八年级数学上册 第十二章 全等三角形12.1 全等三角形练习1(新版)新人教版.doc
人教版八年级数学上册第十二章 全等三角形练习(含答案)
第十二章全等三角形一、单选题1.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.5∆≅∆,则∠α等于()2.如图,已知ABC EFGA.72°B.60°C.58°D.50°3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①或②去4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt⊥ABE⊥Rt⊥DCF,则还需要添加一个条件是()A .AE=DFB .⊥A=⊥DC .⊥B=⊥CD .AB= CD 5.如图为6个边长相等的正方形的组合图形,则123(∠+∠+∠= )A .90B .135C .150D .1806.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD 7.如图,,AOC BOC ∠=∠点P 在OC 上,PD OA ⊥于点,D PE OB ⊥于点,E 若12,13,OD OP ==则PE 的长为 ( )A .5B .6C .D .88.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P 到直线AC的距离为4,则点P到直线AB的距离为()A.4B.3C.2D.19.如图,在四边形ABCD中,AD⊥BC,若⊥DAB的平分线AE交CD于E,连结BE,且BE也平分⊥ABC,则以下的命题中正确的个数是()⊥BC+AD=AB ;⊥E为CD中点⊥⊥AEB=90°;⊥S△ABE=12S四边形ABCDA.1B.2C.3D.410.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:⊥AC⊥BD;⊥AO=CO=12 AC;⊥⊥ABD⊥⊥CBD,其中正确的结论有()A .0个B .1个C .2个D .3个二、填空题 11.已知ABC DEF ∆∆≌,4BC EF cm ==,ABC ∆的面积是216cm ,那么DEF ∆中EF 边上的高是______________cm .12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)13.如图,在△ABC 中,AD ⊥DE ,BE ⊥DE,AC 、BC 分别平分∠BAD 和∠ABE .点C 在线段DE 上.若AD=5,BE=2,则AB 的长是_____.14.如图所示,已知ABC 的周长是10,OB OC 、分别平分ABC ∠和,ACB OD BC ∠⊥于,D 且1,OD =则ABC 的面积是_______________________.三、解答题15.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.16.如图,已知B ,C ,E 三点在同一条直线上,//AC DE ,AC CE =,ACD B ∠=∠. 求证:ABC EDC △≌△.17.已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .18.如图,AC平分∠BCD⊥AB⊥AD⊥AE⊥BC于E⊥AF⊥CD于F.(1)若∠ABE⊥60°,求∠CDA的度数;(2)若AE⊥2⊥BE⊥1⊥CD⊥4.求四边形AECD的面积.19.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.⊥求证:AD=BE;⊥求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论答案1.A2.A3.C4.D5.B6.A7.A8.A9.D10.D11.812.AF=CB或EF=EB或AE=CE 13.714.515.(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA=BD.∴CA-CB=BD-CB.即AB =CD .∵AD =9 cm, BC=5 cm ,∴AB +CD=9-5=4 cm .∴AB =CD=2 cm .16.证明:∵//AC DE ,∴BCA E ∠=∠,ACD D ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠.在ABC 和EDC △中,B D BCA E AC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC EDC △≌△.17.∵∠1=⊥2⊥⊥⊥1+⊥BAD=⊥2+⊥BAD⊥ ⊥⊥CAB=⊥DAE⊥在⊥ABC 与⊥AED 中⊥B =⊥E ⊥AB =AE ⊥⊥CAB=⊥DAE⊥ ⊥⊥ABC⊥⊥AED⊥⊥BC=ED.18.解:(1)∵AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD , ∴∠ACE =∠ACF ,∠AEC =∠AFC =90°, ∴AE =AF⊥在Rt △ABE 和Rt △ADF 中,AE=AF ,AB=AD ⊥∴Rt △ABE ≌Rt △ADF(HL),∴∠ADF =∠ABE =60°,∴∠CDA =180°-∠ADF =120°⊥(2)由(1)知Rt △ABE ≌Rt △ADF ,∴FD =BE =1,AF =AE =2⊥在△AEC 和△AFC 中,∠ACE=∠ACF,∠AEC=∠AFC,AC=AC , ∴△AEC ≌△AFC(AAS),∴CE =CF =CD +FD =5,∴S 四边形AECD =S △AEC +S △ACD =12EC·AE +12CD·AF =12×5×2+12×4×2=9⊥ 19.(1)①证明:∵∠CAB =∠CBA =∠CDE =∠CED =50°, ∴∠ACB =∠DCE =180°﹣2×50°=80°,∵∠ACB =∠ACD+∠DCB ,∠DCE =∠DCB+∠BCE , ∴∠ACD =∠BCE ,∵△ACB ,△DCE 都是等腰三角形,∴AC =BC ,DC =EC ,在△ACD 和△BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.。
人教版数学八年级上册 第12章 12.1---12.2练习题含答案
12.1全等三角形一.选择题1.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等2.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50°B.60°C.55°D.65°3.已知:△ABC≌△DCB,若BC=10cm,AB=5cm,AC=7cm,则CD为()A.10cm B.7cm C.5cm D.5cm或7cm4.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④5.已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°6.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形7.如图,△ABC≌△DEF,BE=2,AE=1,则BD的长是()A.5 B.4 C.3 D.28.已知:如图,△ABC≌△ADE,AB与AD是对应边,AC与AE是对应边,若∠B=31°,∠C=95°,∠EAB=20°,则∠BAD等于()A.77°B.74°C.47°D.44°9.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定10.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°二.填空题11.如图,△ABC≌△DEF,∠A=35°,∠B=50°,则∠DFE=.12.已知:如图,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.则∠F的度数;DH的长.13.已知△ABC≌△DEF,AB=DE=8cm,△DEF的面积为20cm2,则△ABC的边AB上的高为cm.14.如图,已知△ABC≌△DEF,AD=1cm,则BE的长为cm.15.如图,已知△ABC≌△DBE,如果∠CBD=96°,∠CBE=28°,那么∠ABC=.三.解答题16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)求证:BD=DE+CE;(2)请你猜想△ABD满足什么条件时,BD∥CE.17.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.18.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.19.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.参考答案与试题解析一.选择题1.【解答】解:A、∵△ABD≌△CDB,∴∠ABD=∠CBD,选项说法错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,选项说法正确;C、∵△ABD≌△CDB,∴AD=BC,选项说法正确;D、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,选项说法正确;故选:A.2.【解答】解:∵△ABC≌△DEC,∴∠DCE=∠ACB=60°,AC=CD,∠D=∠BAC,∴∠D=∠DAC,∵∠BCD=100°,∠ACB=60°,∴∠ACD=∠BCD﹣∠ACB=100°﹣60°=40°,∴∠BAC=∠D=×(180°﹣40°)=70°,∴∠B=180°﹣∠ACB﹣∠BAC=180°﹣70°﹣60°=50°,故选:A.3.【解答】解:∵△ABC≌△DCB,∴CD=AB=5cm,故选:C.4.【解答】解:∵Rt△ABC≌Rt△CED,∴AC=CD,①成立;∵Rt△ABC≌Rt△CED,∴∠1=∠D,又∠2+∠D=90°,∴∠2+∠1=90°,即∠ACD=90°,∴AC⊥DC,②成立;∵Rt△ABC≌Rt△CED,∴AB=CE,BC=ED,又BE=BC+EC,∴BE=ED+AB,③成立;∵∠B+∠E=180°,∴AB∥DE,④成立,故选:D.5.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=60°,∴∠α=180°﹣60°﹣45°=75°,故选:B.6.【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.7.【解答】解:∵△ABC≌△DEF,∴AB=DE,∴BA﹣AE=DE﹣AE,∴AD=BE=2,∴BD=BE+AE+AD=2+1+2=5,故选:A.8.【解答】解:∵∠B=31°,∠C=95°,∴∠CAB=180°﹣∠B﹣∠C═54°,∵△ABC≌△ADE,∴∠EAD=∠CAB=54°,∵∠EAB=20°,∴∠BAD=∠EAB+∠EAD=74°,故选:B.9.【解答】解:∵△ABC与△DEF全等,△ABC的面积是12cm2,∴△DEF的面积为12cm2,∵BC=EF=4cm,∴EF边上的高为2×12÷4=6(cm).故选:C.10.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选:A.二.填空题(共5小题)11.【解答】解:∵∠A=35°,∠B=50°,∴∠ACB=180°﹣35°﹣50°=95°,∵△ABC≌△DEF,∴∠EFD=∠ACB=95°.故答案为:95°.12.【解答】解:∵∠A=85°,∠B=60°,∴∠C=35°,∵△ABC≌△DEF,∴∠F=∠C=35°,∵△ABC≌△DEF,∴DE=AB=8,∴DH=DE﹣EH=6,故答案为:35°;6.13.【解答】解:如图所示:过C作CH⊥AB,∵△ABC≌△DEF,∴S△ACB =S△DEF=20cm2,∵AB=8cm,∴ABCH=20,解得:CH=5cm.故答案为:5.14.【解答】解:∵△ABC≌△DEF,∴DE=AB,∴DE﹣AE=AB﹣AE,∴AD=EB=1cm,故答案为:1.15.【解答】解:∵△ABC≌△DBE,∴∠ABC=∠DBE,即∠ABE+∠CBE=∠ABE+∠ABD,∴∠ADB=∠CBE=28°,∴∠ABC=∠CBD﹣∠ABD=96°﹣28°=68°.故答案为68°.三.解答题(共4小题)16.【解答】(1)证明:∵△BAD≌△ACE,∴AD=CE,BD=AE,∵A,D,E三点在同一直线上,∴AE=AD+DE,∴BD=CE+DE;(2)解:假如BD∥CE,则∠BDE=∠E,∵△BAD≌△ACE,∴∠ADB=∠E,∴∠ADB=∠BDE,又∵∠ADB+∠BDE=180°,∴∠ADB=∠BDE=90°,∴当∠ADB=∠E=90°时,BD∥CE.17.【解答】(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.18.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA ﹣CB =BD ﹣BC ,即AB =CD , ∵AD =11cm ,BC =5cm , ∴AB +CD =11﹣5=6cm , ∴AB =3cm . 19.【解答】方法一: 证明:∵△ABC ≌△DEF , ∴AB =DE ,∠B =∠E ,∵AM ,DN 分别是△ABC ,△DEF 的对应边上的高, 即AM ⊥BC ,DN ⊥EF , ∴∠AMB =∠DNE =90°, 在△ABM 和△DEN 中,∴△ABM ≌△DEN (AAS ), ∴AM =DN . 方法二: ∵△ABC ≌△DEF12.2《全等三角形的判定》1、下列说法正确的是( )A 、全等三角形是指形状相同的两个三角形B 、全等三角形的周长和面积分别相等C 、全等三角形是指面积相等的两个三角形D 、所有的等边三角形都是全等三角形2、如图,若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( )A 、2B 、3C 、5D 、2.5 3、如图,若△ABC ≌△EAC ,则∠EAC 等于( )A 、∠ACB B 、∠BAFC 、∠CAFD 、∠BAC4、如图,AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
八年级数学上册 第十二章 全等三角形 12.1 全等三角形同步训练 (新版)新人教版
第十二章全等三角形12.1__全等三角形__[学生用书P23]1.如图12-1-4所示,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )图12-1-4A.20° B.30°C.35° D.40°2.如图12-1-5所示,△ABC≌△CDA,则下列结论错误的是( )图12-1-5A.∠1=∠2 B.AC=CAC.∠D=∠B D.AC=BC3.如图12-1-6,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5 B.4 C.3 D.2图12-1-64.[xx·成都]如图12-1-7,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=__ _.图12-1-75.如图12-1-8,△AOC≌△BOD,试证明AC∥BD.图12-1-86.如图12-1-9,已知△ABC≌△DCB.(1)分别写出它们的对应角和对应边;(2)请说明∠1=∠2的理由.图12-1-97.[xx春·沈丘县期末]如图12-1-10,已知△ACE≌△DBF,CE=BF,AE=DF,AD=8,BC=2.图12-1-10(1)求AC的长度;(2)求证:CE∥BF.8.[xx·南安期末]如图12-1-11,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=8,BC=5时,线段AE的长为__ __.(2)已知∠D=35°,∠C=60°.①求∠DBC的度数;②求∠AFD的度数.图12-1-11参考答案【知识管理】1.完全重合2.完全重合顶点边角全等于对应顶点3.相等相等【归类探究】例1AC的对应边是DE,AB的对应边是DF,CB的对应边是EF;∠A与∠D,∠C与∠DEF,∠ABC与∠F是对应角.例2A【当堂测评】1.B 2.C 3.61°15【分层作业】1.B 2.D 3.A 4.120° 5.略6.(1)对应角是∠A和∠D,∠1和∠2,∠ABC和∠DCB,对应边是AB和DC,AC和DB,BC和CB;(2)理由:全等三角形的对应角相等.7.(1)AC=5 (2)略8.(1)3 (2)∠DBC=25°;∠AFD=130°.欢迎您的下载,资料仅供参考!。
人教版八年级数学上册第12章12.1全等三角形知识水平测试题含答案
人教版八年级数学上册第12章知识水平测试题含答案12.1 全等三角形一.选择题1.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°6.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°7.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D 8.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°10.如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°二.填空题11.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.13.如图,△ABC≌△DEF,则EF=.14.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.三.解答题15.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB的度数.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.18.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA =OB;(2)AB∥CD.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.21.如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.22.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.23.如图,△ABF≌△CDE,∠B和∠D是对应角,AF和CE是对应边.(1)写出△ABF和△CDE的其他对应角和对应边;(2)若∠B=30°,∠DCF=40°,求∠EFC的度数;(3)若BD=10,EF=2,求BF的长.参考答案一.选择题1.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.2.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,故选:B.4.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.6.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.7.解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选:C.8.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D ∴第三个选项∠ACB=∠ECD是错的.故选:C.9.解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.10.解:∵,△ABC≌△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.二.填空题11.解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.12.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.13.解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.14.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.三.解答题15.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠F AB+∠B=∠F AC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.16.解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.17.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=5,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.18.证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD,∴∠OCD=∠ODC,∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥CD.19.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.20.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=521.解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.22.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.23.解:(1)其他对应角为:∠BAF和∠DCE,∠AFB和∠CED;其他对应边为:AB和CD是对应边,BF和DE是对应边;(2)∵△ABF≌△CDE,∠B=30°,∴∠D=∠B=30°,∵∠DCF=40°,∴∠EFC=∠D+∠DCF=30°+40°=70°;(3)∵△ABF≌△CDE,∴BF=DE,∴BF﹣EF=DE﹣EF,∴DF=BE,∵BD=10,EF=2,∴DF=BE=4,∴BF=BE+EF=4+2=6.12.2 全等三角形一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A .∠ADB =∠ADC B .∠B =∠CC .DB =DCD .AB =AC3. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .24. 如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC5. 如图所示,在△ABC 和△ABD 中,∠C=∠D=90°,要利用“HL”判定Rt △ABC ≌Rt △ABD成立,还需要添加的条件是 ( )A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.AC=BD6. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对7. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c9. 观察图中的尺规作图痕迹,下列说法错误的是()A.∠DAE=∠EAC B.∠C=∠EACC.AE∥BC D.∠DAE=∠B10. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC二、填空题11. 要测量河岸相对两点A ,B 之间的距离,已知AB 垂直于河岸BF ,先在BF上取两点C ,D ,使CD =CB ,再过点D 作BF 的垂线段DE ,使点A ,C ,E 在一条直线上,如图,测出DE =20米,则AB 的长是________米.12. 如图K -10-10,CA =CD ,AB =DE ,BC =EC ,AC 与DE 相交于点F ,ED与AB 相交于点G .若∠ACD =40°,则∠AGD =________°.13. 如图,小明和小丽为了测量池塘两端A ,B 两点之间的距离,先取一个可以直接到达点A 和点B 的点C ,沿AC 方向走到点D 处,使CD =AC ;再用同样的方法确定点E ,使CE =BC .若量得DE 的长为60米,则池塘两端A ,B 两点之间的距离是______米.14. 如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△__________.15. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.三、解答题16. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.17. 已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC. (1)如图①,若点O 在边BC 上,求证:AB =AC;(2)如图②,若点O 在△ABC 的内部,求证:AB =AC ;(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.图① 图②18. (2019•桂林)如图,AB AD BC DC ==,,点E 在AC 上.(1)求证:AC 平分BAD ∠;.(2)求证:BE DE19. 如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.20. 如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.(1)在同一平面内,△ABC与△ADE按图②所示的方式放置,其中∠B=∠D=90°,AB =AD ,BC 与DE 相交于点F ,请你判断四边形ABFD 是不是筝形,并说明理由;(2)请你结合图①,写出筝形的一个判定方法(定义除外):在四边形ABCD 中,若________________,则四边形ABCD 是筝形.人教版 八年级数学 12.2 全等三角形 针对训练 -答案一、选择题1. 【答案】C [解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】C [解析] 当添加条件A 时,可用“ASA”证明△ABD ≌△ACD ;当添加条件B 时,可用“AAS”证明△ABD ≌△ACD ;当添加条件D 时,可用“SAS”证明△ABD ≌△ACD ;当添加条件C 时,不能证明△ABD ≌△ACD.3. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .4. 【答案】C [解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意;选项C 中添加∠A =∠D 不能判定△ABC ≌△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意.故选C.5. 【答案】B [解析] 要添加的条件为BC=BD 或AC=AD.理由:若添加的条件为BC=BD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL);若添加的条件为AC=AD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL).6. 【答案】C [解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB , ∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中, ⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O.∵BE ⊥AC ,CF ⊥AB ,∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF.∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).7. 【答案】C [解析] A .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合“AAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意;B .∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合“ASA”,即能推出△ABC ≌△DCB ,故本选项不符合题意;C .∠ABC =∠DCB ,AC =DB ,BC =BC ,不符合全等三角形的判定条件,即不能推出△ABC ≌△DCB ,故本选项符合题意;D .AB =DC ,∠ABC =∠DCB ,BC =CB ,符合“SAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意.故选C.8. 【答案】D [解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.9. 【答案】A[解析] 根据图中尺规作图的痕迹,可得∠DAE=∠B,故D选项正确,∴AE∥BC,故C选项正确.∴∠EAC=∠C,故B选项正确.∵∠DAE=∠B,∠EAC=∠C,而∠C与∠B的大小关系不确定,所以∠DAE 与∠EAC的大小关系不确定.故选A.10. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°.∴∠ADF=∠ABF=∠C.∴FD∥BC.二、填空题11. 【答案】2012. 【答案】40[解析] 在△ABC和△DEC中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS).∴∠A =∠D.又∵∠AFG =∠DFC ,∴∠AGD =∠ACD =40°.13. 【答案】60 [解析] 在△ACB 和△DCE 中,⎩⎨⎧AC =DC ,∠ACB =∠DCE ,BC =EC ,∴△ACB ≌△DCE(SAS).∴DE =AB.∵DE =60米,∴AB =60米.14. 【答案】12【解析】由作法得BD 平分ABC ∠,∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒,∴30ABD CBD ∠=∠=︒,∴DA DB =,在Rt BCD △中,2BD CD =,∴2AD CD =, ∴12BCD ABD S S =△△.故答案为:12.15. 【答案】3 [解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°.∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE.∵AE =AC -CE ,BC =2 cm ,EF =5 cm ,∴AE =5-2=3(cm).三、解答题16. 【答案】证明:(1)在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD.(2)由(1)知∠BAE =∠DAE.在△BAE 与△DAE 中,⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.17. 【答案】(1)证明:如图①,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF ,OB =OC ,解图①∴Rt △OEB ≌Rt △OFC ,∴∠B =∠C ,从而AB =AC.(2)证明:如图②,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF.在Rt △OEB 和Rt △OFC 中,∵OE =OF ,OB =OC ,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③18. 【答案】(1)在ABC △与ADC △中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩,∴ABC ADC △≌△,∴BAC DAC ∠=∠,即AC 平分BAD ∠.(2)由(1)BAE DAE ∠=∠,在BAE △与DAE △中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴BAE DAE △≌△,∴BE DE =.19. 【答案】证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE.∵AC ∥BD ,∴∠CAF =∠DBE.在△ACF 和△BDE 中,⎩⎨⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE(SAS).∴CF =DE.20. 【答案】解:(1)四边形ABFD 是筝形.理由:连接AF.在Rt △AFB 和Rt △AFD 中,⎩⎨⎧AF =AF ,AB =AD , ∴Rt △AFB ≌Rt △AFD(HL).∴BF =DF.又∵AB =AD ,∴四边形ABFD 是筝形.(2)答案不唯一,如AD =CD ,∠ADB =∠CDB12.3角平分线的性质一.选择题1.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =20,且BD :DC =3:2,则点D 到AB 边的距离为( )A .8B .12C .10D .152.如图已知OC 平分∠AOB ,P 是距离是OC 上一点,PH ⊥OB 于点H ,若PH =5,则点 P 到射线OA 的距离是( )A.6B.5C.4D.33.如图,四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=8,BD=13,BC=12,则四边形ABCD的面积为()A.30B.40C.50D.604.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE =3,则△ABE的面积等于()A.15B.12C.10D.145.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.46.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.57.如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC 之间的距离是()A.5B.8C.10D.158.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=5,AB=12,则△ABD的面积是()A.15B.30C.45D.6010.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM ∥AB ,BE 和MN 分别平分∠ABC 和∠EMC .下列结论中不正确的是( )A .∠MBE =∠MEBB .MN ∥BEC .S △BEM =S △BEND .∠MBN =∠MNB二.填空题 11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =5cm ,BD :DC =3:2,则点D 到AB 的距离为 .12.如图点D 是△ABC 的两外角平分线的交点,下列说法:①AD =CD ;②AB =AC ;③D 到AB 、BC 所在直线的距离相等;@点D 在∠B 的平分线上;其中正确的说法的序号是 .13.已知如图,OP平分∠MON,P A⊥ON于点A,P A=4,点Q是射线OM上的一个动点,则线段PQ的最小值是.14.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是点.15.如图,已知△ABC的周长是16.MB和MC分别平分∠ABC和∠ACB.过点M作BC 的垂线交BC于点D,且MD=4.则△ABC的面积是.三.解答题16.如图,直线AC分别与射线DE交于A,与射线BF交于C,连接AB,连接DC,∠1+∠2=180°,AD=BC.若DC平分∠ACF,证明AB平分∠EAC.17.如图,三角形ABC中,点D在AC上.(1)请你过点D做DE平行BC,交AB于E.如果点E在∠C的平分线上,∠C=44°,那么∠DEC=.18.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.19.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.参考答案与试题解析一.选择题1.【解答】解:∵BC=20,BD:DC=3:2,∴CD=8,∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=8.故选:A.2.【解答】解:作PQ⊥OA于Q,如图,∵OC为∠AOB的平分线,PH⊥OB,PQ⊥OA,∴PQ=PH=5,即点P到射线OA的距离为5.故选:B.3.【解答】解:过D 作DE ⊥AB ,交BA 的延长线于E ,则∠E =∠C =90°,∵∠BCD =90°,BD 平分∠ABC ,∴DE =DC ,在Rt △BCD 中,由勾股定理得:CD ===5, ∴DE =5,在Rt △BED 中,由勾股定理得:BE ===12, ∵AB =8,∴AE =BE ﹣AB =12﹣8=4,∴四边形ABCD 的面积S =S △BCD +S △BED ﹣S △AED=+﹣ =+﹣=50,故选:C . 4.【解答】解:过点E 作EF ⊥AB 于点F ,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.5.【解答】解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,=ACBC=×ABOE+ACOD+BCOM,∴S△ABC∴=+OM+,∴OM=2,故选:B.6.【解答】解:过点D作DE⊥BC于E,则DE即为DP的最小值,∵∠BAD=∠BDC=90°,∠ADB=∠C,∴∠ABD=∠CBD,∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,∴DE=AD=2,故选:C.7.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,则∠DEG=90°,∵AD∥BC,∴∠BFG=∠DEG=90°,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.8.【解答】解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角.C选项正确,符号题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.9.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.10.【解答】解:∵EM∥AB,BE和MN分别平分∠ABC和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A正确),∠EBM=∠NMC,∴MN∥BE(故B正确),∴MN和BE之间的距离处处相等,∴S△BEM =S△BEN(故C正确),∵∠MNB=∠EBN,而∠EBN和∠MBN的关系不知,∴∠MBN和∠MNB的关系无法确定,故D错误,故选:D.二.填空题11.【解答】解:作DE⊥AB于E,如图,∵BC=5cm,BD:DC=3:2,∴BD=3,CD=2,∵AD是△ABC的角平分线,∴DC=DE=2,即点D到AB的距离为2.故答案为2.12.【解答】解:AD与CD不能确定相等,AB与AC也不能确定相等,所以①②错误;作DE⊥BA于E,DF⊥BC于F,DH⊥AC于H,如图,∵AD平分∠EAC,∴DE=DH,同理可得DH=DF,∴DE=DF,即D到AB、BC所在直线的距离相等,所以③正确;∴点D在∠B的平分线上;所以④正确.故答案为③④.13.【解答】解:当PQ⊥OM时,PQ有最小值.∵OP平分∠MON,P A⊥ON于点A,P A=4,∴PQ =P A =4,故答案为4.14.【解答】解:点P 、Q 、M 、N 中在∠AOB 的平分线上是Q 点.故答案为Q .15.【解答】解:连接AM ,过M 作ME 于E ,MF ⊥AC 于F , ∵MD ⊥BC ,MB 和MC 分别平分∠ABC 和∠ACB ,MD =4,∴ME =MD =4,MF =MD =4,∵△ABC 的周长是16,∴AB +BC +AC =16,∴△ABC 的面积S =S △ABM +S △BCM +S △ACM=+==2AB +2BC +2AC=2(AB +BC +AC )=2×16=32,故答案为:32.三.解答题16.【解答】证明:∠1+∠2=180°,∠1+∠ACB=180°,∴∠2=∠ACB,∴AD∥BC,又∵AD=BC,∴四边形ABCD为平行四边形,∴DC∥AB,∴∠DCF=∠B,∠DCA=∠BAC,∵DC平分∠ACF,∴∠DCF=∠DCA,∴∠B=∠BAC,∵AD∥BC,∴∠EAB=∠B,∴∠BAC=∠EAB,即AB平分∠EAC.17.【解答】解:(1)如图1所示:作∠ADE=∠C交AB于E,DE即为所求;(2)如图2所示:∵DE∥BC,∴∠DEC=∠BCE,∵EC平分∠ACB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DC=DE,∴△DEC是等腰三角形,∴∠DEC=∠C=22°;故答案为:22°.18.【解答】解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;。
八年级数学上册 第12章 全等三角形 全等三角形定义和全等三角形性质课后作业 (新版)新人教版-(新
全等三角形定义和全等三角形性质1.(呼伦贝尔中考)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°2.如图,已知点D在AC上,点B在AE上,△ABC≌△ADE,且∠A=∠∠A:∠C=5:3,则∠BDE等于()A.25°B.20°C.24°D.15°3.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为()A.40°B.50°C.55°D.60°4. 如图,△ABC≌△DEF,∠A=∠D,∠B=∠DEF,则下列结论错误的是()A.AB=DEB.AC=DFC.BE=FCD.∠B=∠F5.如图所示,在△ABC中,∠A:∠B:∠C=3:5:10,又△A′B′C′≌△ABC,则∠BCA′:∠BCB′等于()A. 1:2B.1:3C.2:3D.1:46. 如图,已知△ABC≌△ADE,若∠ABC=70°,∠DAE=80°,则∠C的度数是()A.30°B.40°C.70°D.80°7. 如图,△ABC≌△ADE,若D、B为对应顶点,AB=5cm,AC=8cm,DE=7cm,则BC= ,△ADE的周长=8.如图,Rt△ABC中,∠ACB=90°,∠A=20°,△ABC≌△A′B′C,若A′B′恰好经过点B,A′C交AB于D,则∠BDC的度数为9.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,AB=10cm,则BC=cm.10.如图,D、A、E在一条直线上,△ADC≌△AEB,∠BAC=40°,∠D=45°求:(1)∠B的度数;(2)∠BMC的度数.11.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=,FH=,HM=,求MN和HG的长度.12.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)全等三角形定义和全等三角形性质课后作业参考答案1. 解析:本题根据全等三角形的性质并找清全等三角形的对应角即可.解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.2.解析:根据全等三角形对应边相等可得AB=AD,根据等角对等边可得AD=BD,从而得到AB=BD=AD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠A=60°,再求出∠C,根据全等三角形对应角相等可得∠E=∠C,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:∵△ABC≌△ADE,∴AB=AD,∵∠A=∠ABD,∴AD=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°,∵∠A :∠C=5:3,∴∠C=53×60°=36°,∵△ABC ≌△ADE , ∴∠E=∠C ,在△BDE 中,∠BDE=∠ABD-∠E=60°-36°=24°.故选C.3.解析:设AD 与BF 交于点M ,要求∠DFB 的大小,可以在△DFM 中利用三角形的内角和定理求解,转化为求∠AMC 的大小,再转化为在△ACM 中求∠ACM 就可以.解:设AD 与BF 交于点M ,∵∠ACB=105,∴∠ACM=180°-105°=75°,∠AMC=180°-∠ACM-∠DAC=180°-75°-10°=95°,∴∠FMD=∠AMC=95°,∴∠DFB=180°-∠D-∠FMD=180°-95°-25°=60°.故选D.4. 解析:两三角形全等,根据全等三角形的性质,利用条件推出BC=EF 和AC=DF ,然后依据选项分析三角形即可.解:∵△ABC ≌△DEF ,∴∠A=∠D 、∠B=∠DEF ,∴AB=DE ,AC=DF ,BC=EF ,∴BC-EC=EF-EC ,即BE=FC ,A ,B ,C 都是正确的;∠F 与∠B 不是对应角,∴∠B=∠F 是错误的,D 选项错误.故选D5. 解析:设∠A=3k,∠B=5k,∠C=10k,根据全等三角形对应角相等可得∠A′CB′=∠ACB=10k,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BCB′=8k,然后求出∠A′CB=2k,求出比值即可.解:∵∠A:∠B:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C′≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′-∠B′CB′=10k-8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4.故选D.6. 解析:根据全等三角形的性质求出∠BAC的度数,在△ABC中,根据三角形的内角和定理求出即可.解:∵△ABC≌△ADE,∠ABC=70°,∠DAE=80°,∴∠BAC=∠DAE=80°,∴∠C=180°-∠ABC-∠BAC=180°-70°-80°=30°.故选A.7.解析:根据全等三角形对应边相等可得BC=DE,再求出△ABC的周长,然后根据全等三角形的周长相等解答.解:∵△ABC≌△ADE,∴BC=DE=7cm,∴△ABC的周长=5+8+7=20cm,∴△ADE的周长=20cm.故答案为:7cm;20cm.8.解析:根据直角三角形两锐角互余求出∠ABC,根据全等三角形对应边相等可得BC=B′C,全等三角形对应角相等可得∠B′=∠ABC,然后根据等腰三角形的性质求出∠BCB′,再求出∠BCD,然后根据三角形的内角和定理列式计算即可得解.解:∵∠ACB=90°,∠A=20°,∴∠ABC=90°-20°=70°,∵△ABC ≌△A′B′C,∴BC=B′C,∠B′=∠ABC=70°,∴∠BCB′=180°-70°×2=40°,∴∠BCD=90°-40°=50°,在△BCD 中,∠BDC=180°-70°-50°=60°.故答案为:60.9. 解析:根据全等三角形的性质得出AB=BE=CE=10cm ,即可求出答案.解:∵△ADB ≌△EDB ≌△EDC ,AB=10cm ,∴AB=BE=CE=10cm ,∴BC=BE+CE=20cm ,故答案为:20.10. 解析:(1)根据全等三角形对应角相等可得∠BAE=∠CAD ,然后求出∠BAD ,再求出∠CAD ,再根据三角形的内角和定理求出∠C ,然后根据全等三角形对应角相等可得∠B=∠C ;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BMC=∠BAC+∠C ,代入数据计算即可得解.解:(1)∵△ADC ≌△AEB ,∴∠BAE=∠CAD ,∵D 、A 、E 在一条直线上,∴∠BAD=21(180°-∠BAC )=21×(180°-40°)=70°, ∴∠CAD=∠BAD+∠BAC=70°+40°=110°,在△ACD 中,∠C=180°-∠CAD-∠D=180°-110°-45°=25°,又∵△ADC ≌△AEB ,∴∠B=∠C=25°;(2)由三角形的外角性质,∠BMC=∠BAC+∠C ,=40°+25°,=65°.11. 解析:(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=,∴MN=;∵FG=MH,FH+HG=FG,FH=,HM=,∴HG=FG-FH=HM-FH=3.3-1.1=.12.解析:本题要灵活运用全等三角形的性质.两个三角形为全等三角形,则对应边相等,对应角相等.解:∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE.。
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。
安义县七中八年级数学上册第十二章全等三角形12.1全等三角形学案1无答案新版新人教版
12.1 全等三角形学习目标1、了解全等三角形的有关概念,理解并掌握全等三角形的性质;2、能够准确辩认全等三角形的对应元素(对应顶点、对应边、对应角)学习重点:全等三角形性质的应用及准确辩认全等三角形的对应边、对应角.学习难点:理解全等三角形边、角之间的对应关系学法指导:观察思考,动手操作,参与概念的形成过程学习过程一、学前准备1、对于两条线段或两个角来说:如果它们的大小相等,那么放在一起能够;如果它们放在一起能够重合,那么它们的大小 .2、生活中的图片讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?二、合作探究1、全等形、全等三角形的有关概念(1)观察思考:每组中的两个图形有什么特点?(形状,大小 .)②③(2)请再举出类似的例子(至少3个).(3)由此,你发现上述图形的共同特征是:完全相同——放在一起能够 .(4)进而得出概念:叫做全等形.类似的,叫做全等三角形.2. 对应顶点,对应边和对应角用半透明的纸描绘下图中左边的△ABC,然后按要求在三个图中依次操作.体验“平移、翻折、旋转前后的两个图形全等”.你发现变换前后的两个三角形有什么关系?结论:一个图形经过平移、翻折、旋转后,变化了,但、都没有改变,即平移、翻折、旋转前后的图形。
(1)把两个全等三角形重合在一起,叫做对应顶点,叫做对应边,叫做对应角.(2)△ABC与△DEF全等,记作△ABC △DEF,读作△ABC △DEF.(注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置.)3、全等三角形的性质(1)把你自制的一对全等三角形纸片重合,你发现对应边、对应角有什么关系?(2)全等三角形的性质.全等三角形的相等;全等三角形的相等(3)如图,△ABC与△ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.DAC4、确定全等三角形的对应边、对应角(1)如图,将△ABC沿直线BC平移得到△DEF.A DB C E F那么,对应顶点是,对应边是,对应角是 .(3)确定全等三角形的对应边、对应角还有哪些规律?三、巩固练习1、教科书P32练习1.2、教科书P32练习2.四、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?五、当堂清1、下列说法:①全等三角形的对应边相等,对应角相等;②全等三角形的周长相等,面积也相等;③面积相等的三角形是全等三角形;④周长相等的三角形是全等三角形,正确的说法是()A ②③B ③④C ①②D ①②③2、△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与_______是对应角;AB与_______是对应边,BC与_______是对应边,AC与_______是对应边.3、如图△ ABD ≌△CDB,若AB=4,AD=5,BD=6,求BC、CD的长.参考答案:1.C 2. ∠F,DE,EF,DF 3.5,4六、学习反思《多项式除以单项式》教学反思多项式除以单项式这一课时,课本上的内容是比较简单,但我深深地感到,要把它上好,也是不那么容易的。
初中数学人教版八年级上册第十二章 全等三角形12.1 全等三角形-章节测试习题(4)
章节测试题1.【答题】下列说法:①全等三角形的形状相同,大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长,面积分别相等;⑤所有的等边三角形都是全等三角形.其中正确的说法有()A.5个B.4个C.3个D.1个【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:根据全等三角形的性质依次分析各小题即可。
①②③④均正确;⑤所有的等边三角形形状相同,但大小不一定相等,故错误;选B.2.【答题】如图,△ABF≌△CDE,则()A.∠B=∠ECDB.∠A=∠ECD;C.AF=CED.AB=CE【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:根据全等三角形的性质,依次分析各项即可判断。
∵△ABF≌△CDE,∴∠B=∠D,AF=CE,AB=CD,而顶点A处不能用一个大写字母表示任何一个角,选C.3.【答题】下图中,全等的图形有()A. 2组B. 3组C. 4组D. 5组【答案】B【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】根据全等图形的定义:能够完全重合的两个图形是全等形对各图形进行判断.结合图形,两个六边形大小不一样,不是全等图形,正方形和长方形不是全等图形,两个笑脸是全等图形,两个箭头是全等图形,两个五角星是全等图形,则全等图形有3对.选B.4.【答题】如图所示,△ABC≌△CDA,且AB=CD,则下列结论错误的是()A. ∠1=∠2B. AC=CAC. ∠B=∠DD. AC=BC【答案】D【分析】本题主要考查了全等三角形性质。
由△ABC≌△CDA,并且AB=CD,AC和CA是公共边,可知∠1和∠2,∠D和∠B是对应角.全等三角形的对应角相等,因而前三个选项一定正确.AC和BC不是对应边,不一定相等.【解答】∵△ABC≌△CDA,AB=CD∴∠1和∠2,∠D和∠B是对应角∴∠1=∠2,∠D=∠B∴AC和CA是对应边,而不是BC∴A、B、C正确,错误的结论是D、AC=BC.选D.5.【答题】如图所示,若△ABC≌△DEF,则∠E等于()A. 30°B. 50°C. 60°D. 100°【答案】D【分析】根据全等三角形的性质解答即可.【解答】本题考查的是全等三角形的性质根据全等三角形的对应角相等及三角形内角和即得结果。
第12章《全等三角形》人教版数学八年级上册专题练习(含答案)
《全等三角形》专题练习一.选择题1.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D2.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 3.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°4.两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直线c的距离是2cm,则a、b之间的距离是()A.3cm B.4cm C.5cm D.6cm5.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°6.AD是△ABC中BC边上的中线,若AB=3,AC=5,则AD的取值范围是()A.AD>1 B.AD<4 C.1<AD<4 D.2<AD<87.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS8.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中正确的有()①∠ACD=∠B②CH=CE=EF③AC=AF④CH=HD⑤BE=CH.A.1 B.2 C.3 D.4二.填空题11.如图,△ABE≌△ACD,∠A=58°,∠B=24°,则∠DOE的度数为°.12.如图△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCA的度数为度.13.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为.14.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.15.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4=.16.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6cm,则线段OP=cm.三.解答题17.如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.18.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC (点C、F不重合),并说明理由.19.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD、CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)如图(1),若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(2)如图(2),若∠BAC=∠DAE=60°,求∠BFC的度数;(3)如图(3),若∠BAC=∠DAE=α,直接写出∠BFC的度数.(不需说明理由)20.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.21.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.参考答案一.选择题1.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.2.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.3.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.4.解:如图,过点P作EF⊥b,∵a∥b,∴EF⊥a,∴EF就是a、b之间的距离,∵P到直线c的距离是2,即PD=2cm,点P是同旁内角的平分线的交点,∴PE=PD,PF=PD,(角平分线上的点到角的两边的距离相等),∴EF=PE+PF=2+2=4cm.故选:B.5.解:A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.故选:A.6.解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,∵,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=5,∴5﹣3<AE<5+3,即2<2AD<8,∴1<AD<4,故选:C.7.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.8.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:①∵CD是斜边AB上的高,∠ACB=90°,∴∠CDB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴①正确;②∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠C=90°,EF⊥AB,∴CE=FE,∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B,∵∠ACD=∠B,∴∠CHE=∠CEA,∴CH=CE,即:CH=CE=EF,∴②正确;③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF,∴Rt△ACE≌Rt△AFE,∴AC=AF,∴③正确;④∵CH=EF,∴CH≠HD,∴④错误;⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误.故选:C.二.填空题(共6小题)11.解:∵△ABE≌△ACD,∠A=58°,∠B=24°,∴∠BEC=∠BDC=∠A+∠B=58°+24°=72°,∴∠DOE=∠B+∠BDC=72°+24°=106°.故答案为:106.12.解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,∴∠DCA=65°﹣40°=25°.故答案为:25.13.解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.14.解:∵AC平分∠DCB,∴∠BCA=∠DCA,又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.15.解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180°.16.解:在Rt△OMP和Rt△ONP中,OM=ON,OP=OP,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∵∠AOB=60°,∴∠MOP=∠NOP=30°,∵∠OMP=90°,∴OP=2MP,OM=MP=6cm,∴MP=2cm,∴OP=4cm,故答案为:4.三.解答题(共5小题)17.证明:(1)∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE,又∵DE=CE,∴△ADE≌△FCE(AAS),∴AE=EF;(2)∵AE=EF,BE⊥AF,∴AB=BF,∵△ADE≌△FCE,∴AD=CF,∴AB=BC+CF=BC+AD,∴BC=AB﹣AD.18.证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.19.①BD与CE相互垂直,BD=CE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.解:②由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.③∠BFC=α.20.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.21.证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.。
新人教八年级上册第十二章《第12章全等三角形》单元测试含答案解析
新人教八年级上册第十二章全等三角形一、选择题(共9小题)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对2.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC3.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等D.两条边对应相等4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC6.如图,AB=AC ,D ,E 分别是AB ,AC 上的点,下列条件中不能证明△ABE ≌△ACD 的是( )A .AD=AEB .BD=CEC .BE=CD D .∠B=∠C7.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( )A .△ACFB .△ADEC .△ABCD .△BCF8.如图,AB ∥DE ,AC ∥DF ,AC=DF ,下列条件中不能判断△ABC ≌△DEF 的是( )A .AB=DEB .∠B=∠EC .EF=BCD .EF ∥BC9.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确二、填空题(共10小题)10.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)11.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).13.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)15.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是.16.如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是(不添加任何辅助线).17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).18.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.19.如图,AF=DC,BC∥EF,只需补充一个条件,就得△ABC≌△DEF.三、解答题(共11小题)20.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.21.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.23.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.第12章全等三角形参考答案与试题解析一、选择题(共9小题)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【考点】全等三角形的判定;矩形的性质.【专题】压轴题.【分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【考点】直角三角形全等的判定.【专题】压轴题.【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【考点】全等三角形的判定.【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【考点】全等三角形的判定.【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.BE=CD D.∠B=∠C【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加AE=AD,利用SAS即可证明△ABE≌△ACD;B、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;D、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;故选C.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.【点评】本题考查了全等三角形的判定的应用,主要考查学生的观察图形的能力和推理能力,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.8.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB ∥DE ,AC ∥DF ,∴∠A=∠D ,(1)AB=DE ,则△ABC 和△DEF 中,,∴△ABC ≌△DEF ,故A 选项错误;(2)∠B=∠E ,则△ABC 和△DEF 中,,∴△ABC ≌△DEF ,故B 选项错误;(3)EF=BC ,无法证明△ABC ≌△DEF (ASS );故C 选项正确;(4)∵EF ∥BC ,AB ∥DE ,∴∠B=∠E ,则△ABC 和△DEF 中,,∴△ABC ≌△DEF ,故D 选项错误;故选:C .【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.9.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确【考点】全等三角形的判定.【专题】压轴题.【分析】根据SSS 即可推出△A 1B 1C 1≌△A 2B 2C 2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.【解答】解:∵△A 1B 1C 1,△A 2B 2C 2的周长相等,A 1B 1=A 2B 2,A 1C 1=A 2C 2,∴B 1C 1=B 2C 2,∴△A 1B 1C 1≌△A 2B 2C 2(SSS ),∴①正确;∵∠A 1=∠A 2,∠B 1=∠B 2,∴△A 1B 1C 1∽△A 2B 2C 2∵△A 1B 1C 1,△A 2B 2C 2的周长相等,∴△A 1B 1C 1≌△A 2B 2C 2∴②正确;故选:D .【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.二、填空题10.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD .(答案不唯一,只需填一个)【考点】全等三角形的判定.【专题】开放型.【分析】可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.【解答】解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).【点评】此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF .(只需写一个,不添加辅助线)【考点】全等三角形的判定.【专题】开放型.【分析】求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.【解答】解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是∠B=∠C(答案不唯一)(只写一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS进行全等的判定,答案不唯一.【解答】解:添加∠B=∠C.在△ABE和△ACD中,∵,∴△ABE≌△ACD(AAS).故答案可为:∠B=∠C.【点评】本题考查了全等三角形的判定,属于开放型题目,解答本题需要同学们熟练掌握三角形全等的几种判定定理.13.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是AC=AB .【考点】全等三角形的判定.【专题】开放型.【分析】添加条件:AB=AC,再加上∠A=∠A,∠B=∠C可利用ASA证明△ABD≌△ACE.【解答】解:添加条件:AB=AC,∵在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),故答案为:AB=AC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA=FD .(只需写出一个)【考点】全等三角形的判定.【专题】开放型.【分析】可选择添加条件后,能用SAS进行全等的判定,也可以选择AAS进行添加.【解答】解:添加CA=FD,可利用SAS判断△ABC≌△DEF.故答案可为CA=FD.【点评】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.15.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .【考点】全等三角形的判定.【专题】开放型.【分析】添加条件AE=AB,根据等式的性质可得∠BAC=∠EAD,然后再用SAS证明△BAC≌△EAD.【解答】解:添加条件AE=AB,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠BAC=∠EAD,在△BCA和△EDA中,,∴△BAC≌△EAD(SAS).故答案为:AE=AB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是∠A=∠D (不添加任何辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】先求出∠ACB=∠DCE,再添加∠A=∠D,由已知条件BC=EC,即可证明△ABC≌△DEC.【解答】解:添加条件:∠A=∠D;∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(AAS).【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法是解题的关键.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB ,使得△EAB≌△BCD.【考点】全等三角形的判定.【专题】开放型.【分析】可以根据全等三角形的不同的判定方法添加不同的条件.【解答】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.【点评】本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.19.如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC≌△DEF.【考点】全等三角形的判定.【专题】开放型.【分析】补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题20.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠CAB=∠DAE,再由SAS证明△BAC≌△DAE,得出对应边相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【考点】全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)延长DE交AB于点G,连接AD.构建全等三角形△AED≌△DFB(SAS),则由该全等三角形的对应边相等证得结论;(2)设AC与FD交于点O.利用(1)中全等三角形的对应角相等,等角的补角相等以及三角形内角和定理得到∠EOD=90°,即DF⊥AC.【解答】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.23.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
八年级数学上册第12章全等三角形全等三角形的判定(一)课后作业(新版)新人教版.docx
全等三角形的判定(一)1. 如图是一个平分角的简单仪器,其中AD 二AB, BC 二DC.将A 放在角的顶点,AB 和AD沿着角的两边放下,沿AC 画一条射线AE, AE 就是ZDAB 的平分线.在这个过程中AADC AABC 的根据是(A. SASB. SSSC. AASD. ASA2. 如图,AABC 的三条边全不相等,BODE ・以D 、E 为两个顶点作位置不同的三角形, 使新作的三角形与全等.这样的三角形可以作出( )A. 2个B. 4个C. 6个D. 8个3.如图,AB=FD, AC=FE, BD=CE,则 AABC 和 Z\FDE ()A. 一定全等B. 一定不全等4. 如图,在 Z\ABC 和 AFED 中,AC 二 FD, BC 二 ED,要利用 全等吋,下面的4个条件中:①AE=FB ;②AB=FE ;③AE 二BE ;④BF=BE,可利用的是() A. ①或② B.②或③ C.①或③ D.①或④D、Frc上述三种情况都有可能 “SSS” 来判定△ ABC 和 ZXFED E5.如图是用圆规和直尺画己知角的平分线的示意图,该画法是根据全等三角形识别中的(7.如图,AE 二DF, CE 二BF, AB=CD 可有 AB 二CD 得 __ ,从而根据 _____ 得厶ACE^ADBF.9. _____________________________________________________ 如图,已知AB 二AC , AD 二AE , BD 二EC ,则图中有 __________________________________________ 对全等三角形,它们10. 如图,AABC 的三个顶点分别在格子的3个顶点上,请你试着再在格子的顶点上找出一个点 D,使得△【)%与全等,把这样的三角形都画出来.11. (曲靖中考)如图,已知点B, E, C, F 在一条直线上,AB 二DF, AC=DE, BE=CF.(1) 求证:AC/7DE ;(2) 若 BF=13, EC 二5,求 BC 的长.D. SAS理rh 是 ______可以 rh “sss” 判定全等的三角形是A. SSSB. ASAC. AAS BC AB 二DC ,12.(河北中考)如图,点B, F, C, E在直线1上(F, C之间不能直接测量),点A, D在1异侧,测得AB=DE, AC二DF, BF二EC・(1)求证:AABC^ADEF;(2)指出图中所有平行的线段,并说明理由.全等三角形的判定(一)课后作业参考答案1.解析:根据题目所给条件可利用SSS定理判定厶ADC^AABC,进而得到ZDAC=Z BAC.AD = AB解:•・•在ZiADC 和AABC 中\DC = BC , A AADC^ AABC (SSS), A ZDAC=ZBAC,AC = AC・・・AC就是ZDAB的平分线.故选:B.2.解析:分别是以D为圆心,AB为半径,作圆,以E为圆心,AC为半径,作圆.两圆相交于两点(D, E上下各一个),经过连接后可得到两个;然后以D为圆心,AC为半径,作圆,以E为圆心,AB 为半径,作圆.两圆相交于两点(D, E上下各一个),经过连接后可得到两个.故选C.3.解析:由BD二CE,可得出BODE,然后利用SSS,可判定△ ABC^ AFDE.解:V BD=CE,・・・BD+DC二CE+DC,即BODE,在Z\ABC 和Z\FDE 中,AB = FDV \A C=FE,:. AABC^ AFDE (SSS).故选A.BC = DE4.解析:要利用SSS进行AABC和AFED全等的判定,还需要条件AB=FE,结合题意给岀的条件即可作出判断.解:由题意可得,要用SSS进行AABC和AFED全等的判定,需要AB=FE,若添加①AE=FB,则可得AE+BE二FB+BE,即AB二FE,故①可以;若添加AB二FE,则可直接证明两三角形的全等,故②可以.若添加AE=BE,或BF二BE,均不能得出AB二FE,不可以利用SSS进行全等的证明,故③④不可以.故选A.5.解析:根据画图得出CD二BD, AC=AB,根据SSS推出两三角形全等,即可出答案.解:从画图中知CD二BD, AC二AB,・.・ AD=AD,・•・ AACD^ AABD (SSS),・・・ ZCAD二ZBAD,故选A.6.解析:根据已知结合隐含条件AC二AC即可得出全等三角形.解答AB = CD证明:在AABC 和Z\CDA 屮<BC = AD f:. △ABC9ACDA (SSS).故答案为:CDA, SSS.AC = AC7.解析:本题要判定△ ACE9ZXDBF,已知AB二CD, BC=BC可得AC=BD,又因为AE二DF, CE二BF,所以可根据SSS判定△ ACE^ ADBF.解:TAB二CD, BC=BC・•・AC二BDVAE=DF, CE=BFA AACE^ ADBF. (SSS)8.解析:可以由“SSS”判定全等的三角形是△ ABD^ ADCA; AABC^ ADCB;有条件AC二DB, AB二DC再加上公共边AD二AD可证明△ ABD^ ADCA;有条件AC=DB, AB二DC再加上公共边BC=BC可证明△ ABC^ ADCB.解:可以由“SSS”判定全等的三角形是AABD竺ADCA; AABC^ ADCB;AD = AD•・•在AADC 和ADAB 中\A C=DB, :. AABD^ ADCA (SSS);AB = CDAB = DC•・•在AnBC 和ADCB 中\A C=DB, :. AABC^ ADCB (SSS),BC = BC故答案为:AABD竺ADCA; AABC^ ADCB.9.解析:此题是一道开放题,所以要求学生的思维必须严密,考虑全面各种情况,不要漏解.解:如图所示:10.解析:根据直角三角形的两个锐角互余进行解答即可.解:在RTADBC 中,ZD=65°,可得:ZDCB二25° ,在RTAACE 中,ZDCB二25°,可得:ZACF二65° ,在RTAACF 屮,ZACF二65°,可得:ZEAC二25°・AB = DF11.解析:(1)证明:TBE二CF・・・BC=FE 在Z\ABC 和ADFE 中<AC = DE, A AABC^ADFE (SSS),BC=FE:.ZACE=ZDEF, ・・・AC〃DE;(2)解:V A ABC A DEE, ABC=EF, ・・.CB-EC 二EF-EC, .\EB=CF, VBF=13, EO5,・・・EB二(13-5) 4-2=4, ・・.CB二4+5=9・12.解析:(1)先证明BC二EF,再根据SSS即可证明.(2)结论AB〃DE, AC〃DF,根据全等三角形的性质即可证明.(1)证明:VBF=CE,・・・BF+FC二FC+CE,即BOEF,AB = DE在/XABC 和ADEF 中,\AC = DF A AABC^ADEF (SSS).BC = EF(2)结论:AB〃DE, AC〃DF.理由:VAABC^ADEE,.\ZABC=ZDEF, ZACB=ZDFE,。
人教新版 八年级上册数学 第12章 全等三角形 专项练习
立,则这个条件是 .
16.三条公路将 、 、 三个村庄连成一个如图的三角形区域,如果在这个区域内修建 一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是 .
17.如图,在 交于点 ,若
中, 为 的面积比
的中点, 平分 的面积大 1,则
, 的面积是
,与相
18.如图,两棵大树间相距 ,小华从点 沿 走向点 ,行走一段时间后他到达点 ,
参考答案 一.选择题(共 10 小题) 1.下列说法不正确的是
A.面积相等的两个三角形全等 B.全等三角形对应边上的中线相等 C.全等三角形的对应角的角平分线相等 D.全等三角形的对应边上的高相等 解: 、不正确.面积相等的两个三角形不一定全等,符合题意; 、正确.全等三角形对应边上的中线相等,不符合题意; 、正确.全等三角形的对应角的角平分线相等,不符合题意; 、正确.全等三角形的对应边上的高相等,不符合题意. 故选: . 2.如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻璃店配一块与原来一样大 小的五边形玻璃,那么最省事的方法应该带玻璃碎片
所以最省事的方法是带①去.
故选: .
3.如图,
的 3 个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三
7 / 20
角形,选取图中三个格点组成三角形,能与
全等(重合的除外)的三角形个数为
A.1 个
B.2 个
解:如图所示可作 3 个全等的三角形.
故选: .
C.3 个
D.4 个
4.如图,
且点 在 上,若
A.①
B.①②
C.①③
D.①③④
解:带①去,能够测量出此正五边形的内角的度数,以及边长,所以可以配一块完全一样的
2019-2020学年八年级数学上册第12章《全等三角形》练习题(新版)新人教版
2019-2020 学年八年级数学上册第12章《全等三角形》练习题(新版)新人教版1 已知:如图,四边形ABCD中, AC均分BAD, CE AB 于 E,且B+ D=180 ,求证: AE=AD+BE AD21ECB2 如图17 所示,在∠AOB的两边上截取AO= BO, OC= OD,连接AD、 BC交于点P,连接OP,则以下结论正确的选项是()①△ APC≌△ BPD A.①②③④B ②△ ADO≌△ BCO.①②③C③△ AOP≌△ BOP.②③④D④△ OCP≌△ ODP.①③④3. 在△ABC中 ,AB= AC, AD和 CE是高,它们所在的直线订交于H.若∠ BAC= 45°(如图①),求证:AH = 2 ;ABDEH AB D CC图①B图②4.以下列图, D 点在 AB上, E 点在 AC的延长线上,且 BD=CE,连接 DE交 BC于点 F。
若 F 点是 DE的中点,试说明 AB=AC5. 如图,AB =CD,AD =BC,O为BD上任意一点,过O点的直线分别交AD, BC于 M、 N点.求证: 12A MD1OB2CN6. 如图,△ OAB 绕点O 逆时针旋转80 到△ OCD的地址,已知AOB45,则AOD等于()A. 55B.45C.40D. 357.如图 , Rt △ABC中, AB⊥AC, AD⊥BC,BE 均分∠ABC,交 A D于E,EF∥AC,以下结论必然成立的是()AA. AB=BFB.AE=EDC. AD=DCD.∠ ABE=∠DFE,EB D F C8.如图, C为线段 AE 上一动点(不与点 A,E 重合),在 AE 同侧分别作正三角形 ABC和正三角形 CDE,AD与 BE 交于点 O, AD与 BC交于点 P, BE与 CD交于点 Q,连接 PQ.以下五个结论:① AD=BE;② PQ∥ AE;③ AP=BQ;④ DE=DP;⑤ ∠AOB=60°.B恒成立的结论有 ______________(把你认为正确的序号都填上).O D9. 如图,在△ ABC中, D是 BC边的中点, F、 E 分别是 AD及延长线上的点,P QCF∥BE,( 1)求证:△ BDE≌△ CDF A C E (2)请连接 BF、 CE,试判断四边形 BECF是何种特别四边形,并说明原由。
八年级数学上册第12章全等三角形12.1全等三角形练习新人教版(2021年整理)
2018-2019学年度八年级数学上册第12章全等三角形12.1 全等三角形同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年度八年级数学上册第12章全等三角形12.1 全等三角形同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年度八年级数学上册第12章全等三角形12.1 全等三角形同步练习(新版)新人教版的全部内容。
12.1 全等三角形学校:___________姓名:___________班级:___________一.选择题(共12小题)1.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个2.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形3.如图,△ABC≌△FED,则下列结论中,错误的是()A.DF=BD B.EF∥AB C.EC=BD D.AC∥FD4.下列图形中,属于全等形的是()A.B.C.D.5.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④6.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°7.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2β C.α+β=90°D.α+2β=180°8.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°9.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°10.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC11.如图,如果△ABC≌△CDA,∠BAC=∠DCA,∠B=∠D,对于以下结论:①AB与CD是对应边;②AC与CA是对应边;③点A与点A是对应顶点;④点C与点C是对应顶点;⑤∠ACB与∠CAD是对应角,其中正确的是( )A.2个B.3个C.4个D.5个12.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以二.填空题(共6小题)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.已知△ABC≌△DEF,∠A=52°,∠B=67°,BC=15cm,则∠F= 度,EF= cm.15.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2= .16.如图,△AEB≌△DFC,AE⊥CB,DF⊥BC,AE=DF,∠C=28°,则∠A= .17.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出个.18.如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为度.三.解答题(共4小题)19.如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm求:(1)∠1的度数(2)AC的长20.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.21.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.参考答案与试题解析一.选择题(共12小题)1.解:①周长相等的两个图形不一定重合,所以不一定全等;②如果面积相同而形状不同也不全等;③如果周长相同面积相同而形状不同,则不全等,④两个图形的形状相同,大小也相等,则二者一定重合,正确.所以只有1个正确,故选A.2.解:A、形状相同的两个图形大小不一定相等,所以,不是全等图形,故本选项错误;B、周长相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项错误;C、面积相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项错误;D、能够完全重合的两个图形是全等图形,故本选项正确.故选:D.3.解:∵△ABC≌△FED,∴BC=ED,∠B=∠E,∠ACB=∠FDE,∴BD=EC,AB∥EF,AC∥DF.故选:A.4.解:A、两个正方形的边长不相等,不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确.C、两图形不能完全重合,故本选项错误;D、两图形不能完全重合,故本选项错误.故选:B.5.解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.6.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.7.解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.8.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.9.解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选:B.10.解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.11.解:△ABC≌△CDA,∠BAC=∠DCA,∠B=∠D.①AB与CD是对应边.故①正确;②AC与CA是对应边.故②正确;③点A与点C是对应顶点.故③错误;④点C与点A是对应顶点.故④错误;⑤∠ACB与∠CAD是对应角.故⑤正确.综上所述,正确的结论是①②⑤,共有3个.故选:B.12.解:∵两个三角形全等,∴∠1=62°,故选:B.二.填空题(共6小题)13.解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.14.解:∵△ABC≌△DEF,∴EF=BC=15cm,∴∠A=∠D,∠B=∠E,∠C=∠F=180°﹣∠A﹣∠B=180°﹣52°﹣67°=61°.故填61,15.15.解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.16.解:∵DF⊥BC,∠C=28°,∴∠D=90°﹣28°=62°,∵△AEB≌△DFC,∴∠A=∠D=62°.故答案为:62°.17.解:以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.18.解:∵∠ABE=60°,∠E=92°,∴∠BAE=28°,又∵△ABC≌△BAE,∴∠ABC=∠BAE=28°,故答案为:28.三.解答题(共4小题)19.解:(1)∵△ADF≌△BCE,∠F=28°,∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE,BC=5cm,∴AD=BC=5cm,又CD=1cm,∴AC=AD+CD=6cm.20.解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.21.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD﹣BC)=3.22.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2。
12.1 全等三角形 人教版数学八年级上册同步练习(含答案)
第十二章全等三角形12.1 全等三角形第1课时认识全等三角形1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌△ADE,若∠D=∠B,∠C=∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC的最大边,AE是△AED的最大边,∠BAC与∠EAD是对应角,且∠BAC=25°,∠B=35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵△ABC≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)。
人教版八年级数学上名师点拨精练第12章全等三角形12.1全等三角形
人教版八年级数学上名师点拨精练第12章全等三角形12.1全等三角形学习目标1.了解全等形和全等三角形的概念.2.能够找出全等三角形的对应元素.3.掌握全等三角形的对应边、角相等.【重点】探究全等三角形的性质.【难点】掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确地指出两个全等三角形的对应元素.老师告诉你全等三角形的性质的作用:1.求角的度数2.证明两个角相等3.求线段的长度4.证明两条线段相等5.判断两条直线的位置关系一、知识点拨知识点1 全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.在平面几何中,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.【新知导学】例1-1.如图所示的各组图形中,不是全等形的是()A. B.C. D. 【对应导练】1.下列图形中被虚线分成的两部分不是全等形的是()A. B.C. D.2.下列图标中,不是由全等图形组合成的是()A. B.C. D.3.下列说法正确的是()A. 两个面积相等的图形一定是全等图形B. 两个正方形是全等图形C. 若两个图形的周长相等,则它们一定是全等图形D. 两个全等图形的面积一定相等4.请观察图中的5组图案,其中是全等形的是_____(填序号).知识点2 全等三角形及其对应元素1.全等三角形:能够完全重合的两个三角形叫全等三角形.2.对应边、对应角、对应顶点的定义:两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC 与△DEF 全等,记作△ABC ≌△DEF ,其中点A 和点D ,点B 和点E ,点C 和点F 是对应顶点;AB 和DE ,BC 和EF ,AC 和DF 是对应边;∠A 和∠D ,∠B 和∠E ,∠C 和∠F 是对应角.3. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边是对应边; (4)有公共角的,公共角是对应角; (5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.【新知导学】例2-1 .下列4个图形中,属于全等的2个图形是_________.(填序号)例2-2 .已知ABC DEF ≌△△,且A ∠与D ∠是对应角,B ∠和E ∠是对应角,则下列说法中正确的是( )A .AC 与DF 是对应边B .AC 与DE 是对应边 C .AC 与EF 是对应边D .不能确定AC 的对应边【对应导练】1.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中,与△ABC 全等的图形是( )A. 甲B. 乙C. 甲和乙D. 都不是2 .如图,如果△ABC ≌△CDA ,∠BAC=∠DCA ,∠B=∠D ,对于以下结论:①AB 与CD 是对应边;②AC 与CA 是对应边;③点A 与点A 是对应顶点;④点C 与点C 是对应顶点;⑤∠ACB 与∠CAD 是对应角, 其中正确的是( )A .2个B .3个C .4个D .5个3 .如下图,AOC 与BOD 全等.用符号“≌”表示这两个三角形全等.已知A ∠与B ∠是对应角,写出其余的对应角和各对对应边.知识点3 全等三角形的性质(1)全等三角形的对应边相等; (2)全等三角形的对应角相等;后面还会学到:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【新知导学】例3-1.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数为( )A. 60°B. 55°C. 65°D. 66°例3-2.如图,若△ABC ≌△DEF ,B ,E ,C ,F 四点在同一直线上,BC=7,CF=2,则EC 的长是( ) A. 2 B. 3 C.5 D. 7例3-3.如图,已知△ABC ≌△DEF ,∠A=85°,∠B=60°,AB=8,EH=2. (1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE .【对应导练】1 .如图,ABC ADE △△≌,若80B ∠=︒,30C ∠=︒,:4:3DAB DAC ∠∠=,则EFC ∠的度数为( )A .30︒B .40︒C .70︒D .80︒2.如图,△ABE ≌△DCE ,点E 在线段AD 上,点F 在CD 延长线上,∠F=∠A ,求证:AD ∥BF .3.已知,如图∠B=90°,△ABC≌△CDE,B、C、D三点共线.试说明:AC⊥CE.4.如图,△ABC≌△ADE,AC和AE,AB和AD是对应边,点E在边BC上,AB与DE交于点F.(1)求证:∠CAE=∠BAD;(2)若∠BAD=35°,求∠BED的度数.二、题型训练1.利用全等三角形性质判断两直线的位置1.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.2.如图,A,D,E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE.2..利用全等三角形求角度3.如图,△ABC≌△ADE,AC和AE,AB和AD是对应边,点E在边BC上,AB与DE交于点F.(1)求证:∠CAE=∠BAD;(2)若∠BAD=35°,求∠BED的度数.4.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.3.利用全等三角形求周长5 .如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.6.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.4.利用全等三角形判断图形形状7 .如图,D、A、E三点在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且△ABD≌△CAE,AC=4.(1)求∠BAC的度数;(2)判断△ABC的形状,并求△ABC的面积.三、牛刀小试一、单选题(每小题4分,共32分)1.下列图形中被虚线分成的两部分不是全等形的是( )A. B.C. D.2.下图中全等的三角形是( )A.①和②B.②和④C.②和③D.①和③3.如图,ABC ADE ≌△△,且//AE BD ,94BAD ∠=︒,则BAC ∠的度数的值为( )A.84︒B.60︒C.48︒D. 43︒4.如图,ABC EBD ≌△△,4cm AB =,7cm BD =,则CE 的长度为( )A.4cmB.3cmC.2cmD.3.5cm5.如图,若ABC ADE ≌△△,则下列结论中一定成立的是( )A.AC DE =B.BAD CAE ∠=∠C.AB AE =D.ABC AED ∠=∠6.2.下列图形中是全等形的是( ) A.B.C. D.7.如图,点B ,E ,C ,F 在同一直线上,ABC DEF ≌△△,8BC =,11.5BF =,则EC 的长为( )A.5B.4.5C.4D.3.58.三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A.90︒B.120︒C.135︒D.180︒二、填空题(每小题4分,共20分)9.已知ABC DEF ≌△△,且DEF △的周长为6,若2AB =, 1.9BC =则DF 的长为_________.10.如图,D 在BC 边上,ABC ADE △△≌,70B ∠=︒,则EAC ∠的度数为______.11.如图,四边形ABCD ≌四边形A B C D '''',若90B ∠=︒,0C ∠=6︒,105D '∠=︒,则A '∠=____________°.12.如图,在平面直角坐标系中,AOB COD ≌△△,则点D 的坐标是__________.13.如图,在正方形ABCD 中,3cm AB =,延长BC 到点E ,使1cm CE =,连接DE ,动点P 从点A 出发,以每秒1cm 的速度沿AB BC CD DA →→→向终点A 运动.设点P 的运动时间为t 秒,当PBC △和DCE △全等时,t 的值为_____.三、解答题(共6小题,共48分)14.(8分)试在下列图形中,沿正方形的网格线(虚线)画线,将图形分割成两个全等的图形.15.(8分)如图,A ,C ,E 三点在同一直线上,且ABC DAE ≅△△.(1)求证:BC DE CE =+.(2)若90ACB ∠=︒,求证://BC DE .16.(8分)如图,在ABC 中,10AB AC ==cm ,8BC =cm ,D 为AB 的中点,点P 在线段BC 上以3cm/s 的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 以a cm/s 的速度运动,设运动的时间为t s.(1)求CP 的长度(用含t 的代数式表示);(2)若以点C ,P ,Q 为顶点的三角形和以点B ,D ,P 为顶点的三角形全等,且B ∠和C ∠是对应角,求a 的值.17.(8分)如图,ACF DBE ≌,其中点A ,B ,C ,D 在一条直线上.(1)若BE AD ⊥,62F ∠=︒,求A ∠的度数; (2)若9AD =cm ,5BC =cm ,求AB 的长.18.(8分)如图,已知ABC DBE ≅△△,点D 在AC 上,BC 与DE 交于点P .(1)若150ABE ∠=︒,30DBC ∠=︒,求CBE ∠的 度数.(2)若3cm AD DC ==, 4.5cm BC =,求DCP △与BPE △的周长之和. 19.如图,,,A D E BAD ACE ≅三点在同一直线上,且,△△试说明:(1);BD DE CE =+(2)//?ABD BD CE 满足什么条件时,△人教版八年级数学上名师点拨精练第12章全等三角形12.1全等三角形学习目标1.了解全等形和全等三角形的概念.2.能够找出全等三角形的对应元素.3.掌握全等三角形的对应边、角相等.【重点】探究全等三角形的性质.【难点】掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确地指出两个全等三角形的对应元素.老师告诉你全等三角形的性质的作用:1.求角的度数2.证明两个角相等3.求线段的长度4.证明两条线段相等5.判断两条直线的位置关系四、知识点拨知识点1 全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.在平面几何中,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.【新知导学】例1-1.如图所示的各组图形中,不是全等形的是()A. B.C. D.【答案】B【解析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.解:观察发现,A、C、D选项的两个图形都可以完全重合,是全等图形,B选项中圆与椭圆不可能完全重合,不是全等形.故选:B.【对应导练】1.下列图形中被虚线分成的两部分不是全等形的是()A. B.C. D.【答案】C【解析】根据全等形的概念进行判断即可.解:A、长方形被对角线分成的两部分是全等形;B、正六边形被对角线分成的两部分是全等形;C、梯形被对角线分成的两部分不是全等形;D、圆被对角线分成的两部分是全等形,故选:C.2.下列图标中,不是由全等图形组合成的是()A. B.C. D.【答案】C【解析】根据全等图形的概念分析即可.解:A、该图象是由三个全等的图形构成,故该选项不符合题意;B、该图象是由五个全等的图形构成,故该选项不符合题意;C、该图象不是由全等图形构成,故该选项符合题意;D、该图象是由两个全等的图形构成,故该选项不符合题意;故选:C.3.下列说法正确的是()A. 两个面积相等的图形一定是全等图形B. 两个正方形是全等图形C. 若两个图形的周长相等,则它们一定是全等图形D. 两个全等图形的面积一定相等【答案】D【解析】依据全等图形的定义和性质进行判断即可.解:A、两个面积相等的图形不一定是全等图形,说法错误,不符合题意;B、两个边长相等的正方形是全等图形,说法错误,不符合题意;C、若两个图形的周长相等,则它们不一定是全等图形,说法错误,不符合题意;D、两个全等图形的面积一定相等,说法正确,符合题意;故选:D.4.请观察图中的5组图案,其中是全等形的是_____(填序号).【答案】(1)(4)(5)【解析】能够完全重合的两个图形叫做全等形,结合所给图形进行判断即可.解:5组图案,其中是全等形的是(1)(4)(5).故答案为:是(1)(4)(5).知识点2 全等三角形及其对应元素1.全等三角形:能够完全重合的两个三角形叫全等三角形.2.对应边、对应角、对应顶点的定义:两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A 和∠D,∠B和∠E,∠C和∠F是对应角.3. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.【新知导学】例2-1 .下列4个图形中,属于全等的2个图形是_________.(填序号)【答案】①③【分析】先求出的度数,然后分析求解即可.【详解】解:在③中,,∴与①中的相等,并且两夹边对应相等,∴属于全等的2个图形是①③故答案为①③.【点评】本题考查了三角形全等的条件,熟悉全等三角形的判定定理是解题的关键.例2-2 .已知ABC DEF ≌△△,且A ∠与D ∠是对应角,B ∠和E ∠是对应角,则下列说法中正确的是( )A .AC 与DF 是对应边B .AC 与DE 是对应边 C .AC 与EF 是对应边D .不能确定AC 的对应边【答案】A【分析】根据全等三角形的概念即可得到答案. 解:A ∠与D ∠是对应角,B ∠和E ∠是对应角,C ∴∠和F ∠是对应角,AC ∴与DF 是对应边,故选A .【点拨】本题考查了全等三角形,理解全等三角形的概念,准确找出对应边是解题关键.【对应导练】1.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中,与△ABC 全等的图形是( )A. 甲B. 乙C. 甲和乙D. 都不是【答案】C【解析】甲可根据ASA 判定与△ABC 全等;乙可根据AAS 判定与△ABC 全等,可得答案. 解:甲三角形夹b 边的两角分别与已知三角形对应相等,故甲与△ABC 全等;乙三角形50°内角及所对边与△ABC 对应相等且均有70°内角,可根据AAS 判定乙与△ABC 全等; 则与△ABC 全等的有乙和甲, 故选:C .2 .如图,如果△ABC ≌△CDA ,∠BAC=∠DCA ,∠B=∠D ,对于以下结论:①AB 与CD 是对应边;②AC 与CA 是对应边;③点A 与点A 是对应顶点;④点C 与点C 是对应顶点;⑤∠ACB 与∠CAD 是对应角, 其中正确的是( )A .2个B .3个C .4个D .5个【答案】B【分析】由全等三角形的对应边相等、对应角相等对以下结论进行判定. 【详解】解:△ABC ≌△CDA ,∠BAC=∠DCA ,∠B=∠D . ①AB 与CD 是对应边.故①正确; ②AC 与CA 是对应边.故②正确; ③点A 与点C 是对应顶点.故③错误; ④点C 与点A 是对应顶点.故④错误; ⑤∠ACB 与∠CAD 是对应角.故⑤正确. 综上所述,正确的结论是①②⑤,共有3个. 故选B .3 .如下图,AOC 与BOD 全等.用符号“≌”表示这两个三角形全等.已知A ∠与B ∠是对应角,写出其余的对应角和各对对应边.【答案】AOC BOD △△≌.对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠; 对应边是;OA 与OB ,OC 与OD ,AC 与BD .【分析】根据全等三角形的表示法以及全等三角形的性质即可得到答案. 解: AOC BOD △△≌. 因为A ∠与B ∠是对应角,所以其余的对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠;对应边是;OA 与OB ,OC 与OD ,AC 与BD .【点拨】本题主要考查全等三角形的表示法和性质,准确找到全等三角形的对应角和对应边是关键.知识点3 全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;后面还会学到:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【新知导学】例3-1.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数为()A. 60°B. 55°C. 65°D. 66°【答案】C【解析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.解:∵如图是两个全等三角形,∴∠1=∠2=180°-60°-55°=65°.故选:C.例3-2.如图,若△ABC≌△DEF,B,E,C,F四点在同一直线上,BC=7,CF=2,则EC的长是()A. 2B. 3C.5 D. 7【答案】C【解析】利用全等三角形的性质可得BC=EF=7,再利用线段的和差关系计算即可.解:∵△ABC≌△DEF,∴BC=EF=7,∴CF=2,∴EC=EF-CF=7-2=5,故选:C.例3-3.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB ∥DE .【解析】(1)根据三角形内角和定理求出∠ACB ,根据全等三角形的性质得出AB=DE ,∠F=∠ACB ,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF ,根据平行线的判定得出即可. 解:(1)∵∠A=85°,∠B=60°, ∴∠ACB=180°-∠A-∠B=35°, ∵△ABC ≌△DEF ,AB=8, ∴∠F=∠ACB=35°,DE=AB=8, ∵EH=2, ∴DH=8-2=6;(2)证明:∵△ABC ≌△DEF , ∴∠DEF=∠B , ∴AB ∥DE .【对应导练】1 .如图,ABC ADE △△≌,若80B ∠=︒,30C ∠=︒,:4:3DAB DAC ∠∠=,则EFC ∠的度数为( )A .30︒B .40︒C .70︒D .80︒【答案】C【分析】首先根据三角形内角和定理求出18070BAC B C ∠=-∠-∠=︒︒,然后根据全等三角形的性质得到70DAE BAC ∠=∠=︒,30E C ∠=∠=︒,最后利用三角形外角的性质求解即可. 解:∵80B ∠=︒,30C ∠=︒,∴18070BAC B C ∠=-∠-∠=︒︒ ∵:4:3DAB DAC ∠∠= ∴30DAC ∠=︒∵ABC ADE △△≌∴70DAE BAC ∠=∠=︒,30E C ∠=∠=︒ ∴40EAF DAE DAC ∠=∠-∠=︒∴70EFC E EAF ∠=∠+∠=︒. 故选:C .【点拨】本题考查了全等三角形的性质和三角形内角和定理的应用,三角形外角的性质,解题的关键是掌握以上知识点,全等三角形的对应角相等,对应边相等.2.如图,△ABE ≌△DCE ,点E 在线段AD 上,点F 在CD 延长线上,∠F=∠A ,求证:AD ∥BF .【解析】根据△ABE ≌△DCE 得到∠A=∠ADC ,然后利用∠F=∠A 得到∠F=∠EDC ,利用同位角相等,两直线平行证得结论.证明:∵△ABE ≌△DCE , ∴∠A=∠ADC , ∵∠F=∠A , ∴∠F=∠EDC , ∴AD ∥BF .3.已知,如图∠B=90°,△ABC ≌△CDE ,B 、C 、D 三点共线.试说明:AC ⊥CE .【解析】根据Rt △ABC ≌Rt △CDE 可得∠BCA=∠CED ,再根据直角三角形两锐角互余可得∠CED+∠ECD=90°,进而得到∠BCA+∠ECD=90°,再根据角之间的关系可得∠ACE=90°. 证明:∵∠B=90°,△ABC ≌△CDE , ∴∠D=90°, ∴∠BCA=∠CED , ∵△DCE 是直角三角形, ∴∠CED+∠ECD=90°, ∴∠BCA+∠ECD=90°, ∴∠ACE=180°-90°=90°, ∴AC ⊥CE .4.如图,△ABC ≌△ADE ,AC 和AE ,AB 和AD 是对应边,点E 在边BC上,AB与DE交于点F.(1)求证:∠CAE=∠BAD;(2)若∠BAD=35°,求∠BED的度数.【解析】(1)根据全等三角形的性质得出∠BAC=∠DAE,再求出答案即可;(2)根据全等三角形的性质得出∠D=∠B,根据对顶角相等和三角形内角和定理得出∠AFD=∠EFB,∠D+∠BAD+∠AFD=180°,∠B+∠EFB+∠BED=180°,求出∠BED=∠BAD即可.(1)证明:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠CAE=∠BAD;(2)解:∵△ABC≌△ADE,∴∠D=∠B,∵∠AFD=∠EFB,∠D+∠BAD+∠AFD=180°,∠B+∠EFB+∠BED=180°,∴∠BED=∠BAD,∵∠BAD=35°,∴∠BED=35°.五、题型训练5.利用全等三角形性质判断两直线的位置1.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.【解析】(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.2.如图,A,D,E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE.【答案】(1)证明见解析;(2)∠ADB=90°.【分析】(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;(2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.【详解】解:(1)∵△BAD≌△ACE,∴BD=AE,AD=CE,∴BD=AE=AD+DE=CE+DE,即BD=DE+CE;(2)△ABD满足∠ADB=90°时,BD∥CE,理由是:∵△BAD≌△ACE,∴∠E=∠ADB=90°,∴∠BDE=180°−90°=90°=∠E,∴BD∥CE.【点评】本题考查了全等三角形的性质和平行线的判定等的应用,关键是通过三角形全等得出正确的结论,通过做此题培养了学生分析问题的能力.6..利用全等三角形求角度3.如图,△ABC≌△ADE,AC和AE,AB和AD是对应边,点E在边BC上,AB与DE交于点F.(1)求证:∠CAE=∠BAD;(2)若∠BAD=35°,求∠BED的度数.【解析】(1)根据全等三角形的性质得出∠BAC=∠DAE,再求出答案即可;(2)根据全等三角形的性质得出∠D=∠B,根据对顶角相等和三角形内角和定理得出∠AFD=∠EFB,∠D+∠BAD+∠AFD=180°,∠B+∠EFB+∠BED=180°,求出∠BED=∠BAD即可.(1)证明:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠CAE=∠BAD;(2)解:∵△ABC≌△ADE,∴∠D=∠B,∵∠AFD=∠EFB,∠D+∠BAD+∠AFD=180°,∠B+∠EFB+∠BED=180°,∴∠BED=∠BAD,∵∠BAD=35°,∴∠BED=35°.4.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.【解析】(1)根据全等三角形的性质得到AB=DE=10,BE=BC=4,结合图形计算,得到答案;(2)根据全等三角形的性质得到∠BAC=∠D=30°,∠DBE=∠C=70°,根据三角形内角和定理求出∠ABC,计算即可.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB-BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°-30°-70°=80°,∴∠DBC=∠ABC-∠DBE=10°.7.利用全等三角形求周长5 .如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.【解析】直接利用全等三角形的性质得出AC=AD,进而得出答案.解:∵△ACF≌△ADE,AD=12,AE=5,∴AC=AD=12,AE=AF=5,∴DF=12-5=7.6.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.【解析】(1)根据全等三角形的性质得到∠ABC=∠DBE,计算即可;(2)根据全等三角形的性质求出BE、DE,根据三角形的周长公式计算即可.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=5,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.8.利用全等三角形判断图形形状7 .如图,D、A、E三点在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且△ABD≌△CAE,AC=4.(1)求∠BAC的度数;(2)判断△ABC的形状,并求△ABC的面积.【答案】(1)90°(2)等腰直角三角形,8【分析】(1)根据垂直的定义得到∠D=90°,求得∠DBA+∠BAD=90°,根据全等三角形的性质得到∠DBA=∠CAE,等量代换即可得到结论;(2)根据全等三角形的性质得AC=AB=4,再根据三角形的面积求出答案.【详解】(1)解:∵BD⊥DE,∴∠D=90°,∴∠DBA+∠BAD=90°,∵△ABD≌△CAE,∴∠DBA=∠CAE∴∠BAD+∠CAE=90°,∴∠BAC=90°;(2)解:∵△ABD≌△CAE,∴AC=AB=4,又∵∠BAC=90°∴△ABC是等腰直角三角形,∴△ABC的面积=4×4÷2=8.【点评】本题考查的是全等三角形的性质、三角形的面积公式,证得△ABC是直角三角形是解决本题的关键.六、牛刀小试一、单选题(每小题4分,共32分)1.下列图形中被虚线分成的两部分不是全等形的是( )A. B.C.D.【答案】:A解析:观察选项可知,选项B ,C ,D 中的虚线把图形分成全等的两部分, 故选:A.【点评】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.2.下图中全等的三角形是( )A.①和②B.②和④C.②和③D.①和③【答案】D解析:A 、①和②,SA ,角的另一条邻边不相等,两个三角形不全等,不符合题意; B 、②和④,5cm 分别是图②和图④30°的邻边和对边,两个三角形不全等,不符合题意; C 、②和③,SA ,角的另一条邻边不相等,两个三角形不全等,不符合题意; D 、①和③,SAS ,两个三角形全等,符合题意; 故选D.【点拨】本题考查了全等三角形,理解全等三角形的概念,准确找出对应边是解题关键.3.如图,ABC ADE ≌△△,且//AE BD ,94BAD ∠=︒,则BAC ∠的度数的值为( )A.84︒B.60︒C.48︒D. 43︒【答案】D解析:ABC ADE ≅△△,94BAD ∠=︒,AB AD ∴=,BAC DAE =∠∠,()118094432ABD ADB ∴∠=∠=⨯︒︒-=︒,//AE BD ,43DAE ADB ∴∠=∠=︒, 43BAC DAE ∴∠=∠=︒.故选:D.【点拨】本题考查了全等三角形的性质和三角形内角和定理的应用,三角形外角的性质,解题的关键是掌握以上知识点,全等三角形的对应角相等,对应边相等.4.如图,ABC EBD ≌△△,4cm AB =,7cm BD =,则CE 的长度为( )A.4cmB.3cmC.2cmD.3.5cm【答案】B解析:ABC EBD ≌△△,4cm AB BE ∴==,7cm BC BD ==,743(cm)EC BC BE ∴=-=-=.故选:B.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.5.如图,若ABC ADE ≌△△,则下列结论中一定成立的是( )A.AC DE =B.BAD CAE ∠=∠C.AB AE =D.ABC AED ∠=∠【答案】:B解析:ABC ADE ≌△△,AC AE ∴=,AB AD =,ABC ADE ∠=∠,BAC DAE ∠=∠, BAC DAC DAE DAC ∴∠-∠=∠-∠,即BAD CAE ∠=∠.故A ,C ,D 选项错误,B 选项正确, 故选:B.【点拨】本题考查了全等三角形的性质,,结合图形和题意找到角之间的关系是解题的关键.6.2.下列图形中是全等形的是( ) A.B.C.D.【答案】:D解析:A.两个图形不能完全重合,不是全等形; B.两个图形不能完全重合,不是全等形; C.两个图形不能完全重合,不是全等形; D.两个图形能完全重合,是全等形; 故选:D.【点评】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.7.如图,点B ,E ,C ,F 在同一直线上,ABC DEF ≌△△,8BC =,11.5BF =,则EC 的长为( )A.5B.4.5C.4D.3.5【答案】:B 解析:8BC =,11.5BF =,3.5∴=-=,CF BF BCBC=,△△,8ABC DEF≌∴==,8EF BC∴=-=-=,EC EF CF8 3.5 4.5故选:B.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.∠+∠+∠的度数是( )8.三个全等三角形按如图的形式摆放,则123A.90︒B.120︒C.135︒D.180︒【答案】D解析:如图所示:∠+∠+∠+∠+∠+∠+∠+∠+∠=︒,由图形可得:145862397540三个全等三角形,∴∠+∠+∠=︒,496180∠+∠+∠=︒,又578180∴∠+∠+∠+︒+︒=︒,123180180540∴∠+∠+∠的度数是180︒.123故选:D.【点拨】本题考查了全等三角形的性质,三角形内角和,结合图形和题意找到角之间的关系是解题的关键.二、填空题(每小题4分,共20分)9.已知ABC DEF ≌△△,且DEF △的周长为6,若2AB =, 1.9BC =则DF 的长为_________. 【答案】2.1 解析:ABC DEF ≌△△,2AB =, 1.9BC =2DE AB ∴==, 1.9EF BC ==DEF △的周长为6,∴6 2.1DF EF DE =--=,故答案为:2.1.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等。
八年级数学上册第十二章全等三角形测试卷1新版新人教版附答案
八年级数学上册第十二章全等三角形测试卷1新版新人教版附答案一、选择题(共9小题)1.如图,▱ABCD 中,E,F 是对角线BD 上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠22.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P,则点P 有()A.1个B.2个C.3个D.4个3.如图,△ABC 中,AB=AC,D 是BC 的中点,AC 的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对4.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.如图,在△ABC 中,AB>AC,点D、E 分别是边AB、AC 的中点,点F 在BC 边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE 与△EDF 全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F二、填空题(共14小题)10.如图,△ABC≌△DEF,则EF=.11.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.12.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)14.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.15.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)16.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)17.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件,使△ABC ≌△DEF.18.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)19.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).20.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).21.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO≌△CDO.22.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.23.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.参考答案与试题解析一、选择题(共9小题)1.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD 中,∴AB=CD,∠ABE=∠CDF,在△ABE 和△CDF 中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.2.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P,则点P 有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P 的位置即可.【解答】解:要使△ABP 与△ABC 全等,点P 到AB 的距离应该等于点C 到AB 的距离,即3个单位长度,故点P 的位置可以是P 1,P 3,P 4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P 的位置.3.如图,△ABC 中,AB=AC,D 是BC 的中点,AC 的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO ≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.4.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS 能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF【考点】全等三角形的判定;三角形中位线定理.【分析】根据三角形中位线的性质,可得∠CEF=∠DFE,∠CFE=∠DEF,根据SAS,可判断B、C;根据三角形中位线的性质,可得∠CFE=∠DEF,根据AAS,可判断D.【解答】解:A、∠A与∠CDE没关系,故A错误;B、BF=CF,F是BC中点,点D、E分别是边AB、AC的中点,∴DF∥AC,DE∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故B正确;C、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,∵DF∥AC,∴∠CEF=∠DFE在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故C正确;D、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,,∴△CEF≌△DFE(AAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,利用了三角形中位线的性质,全等三角形的判定,利用三角形中位线的性质得出三角形全等的条件是解题关键.6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.二、填空题(共14小题)10.如图,△ABC≌△DEF,则EF=5.【考点】全等三角形的性质.【分析】利用全等三角形的性质得出BC=EF,进而求出即可.【解答】解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.【点评】此题主要考查了全等三角形的性质,得出对应边是解题关键.11.如图,OP 平分∠MON,PE⊥OM 于E,PF⊥ON 于F,OA=OB,则图中有3对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP 平分∠MON,PE⊥OM 于E,PF⊥ON 于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t △AOP≌R t △BOP.【解答】解:OP 平分∠MON,PE⊥OM 于E,PF⊥ON 于F,∴PE=PF,∠1=∠2,在△AOP 与△BOP 中,,∴△AOP≌△BOP,∴AP=BP,在△EOP 与△FOP 中,,∴△EOP≌△FOP,在R t △AEP 与R t △BFP 中,,∴R t △AEP≌R t △BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.12.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:△ADF≌△BEC.【考点】全等三角形的判定;平行四边形的性质.【专题】开放型.【分析】由平行四边形的性质,可得到等边或等角,从而判定全等的三角形.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA,∴∠AFD=∠BEC,在△ADF与△CEB中,,∴△ADF≌△BEC(AAS),故答案为:△ADF≌△BEC.【点评】本题考查了三角形全等的判定,平行四边形的性质,平行线的性质,根据平行四边形的性质对边平行和角相等从而得到三角形全等的条件是解题的关键.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF.(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.14.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.15.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)【考点】全等三角形的判定.【专题】开放型.【分析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD 或AD=CD.【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.【点评】本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.16.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件AB=CD,使△ABD≌△CDB.(只需写一个)【考点】全等三角形的判定.【专题】开放型.【分析】先根据平行线的性质得∠ABD=∠CDB,加上公共边BD,所以根据“SAS”判断△ABD ≌△CDB时,可添加AB=CD.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当添加AB=CD时,可根据“SAS”判断△ABD≌△CDB.故答案为AB=CD.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.17.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.【考点】全等三角形的判定.【专题】开放型.【分析】可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.【解答】解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).【点评】本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.18.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.19.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【考点】全等三角形的判定.【专题】开放型.【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.21.如图,AC与BD相交于点O,且AB=CD,请添加一个条件∠A=∠C,使得△ABO≌△CDO.【考点】全等三角形的判定.【专题】开放型.【分析】首先根据对顶角相等,可得∠AOB=∠COD;然后根据两角及其中一个角的对边对应相等的两个三角形全等,要使得△ABO≌△CDO,则只需∠A=∠C即可.【解答】解:∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.(答案不唯一)故答案为:∠A=∠C.(答案不唯一)【点评】此题主要考查了全等三角形的判定,要熟练掌握,解答此题的关键是要明确:(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.22.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.【解答】解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.【点评】本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.23.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.【考点】全等三角形的性质.【专题】压轴题.【分析】先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.【点评】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.【考点】全等三角形的判定.【专题】证明题.【分析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.【考点】全等三角形的判定.【专题】开放型.【分析】已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.【解答】解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【考点】全等三角形的判定.【专题】证明题.【分析】根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.【解答】证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).【点评】本题主要考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)【考点】全等三角形的判定.【专题】开放型.【分析】先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.【解答】AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后再利用AAS定理可判定△BED≌△CFD.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,在△BED和△CFD中,,∴△BED≌△CFD(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.【考点】全等三角形的判定.【专题】证明题.【分析】根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.【解答】证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS).【点评】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS,SAS,ASA,AAS,以及判断两个直角三角形全等的方法HL.30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.【考点】全等三角形的判定.【专题】证明题.【分析】根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DEC.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【点评】本题考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.31。
八年级数学上册 第12章 全等三角形 12.1 全等三角形课时练 (新版)新人教版
第十二章 12.1 全等三角形学校: 姓名: 班考号:①只有两个三角形才能完全重合;②如果两个图形是全等形,那么它们的形状和大小一定都相同;③两个正方形一定是全等形;④边数相同的图形一定能互相重合.A. ①③④B. ①②③C. ①③D. ①④2. 如图所示,已知△ABC ≌△AEF ,AB=BC ,∠B=∠E ,则下列结论中正确的个数为( )①AC=AF ; ②∠FAB=∠EAB ;③AE=EF ; ④∠EAB=∠FAC.A. 1B. 2C.3 D. 43. 已知△ABC ≌△A'B'C',等腰三角形ABC 的周长为18 cm,BC=8 cm,那么△A'B'C'中底边的长等于( )A. 5 cmB. 2 cm 或5 cmC. 8 cmD. 2 cm 或8 cm4. 如图所示,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( )A. 5B. 4C.3 D. 25. 如图,△ACB ≌△A 1CB 1,∠BCB 1=30°,则∠ACA 1的度数为( )A. 20°B. 30°C.35° D. 40°6. 如图所示,△ACF与△BDE全等,点A,B,C,D在同一条直线上,且点F和点E是对应点,点A 和点B是对应点,下列结论中,错误的是()A. AF∥BEB. CF∥DEC.AB=CD D. ∠ACF=∠EBD7. 如图,已知△ABC中,△ACD≌△BFD,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. 2B. 4C.6 D. 38. 如图所示,△PAC≌△PBD,∠A=45°,∠BPD=20°,则∠PCD的度数为()A. 25°B. 45°C.65° D. 115°9. 如图所示,将△ABC沿BC翻折,使点A落在点D处,则△ABC≌△DBC,其中∠ABC的对应角为()A. ∠ACBB. ∠BCDC.∠BDC D. ∠DBC二、填空题,B,E,C,F在同一条直线上.如果AB=8 cm,BE=4 cm,DH=3 cm,则图中阴影部分的面积为cm2.11. 已知△ABC≌△DEF,AB=6 cm,△ABC的面积为24 cm2,则DE边上的高为.12. 已知△ABC≌△DEF,且△DEF的周长是13,若AB=4,BC=6,则DF的长是.13. 如图所示,若把△ABC绕点A旋转一定的角度就得到△ADE,那么________≌________;对应边AB=________,AC=________,BC=________;对应角∠CAB=________,∠B=________,∠C=________.14. 将长方形ABCD的一角沿AE折叠,使点D落在点D'处,得到如图所示的图形,若∠CED'=56°,则∠D'AB= 度.三、解答题ACD,∠AEB与∠ADC是对应角,根据这两个全等三角形,写出对应边和其他的对应角.16. 如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,BC的延长线分别交AD,ED于点F,G,求∠EGF的度数.17. 如图,已知CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=30°,AB=8,AD=4,G为AB延长线上一点,求∠EBG的度数和CE的长.18. 如图所示,A,D,E三点在同一条直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)当△ABD满足什么条件时,BD∥CE?参考答案1. 【答案】A【解析】形状、大小相同的图形放在一起能够完全重合,这两个图形叫做全等形.由此定义可知, ①③④错误.2. 【答案】C【解析】由全等三角形的性质及∠FAB为∠EAF与∠CAB的公共角,可知①③④正确,由已知条件无法判定②是否正确,故选C.3. 【答案】D【解析】因为等腰三角形ABC的周长为18 cm,所以当BC=8 cm为腰时,△ABC 的底边为2 cm;当BC=8 cm为底边时, △ABC的腰长为5 cm,符合题意.又△ABC≌△A'B'C',综上,故△A'B'C'中底边的长等于2 cm或8 cm.4. 【答案】A【解析】易知AB= BE + AE =5,又因为△ABC≌△DEF,所以DE=AB=5,故选A.5. 【答案】B【解析】因为△ACB≌△A1CB1,所以∠ACB=∠A1CB1,又因为∠ACB=∠ACA1+A1CB,∠A1CB1=∠A1CB+∠BCB1,∠BCB1=30°,即∠ACA1+A1CB=∠A1CB+30°,所以∠ACA1=30°,故选B.6. 【答案】D【解析】由△ACF≌△BDE,点F和点E是对应点,点A和点B是对应点,可得点C 和点D是对应点.所以①∠A=∠EBD,∴AF∥BE;②∠D=∠FCA,∴CF∥DE;③AC=BD,AC-BC=BD-BC, ∴AB=CD;所以A,B,C均正确;④∠ACF=∠BDE,而题中未给出三角形两边相等的条件,故D不正确.7. 【答案】B【解析】∵△ACD≌△BFD,∴对应边DF=DC=4.故选B.8. 【答案】C【解析】因为△PAC≌△PBD,对应角相等得∠APC=∠BPD=20°,所以∠PCD=∠A+∠APC=45°+20°=65°.9. 【答案】D【解析】由三角形翻折得到的△ABC≌△DBC可知,点A和点D,点B和点B,点C 和点C分别是对应点,所以∠ABC和∠DBC是对应角.10. 【答案】2611. 【答案】8 cm12. 【答案】313. 【答案】△ABC △ADE AD AE DE ∠EAD ∠D ∠E14. 【答案】3418.(1) 【答案】∵△BAD≌△ACE,∴BD=AE,AD=CE.∵AE=AD+DE,∴AE= DE + CE,∴BD= DE + CE.(2) 【答案】当△ABD中∠ADB=90°时,BD∥CE.理由:若BD∥CE,则∠EDB=∠CED.又∵△BAD≌△ACE, ∴∠ADB=∠CED.∴∠ADB=∠DEB.又∵∠ADB+∠BDE=180°,∴∠ADB=90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.1 全等三角形
一、填空题(每题3分,共30分)
1.如图1所示,两个三角形全等,其中已知某些边的长度和某些角的度数,•则x=_______.
(1) (2)
2.如图2所示,在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,•需要补充的一个条件是____________.
3.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.4.在△ABC和△A′B′C中,∠A=∠A′,CD与C′D′分别为AB边和A′B•′边上的中线,再从以下三个条件:①AB=A′B′;②AC=A′C′;③CD=C′D•′中任取两个为题设,另一个作为结论,请写出一个正确的命题:________(用题序号写).
5.如图3所示,△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=•5cm,则D点到直线AB 的距离是______cm.
(3) (4)
6.如图4所示,将一副七巧板拼成一只小动物,则∠AOB=•_______.
7.如图5所示,P、Q是△ABC的边BC上的两点,且BP=PQ=QC=•AP=AQ,则∠BAC的大小等于__________.
(5) (6) (7)
8.已知等腰△ABC中,AB=AC,D为BC边上一点,连结AD,若△ACD•和△ABD都是等腰三角形,则∠C的度数是________.
9.如图6所示,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,•连结BD,过A点作BD的垂线,交BC于E,如果EC=3cm,CD=4cm,则梯形ABCD•的面积是_______cm.
10.如图7所示,△ABC、△ADE与△EFG都是等边三角形,D•和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是________.
二、选择题(每题3分,共30分)
11.如图8所示,在∠AOB的两边截取AO=BO,CO=DO,连结AD、BC交于点P,考察下列结论,其中正确的是()
①△AOD≌△BOC ②△APC≌△BPD ③点P在∠AOB的平分线上
A.只有① B.只有②
C.只有①② D.①②③
12.下列判断正确的是()
A.有两边和其中一边的对角对应相等的两个三角形全等
B.有两边对应相等且有一角为30°的两个等腰三角形全等 (8)
C.有一角和一边相等的两个直角三角形全等
D.有两角和一边对应相等的两个三角形全等
13.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是()
A.相等 B.互余 C.互补或相等 D.不相等
14.如图9所示,在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()
(9)
15.将五边形纸片ABCDE按如图10所示方式折叠,折痕为AF,点E、D分别落在E′,D′,已知∠AFC=76°,则∠CFD′等于()
A.31° B.28° C.24° D.22°
(10) (11) (12)
16.如图11所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么ABCD的周长是()
A.4 B.8 C.12 D.16
17.如图12所示,在锐角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE,那么下列结论错误的是()
A.∠1=∠2 B.∠1=∠3 C.∠B=∠C D.∠3=∠B
18.如图13所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()
A.2.1+
2
2
C.2 D2-1
(13) (14) (15)
19.如图14所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=()
A.245° B.300° C.315° D.330°
20.已知:如图15所示,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•相交于点O,∠1=∠2,图中全等的三角形共有()
A.1对 B.2对 C.3对 D.4对
三、解答题(共60分)
21.(9分)如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方法,设计一个测量方案(画出图形),并说明测量步骤和依据.
22.(9分)如图所示,已知∠1=∠2,∠C=∠D,求证:AC=BD.
23.(9分)如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.
(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)
(2)证明你写的命题.
24.(10分)如图所示,△ABC为等边三角形,BD为中线,延长BC至E,•使DE=BD.
求证:CE=1
2 BC.
25.(11分)如图①所示,把一张矩形纸片ABCD沿对角线BD折叠,将重合部分△BFD剪去,得到△ABF和△EDF.
①
(1)判断△ABF与△EDF是否全等?并加以证明;
(2)把△ABF与△EDF不重合地拼在一起,可拼成特殊三角形和特殊四边形,将下列拼图(图②)按要求补充完整.
②
26.(12分))如图(1)所示,OP是∠MON的平分线,•请你利用该图形画一对以OP所在直线为对称轴的全等三角形.
请你参考这个作全等三角形方法,解答下列问题:
(1)如图(2),在△ABC中,∠ACB=90°,∠B=60°,AC、CE分别是∠BAC,∠BCA 的平分线交于F,试判断FE与FD之间的数量关系.
(2)如图(3),在△ABC中,若∠ACB≠90°,而(1)中其他条件不变,请问(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,说明理由.
1.60° 2.BC=EF或∠D=∠A或∠C=∠F
3.如果作两个邻补角的角平分线,那么这两条角平分线互相垂直
4.如果①②,那么③ 5.3
6.135° 7.120° 8.36°或45°
9.26 10.15 11.D 12.D 13.C 14.D
15.B 16.D 17.D 18.B 19.C 20.D
21.在平地任找一点O,连OA、OB,延长AO至C使CO=AO,延BO至D,使DO=•BO,•则CD=AB,依据是△AOB≌△COD(SAS),图形略.
22.证△ACB≌△BDA即可.
23.(1)条件①、③结论②、④,(2)证明略
24.略
25.(1)△ABF≌△EDF,证明略
(2)如图:
26.(1)FE=FD
(2)(1)中的结论FE=FD仍然成立.
在AC上截取AG=AE,连结FG.
证△AEF≌△AGF得∠AFE=∠AFG,FE=FG.
由∠B=60°,AD、CE分别是∠BAC,∠BCA的平分线
得∠DAC+∠ECA=60°.
所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.
由∠BCE=∠ACE及FC为公共边.
可证△CFG≌△CFD,
所以FG=FD,所以FE=FD.。