圆周运动

合集下载

圆周运动(物理)

圆周运动(物理)

圆周运动(物理)圆周运动是指以圆或圆的一部分为运动轨迹的平面曲线运动。

这是最常见的曲线运动之一。

例如,电机转子、轮子、滑轮等。

都在做圆周运动。

圆周运动运动学圆周运动在运动学中是最简单、最基本的运动形式之一。

一个运动称之为圆周运动,仅仅取决于其运动轨道是否是圆或圆的一部分。

[1]一般而言,平面曲线运动最多有两个自由度。

而圆周运动本质上是给出了一个平面约束,它的存在使得运动的自由度为1。

[2]利用不同的坐标系,我们对圆周轨道有不同的描述方法,例如:采用平面极坐标系或自然坐标系,可以很容易地将圆周运动分解为径向和切向分量。

据此,可以进一步定义为其中只有向心加速度,切向加速度为零,这是圆周运动最简单的特例:匀速圆周运动。

它的线速度不变。

圆周运动不仅可以用线性量来描述,在许多情况下还可以用角量来描述。

选择一条径向线作为后,我们定义一个质点在任意时刻相对于这条线旋转的角度为它的角位置。

这是一个矢量,它的方向可以由右手螺旋法则决定。

角位置对时间的导数定义为角速度,它描述了旋转的速度。

匀速圆周运动的角速度是常数。

角速度对时间的导数定义为角加速度。

当,运动是匀速圆周运动。

利用简单微积分和矢量分析方法,即可得到圆周运动角量和线量之间存在的简明关系,例如:质点的无限小线位移和无限小角位移:;线速度和角速度:;切向加速度和角加速度:;法向加速度:。

以上是势向量,用大写表示其大小不变。

在物理和工程的不同领域,还可以引入其他物理量来表征匀速圆周运动的特征,例如周期,频率,转速等,从而:除此之外,圆周运动的描述还有不同情形下适用的方式,例如对于更一般的平面光滑曲线运动,每个无穷小线段可以近似为一个圆周运动的一部分:将每个无穷小曲线线段视为一个无穷小圆弧,从而在曲线上的每个点附近得到一个圆,称为曲线在该点的曲率圆,其半径称为该点的曲率半径,用来表征该点的弯曲程度。

在研究一般平面曲线运动时,可以直接比较或应用圆周运动中的许多结论。

圆周运动及其描述

圆周运动及其描述
如图,质点在dt 时间内经历弧长ds,对应于角 位移d ,切线的方向改变d角度。 作出dt始末时刻的切向单位矢, 由矢量三角形法则可求出极限 情况下切向单位矢的增量为
o en
et et
即 d et 与P点的切向正交。因此 d et d v en en en dt dt R

角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
(2) 质点作匀速或匀变速圆周运动时的角速度、 角位移与角加速度的关系式为
at称切向加速度,其大小表示质点速率变化的快慢; an称法向加速度,其大小反映质点速度方向变化的快慢。 上述加速度表达式对任何平面曲线运动都适用,但式 中半径R 要用曲率半径 代替。
2 d v v 由 a dt e t e n R 2 2 的大小为 a at an a
(2)令a = b ,即
P
a
(v0 bt) (bR)
2
2
R
b
得 t v0 / b (3)当a = b 时,t = v0/b ,由此可求得质点历经
的弧长为
s v0t bt /2
2
v /2b
2 0
s
它与圆周长之比即为圈数:
τ
n o
R
s v n 2R 4Rb
2 0
2 x x0 v0t at / 2 2 2 v v0 2a ( x x0 )
1.3.4角量和线量的关系

圆周运动的概念

圆周运动的概念

圆周运动的概念
圆周运动是表示物体以一定速度沿同心圆方向运动的物理运动
形式,圆周运动发生的场景很多,比如,星球的公转椭圆轨道运动、风速表的旋转、齿轮传动、摩擦轮、车轮滚动等等,都属于圆周运动。

圆周运动受力分析
圆周运动的受力分析,依赖两个受力,分别为:内力与外力。

内力是受体与其质心之间的力,其大小取决于受体的质量,存在于受体运动的每一点上,从而保证受体能够沿圆周维持稳定运动;外力是受体与他的外界环境之间的力,其大小取决于外界的摩擦力、重力等因素,存在于受体运动的每一点上,从而保证受体受到外界因素的制约而运动。

圆周运动的能量分析
圆周运动的能量分析,属于机械系统的能量分析,分析主要涉及动能、摩擦能、流体动能和重力轨道能,其中,动能是指圆周运动受体的动量乘以相对速度;摩擦能是指圆周运动受体与其外界环境之间的摩擦力所产生的能量;流体动能是指圆周运动受体与流体之间所产生的流体动能;而重力轨道能是指圆周运动受体所受到的重力在圆周运动方向上的分量所产生的能量。

圆周运动的特点
圆周运动的特点是,圆周运动受力体站在同心圆上时,受力体的动量沿圆周方向不变,也就是说受力体的动量永远垂直于受力体与其质心之间的虚线,因此,受力体沿着圆周维持稳定运动;另外,受力
体的运动速度与其质量以及外界的摩擦力之间存在一定的关系,受体的运动速度越大,外界的摩擦力也越大,从而保证受力体沿着圆周维持稳定运动。

第2讲:圆周运动

第2讲:圆周运动

第2讲 圆周运动一、知能要点1、匀速圆周运动、角速度、线速度、向心加速度 (1)、匀速圆周运动①定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

②特点:加速度大小不变,方向始终指向圆心,是变加速运动。

③条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。

(2)、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:定义、意义公式、单位 线速度(v)①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πrT②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT②单位:rad/s周期(T)和转速(n)或频率(f) ①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv单位:s②n 的单位:r/s 、r/min ,f 的单位:Hz 向心加速度(a)①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2②单位:m/s 22①、作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。

②、大小:F =m v 2r =mω2r =m 4π2T2r =mωv =4π2mf 2r 。

③、方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。

④、来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。

3、离心现象①定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。

②本质:做圆周运动的物体由于本身的惯性,总有沿着切线方向飞出去的趋势。

③受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示。

圆周运动

圆周运动

圆周运动质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。

它是一种最常见的曲线运动。

例如电动机转子、车轮、皮带轮等都作圆周运动。

圆周运动分为,匀速圆周运动和变速圆周运动(如:竖直平面内绳/杆转动小球、竖直平面内的圆锥摆运动)。

在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

匀速相关公式1、v(线速度)=L/t=2πr/T=ωr=2πrf=2πnr(L代表弧长,t代表时间,r代表半径,n为频率,ω为角速度)2、ω(角速度)=θ/t=2π/T=2πf(θ表示角度或者弧度)3、T(周期)=2πr/v=2π/ω4、f(频率)=1/T6、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^27、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2一、水平面内的圆周运动的两种模型模型Ⅰ圆台转动类小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.图1摩擦力提供向心力临界条件圆台转动的最大角速度ωmax=,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.模型Ⅱ火车拐弯类如图2 所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.合力提供向心力图2临界条件若v=,火车拐弯时,既不挤压内轨也不挤压外轨;若v>,火车拐弯时,车轮挤压外轨,外轨反作用于车轮的力的水平分量与F之和提供火车拐弯时所需的向心力;若v>,火车拐弯时,车轮挤压内轨,内轨反作用于车轮的力的水平分量与F之差提供火车拐弯时所需的向心力.二、两种模型的应用例1 如图3所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块P靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块P恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)图3 图4【解析】此题属于“圆台转动类”,当小橡皮块P绕轴00'做匀速圆周运动时,小橡皮块P受到重力G、静摩擦力f和支持力N的作用,如图4所示.其中“恰好”是隐含条件,即重力与最大静摩擦力平衡f max=G,μN=mg列出圆周运动方程N=mω2min R联立解得ωmin=例2 在半径为R的半球形碗的光滑内面,恰好有一质量为m的小球在距碗底高为H处与碗保持相对静止,如图5所示.则碗必以多大的角速度绕竖直轴在水平面内匀速转动?图5【解析】此题属于“火车拐弯类”,当小球做匀速圆周运动时,其受到重力G和支持力F的作用,如图5所示.隐含条件一是小球与碗具有相同的角速度ω,隐合条件二是小球做匀速圆周运动的半径r=Rcosθ.列出圆周运动方程Fcosθ=mω2Rcosθ竖直方向上由平衡条件有Fsinθ-mg=0其中 sinθ=联立解得ω=例3 长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?图6【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示图7隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).列出圆周运动方程 F+Fcosθ=mω2r由平衡条件有 Fsinθ-mg=0其中 cosθ=,sinθ=联立解得ω=练习1,如图所示,半径为R半球形碗表面光滑,一质量为m小球以角速度ω在碗一做匀速,求小球所做轨道平面离碗底距离h.如图所示,用长为L细线拴一个质量为m小球,使小球在做匀速,细线与竖直方向间夹角为θ,求:(1)细线拉力F;(2)小球周期T3、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)图84、如图9所示,长度分别为l1和l2两细绳OA、OB,一端系在竖直杆,另一端系上一质量为m的小球,两细绳OA和OB同时拉直时,与竖直杆的夹角分别为30°、45°.则杆以多大角速度转动时,两细绳同时且始终拉直?绳模型底部速度杆模型底部速度例题解析轻绳模型例题1、用细绳拴着质量为m的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是 [ ]A.小球过最高点时,绳子中张力可以为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度是D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反2、质量为m 的小球用一条绳子系着在竖直平面内做圆周运动,小球到达最低点和最高点时,绳子所受拉力之差是: [ ]A、6mgB、5mgC、2mgD、条件不充分,不能确定3、小球在竖直放置的光滑圆轨道内做圆周运动,圆环半径为r,且刚能通过最高点,则球在最低点时的速度和对圆轨道的压力分别为: [ ]A、4rg,16mgB、,5mgC、2gr,5mgD、,6mg4、图所示,在倾角α=30°的光滑斜面上,有一根长L=0.8m的细绳:一端固定在O点,另一端系一质量为m=0.2kg的小球,沿斜面作圆周运动,试计算:(1)小球通过最高点A的最小速度。

圆周运动

圆周运动

v F合 = ma = m r
2
结合匀速圆周运的特点列方程求解. 结合匀速圆周运的特点列方程求解.
可绕固定的竖直轴O转动的水平转台 上,有一质量为m的物块A,它与转 台表面之间的动摩擦因数为,物块A 通过一根线拴在轴O上,开始时,将 线拉直,物体A处在图位置,令平台 的转动角速度ω由零起逐渐增大,在 连线断裂以前 A.连线对A的拉力有可能等于零 B.平台作用于A的摩擦力不可能等于 零 C.平台作用于物块A的摩擦力有可能 沿半径指向外侧
a1=f/m1=m2 ω 2(l 1+ l 2)/m1 B球加速度 a2=f/m2= ω 2(l 1+ l 2) 球加速度
B f
l2
f A
l1
O′ T O
如图,细绳一端系着质量M= M=0 例6.如图,细绳一端系着质量M=0.6千克的物 静止在水平面, 体 , 静止在水平面 , 另一端通过光滑小孔吊着 质量m= 千克的物体, m=0 质量 m=0.3 千克的物体 , M 的中点与圆孔距离 并知M和水平面的最大静摩擦力为2 为0.2米,并知M和水平面的最大静摩擦力为2N 现使此平面绕中心轴线转动,问角速度ω ,现使此平面绕中心轴线转动,问角速度ω在什 么范围m会处于静止状态?(g取10米 么范围m会处于静止状态?(g取10米/秒2)
如下图所示为一辆自行车的局部结构示意图, 例3.如下图所示为一辆自行车的局部结构示意图,设 连接脚踏板的连杆长为L 由脚踏板带动半径为r 连接脚踏板的连杆长为L1, 由脚踏板带动半径为r1的 大轮盘(牙盘),通过链条与半径为r2的小轮盘(飞 大轮盘( 牙盘) 通过链条与半径为r 的小轮盘( 连接,小轮盘带动半径为R的后轮转动, 轮 ) 连接 , 小轮盘带动半径为 R 的后轮转动 , 使自行 18cm, 12cm, 车 在 水 平 路 面 上 匀 速 前 进 . L1=18cm, r1= 12cm, cm, R=30cm,为了维持自行车以 v=3m/s的速度在 30cm, 为了维持自行车以v= r2=6cm , R=30cm, 为了维持自行车以 v=3m/s 的速度在 水平路面上匀速前进. 求人每分钟要踩脚踏板几圈? 水平路面上匀速前进 . 求人每分钟要踩脚踏板几圈 ? 5rad/s

圆周运动——精选推荐

圆周运动——精选推荐

圆周运动与平抛运动类似,圆周运动也是最为典型的曲线运动之⼀。

我们来分析圆周运动都有哪些特点?圆周运动的概念质点在以某点为圆⼼半径为r的圆周上运动时,即其轨迹是圆周的运动叫圆周运动。

在运动过程中速率的⼤⼩维持不变⽽仅仅是⽅向变化,这样的圆周运动称之为匀速圆周运动。

严格来说,匀速圆周运动应该叫做匀速率圆周运动。

因为其速度并⾮“均匀不变”的,速度是⽮量,其⼤⼩速率不变。

在圆周运动的过程中,速度⼤⼩不变,其⽅向时刻发⽣变化。

圆周运动是⼀种最常见的曲线运动。

例如电动机转⼦、车轮、⽪带轮等都作圆周运动。

圆周运动分为,匀速圆周运动和变速圆周运动。

变速圆周运动的代表是:竖直平⾯内绳或杆转动⼩球、竖直平⾯内的圆锥摆运动等。

在讲解机械振动的时候,我们研究的单摆其实在做的就是⾮匀速的圆周运动(往复性质)。

从运动性质上来说,匀速圆周运动是变速运动(v⽅向时刻在变),⽽且是变加速运动(a⽅向时刻在变)。

请同学们注意,只要物体做圆周运动,那么必然受⼒不平衡,必须有外⼒提供向⼼⼒。

描述匀速圆周运动的物理量描述匀速圆周运动的物理量有很多,包括线速度v、⾓速度ω、周期T、频率f、转速n、向⼼加速度a、向⼼⼒F等等。

转速n的单位是r/s(转每秒)或r/min(转每分),注意区分r/s和rad/s。

凡是直接⽤⽪带传动(包括链条传动、摩擦传动)的两个轮⼦,两轮边缘上各点的线速度⼤⼩相等;凡是同⼀个轮轴上(各个轮都绕同⼀根轴同步转动)的各点⾓速度相等(轴上的点除外)。

圆周运动向⼼⼒和向⼼加速度向⼼加速度的定义a = v^2/r;同时也可证明a =(2π)^2r/T^2;向⼼⼒的定义F = mv^2/r;也可表⽰为F=mω^2r(v是线速度,ω是⾓速度)⽜顿第⼆定律在圆周运动中的应⽤(1)做匀速圆周运动物体所受的合⼒为向⼼⼒。

“向⼼⼒”是⼀种效果⼒。

可以是⼀个⼒,也可以是⼏个⼒的合⼒,只要其最终效果是使物体做匀速圆周运动的,都可以作为向⼼⼒。

力学中的圆周运动

力学中的圆周运动

力学中的圆周运动圆周运动(Circular Motion)是力学中一种重要的运动形式,广泛应用于各个领域,与人们的日常生活息息相关。

本文将从基本概念、运动规律以及实际应用等方面介绍力学中的圆周运动。

一、基本概念圆周运动是物体在半径为r的圆周轨道上运动的过程。

在圆周运动中,物体保持一定的速度,并不断改变运动方向。

根据力学定律,物体沿圆周运动所受的向心力可以计算为Fc = mv²/r,其中Fc为向心力,m为物体的质量,v为物体的速度,r为圆周半径。

二、运动规律在圆周运动中,可以根据运动规律来计算与描述物体的运动状态。

1. 圆周运动的速度物体在圆周运动中的速度可以通过v = ωr来计算,其中v为线速度,ω为角速度,r为圆周半径。

角速度可以表示物体单位时间内绕圆周运动的角度变化量。

2. 圆周运动的加速度物体在圆周运动中的加速度可以通过a = αr来计算,其中a为加速度,α为角加速度,r为圆周半径。

角加速度可以表示物体单位时间内角速度的变化量。

3. 圆周运动的周期与频率圆周运动的周期T是一个物体绕圆周一周所需的时间,可以通过T = 2π/ω来计算,其中π为圆周率。

频率f是圆周运动单位时间内的循环次数,可以通过f = 1/T来计算。

三、实际应用圆周运动在生活中有着广泛的应用,以下是一些实际场景的例子:1. 环形公路上的车辆行驶当车辆在环形公路上行驶时,车辆会保持一定的速度并沿着圆周轨道行驶,这就是圆周运动的一个实际应用。

向心力将车辆约束在圆周轨道上,保证了行驶的稳定性。

2. 标注行进半径的扭转开关在很多扭转开关上,设计师会标注行进半径,这是因为该开关需要旋转一定角度才能开启或关闭电路。

这个旋转的过程就是一个圆周运动,通过设定行进半径可以控制旋转的灵敏度。

3. 悬挂球体的运动当有一个绳子固定在某一点,下面悬挂着一个球体时,球体做圆周运动。

绳子提供了向心力,使球体沿着圆周轨道运动。

总结:力学中的圆周运动是一种重要的运动形式,涉及到很多基本概念和运动规律。

圆周运动

圆周运动

单位: m / s
方向: 沿质点所在圆弧处的切线方向
物理意义:描述质点沿圆周运动的快慢.
当选取的时间△t很小很小时(趋近零).弧 长就等于物体在t时刻的位移,定义式中的v, 就是直线运动中学过的瞬时速度了.
定义: 半径转过的角度与所用时间的 比值 大小:
2、角速度
t

物理意义:描述物体绕圆心转动 的快慢 弧长与弧度的关系: 单位:
【解析】 球做平抛运动的时间为
t=
2h g
球落到B点时水平位移为R,则球抛出时的速度 R 为: v= =R 2h
要保证球落到B点,需在球做平抛运动的时间 内使圆板转动n圈(n=1,2,……),则
2 t=n
t
圆板转动的角速度为
ω=n
2 t
=2π n
g 2h
=nπ
2g h
圆周运动的周 期性引起的多 解问题
例题5、雨伞边缘半径为r,且高出水平地面的距离为h,如 图所示,若雨伞以角速度ω匀速旋转,使雨滴自雨伞边缘水 平飞出后在地面上形成一个大圆圈,则此圆圈的半径R为多 大?
r h
y
r
v h Or R s
x
z
提示: 雨滴自雨伞边缘水平飞出时,具有与 雨伞边缘相同的速度,离开雨伞后在重力作 用下做平抛运动。 解析: 作出雨滴飞出后的三维示意图,如图 所示。 雨滴飞出的速度大小为 v=rω, 在竖直方向上有 h=gt2/2 在水平方向上有 s=vt, 又由几何关系可得 R r 2 s2 联立以上各式可解得雨滴在地面上形成的大 圆圈的半径
r r r t t
理解
v r
一定时,v r 1 v一定时, r
(2)线速度与周期、频率的关系

圆周运动

圆周运动
圆周运动
圆 周 运 动
圆周运动是一种常见的运动
圆周运动
一、圆周运动的概念
物体的运动路线(轨迹)是圆周(或圆 周的一部分)的运动叫圆周运动。
圆周运动
二、生活中的圆周运动
砂轮上每一点在转动过程中都做圆周运动
圆周运动
二、生活中的圆周运动
圆周运动
二、生活中的圆周运动
圆周运动
二、生活中的圆周运动
圆周运动
A
O
或r/min
1 n T
圆周运动
四、描述圆周运动快慢各量的关系
1、线速度与周期
A r
O
l v t
若t T , l 2r
2r v T
圆周运动
四、描述圆周运动快慢各量的关系
2、角速度与周期
A r
O
t
若t T , 2
2 T
圆周运动
四、描述圆周运动快慢各量的关系
G
G
圆周运动
六、匀速圆周运动的合外力 2、合外力的大小
v a r
2
v2 F ma m r
(1)
又v r
2r 又v T
F mr
2
(2)
(3)
4 r F m 2 T
2
圆周运动
六、匀速圆周运动的合外力 3、感受向心力的大小
(1)手握绳结A,每秒1周。感 受绳子拉力大小。 (2)手握绳结B,每秒1周。感 受绳子拉力大小。 (3)手握绳结A,每秒2周。感 受绳子拉力大小。
圆周运动
三、描述圆周运动快慢的物理量
3、周期
物体做圆周运动的快 慢还可以用它绕圆周运 动一周的时间表示。
物体沿圆周运动,它 绕圆周运动一周的时间 叫做它的周期T。

生活中圆周运动

生活中圆周运动

03
通过微积分可以计算圆周运动的轨矢量运算在处理复杂问题时的作用
描述圆周运动的物体的位置和速度
矢量运算可以用来描述圆周运动的物体的位置和速度,通过矢量的加法和减法可以得到物体在不 同时刻的位置和速度。
分析圆周运动的合成和分解
通过矢量运算可以分析圆周运动的合成和分解,如将复杂的圆周运动分解为简单的匀速直线运动 和匀变速直线运动的合成。
03
钟表、指南针等日常用品
钟表指针的旋转、指南针的指向都涉及圆周运动,这些日常用品的设计
和使用都离不开圆周运动原理。
促进科技发展,推动社会进步
航天器轨道设计
航天器的轨道设计需要精确计算和控制圆周运动的参数, 以确保航天器能够按照预定轨道稳定运行,这对于人类的 太空探索和科学研究具有重要意义。
精密机械制造
三角函数在圆周运动中应用
1 2
描述匀速圆周运动的物体的位置
三角函数可以用来描述匀速圆周运动的物体在某 个时刻的位置,通过角度和半径的关系,可以准 确地确定物体的坐标。
分析圆周运动的周期性
三角函数具有周期性,因此可以用来分析圆周运 动的周期性,如转速、周期、频率等。
3
计算向心加速度和向心力
在向心加速度和向心力的计算中,需要用到三角 函数的导数和积分,以及三角函数之间的关系, 如正弦定理、余弦定理等。
波动可以通过不同的介质进行传播,如固体、液体和气体。在传播过程中,波动会遵循一定的传播规 律,如反射、折射和衍射等。此外,波动的传播速度会受到介质性质的影响。
曲线运动在自然界和人类活动中的普遍性
自然界中的曲线运动
地球围绕太阳公转、月亮围绕地球旋转 、行星的自转等都是自然界中的曲线运 动现象。这些运动遵循着天体物理学的 规律,呈现出周期性和稳定性。

圆周运动的基本概念和特征

圆周运动的基本概念和特征

圆周运动的基本概念和特征圆周运动是物体围绕某个中心点做圆周轨迹运动的现象。

它是物体在一定力的作用下,按照圆形轨迹运动的一种形式。

本文将从圆周运动的基本概念和特征两个方面进行论述。

一、圆周运动的基本概念圆周运动是指物体沿着一条圆形轨迹做运动的现象。

在圆周运动中,物体受到向心力的作用,保持一定的半径和作用力大小的条件下,物体将围绕某个中心点做匀速运动。

圆周运动的基本概念包括以下几个要素:1.中心点:圆周运动的中心点是物体运动的轨迹的中心点,它是一个固定的位置。

2.半径:圆周运动的半径是指从中心点到圆周上一点的距离,它决定了物体围绕中心点的轨迹大小。

3.向心力:圆周运动的物体受到的向心力是使物体做圆周运动的重要力量,它的方向始终指向圆心。

4.角速度:角速度是一个描述物体在圆周运动中快慢的物理量,用符号ω表示,它的大小等于单位时间内物体在圆周上扫过的角度。

以上是圆周运动的基本概念,下面将介绍圆周运动的特征。

二、圆周运动的特征圆周运动具有以下几个特征,它们是通过观察和实验总结出来的:1.匀速运动:在不考虑外力干扰的情况下,圆周运动一般是匀速的,即物体在圆周上的运动速度大小是恒定的。

这是由向心力的作用和物体距离圆心的大小决定的。

2.力学平衡:圆周运动中,物体所受的向心力和离心力相互平衡,使物体在圆轨道上保持平衡状态。

向心力是向圆心方向的力,它的大小与物体的质量和半径有关。

3.加速度方向:物体在圆周运动中的加速度方向始终指向圆心。

由于向心力的作用,物体沿圆周方向的速度不断改变,而加速度的方向则始终指向中心点。

4.随角度变化的速度:圆周运动中,物体在不同的角度位置上的速度是不同的。

在同一圆周上,离圆心较近的点速度较小,离圆心较远的点速度较大。

综上所述,圆周运动是物体围绕中心点做圆形轨迹运动的现象。

它具有匀速运动、力学平衡、加速度方向和随角度变化的速度等特征。

通过深入了解圆周运动的基本概念和特征,我们可以更好地理解物理世界中的运动规律。

(完整版)圆周运动讲义

(完整版)圆周运动讲义

圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。

匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。

2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。

实际上就是该点的瞬时速度。

3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。

③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。

4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。

在国际单位制中,单位是秒(s )。

匀速圆周运动是一种周期性的运动。

②频率f :每秒钟完成圆周运动的转数。

在国际单位制中,单位是赫兹(Hz )。

③转速n:单位时间内做匀速圆周运动的物体转过的转数。

在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。

5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。

描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。

向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。

做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。

(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。

圆周运动公式有哪些

圆周运动公式有哪些

圆周运动公式有哪些
质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫圆周运动。

下面是高中物理中关于圆周运动的公式整理,一起来看吧!
1圆周运动公式
1、v(线速度)=S/t=2πr/T=ωr=2πrf (S代表弧长,t 代表时间,r代表半径) 。

2、ω(角速度)=θ/t=2π/T=2πn (θ表示角度或者弧度)。

3、T(周期)=2πr/v=2π/ω 。

4、n(转速)=1/T=v/2πr=ω/2π 。

5、Fn(向心力)
=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 。

6、an(向心加速度)
=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 。

7、vmax(过最高点时的最小速度)=√gr (无杆支撑)。

2圆周运动的特点
匀速圆周运动的特点:轨迹是圆,角速度,周期,线速度的大小(注:因为线速度是矢量,"线速度"大小是不变的,而方向时时在变化)和向心加速度的大小不变,且向心加速度方向总是指向圆心。

线速度定义:质点沿圆周运动通过的弧长ΔL与所用的时间Δt的比值叫做线速度,或者角速度与半径的乘积。

线速度的物理意义:它是描述质点沿圆周运动速度的矢量。

角速度的定义:半径转过的弧度(弧度制:360°=2π)与所用时间t的比值。

(匀速圆周运动中角速度恒定)
周期的定义:物体做匀速圆周运动旋转一周所需的时间。

转速的定义:物体做匀速圆周运动时,单位时间内旋转的圈数。

高中物理--圆周运动

高中物理--圆周运动

一、描述圆周运动的物理量及其相互关系 1、线速度⑴定义:质点做圆周运动通过的弧长s 和所用时间t 的比值叫做线速度.⑵大小:2s rv t T π==单位为m/s.⑶方向:某点线速度的方向即为该点的切线方向.(与半径垂直) ⑷物理意义:描述质点沿圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,方向时刻改变。

2、角速度⑴定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度 跟所用时间t 的比值,就是质点运动的角速度.⑵大小: 单位:rad/s. ⑶物理意义:描述质点绕圆心转动的快慢.注:对于匀速圆周运动,角速度大小不变。

说明:匀速圆周运动中有两个结论:⑴同一转动圆盘(或物体)上的各点角速度相同.⑵不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等。

3、周期、频率、转速⑴周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期。

用T 表示,单位为s 。

⑵频率:做匀速圆周运动的物体在1 s 内转的圈数叫做频率。

用f 表示,其单位为转/秒(或赫兹),符号为r/s(或Hz)。

⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢。

转速是指物体单位时间所转过的圈数,常用符号n 表示,转速的单位为转/秒,符号是r/s ,或转/分(r/min)。

4、向心加速度⑴定义:做圆周运动的物体,指向圆心的加速度称为向心加速度. ⑵大小:ϕ2t T ϕπω==⑶方向:沿半径指向圆心.⑷意义:向心加速度的大小表示速度方向改变的快慢.说明:①向心加速度总指向圆心,方向始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小。

②向心加速度方向时刻变化,故匀速圆周运动是一种加速度变化的变加速曲线运动(或称非匀变速曲线运动).③向心加速度不一定是物体做圆周运动的实际加速度。

对于匀速圆周运动,其所受的合外力就是向心力,只产生向心加速度,因而匀速圆周运动的向心加速度是其实际加速度。

圆周运动

圆周运动

圆周运动一、圆周运动的描述1、圆周运动:指物体沿着圆周的运动,即物体运动的轨迹是圆;(1)圆周运动是个变速运动,位移、速度方向时刻在改变;(2)圆周运动的原因:受到合力与速度方向不再一条直线上,沿垂直速度方向的力改变其方向,沿速度方向改变大小;圆周运动方向改变的程度一样,所以垂直于速度方向上的力,大小不变,方向沿半径指向圆心,改变速度方向程度一样,而言速度方向里随意变化;(3)圆周运动是个非匀变速曲线运动;因为其受到的力时刻在改变着;2、线速度:物体沿圆周运动时在△t时间内通过的弧长为△s,那么它们的比值就是物体做圆周运动的线速度,用v表示,则v=△s/△t;(1)物理意义:它是表述物体做圆周运动的运动快慢的物理量,只是以弧长变化角度来描述的;(2)线速度有平均线速度和瞬时线速度之分:当△t较大则表示平均线速度,当△t足够小时得到的就是瞬时线速度;(3)线速度是个矢量:大小为v=△s/△t,单位为m/s;方向是物体在圆周运动某点的线速度方向为该点的切线方向,即线速度方向一定是垂直于圆周的半径,和圆弧相切;3、匀速圆周运动:线速度的大小处处相等的圆周运动就是匀速圆周运动;(1)匀速圆周运动是一种变速运动,速度大小不变,方向时刻在改变,这里的“匀速”指的是其速率不变;(2)有曲线运动的原理可得,匀速圆周运动物体受到的合外力,时刻都是沿圆周的半径方向,指向圆心,方向不变,去改变物体运动的方向,速度反方向上没有分力所以速率不变;(3)匀速圆周运动是非匀变速曲线运动,合外力时刻改变,速度的变化量时刻在改变,有匀速圆周运动受力特点可得,速度变化量的大小不变,方向沿半径方向指向圆心时刻在改变。

4、角速度:物体在△t时间内有A点运动到B,半径OA在这段时间内转到半径OB,其角度变化△Q,他与时间△t之间的比值叫做物体圆周运动的角速度,用w来表示,即w= (1)物理意义:描述物体圆周运动的转动快慢的物理量,只是在转动角度方面描述;(2)角速度是个矢量:大小为△Q/△t,单位为弧度每秒,符号rad/s,弧度表示的是角度的大小,其大小为弧长△s比上半径R;方向是垂直于圆面(右手定则判断);(3)匀速圆周运动:是角速度不变的圆周运动,注意匀速圆周运动线速度时刻在改变;5、周期T、频率f和转速n(1)周期T:做圆周运动的物体,转过一周所用的时间就是匀速圆周运动的周期;单位s, (2)频率f:做圆周运动的物体,在1s内转过的圈数叫做频率,用f表示,单位1Hz=1/s;(3)转速n:做圆周运动的物体,在单位时间内沿圆周绕圆心转过的圈数叫做转数,用n表述,单位为r/s或r/min;①他们都是表述物体圆周运动快慢的物理量,只是在转过的圈数上来不同定义;②匀速圆周运动的周期、频率和转速都是固定不变的;二、描述圆周运动各种物理量间的关系(匀速圆周运动)1、线速度和角速度间关系:v =rw 或w=v/r(推到以整个圆来推导);由此可得:(1)半径相同时:线速度大的角速度也大,角速度大的线速度也大,且成正比;如图(一条直线,x轴为w,y周围v);(2)当角速度相同时,半径大的线速度大且成正比(如图x轴r,y轴v);(3)当线速度相同时,半径大角速度小,半径小角速度大,且成反比(如图:当x周围1/r 时,y轴为w,是一条直线;当x轴为r时,y轴为w时,是反比函数);2、线速度与周期的关系:v=2﹠r/T(推导过程一个周期来推到);由此可得只有当半径相同时,周期小的线速度大,当半径不同,周期小的线速度不一定大,所以线速度和周期表述圆周运动快慢是不一样的;3、角速度和周期关系:w=2﹠/T,(推导与前面一样);角速度和周期一定成反比,周期大的角速度一定小;所以周期和角速度描述匀速圆周运动快慢是一样的;4、w=2﹠fv=2﹠frf=nv=wr=2﹠/Tr=2﹠fr=2﹠nr三、常见的转动装置1、共轴转动:如图,物体在以同心的半径不同的圆盘上的运动;两盘转动方向相同;(1)当圆盘转动时由于是同一个圆盘,其不同半径上任意一点出的角速度相同,转动周期相同,都等于圆盘的转动周期和角速度;(2)线速度与半径成正比;2、皮带转动:如图,皮带套着两个圆盘转动过程;注意过程皮带不打滑,(1)在两轮的边缘上任意一定的线速度大小都相同,都等于皮带本身的线速度,原因是由于他们都是由皮带的转动所带动的;(2)两圆盘边缘角速度、周期根据其各自半径,和线速度计算即可;(3)同一个盘上,由于已知边缘线速度,再根据前面共轴转动过程求解即可;3、齿轮转动:如有图,两盘由于边缘齿轮相互作用而转动;两盘转动方向相反;具体原理同皮带转动情况一样处理;四、题型和练习:本节题型(1)匀速圆周运动概念的理解(2)描述匀速圆周运动物理量见关系的计算主要是三种转动装置应用,(3)有关匀速圆周运动的计算1、关于匀速圆周运动线速度、角速度、周期说法正确的是:A线速度大角速度一定大B线速度大周一一定小C角速度大的半径一定小D角速度大的周期一定小(D)2、质点匀速圆周运动则A在任何相等时间内,质点位移相等B任何相等时间内,质点通过路程都相等C任何相等时间内质点运动的平均速度都相等D任何相等时间内,链接质点和圆心的半径转过的角速度相等(BD)3、质点做匀速圆周运动,不变的物理量是A速度B速率C角速度D加速度(BC)4、如图皮带带动两个轮,a、b分别是两轮边缘的两点,c点在O1轮上,且有ra=2rb=2rc,则有A va=vb B wz=wb C va=vc D wa=wc (AD)5、如图BC两轮固定与同一转轴上,C轮半径为B轮半径的两倍,A、B两轮有一个皮带带着转动,且A轮半径是B轮的两倍,皮带不打滑,球A、B、C轮边缘上的a、b、c三点的角速度之比和线速度之比?6、设一个半径为R的圆盘水平放置,并绕其中心竖直方向的轴做匀速圆周运动;现有一小球在圆盘中央中心正上方高h处沿OB方向水平抛出,要使小球下落到B点,问盘转动的角速度和小球的水平速度各是多少?。

圆周运动相关知识点

圆周运动相关知识点

圆周运动相关知识点
圆周运动的相关知识点包括以下几个方面:
定义:质点在以某点为圆心、以某距离为半径的圆周上运动,这种运动叫做圆周运动。

它是最常见的曲线运动之一,例如电动机转子、车轮、皮带轮等都作圆周运动。

分类:圆周运动根据速度是否变化可以分为匀速圆周运动和非匀速圆周运动。

匀速圆周运动是指速率不变的圆周运动,而非匀速圆周运动则是指速率变化的圆周运动。

描述:描述圆周运动常用的物理量有线速度、角速度、周期、转速等。

线速度表示质点沿圆周运动的快慢,方向为切线方向。

角速度表示质点绕圆心转动的快慢,单位是弧度每秒。

周期表示质点做一周运动所需的时间,单位是秒。

转速表示质点单位时间内转过的圈数,单位是转/秒或转/分。

向心力:在圆周运动中,向心力是一个重要的概念。

它是指使质点做圆周运动的力,提供质点做圆周运动的向心力。

向心力的大小与质点的质量、速度和半径有关,其方向始终指向圆心。

匀速圆周运动的特点:匀速圆周运动的速度大小不变,方向时刻变化;加速度大小不变,方向始终指向圆心,是变加速运动;角速度不变;周期和转速不变。

实际应用:在现实生活中,很多设备和系统都涉及到圆周运动,
例如电动机转子、车轮、皮带轮、离心机、电风扇等。

了解圆周运动的知识可以帮助我们更好地理解这些设备和系统的原理和性能。

总之,圆周运动是曲线运动的一种重要形式,涉及到多个物理量,需要掌握其定义、描述、计算方法和应用场景等知识点。

大学物理圆周运动

大学物理圆周运动

圆周运动的分类
总结词
圆周运动可以根据不同的分类标准进行分类,如匀速圆周运动和变速圆周运动。
详细描述
匀速圆周运动是指物体在转动过程中角速度保持不变的运动,其特点是线速度的 大小不变,只有方向改变。变速圆周运动是指物体在转动过程中角速度发生变化 的运动,其特点是线速度的大小和方向都可能改变。
02
匀速圆周运动
ቤተ መጻሕፍቲ ባይዱ 匀速圆周运动的定义
总结词
匀速圆周运动是指物体沿着圆周路径做等速运动,即线速度大小恒定,方向时刻改变。
详细描述
匀速圆周运动是圆周运动的一种特殊形式,其特点是线速度的大小恒定,方向始终沿着圆周的切线方 向。匀速圆周运动中,物体的加速度大小恒定,方向始终指向圆心,即向心加速度的大小恒定,方向 始终与线速度垂直并指向圆心。
圆周运动的描述
总结词
圆周运动可以通过角速度、角加速度、转速等物理量进行描述。
详细描述
角速度是描述圆周运动快慢的物理量,单位为弧度/秒,其值等于物体转动一周所需的时间。角加速度是描述圆 周运动加速度的物理量,单位为弧度/秒²,表示物体转动过程中角速度的变化率。转速是描述圆周运动频率的物 理量,单位为转/分,表示物体每分钟转动的圈数。
03
非匀速圆周运动
非匀速圆周运动的定义
特点
加速度不指向圆心,存在 切向加速度和法向加速度 。
非匀速圆周运动
与匀速圆周运动相对,速 度大小或方向发生变化的 圆周运动。
切向加速度
改变速度大小,不改变速 度方向。
法向加速度
改变速度方向,不改变速 度大小。
非匀速圆周运动的描述
描述参数
线速度、角速度、周期、频率、向心加速 度等。
离心力的计算

圆周运动

圆周运动

圆周运动一、 线速度1.定义:物体做圆周运动通过的弧长与通过这段弧长所用时间的比值。

2.定义式:v =ΔsΔt。

3.标、矢性:线速度是矢量,方向与圆弧相切,与半径垂直。

4.匀速圆周运动(1)定义:沿着圆周,并且线速度的大小处处相等的运动。

(2)性质:线速度的方向是时刻变化的,所以是一种变速运动。

二、 角速度1.定义:连接物体与圆心的半径转过的角度与转过这一角度所用时间的比值。

2.定义式:ω=ΔθΔt。

3.单位:弧度每秒,符号是rad/s 或rad·s -1。

4.匀速圆周运动的角速度:匀速圆周运动是角速度不变的圆周运动。

三、 线速度与角速度的关系1.两者关系:在圆周运动中,线速度的大小等于角速度大小与半径的乘积。

2.关系式:v =ωr 。

1、甲、乙两同学都在参加体育锻炼,甲沿着半径为R 的圆周跑道匀速跑步,乙沿着半径为2R 的圆周跑道匀速跑步。

在相同的时间内,甲、乙各自跑了一圈,他们的角速度大小分别是ω1、ω2。

则( )A .ω1>ω2B .ω1<ω2C .ω1=ω2D .无法确定2、一质点做匀速圆周运动,其线速度大小为4 m/s ,转动周期为2 s ,则不正确的是( ) A .角速度为0.5 rad/s B .转速为0.5 r/sC .运动轨迹的半径为1.27 mD .频率为0.5 Hz3、甲、乙两物体都做匀速圆周运动,则下列说法中正确的是( ) A .若它们的线速度相等,角速度也一定相等 B .若它们的角速度相等,线速度也一定相等 C .若它们的周期相等,角速度也一定相等 D1、图5-4-5所示为皮带传动装置,皮带轮为O 、O ′,R B =12R A ,R C =23R A ,当皮带轮匀速转动时,皮带与皮带轮之间不打滑,求A 、B 、C 三点的角速度之比、线速度之比、周期之比。

2、如图5-4-7所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r 1、r 2、r 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动
【学习重点】
1、理解线速度、角速度和周期
2、什么是匀速圆周运动
3、线速度、角速度及周期之间的关系
【学习难点】
对匀速圆周运动是变速运动的理解
【自主预习案】
一、1.物体沿着_______运动,并且___________,这种运动叫做匀速圆周运动。

2.____________________________叫线速度。

3.定义式为:_______ ,单位:_______.,方向:________________
4.在匀速圆周运动中,连接运动质点和圆心的连线扫过角度的快慢,就是质点的角速度。

定义式:___________________,单位:..符号:_____
5.周期T: _____________________________
6.转速:______________________________
7.线速度与角速度的关系式:________________________________
8.匀速圆周运动是一种_______ 运动,匀速是指_________不变,或_______ 不变。

【合作探究案】----质疑解疑、合作探究
探究一、阅读全文,举出生活中的有关圆周运动的例子,总结描述圆周运动的快慢有几种方法?
【跟踪演练1】对于匀速圆周运动,下列说法中错误的是( )
A线速度不变 B.角速度不变 C.周期不变 D.转速不变
【跟踪演练2】下列关于匀速圆周运动的说法中正确的是()
A.匀速圆周运动是一种匀速运动
B.任意相等的时间里通过的位移相等
C.任意相等的时间里通过的路程相等
D.做匀速圆周运动的物体的加速度为零
探究二:线速度、角速度、周期之间的关系
思考:一物体做半径为r的匀速圆周运动时则:
1.它运动一周所用的时间叫,用T表示。

它在周期T内转过的弧长为,由此可知它的线速度为。

2.一个周期T内转过的角度为,物体的角速度为。

3.试推导出结论:v=ωr
讨论:(1)当一定时,ω与r成
(2)当一定时,v与r成
(3)当一定时,v与ω成
练习1:分析下图中,A、B两点的线速度有什么关系?规律?
练习2:分析右图情况下,轮上各点的角速度有什么关系?规律?
练习3:有两个走时准确的始终,分针的长度分别是8cm和10cm,
历经15分钟,问两分针的针尖位置的平均线速度是多大?
【当堂检测】----有效训练、反馈矫正
1、下列关于匀速圆周运动的说法中,正确的是( )
A .是速度不变的运动
B .是角速度不变的运动
C .是角速度不断变化的运动
D .是相对圆心位移不变的运动
2. 关于匀速圆周运动的判断,下列说法中正确的是 A.角速度不变 B.线速度不变 C.向心加速度不变 D 周期不变
3 一个质点做匀速圆周运动时,它在任意相等的时间内( )
A 通过的弧长相等;
B 通过的位移相等
C 转过的角度相等;
D 速度的变化相等.
4、一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是( )
A .轨道半径越大线速度越大
B .轨道半径越大线速度越小
C .轨道半径越大周期越大
D .轨道半径越大周期越小
5. 关于角速度和线速度,说法正确的是
A 半径一定,角速度与线速度成反比
B 半径一定,角速度与线速度成正比
C .线速度一定,角速度与半径成正比
D .角速度一定,线速度与半径成反比 6.一个大钟的秒针长20cm,则针尖的线速度是 m/s,分针与秒针从某次重合到下次重合
的时间为 S.
7.A 、B 两质点分别做匀速圆周运动,在相同时间内,它们通过的弧长之比sA ∶sB =2∶3, 而转过的角度之比φA ∶φB =32,则它们的周期之比TA ∶TB = ;角速度之比 ωA ∶ωB = ;线速度之比vA ∶vB = ,半径之比RA ∶RB = .
8.如右上图所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则:a 、b 、c 、d 四点中,哪些点的线速度大小相等?这几个点的角速度之比是多少?哪些点的角速度相等?这几个点的线速度大小之比是多少?a 、b 、c 、d 四点的角速度之比是多少?线速度大小之比是多少?
a
c d o
b。

相关文档
最新文档