关于高级初中中学数学动点专题
中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)
所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类开放性题目 .解决这种问题的重点是动中求静 ,灵巧运用相关数学知识解决问题 .重点 :动中求静 .数学思想:分类思想 函数思想 方程思想 数形联合思想 转变思想着重对几何图形运动变化能力的观察从变换的角度和运动变化来研究三角形、 四边形、函数图像等图形, 经过 “对称、动点的运动 ”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。
选择基本的几何图形, 让学生经历研究的过程,以能力立意,观察学生的自主研究能力,促使培育学生解决问题的能力.图形在动点的运动过程中察看图形的变化状况,需要理解图形在不一样地点的状况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学 “动点 ”研究题的基本思路 ,这也是动向几何数学识题中最核心的数学实质 。
二期课改后数学卷中的数学压轴性题正逐渐转向数形联合、 动向几何、着手操作、实验研究等方向发展.这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应企图识、推理能力等.从数学思想的层面上讲:( 1)运动看法;( 2)方程思想;( 3)数形联合思想;( 4)分类思想;(5)转变思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热门的形成和命题的动向, 它有益于我们教师在教课中研究对策,掌握方向.只的这样,才能更好的培育学生解题修养,在素质教育的背景下更明确地表现课程标准的导向. 本文拟就压轴题的题型背景和划分度丈量点的存在性和划分度小题办理手法提出自己的看法.专题一:成立动点问题的函数分析式函数揭露了运动变化过程中量与量之间的变化规律,是初中数学的重要内容 .动点问题反应的是一种函数思想,因为某一个点或某图形的有条件地运动变化 ,惹起未知量与已知量间的一种变化关系 ,这种变化关系就是动点问题中的函数关系 .那么 ,我们如何成立这种函数解析式呢下边联合中考试题举例剖析.一、应用勾股定理成立函数分析式例 1(2000 年·上海 )如图 1,在半径为 6,圆心角为 90°的扇形 OAB 的弧 AB 上,有一个动点 P,PH⊥ O A,垂足为 H,△ OPH 的重心为 G.(1)当点 P 在弧 AB 上运动时 ,线段 GO 、GP 、GH 中 ,有无长度保持不变的线段假若有 ,请指出这样的线段 ,并求出相应的长度 .(2)设 PH x ,GP y ,求 y 对于 x 的函数分析式,并写出函数的定义域(即自变量 x 的取值范围 ).(3)假如△ PGH 是等腰三角形 ,试求出线段 PH 的长 .解 :(1)当点 P 在弧 AB 上运动时 ,OP 保持不变 ,于是线段 GO 、GP 、GH中 ,有长度保持不变的线段,这条线段是GH=2NH=2 1 OP=2.B33 2P(2) 在 Rt △ POH中 ,OHOP 2 PH 236 x 2 ,∴yN11x 2.G xMHOH3622OM H A在 Rt △ MPH 中 ,图 1MPPH 2MH 2x 2 9 1 x 21 36 3 x 2.4 2∴ y =GP=2MP=136 3x 2 (0< x <6).33(3)△ PGH 是等腰三角形有三种可能状况 :① GP=PH时 , 1 36 3 2 x6x63x x , 解得 . 经查验 , 是原方程的根 ,且切合题意 .② GP=GH 时 ,题意 .1 x22 ,解得 x 0. 经查验 ,x 0是原方程的根 ,但不切合36 33③ PH=GH 时 , x 2 .综上所述 ,假如△ PGH 是等腰三角形 ,那么线段 PH 的长为6 或 2.本专题的主要特点是两个点在运动的过程中, 直接或间接地结构了直角三角线, 所以能够利用勾股定理去成立函数关系式 . 勾股定理是初中数学的重要定理, 在运用勾股定理写函数分析式的过程中, 主假如找边的等量关系, 要擅长发现这种内在的关系, 用代数式去表示这些边, 达到解题的目的 . 因为是压轴题, 有的先有铺垫, 再写分析式; 有的写好分析式后, 再证明等腰三角形、相像三角形等,还有的再解一些与圆相关的体型 . 要仔细领悟,达到举一反三的目的 .1 切记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方 .例题 ,扇形中∠ AOB=45°,半径 OB=2,矩形 PQRS 的极点 P 、 S 在半径 OA 上, Q 在半径 OB 上, R 在弧 AB 上,连结 OR.( 1) 当∠ AOR=30°时,求 OP 长( 2) 设 OP=x ,OS=y ,求 y 与 x 的函数关系式及定义域2 在四边形的翻折与旋转中,常常会应用到勾股定理,由此产生些函数分析式的问题,要娴熟掌握 .例题: 如图,正方形 ABCD 中, AB=6,有一块含 45°角的三角板,把 45°角的极点放在 D 点,将三角板绕着点 D 旋转,使这个 45°角的两边与线段 AB 、 BC 分别订交于点 E 、 F (点 E 与点 A 、 B 不重合)(1)从几个不一样的地点,分别丈量AE、EF、 FC 的长,从中你能发现 AE、 EF、 FC的数目之间拥有如何的关系并证明你所获得的结论(2)设 AE=x,CF=y,求 y 与 x 之间的函数分析式,并写出函数的定义域(3)试问△ BEF的面积可否为 8 假如能,恳求出 EF的长;假如不可以,请说明原因 .3在一些特别的四边形中,如矩形、正方形,它们都是直角,菱形的对角线相互垂直,这些都有可能结构直角三角形,能够考虑用勾股定理写出函数的分析式.例题:如图,在菱形 ABCD中,AB=4,∠ B=60°,点 P是射线 BC上的一个动点,∠PAQ=60°,交射线 CD 于点 Q,设点 P 到点 B 的距离为 x, PQ=y(1)求证:三角形 APQ 是等边三角形(2)求 y 对于 x 的函数分析式,并写出它的定义域(3)假如 PD⊥ AQ,求 BP 的值4作底边上的高,能够结构直角三角形,利用勾股定理写函数的分析式例题:如图,等边△ABC的边长为 3,点 P、Q 分别是 AB、BC上的动点(点P、Q 与△ABC 的极点不重合),且AP=BQ, AQ、 CP 订交于点 E.(1)如设线段 AP 为 x,线段 CP为 y,求 y 对于 x 的函数分析式,并写出定义域(2)当△ CBP的面积是△ CEQ的面积的 2 倍时,求 AP 的长(3)点 P、Q 分别在 AB、BC 上挪动过程中, AQ 和 CP 可否相互垂直如能,请指出P 点的地点,请说明原因.5在解圆的题目时,首选的协助线是弦心距,它不单能够运用垂径定理,并且结构了直角三角形,为用勾股定理写函数分析式创建了条件.例题:如图,⊙ A 和⊙ B 是外离的两圆,两圆的连心线分别交⊙A、⊙ B 于 E、 F,点 P 是线段 AB 上的一动点(点P 不与 E、 F 重合), PC切⊙ A 于点 C, PD 切⊙ B 于点 D,已知⊙A 的半径为 2 ,⊙ B 的半径为1,AB=5.(1)如设线段BP 的长为 x,线段 CP 的长为 y,求 y 对于 x 的函数分析式,并写出函数的定义域(2)假如 PC=PD,求 PB 的长(3)假如PC=2PD,判断此时直线CP与⊙ B 的地点关系,证明你的结论6 重申圆的首选协助线是弦心距,它不单能够均分弦,并且结构了直角三角形,为解题创建新思路 .例题:如图,在△ ABC中, AB=15,AC=20,cotA=2,P 是边 AB 上的一个动点,⊙P 的半径为定长 . 当点 P 与点 B 重合时,⊙ P 恰巧与边 AC 相切;当点 P 与点 B 不重合,且⊙ P 与边 AC 订交于点 M 和点 N 时,设 AP=x,MN=y.(1)求⊙ P 的半径(2)求 y 对于 x 的函数分析式,并写出它的定义域(3)当 AP=6 5时,试比较∠ CPN与∠ A 的大小,并说明原因阶梯题组训练1如图, E 是正方形 ABCD的边 AD 上的动点, F 是边 BC 延伸线上的一点,且 BF=EF,AB=12,设 AE=x,BF=y.(1)当△ BEF是等边三角形时,求BF 的长;(2)求 y 与 x 之间的函数分析式,并写出它的定义域;(3)把△ ABE 沿着直线 BE翻折,点 A 落在点 A′处,尝试究:△A′BF 可否为等腰三角形假如能,恳求出 AE 的长;假如不可以,请说明原因 .2如图,在△ ABC中,∠ACB=90°,∠ A=30°,D 是边 AC 上不与点 A、C 重合的随意一点,DE⊥ AB,垂足为点E, M 是 BD 的中点 .(1)求证: CM=EM;(2)假如 BC= 3设 AD=x, CM=y,求 y 与 x 的函数分析式,并写出函数的定义域;(3)当点 D 在线段 AC 上挪动时,∠ MCE 的大小能否发生变化假如不变,求出∠MCE 的大小;假如发生变化,说明如何变化.3 ABCD 中,对角线 AC⊥ AB, AB=15, AC=20,点 P 为射线 BC 上一动点, AP⊥ PM(点 M 与点B 分别在直线 AP 的双侧 ),且∠ PAM=∠ CAD,连结 MD.(1)当点 M 在 ABCD内时,如图,设 BP=x,AP=y,求 y 对于 x 的函数关系式,并写出函数定义域;(2) 请在备用图中画出切合题意的表示图,并研究:图中能否存在与△AMD 相像的三角形若存在,请写出并证明;若不存在,请说明原因;(3) 当△为等腰三角形时,求BP的长.4抛物线经过 A(2, 0)、 B( 8, 0)、 C(0,16 3) . 3(1)求抛物线的分析式;(2)设抛物线的极点为P,把△ APB 翻折,使点 Pl 落在线段 AB 上(不与 A、 B 重合),记作 P′,折痕为 EF,设 AP′ =x,PE=y,求 y 对于 x 的函数关系式,并写出定义域;(3)当点 P′在线段 AB 上运动但不与 A、B 重合时,可否使△ EFP′的一边与 x 轴垂直若能,恳求出此时点P′的坐标;若不可以,请你说明原因.5 如图,矩形 ABCD中, AD=7, AB=BE=2,点 P 是 EC(包含 E、 C)上的动点,线段 AP 的垂直均分线分别交 BC、 AD 于点 F、 G,设 BP=x, AG=y.(1)四边形 AFPG是说明图形请说明原因;(2)求 y 与 x 的函数关系式;(3)假如分别以线段GP、 DC 为直径作圆,且使两圆外切,求x 的值 .6在梯形 ABCD中,ADE 为底边 BC 上一点,以点 E 为圆心, BE 为半径画⊙ E 交直线 DE于点F.(1)如图,当点 F 在线段 DE上时,设 BE=x,DF=y,试成立 y 对于 x 的函数关系式,并写出自变量 x 的取值范围;(2)当以 CD为直径的⊙ O 与⊙ E 相切时,求 x 的值;(3)连结 AF、 BF,当△ ABF 是以 AF 为腰的等腰三角形时,求x 的值 .7 如图,在正方形ABCD中, AB=1,弧 AC 是以点 B 为圆心, AB 长为半径的圆的一段弧,点E 是边 AD 上的随意一点(点 E 与点 A 、 D 不重合),过 E 作弧 AC 所在圆的切线,交 DC 于点F ,G 为切点 .( 1) 当∠ DEF=45°时,求证点 G 为线段 EF 的中点;( 2) 设 AE=x , FC=y ,求 y 对于 x 的函数分析式,并写出函数的分析式;( 3) 将△ DEF 沿直线 EF 翻折后得△ D 1EF ,如图 2,当 EF=5时,议论△ AD 1D 与△ ED 1 F 是6否相像,假如相像,请加以证明;假如不相像,只需求写出结论,不要求写出原因.( 2003 年上海第 27 题)二、应用比率式成立函数分析式例 2( 2006 年·山东)如图 2,在△ ABC 中 ,AB=AC=1,点 D,E 在直线 BC 上运动 . 设 BD=x, CE=y .(1)假如∠ BAC=30° ,∠ DAE=105° ,试确立 y 与 x 之间的函数分析式;(2)假如∠ BAC 的度数为 ,∠ DAE 的度数为,当 ,知足如何的关系式时 之间的函数分析式还成立试说明原因.解:(1)在△ ABC 中 ,∵ AB=AC,∠ BAC=30° ,∴∠ ABC=∠ACB=75° ,∴∠ ABD=∠ ACE=105° .∵∠ BAC=30°,∠ DAE=105° , ∴∠ DAB+∠ CAE=75° , 又∠ DAB+∠ ADB=∠ ABC=75° ,D∴∠ CAE=∠ ADB,B ∴△ ADB ∽△ EAC, ∴ABBD ,CEAC1 x1∴, ∴ y .y1x(2)因为∠ DAB+∠ CAE=,又∠ DAB+∠ ADB=∠ ABC=90,2且函数关系式成立 ,∴90 2 =, 整理得 90 .2 当90 时 ,函数分析式 y 1 2成立 .x例 3(2005 年·上海 )如图 3(1),在△ ABC 中 ,∠ ABC=90° ,AB=4,BC=3.点 O 是边 AC 上的一个动点 ,以点 O 为圆心作半圆 ,与边 AB 相切于点CD,交线段 OC 于点 E.作 EP ⊥ ED,交射线 AB 于点 P,交射线 CB 于点 F.,(1)中 y 与 xAEC图 2FBPD AE O3(1)(1)求证 : △ADE ∽△ AEP.PB (2)设 OA= x ,AP= y ,求 y 对于 x 的函数分析式 ,并写出它的定义 域.F(3)当 BF=1 时 ,求线段 AP 的长 . D解:(1)连结 OD.依据题意 ,得 OD ⊥ AB,∴∠ ODA=90° ,∠ODA=∠ DEP.CA又由 OD=OE,得∠ ODE=∠ OED.∴∠ ADE=∠ AEP, ∴△ ADE ∽△E O AEP.3(2)(2) ∵ ∠ ABC=90 ° ,AB=4,BC=3, ∴ AC=5. ∵ ∠ ABC=∠ADO=90° , ∴ OD ∥ BC, ∴ODx , ADx ,35 4 5∴ OD= 3x ,AD=4x . ∴ AE=x 3x= 8x . 55 5 5∵△ ADE ∽△ AEP, ∴AEAD ,8 x 4 x1625∴55 .∴ y x ( 0 x).APAEy8 x 585(3)当 BF=1 时,①若 EP 交线段 ∵∠ ADE=∠ AEP, ∴∠ F=∠ PDE, CB 的延伸线于点 F,如图 3(1),则 CF=4.∴∠ PDE=∠ PEC. ∵∠ FBP=∠ DEP=90°, ∠FPB=∠ DPE, ∴∠ F=∠ FEC, ∴ CF=CE.∴ 5-8x =4,得 x 5 .可求得 y 2 ,即 AP=2.5 8②若 EP 交线段 CB 于点 F,如图 3(2), 则 CF=2. 近似① ,可得 CF=CE. ∴ 5-8x =2,得 x 15 .5 8可求得 y6 ,即 AP=6.综上所述 , 当 BF=1 时 ,线段 AP 的长为 2 或 6.本专题研究在图形的运动变化过程中,存在平行或相像的三角形,利用比例式来成立函数关系式 . 难一些的题目此中的一个变量是比率式, 一个变量是线段,也是利用相像或平行来结构比率式, 进而写出函数的分析式 . 作为最后的一道压轴题,一般状况下写出分析式后还会有一个证等腰或相像或相切的题目,能够二次函数专题中的解题思想进行办理.1 由平行获得比率式,进而成立函数关系式.例题: 如图,在△ ABC 中, AB=AC=4,BC=1AB ,点 P 是边 AC 上的一个点, AP= 1 PD ,22∠APD=∠ ABC ,连结 DC 并延伸交边 AB 的延伸线于点 E(1)求证:AD证明:△ ADE∽△ GFA (2)设 DE=x, BG=y,求 y 对于 x 的函数分析式及定义域(3)当 BH= 1时,求 DE的长43在学习利用相像比成立函数的分析式的时候,初中阶段的知识已经学了许多,对最后的压轴题的综合性的要求已经很高了. 一般会在写分析式前有一些证明或计算,写好分析式后再来一个证明等腰三角形或圆的地点关系等. 假如能够把一道复杂的压轴题拆分红几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt△ ABC中,∠ C=90°, sinB= 4,AC=4; D 是 BC的延伸线上一个动点,5∠EDA=∠B, AE(1) 找出图中的相像三角形,并加以证明(2)设 CD=x, AE=y,求 y 对于 x 的函数分析式,并写出函数的定义域(3)当△ ADE 为等腰三角形时,求 AE 的长4方才研究的写函数分析式都是在几何图形中进行的,下边来看在平面直角坐标系中如何写分析式 .例题:如图,在直角坐标系中的等腰梯形 AOCD 中,AD AD23例题:如图,在平面直角坐标系中,OC55点 A 的坐标为( 1, 0),点 B、 C 的坐标分别为( -1, 0), C( 0, b),且 0< b< 3, m 是经过点 B、 C 的直线,当点 C 在线段 OC上挪动时,过点 A 作 AD⊥m 于点 D.(1) 求点 D、 O 之间的距离S△BDA(2) 假如=ɑ,试求:ɑ与 b 的函数关系式及ɑ的取值范围S△BOC(3)当∠ ADO 的余切值为 2 时,求直线 m 的分析式(4)求此时△ ABD 与△ BOC重叠部分的面积6当我们学习到利用相像三角形的相像比来成立函数分析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只需能够分层求解,就能化繁为简.例题:如图,在边长为 6 的正方形ABCD的双侧如图作正方形BEFG、正方形 DMNK ,恰巧使得N、 A、 F 三点在向来线上,连结MF 交线段 AD 于点 P,连结 NP,设正方形BEFG 的边长为x,正方形DMNK 的边长为y.(1)求y对于x的函数关系式及自变量x 的取值范围(2)当△ NPF的面积为32 时,求 x 的值(3)以P为圆心,AP为半径的圆能够与以G 为圆心, GF 为半径的圆相切,若能恳求x 的值,若不可以,请说明原因练习:1. 如图,在三角形中, AB=AC=8,BC=10,点 D 、E 分别在 BC 、 AC 上(点 D 不与 B 、 C 重合),且∠ ADE=∠ B ,设 BD=x , AE=y.( 1) 求 y 与 x 之间的函数分析式,并写出函数的定义域( 2) 点 D 在 BC 上的运动过程中,△ ADE 能否有可能成为一个等腰三角形若有可能,请求出当△ ADE 为等腰三角形时 x 的值 ;如不行能,请说明原因.2.在△ ABC 中, AB=4, AC=5, cosA= 3, 点 D 是边 AC 上的点,点 E 是边 AB 上的点,且5知足∠ AED=∠ A , DE 的延伸线交射线 CB 于点 F ,设 AD=x , EF=y.( 1) 如图 1,用含 x 的代数式表示线段 AE 的长( 2) 如图 1,求 y 对于 x 的函数分析式及函数的定义域 (3)连结 EC ,如图 2,求档 x 为什么值时,△AEC 与△ BEF 相像 .3.如图,在矩形 ABCD 中, AB=m ( m 是大于 0 的常数),BC=8,E 为线段 BC 上的动点(不与 B 、 C 重合) .连结 DE ,作 EF ⊥ DE , EF 与射线 BA 交于点 F ,设 CE=x , BF=y.(1) 求 y 对于 x 的函数关系式(2) 若 m=8,求 x 为什么值时, y 的值最大,最大值是多少(3) 若 y=12,要使△ DEF 为等腰三角形, m 的值应为多少m(1)已知在梯形 ABCD中, AD 如图, P 为 BC上的一点,且 BP=2. 求证:△ BEP∽△ CPD;(2)假如点 P 在 BC 边上挪动(点 P 与点 B、C 不重合),且知足∠ EPF=∠C, PF 交直线CD 与点 F,同时交直线 AD 于点 M ,那么(3)当点 F 在线段 CD 的延伸线上时,设 BP=x, DF=y,求 y 对于 x 的函数分析式,并写出函数的定义域;(4)当△DMF= 9 △ BEP时,求BP的长.S 4 S(1)如图,在四边形 ABCD中,∠ B=90°,AD 求 y 对于 x 的函数分析式,并写出定义域;(2)当 AD=11 时,求 AG 的长;(3)假如半径为EG 的⊙ E 与半径为FD 的⊙ F 相切,求这两个圆的半径.4. 如图,在半径为 5 的⊙ O 中,点A、 B 在⊙ O 上,∠ AOB=90°,点 C 是弧 AB 上的一个动点, AC与 OB 的延伸线订交于点D,设 AC=x, BD=y.(1) 求 y 对于 x 的函数分析式,并写出它的定义域;(2) 若⊙ O 与⊙ O 订交于点 A、 C,且⊙ O 与⊙ O 的圆心距为2,当 BD= OB 时,求⊙ O1 1 1 13 的半径;(3)能否存在点 C,使得△ DCB∽△ DOC 假如存在,请证明;假如不存在,请简要说明原因 .( 1) 已知∠ ABC=90°, AB=2,BC=3, ADPQ AD当 AD= 3,且点 Q 在线段 AB 上时,PC AB 2设点 B 、 Q 之间的距离为 x ,S △APQ=y ,此中 S △APQ 表示△ APQ 的面积, S △PBC 表示S △PBC△PBC 的面积,求 y 对于 x 的函数分析式,并写出函数定义域;( 2) 当 AD < AB ,且点 Q 在线段 AB 的延伸线上时 (如图 3 所示),求∠ QPC 的大小 (. 2009上海第 25 题)三、应用求图形面积的方法成立函数关系式例 4( 2004 年·上海)如图 ,在△ ABC 中 ,∠BAC=90° ,AB=AC=2 2 ,⊙ A 的半径为 1.若点O 在 BC 边上运动 (与点 B 、 C 不重合 ),设 BO= x ,△ AOC 的面积为y .(1)求 y 对于 x 的函数分析式 ,并写出函数的定义域 .A(2)以点 O 为圆心 ,BO 长为半径作圆 O,求当⊙ O 与⊙ A 相切时 , △AOC 的面积 .解:(1)过点 A 作 AH ⊥ BC,垂足为 H.∵∠ BAC=90°,AB=AC=2 2 , ∴BC=4,AH= 1 BC=2. ∴ OC=4- x .1OC AH ,2B OH C∵SAOC∴ yx4 ( 0 x4 ).图 82(2)①当⊙ O 与⊙ A 外切时 ,7在 Rt △AOH 中 ,OA= x 1,OH= 2x ,∴(x 1)2 22 (2 x)2 . 解得 x.67 17此时 ,△AOC 的面积y = 4 .6 6②当⊙ O 与⊙ A内切时 ,在 Rt△AOH 中 ,OA= x 1,OH= x 2 ,∴(x 1)2 22 (x 2) 2 . 解得 x 7 .7 1 2此时 ,△AOC 的面积y = 4 .2 2综上所述 ,当⊙ O 与⊙ A 相切时 ,△ AOC的面积为17或1.6 2例 2、【 09 广东】正方形 ABCD边长为 4, M 、N 分别是 BC、 CD 上的两个动点,当M 点在BC 上运动时,保持 AM 和 MN 垂直.(1)证明: Rt△ABM∽Rt△MCN;(2)设 BM=x,梯形 ABCN 的面积为 y,求 y 与 x 之间的函数关系式;当M 点运动到什么位置时,四边形 ABCN面积最大,并求出最大面积;(3)当 M 点运动到什么地点时 Rt△ABM∽Rt△AMN ,求此时 x 的值练习 1.如图,在△ ABC 中, BC=8, CA=AB、 AC、BC 上(点 E 与点 A、 B 不重合),连结求出 y 与 x 之间的函数表达式,并写出自变量,∠ C=60°, EF∥ BC,点 E、F、 DED、 DF。
七年级数学数轴动点题型归纳
七年级数学数轴动点题型归纳
七年级数学中,数轴上的动点问题是一个重要的知识点。
以下是一些常见的题型和解题方法的归纳:
两点距离的通用公式:这是解决数轴上动点问题的基础,需要掌握如何计算数轴上两点之间的距离。
数轴上中点通用公式:这个公式可以帮助我们找到数轴上两点的中点。
数轴上移动点表示的数的通用公式:这个公式可以帮助我们理解数轴上的点如何表示数。
“零值法”化简含有绝对值的代数式:这个方法可以帮助我们简化含有绝对值的代数式。
数轴上三等分点通用公式:这个公式可以帮助我们找到数轴上的三等分点。
数轴上动点中途改变运动方向:这种题型需要我们理解动点在数轴上如何改变运动方向。
数轴上动点中途改变运动速度:这种题型需要我们理解动点在数轴上如何改变运动速度。
数轴上两个动点不同时运动,如何处理:这种题型需要我们理解如何处理数轴上两个动点不同时运动的情况。
专题10:动点问题的常见题型和解题方法(终稿)
2017—2018学年度第二学期初三数学中考复习专题十:动点问题的常见题型和解题方法(提高)动点问题是近年来中考的的一个热点问题.常求:等腰、直角、相似三角形和四边形的形状,一般都要分类;面积、周长、线段和差的关系和最值.解这类题目要“以静制动”,即把动态问题,变为静态问题来解. 常用:几何方法——相似(全等)、勾股定理、面积关系建立方程或函数. 代数方法——设坐标或元,通过图形中特殊关系建立方程或函数.特别注意:几何方法和代数方法往往是不是孤立的,是相互交融的,即数形结合. 一、热点再练1.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是()A B C D2.如图①,在梯形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:cm 2)与点P 移动的时间(单位:s )的函数如图②所示,则点P 从开始移动到停止移动一共用了 秒(结果保留根号).3.如图,在梯形ABCD 中,AD ∥BC ,AD=6,BC=16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.4.如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q .第2题 第3题(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PDQB 是菱形.二、规律剖析(一)因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ =90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图【基本方法】等腰三角形的存在性问题,一般要分类讨论;两腰相等可能转化为两角相等或者转化为其他线段之间关系,一般会用到勾股定理或相似中的比例式列方程.【思路点拨】1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.(二)因动点产生的直角三角形问题例 2如图,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A (-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【基本方法】直角三角形的存在性问题,一般要分类讨论;遇到直角时一般考虑勾股定理或直角三角形相似或三角函数或代数法中的直线解析式. 【思路点拨】1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点. 2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程. 4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 【变式】条件不变,如果△MON 的边与AC 平行,求t 的值.(三)因动点产生的相似三角形问题例3如图,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,【基本方法】相似三角形的存在性问题,一般都要分类讨论;如果有两个角相等,那这两个角一般是对应角,所以只要讨论两种情况.【思路点拨】1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA可以分割为共底的两个三角形,高的和等于OA.(四)因动点产生的平行四边形问题例4如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC 向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2【基本方法】平行四边形的存在性问题,一般都要分类讨论;比如已知的边是平行四边形的边或对角线,但本题四边形PDBQ 为菱形,只要满足一组对边平行且相等和一组邻边相等.【思路点拨】1.菱形PDBQ 必须符合两个条件,点P 在∠ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径.(五)因动点产生的面积问题例5如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.【基本方法】面积问题的关键是用坐标表示线段长度. 【思路点拨】1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD .3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方.4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值. 三、分层作业1.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,△ABE ∽△QBP ;其中正确的结论是__ __(填序号).图(1) 图(2)第1题Q第2题第3题2.如图,∠ACB=60○,半径为2的⊙0切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2π B.4π C.32D.43.如图,在△ABC中,∠ABC=90º,AB=3,BC=4,P是BC边上的动点,设BP=x.若能在AC边上找到一点Q,使∠BQP=90º,则x的取值范围是.4.直角坐标系中直线AB交x轴,y轴于点A(4,0)与B(0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过秒第4题后动圆与直线AB相切.5.如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.5,∠C=30°.点D从点C出发沿CA方向6.如图,在Rt△ABC中,∠B=90°,BC=3以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.7.如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(2m ,m ),翻折矩形OABC ,使点A 与点C 重合,得到折痕DE .设点B 的对应点为F ,折痕DE 所在直线与y 轴相交于点G ,经过点C 、F 、D 的抛物线为c bx ax ++=2y .(1)求点D 的坐标(用含m 的式子表示)(2)若点G 的坐标为(0,-3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD 的中点为M ,在线段CD 上方的抛物线上是否存在点P ,使PM =21EA ?若存在,直接写出P 的坐标,若不存在,说明理由.。
数学动点问题及练习题附答案
初中数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数提醒了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于*一个点或*图形的有条件地运动变化,引起未知量与量间的一种变化关系,这种变化关系就是动点问题中的函数关系.则,我们怎样建立这种函数解析式呢"下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。
三、应用求图形面积的方法建立函数关系式。
专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。
〕动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的压轴题。
〔一〕点动问题。
〔二〕线动问题。
〔三〕面动问题。
二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。
2、动手实践,操作确认。
3、建立联系,计算说明。
三、专题二总结,本大类习题的共性:1.代数、几何的高度综合〔数形结合〕;着力于数学本质及核心容的考察;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。
专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考察学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。
初中数学动点问题专题讲解
∵ SAOC
1 OC 2
AH
,
∴ y x 4 ( 0 x 4 ).
(2)①当⊙O 与⊙A 外切时,
在 Rt△AOH 中,OA= x 1,OH= 2 x , ∴ (x 1)2 22 (2 x)2 .
此时,△AOC 的面积 y = 4 7 17 . 66
②当⊙O 与⊙A 内切时,
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种 函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化 关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.
1
一、应用勾股定理建立函数解析式
运动(与点 B、C 不重合),设 BO= x ,△AOC 的面积为 y .
(1)求 y 关于 x 的函数解析式,并写出函数的定义域.
A
3
B
C
(2)以点 O 为圆心,BO 长为半径作圆 O,求当⊙O 与⊙A 相切时,
△AOC 的面积.
解:(1)过点 A 作 AH⊥BC,垂足为 H.
∵∠BAC=90°,AB=AC= 2 2 , ∴BC=4,AH= 1 BC=2. ∴OC=4- x . 2
围;
②探索:是否存在这样的 x ,以 A 为圆心,以 x 3 长为半径的圆与
O
A′
4
直线 l 相切,若存在,请求出 x 的值;若不存在,请说明理由.
[题型背景和区分度测量点]
B
C
本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第
一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线 l 沿
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;
中考动点问题经典题型归类总结附答案
专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。
初中数学动点问题大全
初中数学动点问题大全动点问题一直是中考热点题型,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数值、线段或面积的最值问题等,下面就此问题的常见题型作简单介绍。
题型一动点形成的面积问题1.面积公式:三角形面积用12S ah =来表示,利用未知数的代数式来表示底和高。
2.面积比等于相似比的平方:面积无法用底和高表示时,利用相似三角形的面积比等于相似比的平方来求解,只需要知道相似比和另一个三角形面积即可表示。
3.相似三角形:当面积公式和面积比等于相似比的平方不能有效解题时,利用相似三角形的比例关系求解。
角度1:利用公式法解决动点面积问题例题1:在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点30A (,)和23B (,).过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC ADC S S ∆∆=时,求点D 的坐标.变式1:如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线O 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且//AB x 轴,//AC y 轴.(1)当点P 横坐标为6,求直线AO 的表达式;(2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP S S ∆∆的值;如果变化,请说明理由.O x y (备用图)O xy解析:(1)∵反比例函数12y x=的图像经过横坐标为6的点P ,∴点P 的坐标为(6,2).设直线AO 的表达式为y kx =(0k ≠).将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,得4x =.∴B 坐标为(4,3).∵AB =BO ,∴224(40)(30)a -=-+-9a =.∴点A 坐标为(9,3).(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.∵点C 坐标为(a ,12a ).∴6CEO S ∆=,同理6BDO S ∆=,∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.同理ACP ACO S AP S AO ∆∆=.∴1ABP ACP S S ∆∆=.即当a 变化时,ABP ACPS S ∆∆的值不变,且恒为1变式2:如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作//PM BC 交射线AC 于点M ,联结CP ,若CPM ∆的面积为2,则请求出点P 的坐标;解析:(1)设这条抛物线的解析式为2(0)y ax bx c a =++≠它的顶点坐标为16(1,)3(2)过点P 作PH AC ⊥,垂足为H .∵P 点在x 轴的正半轴上,∴设0P x (,).∵A )0,1(-,∴1PA x =+.∵在Rt AOC ∆中,222OA OC AC +=;又∵14OA OC ==,∴17AC =90sin 117PH PH PHA CAO AP x ∠=︒∴∠===+ 17PH =//BP CM PM BC AB AC ∴= ;300B P x (,),(,)1点P 在点B 的左侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)12217x -=解得110x .P =∴(,)2点P 在点B 的右侧时,3BP x =-,∴3417x -=17(3)x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)122417x -=解得11x =+,21x =-(不合题意,舍去)∴P(1+0).综上所述,P 的坐标为(1,0)或(1+0)角度2:利用面积比等于相似比的平方解决动点面积问题例题2:如图,已知在梯形ABCD 中,//AD BC ,5AB DC ==,4AD =.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且//ME DN ,//MF AN ,联结EF .(1)如图1,如果//EF BC ,求EF 的长;(2)如果四边形MENF 的面积是ADN ∆的面积的38,求AM 的长;解析:(1)∵AD //BC ,EF //BC ,∴EF //A D .又∵ME //DN ,∴四边形EF DM 是平行四边形.∴EF =DM .同理可证,EF =AM .∴AM =DM .∵AD =4,∴122EF AM AD ===.(2)∵38ADN MENF S S ∆=四边形,∴58AME DMF ADN S S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.∵ME //DN ,∴△AME ∽△AN D .∴22AME ADN S AM S AD∆∆=.同理可证,△DM F ∽△DN A .即得22DMF ADN S DM S AD ∆∆=.设AM =x ,则4DM AD AM x =-=-.∴22(4)516168x x -+=.即得2430x x -+=.解得11x =,23x =.∴AM 的长为1或3.A B CD M N EF (图1)AB C D M N E F变式3:已知直线1l 、2l ,12//l l ,点A 是1l 上的点,B 、C 是2l 上的点,AC BC ⊥,60ABC ∠=︒,4AB =,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合.(1)如图1,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图2,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.解析:变式4:如图1,在梯形ABCD 中,//AD BC ,对角线BC AC ⊥,4AD =cm ,︒=∠45D ,3=BC cm .(1)求B ∠cos 的值;(2)点E 为BC 延长线上的动点,点F 在线段CD 上(点F 与点C 不重合),且满足ADE AFC ∠=∠,如图2,设x BE =,y DF =,求y 关于x 的函数解析式,并写出函数的定义域;(3)点E 为射线BC 上的动点,点F 在射线CD 上,仍然满足ADE AFC ∠=∠,当AFD ∆的面积为2cm 2时,求BE 的长.解析:(1)∵//AD BC ,∴ACB DAC ∠=∠.∵AC BC ⊥,∴90ACB ∠=︒.∴90DAC ∠=︒.∵45D ∠=︒,∴45ACD ∠=︒.∴AD AC =.∵4AD =,∴4AC =.∵3=BC ,∴5AB ==.∴3cos 5BC B AB ∠==.(2)∵//AD BC ,∴ADF DCE ∠=∠.∵AFC FDA FAD ∠=∠+∠,ADE FDA EDC ∠=∠+∠,又AFC ADE ∠=∠,∴FAD EDC ∠=∠.∴ADF DCE ∆~∆.∴AD DF DC CE =.在Rt ADC ∆中,222AC AD DC +=,又4==AC AD ,∴24=DC .∵x BE =,∴3-=x CE .y DF =,∴3244-=x y .22322-=x y .定义域为113<<x .(3)当点E 在BC 的延长线上,由(2)可得:ADF DCE ∆~∆,∴2(DC AD S S DCE ADF =∆∆.∵2AFD S ∆=,4=AD ,24=DC ,∴4=∆DCE S .∵AC CE S DCE ⨯⨯=∆21,∴44)3(21=⨯-⨯BE ,∴5BE =.当点E 在线段BC 上,同理可得:44)3(21=⨯-⨯BE .∴1BE =.所以BE 的长为5或1.角度3:利用锐角三角比法解决动点面积问题例题3:已知在平面直角坐标系xoy (如图)中,抛物线212y x bx c =++经过点(4,0)A 、点(0,4)C -,点B 与点A 关于这条抛物线的对称轴对称;(1)用配方法求这条抛物线的顶点坐标;(2)联结AC 、BC ,求ACB ∠的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为(0)m m >,过点P 作y 轴的垂线PQ ,垂足为Q ,如果QPO BCO ∠=∠,求m 的值;解析:变式5:已知在平面直角坐标系xoy 中,抛物线2(0)y ax bx c a =++>与x 轴相交于(1,0),(3,0)A B -两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12.(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.解析:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =∵90ACD ∠=︒,1tan 2ADC ∠=,∴4CD =,∵0a >,∴()1,4D -(2)设()214y a x =--将1,0x y =-=代入上式,得,1a =所以,这条抛物线的表达为223y x x =--(3)过点F 作FH x ⊥轴,垂足为点H设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==∵223FH x x =--,1AH x =+,∴223112x x x --=+解得172x =,21x =-(舍),∴79,24F ⎛⎫ ⎪⎝⎭巩固1:如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且OBC OAB ∠=∠,3AC =.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF OA ⊥,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 的坐标.解析:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=a a x ,∴OC =1,OA =OC +AC =4,∴点A (4,0).∵∠OBC =∠OAB ,∴tan ∠OAB =tan ∠OBC ,∴OBOC OA OB =,∴OB OB 14=,∴OB =2,∴点B (0,2),∴⎩⎨⎧+-==,8160,2c a a c ∴⎪⎩⎪⎨⎧=-=.2,41c a ∴此抛物线的表达式为221412++-=x x y .(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,设m OF =,得m AF -=4,221412++-=m m DF ,由FG //OB ,得OA AF OB FG =,∴24m FG -=,∴2:524:)22141(2=-++-m m m ,∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45)巩固2:如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD DAF ∆∆∽;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒A C BO yx∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,∴BCD ∆∽DAF∆(2)∵BCD ∆∽DAF ∆,∴BC CD AD AF=∵1BC =,设CD x =,AF y =,∴11x x y=-,∴()201y x x x =-<<(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∴BE BF BC BD=,∵BE BD =,1BC =,∴2BE BF =∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,∴279BE BF ==,∴29AF =∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCDS BE S BC ∆∆==∵1BC =,BE BD =,∴279BD =过点B 作BH AC ⊥于点H ,∵60C ∠=︒,∴BH =16DH =,12CH =当点D 在线段CH 上时,111263CD CH DH =-=-=当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=综上所述,当13x =或23时,79BEF BCD S S ∆∆=.巩固3:在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上一动点,将三角板直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断EAP ∆与PDC ∆一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是EAP ∆周长等于PDC ∆周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.解析:(1)△EAP ∽△PDC①当P 在AD 边上时,如图(1):∵矩形ABCD ,==90D A ∠∠ ,∴1+2=90∠∠据题意=90CPE ∠ ∴3+2=90∠∠ ,∴1=3∠∠,∴△EAP ∽△PDC②当P 在AD 边上时,如图(2):同理可得△EAP ∽△PDC(2)若点P 在边AD 上,据题意:PD x =6PA x =-4DC =AE y =又∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴22613442x x y x x -==-+()06x <<若点P 在边DA 延长线上时,据题意PD x =,则6PA x =-,4DC =,AE y =,∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴()2664x x y x -=>(3)假如存在这样的点P ,使△EAP 周长等于PDC ∆的2倍①若点P 在边AD 上∵△EAP ∽△PDC ∴():6:4EAP PDC C C x =- ,∴()6:42x -=,∴2x =-不合题意舍去;②若点P 在边DA 延长线上,同理得()6:42x -=,∴14x =综上所述:存在这样的点P 满足题意,此时14PD =巩固4:如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.解析:(1)∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C ∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴这个抛物线的解析式为:2142y x x =--顶点为9(1,)2-(2)如图:取OA 的中点,记为点N ∵OA =OC =4,∠AOC =90°∴∠ACB =45°∵点N 是OA 的中点∴ON =2又∵OB =2∴OB =ON又∵∠BON =90°∴∠ONB =45°∴∠ACB =∠ONB∵∠OMB +∠OAB =∠ACB ∠NBA +∠OAB =∠ONB ∴∠OMB =∠NBA1°当点M 在点N 的上方时,记为M 1∵∠BAN =∠M 1AB ,∠NBA =∠OM 1B ,∴△ABN ∽△AM 1B ∴1AN AB AB AM =又∵AN =2,AB =∴110AM =又∵A (0,—4)∴1(0,6)M 2°当点M 在点N 的下方时,记为M 2,点M 1与点M 2关于x 轴对称,∴2(0,6)M -综上所述,点M 的坐标为(0,6)或(0,6)-题型二动点形成的相切问题1.直线和圆相切:圆心到直线距离等于半径构造直角三角形,利用三角比、勾股定理等来表示圆心到直线距离及半径,建立等量关系2.圆和圆相切:两圆半径和等于圆心距.利用平行线分线段成比例、勾股定理、三角比、相似等表示相关线段,建立等量关系角度4:直线与圆相切问题例题4:如图,在ABC ∆中,10,12,AB AC BC ===点E F 、分别在边BC AC 、上(点F 不与点A 、C 重合)//EF AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设FC x =.(1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE DF 、分别交AB 于M 、N ,若MN y =,求y 关于x 的函数关系式并写出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的E 与边AC 1没有公共点时,求x 的取值范围.2一个公共点时,求x 的取值范围.3两个公共点时,求x 的取值范围.AE CB FA B D GC EF变式6:已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AFG AB x S y ∆==,,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.解析:(1)∵点F 为AD 中点,且AD =BC =6,∴AF =3∵矩形ABCD 中,∠ABC =90°,BG ⊥AC 于点E ,∴∠ABE +∠EBC =90°,∠AC ∠EBC =90°∴∠ABE =∠ACB ,∴△ABF ∽△BCF ,∴AB AF BC AB =∴AB =23(2)由(1)可得△ABF ∽△BCF ∴AB AF BC AB =∵AB =x ,BC =6∴AF =62x ;同理可得:CG =x36①当F 点在线段AD 上时DG =CG -CD =x x x x 23636-=-∴S ⊿AFG =1236213x x CG AF -=⋅。
(完整版)初中数学动点问题归纳
BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
八年级数学 几何动点问题专题
几何动点问题专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。
已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。
假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)t为何值时,四边形PQCD是直角梯形?(4)t为何值时,四边形PQCD是等腰梯形?练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形?例2:如图,在等腰直角三角形ABC中,斜边BC=4,OA⊥BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。
(1)判断∆OEF的形状,并加以证明。
(2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.(3)设AE=x,∆AEF的面积为y,求的y与x的关系式。
中考数学常见题型几何动点问题
中考数学常见题型几何动点问题中考数学压轴题型研究(一)――动点几何问题例1:在△ABC中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC的面积;(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。
如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半?B (3)在第(2)问题前提下,P,Q两点之间的距离是多少?CA 例2: ()已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A →B → C →E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,(1)写出y与x的关系式(2)求当y=1时,x的值等于多少? 3例3:如图1 ,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿梯形的边由B→C → D → A 运动,设点P运动的路程为x ,△ABP的面积为y , 如果关于x 的函数y的图象如图2所示,那么△ABC 的面积为()A.32 B.18 C.16 D.10 y B 3例4:直线y??x?6与坐标轴分别交于A、B两点,动点P、Q同时从O4点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S?坐标.P O Q A x 48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的5例5:已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.1 / 8C Q P A MNB,AD?6厘米,DC?4厘米,BC的坡度例6:如图(3),在梯形ABCD中,DC∥AB,?A?90°i?3∶4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B?C?D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,D另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;A(3)连结PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,PECQB图(3)y有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
(完整版)初中数学动点问题归纳
BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
中考数学动点问题专项训练课件(共35张PPT)
图Z5-1
例 1 【2017·徐州】 如图 Z5-1, 在平面直角坐标系中, 点 A(10, 0),以 OA 为直径在第一象限内作半圆,B 为半圆上一点,连接 AB 并延长至 C,使 BC=AB,过 C 作 CD⊥x 轴于点 D,交线段 OB 于点 E, 已知 CD=8,抛物线经过 O、E、A 三点. (2)求抛物线的函数表达式;
∴直线BD对应的一次函数的表达式为y=
3 x-2. 3
y = 3 x - 2 , 3 由 得交点D的坐标为(- 3,-3), y=-1x2+2 3x 3 3
3 将x=0代入y= x-2中,得C点的坐标为(0,-2), 3 由勾股定理,得:OA=2=OC,AB=2=CD,OB=2 3=OD. OA=OC, 在△OAB与△OCD中,AB=CD, OB=OD, ∴△OAB≌△OCD.
例 1 【2017·徐州】 如图 Z5-1, 在平面直角坐标系中, 点 A(10, 0),以 OA 为直径在第一象限内作半圆,B 为半圆上一点,连接 AB 并 延长至 C,使 BC=AB,过 C 作 CD⊥x 轴于点 D,交线段 OB 于点 E, 已知 CD=8,抛物线经过 O、E、A 三点. (3)若 P 为抛物线上位于第一象限内的一个动点,以 P、O、A、E 为顶点的四边形面积记作 S,则 S 取何值时,相应的点 P 有且只有 3 个?
图Z5-8
【2017·徐州】如图 Z5-8①,菱形 ABCD 中,AB=5 cm, 动点 P 从点 B 出发,沿折线 BC-CD-DA 运动到点 A 停止,动点 Q 从点 A 出发,沿线段 AB 运动到点 B 停止,它们运动的速度相 同.设点 P 出发 x s 时,△BPQ 的面积为 y cm2.已知 y 与 x 之间 的函数关系如图②所示,其中 OM,MN 为线段,曲线 NK 为抛物 线的一部分,请根据图中的信息,解答下列问题: (2)分别求出线段 OM,曲线 NK 所对应的函数表达式;
初三数学几何动点题及方法精选幻灯片
【思路分析】本题和上题有所不同,上一题会给出一个条件使得动点静 止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的 变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂 直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
6
【思路分析】这一问是典型的从特殊到一般的问法,那么思路很简 单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找 AC的垂线,就可以变成第一问的条件,然后一样求解。
A
D
N
B
M
C
2
【思路分析】解决动点问题,首先就是要找谁在动,谁没在动, 通过分析动态条件和静态条件之间的关系求解。对于大多数题目 来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意 味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的 条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也 是有关系的。所以当题中设定MN//AB时,就变成了一个静止问 题。由此,从这些条件出发,列出方程,自然得出结果。
A
M
D
60°
B P
Q C
11
以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现 特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求 解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不 变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下 来我们看另外两道题.
A
M
D
G
E
FN
B
C
图2 14
【思路分析】如果△BEF任意旋转,哪些量在变化,哪些量不变呢?在△BEF的
旋转过程中,始终不变的依然是G点是FD的中点。可以延长一倍EG到H,从而构造
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题3,列等式。
这里要借助几何图形本身的性质,找出其中的等量关系来列等式。
? ???平行四边形:对边相等。
PD=CQ,16-t=4t,t=3.2? ???菱形:四边都相等。
PD=CD=CQ=PQ,即t=3.2且PD=12.8,但PD=CD=10,矛盾,不可能形成菱形。
? ???直角梯形:借助四边形APQB是矩形,矩形对边也相等。
AP=BQ,t=24-4t,t=4.8? ???等腰梯形:作等腰梯形的两高,底角的两个三角形全等。
过点P,D分别向BC作垂线,垂足为E,F,则QE=CF,t-(24-4t)=24-16,t=6.44,查结果。
我们发现第四问的结果超过6了,要舍去,所以题目不可能形成等腰梯形。
动点问题常见题型:一、建立函数解析式函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,1、应用勾股定理建立函数解析式例1:如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH ⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2) 设PH=x,GP=y,求y关于x的函数解析式,并写自变量x的取值范围(即自变量x的取值范围).(3)如果△PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH= NH= OP=2.图1(3)△2、应用比例式建立函数解析式例2:如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x ,CE= y. (1)如果∠BAC=30°,∠DAE=105°,试确定 y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α ,∠DAE 的度数为β ,当α,β 满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ ACBD CEAB =,∴11x y =, ∴xy 1=.(2)由于∠DAB+∠CAE=αβ- ,又∠DAB+∠ADB=∠ABC=290α-︒ ,且函数关系式成立,∴290α-︒=αβ- =, 整理得 =-2αβ︒90.当=-2αβ︒90 时,函数解析式x y 1= 成立.例3:如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.图3(1) (3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP. (2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴ 53x OD =,54x AD =,, ,∴OD=x 53,AD= x 54. ∴AE=x x 53+=x 58. P DACB 3(2)F∵△ADE ∽△AEP, ∴AE ADAP AE =, ∴ x x yx 585458=. ∴ x y 516= (8250≤<x ) (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3,则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58 =4,得85=x .可求y=2 ,即AP=2.②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE.∴5- x 58=2,得 815=x .可求得y=6 ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.3、应用求图形面积的方法建立函数关系式例4:如图4,在△ABC 中,∠BAC=90°,AB=AC=,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO= x,△AOC 的面积为 y.(1)求y 关于 x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC= , ∴BC=4,AH= BC=2.∴ OC=4- x.图4 ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. 二:动态几何题动态几何特点----问题背景是特殊图形,(特殊角、特殊图形的性质、图形的特殊位置。
)等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
点动问题.如图5,△ABC 中,AB=AC=10,BC=12,点D 在边BC 上,且BD=4,以点D 为顶点作∠EDF=∠B ,分别交边AB 于点E ,交AC 或延长线于点F . (1)当AE=6时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长;(3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点]图5 解:(1) 证明CDF ∆∽EBD ∆∴BECDBD CF = ,代入数据得8=CF ,∴AF=2(2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法xCF 32=,相切时分外切和内切两种情况考虑: 外切,x x 321010+-=,24=x ;内切,xx 321010--=,17210±=x .100<<x Θ ∴当⊙C 和⊙A 相切时,BE 的长为24或17210-. (3)当以边AC 为直径的⊙O 与线段DE 相切时,320=BE . 习题:1. 如图,已知点F 的坐标为(3,0),点A 、B 分别是某函数图像与x 轴、y 轴的交点,点P 是此图像上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:d=5-35x(0≤x ≤5),则结论:① AF= 2 ② BF=4 ③ OA=5 ④ OB=3,正确结论的序号是A .①②③B ①③C .①②④D .③④所用到的相关知识点:勾股定理解题思路:获得该曲线的解析式即可得到所有的答案。
所谓的解析式就是曲线上的某一点的y 值与x 值之间的关系。
解析式:1)当P 点的x 值小于OF 时,则P 点解析式:y 2=d 2-(3-x)2y xO PF BADy 2=(8-x )(2-x) B 点坐标是(0,4), OB=4, BF=5(勾股数3,4,5)因此A 、C 排除。
2)当P 点的x 值大于OF 时,则P 点解析式:y 2=d 2-(x-3)2y 2 =(2+x )(8-x) A 点坐标是(5,0 OA=5,AF=5-3=2因此D 排除 因此答案是B.2. 一电工沿着如图所示的梯子NL 往上爬,当他爬到中点M 处时,由于地面太滑,梯子沿墙面与地面滑下,设点M 的坐标为(x ,y )(x>0),则y 与x 之间的函数关系用图象表示大致是A .B .C .D .所用到的相关知识点:勾股定理、相似三角形。
想办法找到y 和x 之间的关系式解题思路:获得该曲线的解析式,根据解析式判断图形的样子。
设:梯子的长度是L.从M 点做轴的垂线。
因为M 点是中点,所以ON=2x; 解析式:y 2=()2 -x 2从解析式看,只有图形A 是正确的。
3.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的所用到的相关知识点:勾股定理,三角形面积公式。
APM △和x 之间的关系式解题思路:分段获得APM △与x 的解析式,根据解析式判断图形的样子。
APM 的面积。
或者直接求出APM 的面积。
分段:第一段:P 在AB 线段上移动,则APM=y= *2*x=x 排除了B 、C第二段:P 在BC 段移动,则 APM=y=2*1— — *1*(x-1)— **(3-x )=x 排除了B第三段::P 在BC 段移动,则APM=y=*(1+2+0.5-x )*2=3.5-x 答案是A85 2525 8 5 C . D . 1 1 2 3 3.5 y 0 A .1 123 3.5y 0 B .112 3 3.5y1 12 3 3.5y4.如图,P 是边长为1的正方形ABCD 对角线AC 上一 动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB . 设AP =x ,△PBE 的面积为y . 则能够正确反映y 与x 之间的函数关系的图象是 所用到的相关知识点:勾股定理想办法找到PBE 和x 之间的关系式 解题思路:从P 点做AB 的垂线,交与O 点。
则PBE 的高=1-x ;因为PBE 是等腰三角形,所以BE=2*x PBE=*2*x*(1-x ) PBE=x-x 2这是个抛物线方程,故选A.5.如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A .动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S . (1)求点A 的坐标. (2)试求出点P 在线段OA 上运动时,S 与运动时间t (秒)的关系式.(3)在(2)的条件下,S 是否有最大值?若有,求出t 为何值时,S 有最大值,并求出最大值;若没有,请说明理由.所用到的相关知识点:勾股定理、二元一次方程关键要明白正方形PQMN 和△OAB 重叠部分的面积为S .什么时候为正方形,什么时候为长方形。