016· 新课标全国卷Ⅰ)甲、乙两车在平直公路 s时并排行
上同向行驶,其vt图象如图所示.已知两车在t=3 驶,则( )
A.在t=1 s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5 m C.两车另一次并排行驶的时刻是t=2 s D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为 40 m [答案]
(教案)追及与相遇问题专题
教学内容一.复习匀变速运动。
1.匀变速运动位移公式?2.匀变速运动速度公式?二.关于V-T图像的分析与应用一个物体做匀变速直线运动,在一段时间内通过一段位移。
若在这一段时间的中间时刻的速度为v1,在位移的中点时的速度为v2,则v1和v2大小关系如何?分析与求解:匀变速直线运动分匀加速和匀减速两种情况,现分别讨论如下:若物体做匀加速运动,可作出O-t时刻的速度图像如图2-a所示,这段时间的中间时刻t/2的速度为v1,将梯形otvtvo分成面积相等的两部分,则分割线对应时刻t/在t/2之后,对应速度v2大于v1。
同理可知,物体做匀减速运动时,亦有v2大于v1。
三.相遇和追及问题的求解思路:运动学中的追及、相遇和多解问题是运动学中的一个较为复杂的问题,掌握追及、相遇问题的研究方法和解题思路,了解多解形成原因,细致分析运动过程,多思考总结,比较归类,应是有效解决此类问题途径。
一般分析类似问题,基本思路是:1.分析运动过程,画出示意图。
2.由示意图找出两物体位置关系。
3.根据物体运动性质列出含有时间的位置方程。
一图三式:过程示意图,时间速度位移关系式;另外需要注意对解答结果的讨论。
(一) 追及相遇问题1.追及问题例如:A追赶B时(如图)若VA>VB,则AB距离缩小;若VA=VB,则AB距离不变;若VA<VB,则AB距离增大;2.相遇问题1)同向运动的两物体:相遇问题就是追及问题;2)相向运动的两物体:当各自发生的位移的代数和等于开始时两物体间的距离时,即相遇;3.在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件:其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题(二)把握的关系1.两个关系:即时间关系和位移关系2.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
(三)常见的情况v1(在后) 小于v2(在前)1、甲:匀加速(v1)====>>>>乙:匀速(v2)一定能追上2、甲:匀速(v1)====>>>>乙:匀减速(v2)一定能追上追上前当v1=v2时,两者间距最大。
追击和相遇问题
在“追及和相遇”问题中,要抓住临界状 态:速度相同时,两物体间距离最小或最大。 如果开始前面物体速度大,后面物体速度小, 则两个物体间距离越来越大,当速度相同时, 距离最大;如果开始前面物体速度小,后面物 体速度大,则两个物体间距离越来越小,当速 度相同时,距离最小。
过B车则相撞,反之则不能相撞。A车减为与B车同速用时t= v v0 =
a
2 0 6s=28 s,此时间内B车的位移为x2=v2t=6×28 m=168 m,A车的位移x1
0.5
= v2 v02=364 m, 两车位移之差Δx=x1-x2=(364-168) m=196
2a
m>180 m,所以两车会相撞。
答案: D
【例2】 经检测汽车A的制动性能为:以标准速度20 m/s在平直公路 上行驶时,制动后40 s停下来。现A在平直公路上以20 m/s的速度行 驶,发现前方180 m处有一货车B以6 m/s的速度同向匀速行驶,司机立 即制动,会不会发生撞车事故?
解析:汽车A以v0=20 m/s的初速做匀减速直线运动经40 s停下来。据 加速度公式可求出a=-0.5 m/s2,当A车减为与B车同速时若能赶上或超
拓展链接4(2012·山东潍坊高三质检)下列图象能正确反映物体在直线上
运动,经2 s又回到初始位置的是 A( C )。
利用图象解题
【例5】 一水平的浅色长传送带上放置一煤块(可视为质点),煤块与 传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。 现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速 度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕 迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。
专题一 追及和相遇问题
专题一 追及和相遇问题当两个物体在同一直线上运动时,由于两物体的运动情况不同,两物体间的距离会不断发生变化,这样就会涉及追及、相遇或避免相碰等问题。
一、 追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若一段时间内两者速度相等,则两者之间的距离 。
2、追及问题的特征及处理方法:“追及”根本要点是:两个物体在同一时刻处在同一位置,常见的情形有三种:(1)匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即v v =乙甲;若同时同地出发,乙甲v v 2=时相遇(2)匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
(3)匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
二、相遇⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。
⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
三、解决追及、相遇问题的思路与方法(1)思路:①根据两物体运动过程的分析,画出物体运动的示意图。
②根据两物体的运动性质,分别列出两物体的位移方程(注意两物体运动的时间关系)。
③由运动的示意图找出两物体的位移关系。
④联立方程求解。
(2)方法:①物理分析法。
判断能否追上时,看二者速度相同时的位置关系。
如A 追前方和A 相距 x 0的B 时,可以先求出速度相同所用的时间,再求出速度相同时A 、B 的位移x A 、x B ,若x A <x B +x 0,说明A 追不上B ,A 、B 间的最大距离为∆s m =x B +x 0-x A 。
追及、相遇类问题
追及、相遇类问题专题一追及与相遇问题一、知识概要1.在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置,因此应分别对两物体研究,列出方程,然后利用时间关系、速度关系、位移关系而求解。
2.匀减速物体追赶同向匀速运动物体时,恰能追上或恰不能追上的临界条件是:V追赶者=V被追赶者,此时△s=0即V追赶者> V被追赶者则一定能追上V追赶者<V被追赶者则一定不能追上3.速度小者加速追赶速度大者, 在两物体速度相等时有最大距离, 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离。
4.求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值, 二次方程的判别式等数学方法以及应用图象法应用相对运动知识求解等方法。
二、练习题1.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0。
若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行的距离为s。
若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为()A.s B.2s C.3s D.4s2.甲、乙两物体相距s,它们同时同向运动。
乙在前面做初速度为零、加速度为a1的匀加速运动,甲在后面做初速度为v0、加速度为a2的匀加速运动,则()A.若a1=a2,它们只能相遇一次B.若a1>a2,它们可能相遇两次C.若a1>a2,它们只能相遇一次D.若a1<a2,他们不能相遇3.汽车以10m/s的速度在平直公路上行驶,突然发现前方s m处有辆自行车以4m/s的速度做同方向的匀速直线运动,若汽车立即关闭油门,做加速度为6m/s2的匀减速直线运动,汽车恰好不碰上自行车,则s为多大?4.物体A做匀速运动,速度为V A=4m/s,2s后物体B从同一位置与A同方向作匀加速直线运动,V0=0,a=2m/s2,求:(1)B出发后,经过多少时间追上A?(2)B追上A时,离出发点多远?(3)B追上A之前,AB之间的最大距离是多少?5.甲、乙两汽车在一条平直的单行道上乙在前甲在后地同向匀速行驶,甲、乙两车的速度分别为40m/s和20m/s。
相遇和追及问题
相遇追及专题一、相遇追及问题的处理方法1、两个关系:两物体运动的时间与位移关系是解题的关键!位移关系一般如下:①相遇问题:210S S S += (S 0是初态时两物体的间距)②追及问题:前车后车S S S +=02、一个条件:速度相等是判断追及问题中能否追上、距离最大、最小的临界条件3、追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.4、相遇问题的分析思路相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程,注意两个物体运动时间之间的关系.(2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系.(3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同一、相遇和追及例1. A 火车以v 1=20m/s 速度匀速行驶,司机发现前方同轨道上相距100m 处有另一列火车B 正以v 2=10m/s 速度匀速行驶,A 车立即做加速度大小为a 的匀减速直线运动。
要使两车不相撞,a 应满足什么条件? 解析:(公式法)两车恰好不相撞的条件是两车速度相同时相遇。
由A 、B 速度关系: 21v at v =-由A 、B 位移关系: 022121x t v at t v +=- 2220221/5.0/1002)1020(2)(s m s m x v v a =⨯-=-=2/5.0s m a >∴ 例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始加速行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
英才教育小学数学应用题专题(四)行程问题
年月日姓名
必背知识点:
速度×时间=路程路程÷速度和=相遇时间追及路程÷速度差=追及时间
一、相遇问题
例1. 甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟。
甲每分钟走多少米?乙每分钟走多少米?
例2. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?
例3. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?
例4. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。
甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?
例5. AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?
例6. 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?
随堂小试
1. 甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米:出发后5小时,两车相遇.A、B两地相距多少千米.
2. 快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?
3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。
哥哥骑自行车每分钟行200米,妹妹每分钟走80米。
哥哥刚到学校就立即返回来在途中与妹妹相遇。
从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?
作业
1. 甲乙两地相距90千米,小汽车的速度是大卡车的2倍。
两车同时从甲地出发,小汽车到达乙地后立即返回,然后两车在丙地相遇。
那么乙丙两地相距多少千米?
2.A、B两城相隔458千米,甲车以每小时46千米,乙车以每小时38千米的速度先后从两城出发,相向而行,相遇时甲车行驶了230千米,问乙车比甲车早出发几小时?
3. 甲、乙两车同时从相距589千米的两地相向而行。
甲车每小时行60千米,乙车每小时行64千米。
两车行了多少小时还相距93千米?再经过多少小时,又相距93千米?
4. 甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行
60千米,货车每小时行40千米。
客车到达乙站后停留0.5小时,又以原速返回甲站,两车相遇地点离乙站多少千米?
5. 两辆汽车同时从某地出发到同一目的地,路程165千米,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车离目的地24千米,甲车行驶全程用了多少小时?
二、追及问题
例1. 妹妹放学回家,以每分钟80米的速度从学校步行回家,6分钟后,哥哥骑自行车以每分钟200米的速度从学校回家,当妹妹到家时,哥哥正好追上妹妹。
问哥哥经过多少分钟追上妹妹?
例2.一辆摩托车追赶比它先出发的一辆汽车。
已知这辆汽车每小时行驶28千米,摩托车每小时行驶40千米,摩托车出发后7小时追上了汽车,汽车比摩托车早出发几小时?
例3. 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?
例4. 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?
环形跑道上的追及问题,如果两人同时同地同向出发,即第一次相遇,则两者所行的路程差正好是环形跑道长。
随堂小试
1. 兔子和乌龟这对冤家又碰到一起,曾经输的一塌糊涂的兔子骄傲地对乌龟说:“今天我让你先跑30分钟,你每分钟也就跑10米,我2分钟保证追上你.现在开始!”兔子发出口令.如果兔子这次不睡觉,他每分钟至少要跑多少米才能实现它说的话。
2. 如图,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米,当甲第一次追上乙时,甲跑了多少圈?
作业
1. 猎狗发现前方200米处有一只兔子正要逃跑,拔腿就追.兔子的洞穴在兔子前方480米,若兔子每妙跑13米,猎狗每妙跑18米,可怜的兔子能逃过这一劫吗?
2.乙的速度是甲的速度的2/3。
两人分别由A、B两地同时出发,如果相向而行1小时相遇;如果同向而行甲需几小时追上乙。
3. 环形跑道400米,甲、乙两名运动员同时自起点顺时针出发,甲每分钟跑400米,乙每分钟跑375米,问多少时间后,甲、乙再次相遇?
4. 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?。