复变函数目标检测练习册
复变函数单元测题集
第一章 复数与复变函数 测试题1一、单项选择:1、),1(22i z -=则150100++z z 的值( )。
A 、i - B 、i C 、1 D 、1- 2、设复数z 满足,3)2arg(π=+z ,65)2arg(π=-z 那么=z ( ) A 、i 31+- B 、i +-3 C 、i 2321+-D 、i 2123+- 3、集合},10{<<=z z D 则D 是( )A 、无界域B 、多连域C 、单连域D 、闭区域4、下列方程所表示的曲线中,( )是椭圆A 、522=++-z zB 、211=+-z z C 、1Re =+z z D 、2Re 2=z 5、=--→0Im Im limz z z z zz ( )A 、iB 、i -C 、0D 、不存在二、填空题1、 设2512)42()1)(23(i i i i z +++=,则=z 。
2、 已知方程i y i x i 31)53()21(-=-++,则=x =y 。
3、 已知iz 312+-=,则z 的辐角主值是 。
4、 满足不等式210<++<i z 的集合是 。
5、 映射zi+=1ω将圆周422=+y x 映成ω平面上 。
三、求满足下列条件的点的存在范围1、1Im 2≤z 2、411<++-z z四、求复数)1(11≠-+=z zzω的实部、虚部和模。
五、若θcos 21=+-z z ,求证θn z z n n cos 2=+- 。
第一章 复数与复变函数 测试题2一、单项选择:1、当n 为3的倍数时,复数11[(1)][(122nnz =-+-的值( )。
A 、1-B 、1C 、2-D 、2 2、已知81()1i z i-=+则663322z z +-的值为( ) A 、i - B 、1 C 、i D 、1-3、方程2Re 1z =所代表的曲线是( )A 、圆周B 、椭圆C 、双曲线D 、抛物线4、下列函数中,都有(0)0f =。
复变函数1到5章测试题及答案
第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。
复变函数练习册(全套)
第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数测试题与答案
复变函数测验题第一章复数与复变函数一、选择题1.当z 11ii时,100 z z75 50z 的值等于()(A)i(B)i (C)1 (D)12.设复数z满足arc(z 2) ,35arc(z 2) ,那么z ()61 3(A) 1 3i (B) 3 i (C)i2 23 1(D)i2 23.复数z tan i ( ) 的三角表示式是()23 3(A))]sec [cos( ) i sin( (B)sec [cos( ) i sin( )]2 2 2 23 3(C))]sec [cos( ) i sin( (D)sec [cos( ) i sin( )]2 2 2 2 4.若z为非零复数,则 2 z2z 与2zz 的关系是()2 2(A)z z 2zz2 2(B)z z 2zz2 2(C)z z 2zz(D)不能比较大小5.设x, y 为实数,z1 x 11 yi, z x 11 yi 且有z1 z 12,则动点(x, y)2 2的轨迹是()(A)圆(B)椭圆(C)双曲线(D)抛物线6.一个向量顺时针旋转,向右平移3个单位,再向下平移1个单位后对应的复数为31 3i ,则原向量对应的复数是()(A)2(B)1 3i (C) 3 i (D) 3 i1复变函数测验题7.使得22 zz 成立的复数z是()(A)不存在的(B)唯一的(C)纯虚数(D)实数8.设z为复数,则方程z z 2 i 的解是()3(A)i43(B)i43(C)i43(D)i4z i9.满足不等式2z i的所有点z构成的集合是()(A)有界区域(B)无界区域(C)有界闭区域(D)无界闭区域10.方程z 2 3i 2 所代表的曲线是()(A)中心为2 3i ,半径为 2 的圆周(B)中心为 2 3i ,半径为2的圆周(C)中心为 2 3i ,半径为 2 的圆周(D)中心为2 3i ,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()z 1(A)2z 2(B)z 3 z 3 4z a(C) 1 ( a 1)1 az(D)z z az a z aa c 0 (c 0)12.设( ) 1 , 1 2 3i ,z 5 i,f ,则f (z ) ()z z z 1 z2 2(A) 4 4i (B)4 4i (C)4 4i (D) 4 4i13.Im( z) Im(limx xz zz0 )()(A)等于i (B)等于i (C)等于0 (D)不存在14.函数f (z) u( x, y) iv( x, y) 在点z0 x iy 处连续的充要条件是()0 0(A)u( x, y)在(x0 , y ) 处连续(B)v(x, y) 在( x0 , y0 ) 处连续(C)u( x, y)和v( x, y) 在( x0 , y0 ) 处连续(D)u( x, y) v( x, y) 在( x0 , y0 ) 处连续2复变函数测验题15.设z C 且z 1 ,则函数 f (z)2zzz1的最小值为()(A) 3 (B) 2 (C) 1 (D) 1二、填空题1.设(1 i)( 2i )(3 i)z ,则z (3i)(2 i )2.设z (2 3i)( 2 i) ,则a rg z3.设3z 5,a rg( z i ) ,则z44.复数(cos5(cos3iis in5sin32)2)的指数表示式为65.以方程z 7 15i的根的对应点为顶点的多边形的面积为6.不等式z 2 z 2 5 所表示的区域是曲线的内部2z 1 i7.方程1所表示曲线的直角坐标方程为2 (1 i)z8.方程z 1 2i z 2 i 所表示的曲线是连续点和的线段的垂直平分线9.对于映射iz2 y 2,圆周x ( 1) 1的像曲线为2 410.lim (1 z 2z )z 1 i三、若复数z满足zz (1 2i)z (1 2i )z 3 0 ,试求z 2 的取值范围.3复变函数测验题2四、设a0 ,在复数集C 中解方程z 2 z a.五、设复数z i ,试证z21 z是实数的充要条件为z 1 或I M (z) 0 .1 1六、对于映射z ) ,求出圆周z 4的像.(2 zz1 z七、试证1. 0 ( 0)2z2的充要条件为z1 z z z ;2 1 2z1 z k j k j n 2.0 ( 0, , , 1, 2, , ))j 的充要条件为z2z1 z2 z n z1 z2 z .n八、若lim ( ) 0f z Ax x ,则存在0 ,使得当10 z z 时有 f ( z) A .2 x y九、设z x iy,试证z x y2.十、设z x iy,试讨论下列函数的连续性:1.f2xy( z) 2 2x y, z 00, z 02.f3xy( z) 2 2x y, z 00, z 04复变函数测验题第二章解析函数一、选择题:1.函数2f 在点 z 0处是 ( )(z) 3 z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数 f (z)在点 z可导是 f ( z) 在点z 解析的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是 ( )(A )设 x, y 为实数,则 cos(xiy) 1(B )若 z是函数 f (z) 的奇点,则f (z) 在点 z 0 不可导(C )若 u, v 在区域 D 内满足柯西 - 黎曼方程,则 f (z) u iv 在 D 内解析(D )若 f (z) 在区域 D 内解析,则 if ( z) 在 D 内也解析 4.下列函数中,为解析函数的是 ( )22(A ) x y 2 x yi2(B ) xxyi2xx2(C ) 2( x 1) y i( y2 )(D ) x 3iy 32z5.函数 f (z)z Im( ) 在z 0 处的导数 ()(A )等于 0(B )等于 1(C )等于 1(D )不存在2xy yi yaxy x2226.若函数 f (z) x 2() 在复平面内处处解析,那么实常数a ( ) (A ) 0(B )1(C ) 2(D ) 27.如果 f (z) 在单位圆 z1 内处处为零,且 f (0)1,那么在 z1内 f (z)( )(A ) 0(B )1(C ) 1(D )任意常数8.设函数 f (z) 在区域 D 内有定义,则下列命题中,正确的是5复变函数测验题(A)若f ( z) 在D内是一常数,则 f (z) 在D内是一常数(B)若Re( f (z)) 在D内是一常数,则 f (z) 在D内是一常数(C)若f (z) 与f ( z) 在D内解析,则 f ( z) 在D内是一常数(D)若arg f (z) 在D内是一常数,则 f (z)在D 内是一常数9.设 2 2f ( z) x iy ,则f (1 i) ( )(A)2 (B)2i (C)1 i (D)2 2i10.ii 的主值为 ( )(A)0 (B)1 (C)e2 (D)e 211.ze 在复平面上( )(A)无可导点(B)有可导点,但不解析(C)有可导点,且在可导点集上解析(D)处处解析12.设f (z) sin z ,则下列命题中,不正确的是( )(A)f (z)在复平面上处处解析(B)f ( z) 以2为周期(C)iz e izef (z) (D)f (z) 是无界的213.设为任意实数,则 1 ( )(A)无定义(B)等于1(C)是复数,其实部等于 1 (D)是复数,其模等于1 14.下列数中,为实数的是( )(A)3(1 i) (B)cosi (C)l n i (D)3e2i15.设是复数,则( )(A)z 在复平面上处处解析(B)z的模为z(C)z 一般是多值函数(D)z的辐角为z的辐角的倍6复变函数测验题二、填空题1.设f (0) 1, f (0) 1 i ,则limz 0f(z)z12.设f (z) u iv 在区域D 内是解析的,如果u v是实常数,那么 f (z) 在D内是3.导函数u vf (z) i 在区域D 内解析的充要条件为x x4.设3 33 3 2 2f (z) x y ix y ,则f ( i )2 25.若解析函数 f (z) u iv 的实部 2 y2u x ,那么f (z)6.函数f (z) z Im( z) Re( z) 仅在点z处可导157.设f (z) z (1 i)z5,则方程 f (z) 0 的所有根为8.复数ii 的模为9.I m{ln( 3 4i )}z10.方程1 e 0的全部解为三、设 f (z) u(x, y) iv( x, y) 为z x iy 的解析函数,若记z z z z z z z z ww(z, z) u( , ) iv( , ) ,则02 2i 2 2i z.四、试证下列函数在z平面上解析,并分别求出其导数1.f ( z) cosx cosh y i sin x sinh y;x x2.f ( z) e (x c osy y s in y) ie ( y c osy ix sin y);7五、设w3 2zw e z 0 ,求dwdz,2dw2dz.六、设2xy (x iy), z 0f (z) 2 4 试证f (z) 在原点满足柯西-黎曼方程,但却不可导.x y0, z 0七、已知 2 y2u v x ,试确定解析函数 f (z) u iv .八、设s 和n为平面向量,将s按逆时针方向旋转即得n .如果f (z) u iv 为解析函数,2则有usvnu v, (n s与s n分别表示沿s , n 的方向导数).九、若函数 f (z) 在上半平面内解析,试证函数 f (z) 在下半平面内解析.十、解方程sin z i cosz 4i .8第三章复变函数的积分一、选择题:2 至1 i 的弧段,则1.设c为从原点沿y x(c2 ( ) x iy )dz1 5(A)i6 61 5(B)i6 61 5(C)i6 61 5(D)i6 6z2.设c为不经过点1 与1的正向简单闭曲线,则dz为( )2(z 1)(z 1) c(A)i2(B)i2(C)0 (D)(A)(B)(C) 都有可能sinz3.设c1 : z 1 为负向,c2 : z 3 正向,则dz2zc c1 c2()(A) 2 i (B)0(C)2i (D)4 icosz4.设c为正向圆周z 2 ,则dz2(1 z)c()(A)sin1 (B)sin1(C) 2 i sin1 (D)2 i sin15.设c为正向圆周13z cos1z 2z ,则dz22 (1 z)c( )(A)2i(3cos1 sin1) (B)0(C)6 i cos1 (D) 2 i sin1e6.设f ( z) d ,其中z 4 ,则f ( i)( )z 4(A) 2 i (B) 1 (C)2 i (D)17.设f (z) 在单连通域 B 内处处解析且不为零, c 为B 内任何一条简单闭曲线,则积分f (z) 2 f(z) c f (z)f(z)dz( )(A)于2 i (B)等于 2 i (C)等于0 (D)不能确定9复变函数测验题8.设c是从0到i1 的直线段,则积分2ze ()z dzz dzc(A)1e2(B)1e2e e(C) 1 i (D) 1 i2 2sin( z)42 y2 x9.设c为正向圆周 2 0x ,则dz2c z 1()2(A)i22(B) 2 i (C)0 (D)i210.设c为正向圆周z i 1, a i ,则cz c osz2(a i)dz( )(A)2 ie (B)2ei(C)0 (D)i cosi11.设f (z) 在区域D 内解析,c为D内任一条正向简单闭曲线,它的内部全属于 D .如果f 在c上的值为2,那么对c内任一点z0 , f (z0 ) ( )(z)(A)等于0 (B)等于1 (C)等于 2 (D)不能确定12.下列命题中,不正确的是( )(A)积分z a r1z adz的值与半径r(r 0) 的大小无关(B)( 2 2 ) 2x iy dz , 其中c为连接i 到i 的线段c(C)若在区域 D 内有f (z) g(z) ,则在D 内g (z)存在且解析(D)若f (z) 在0 z 1 内解析,且沿任何圆周 c : z r(0 r 1)的积分等于零,则f (z)在z 0处解析10复变函数测验题13 .设c为任意实常数,那么由调和函数 2 y2u x 确定的解析函数 f ( z) u iv 是( )2 (A) iz c2(B)iz ic2(C)z c2(D)z ic14.下列命题中,正确的是( )(A)设v1 ,v2 在区域D 内均为u的共轭调和函数,则必有v1 v2(B)解析函数的实部是虚部的共轭调和函数(C)若f (z) u iv 在区域D 内解析,则ux为D 内的调和函数(D)以调和函数为实部与虚部的函数是解析函数15.设v(x, y) 在区域D 内为u( x, y)的共轭调和函数,则下列函数中为 D 内解析函数的是( )(A)v( x, y) iu(x, y) (B)v(x, y) iu( x, y)(C)u( x, y) iv(x, y) (D)uxivx二、填空题1.设c为沿原点z 0到点z 1 i 的直线段,则2zdzc2.设c为正向圆周z 4 1,则c2z(z3z24)2dz3.设sin( )2f (z) d , 其中z 2 ,则f (3)z24.设c为正向圆周z 3 ,则c z zz dz5.设c为负向圆周z 4 ,则cze(z i)5d z11复变函数测验题6.解析函数在圆心处的值等于它在圆周上的7.设f ( z) 在单连通域B 内连续,且对于 B 内任何一条简单闭曲线c都有( ) 0f z dz ,那c么f (z) 在B内8.调和函数( x, y) xy 的共轭调和函数为9.若函数 3 2u( x, y) x axy 为某一解析函数的虚部,则常数a10.设u( x, y) 的共轭调和函数为v( x, y),那么v( x, y) 的共轭调和函数为三、计算积分3.z R6z2 ,其中R 0, R 1 且R 2 ;dz(z 1)( z2)4.dz4 2 2 2z z z2.四、设 f (z)在单连通域 B 内解析,且满足 1 f (z) 1 ( x B).试证1.在B 内处处有 f (z) 0;f (z)2.对于B 内任意一条闭曲线c,都有dz 0f ( z) c五、设 f (z)在圆域z a R 内解析,若max f (z) M (r )(0 r R)z a r,n! M (r )( n n)则( 1,2, )f (a)nr.12复变函数测验题六、求积分z 1zezdz,从而证明0e .cos cos(sin )dcos cos(sin )d七、设f ( z) 在复平面上处处解析且有界,对于任意给定的两个复数a,b ,试求极限f ( z)lim dz并由此推证 f (a) f (b)(刘维尔Liouville 定理).R (z a)( z b)z R八、设f (z) 在z R ( R 1)内解析,且f (0) 1, f (0) 2 ,试计算积分z 1(z 1) 2f (z)2zdz并由此得出22 ( i )cos f e d2之值.九、设 f (z) u iv 是z的解析函数,证明2 2 22 2ln(1 f (z) ) ln( 1 f ( z) ) 4 f (z)222 xy(1 f (z) )2 .2 y2十、若u u(x ) ,试求解析函数 f (z) u iv .13复变函数测验题第四章级数一、选择题:n( 1) ni1.设( 1,2, ) lim a ( )a n n ,则nn 4n(A)等于0 (B)等于1 (C)等于i (D)不存在2.下列级数中,条件收敛的级数为( )(A)13i(n 12n)(B)nn(34i)1 n!(C)n 1nin(D)nn(1)1 n 1i3.下列级数中,绝对收敛的级数为( )(B)1 i(1n n n1)(B)n 1([1)nn in2](C)nni2 ln n(D)n(1)n in1 2n4.若幂级数nc n z在z 1 2i 处收敛,那么该级数在z 2处的敛散性为( )n 0(A)绝对收敛(B)条件收敛(C)发散(D)不能确定5 .设幂级数n 0n n 1c n z , nc z 和nn 0n0cn znn 11的收敛半径分别为R1 , R2 , R3 ,则R1 , R ,R 之间的关系是( )2 3(A)R1 R R (B)R1 R2 R32 3(C)R1 R2 R3 (D)R1 R2 R36.设0q 1 ,则幂级数q 的收敛半径R ( )n zn znn 014复变函数测验题(A)q(B)1q(C)0(D)7.幂级数nsin2n 1n(z2n)的收敛半径R ( )(A) 1 (B)2 (C) 2 (D)8.幂级数n 0n( 1)n 1nz1在z 1 内的和函数为(A)ln(1z) (B)ln(1 z)(D)1ln (D)1 zln11 zze9.设函数的泰勒展开式为cosznc n z,那么幂级数n 0 n 0nc n z 的收敛半径R ( )(A)(B)1 (C)(D)210.级数1 12 1z zz2z的收敛域是 ( )(A)z 1 (B)0z 1 (C)1 z (D)不存在的11.函数12z在z 1 处的泰勒展开式为( )n n1 z(A)( 1) ( 1) ( 1 1)n zn1 n z n 1 z(B)( 1) ( 1) ( 1 1)n 1 n 1n (D)( 1)n ( 1 1)(C)( 1) ( 1 1)1 z 1 z n zn zn 1 n 115复变函数测验题12.函数sinz,在z 处的泰勒展开式为( )2n( 1)2 zn 1(A)(z ) ( )(2n 1)! 2 2 n 0n( 1)2 zn(B)(z ) ( )(2n)! 2 2 n 0n 1 ( 1)2n 1(C)(z ) ( z )(2n 1)! 2 2 n 0n 1( 1)2n(D)( z ) ( z )(2n)! 2 2 n 013.设f (z) 在圆环域H : R z z R 内的洛朗展开式为1 0 2nc ( 0),c为H内n z zc ( 0),c为H内n绕z0 的任一条正向简单闭曲线,那么c(z f(z)2z0 )dz( )(A)2 ic (B)2ic1 (C)2ic2 (D)2 if (z0 )114.若n n3 ( 1) , n 0,1,2,cn ,则双边幂级数n4 , n 1, 2,nnc n z 的收敛域为( )(A)141z (B)3 z 4 31(C)z41(D)z315.设函数1f (z) 在以原点为中心的圆环内的洛朗展开式有m 个,那么z(z 1)( z 4)m ( )(A)1 (B)2 (C)3 (D)416复变函数测验题二、填空题1 .若幂级数nc n z i)在z i 处发散,那么该级数在z 2 处的收敛性(n 0为.2.设幂级数nc n z 与n[Re(c n )]z 的收敛半径分别为R1 和R2 ,那么R1 与R2 之间的关n 0 n 0系是.3.幂级数(2i ) 的收敛半径Rn z2nn z2n1n 04.设f (z) 在区域D 内解析,z0 为内的一点, d 为z0 到D的边界上各点的最短距离,那么当z z d0 时,nf (z) c n (z z0 )成立,其中c n .n 05.函数arctan z 在z 0处的泰勒展开式为.6 .设幂级数nc n z的收敛半径为R ,那么幂级数n c z n 的收敛半径(2 1)nn 0 n 0为.7.双边幂级数n 1 znn 1z( 1) 2 ( 1) (1 )n 1 n 1(z 2) 2n的收敛域为.18.函数z eez在0z 内洛朗展开式为.9.设函数cot z在原点的去心邻域0 z R内的洛朗展开式为nc n z ,那么该洛朗级数n收敛域的外半径R .10.函数1z(z i )在1z i 内的洛朗展开式为.17复变函数测验题三、若函数11z2z在z 0处的泰勒展开式为n 0na n z ,则称a n 为菲波那契(Fibonacci)数列,试确定a满足的递推关系式,并明确给出a n 的表达式.n四、试证明z z z1.e 1 e 1 z e( z );z2.(3e) z e 1 (e 1) z ( z 1);五、设函数 f (z) 在圆域z R内解析,n ( k)f (0)kS n zk!k 0试证n 1 n 11 z d1.S (z) f ( ) ( z r R) n .n 12 i zrn 1z f ( )2.f ( z S ( ))(z) d z r R 。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数与积分变换练习册
(z 1)(z 2)
(2) 圆环域: 2 z 的洛朗级数.(10 分)
七、判断函数
f
(z)
cos z z3
的奇点类型,求其在奇点处的留数,并计
算 f (z)dz ,其中 C : z 1 .(10 分) C
16
华北科技学院 复变函数与积分变换练习册 专业班级____________ 姓名_____________ 学号____________ 日期___________ 成绩______
sin z
六、计算闭路积分 C z2 (z 1) dz ,其中 C 为不经过 0 和 1 的简单
闭曲线.
第七章 傅里叶变换
一、求矩形脉冲函数
f
(t)
2, 0 t 0, 其他
的傅里叶变换.
10
华北科技学院 复变函数与积分变换练习册 专业班级____________ 姓名_____________ 学号____________ 日期___________ 成绩______
12
华北科技学院 复变函数与积分变换练习册 专业班级____________ 姓名_____________ 学号____________ 日期___________ 成绩______
三、计算下列函数的拉式逆变换(使用留数法或部分分式分解法).
1. F (s) 2s 1 s(s 1)(s 2)
一、计算下列积分
1. I 3z2dz , C 为从 i 到1 i 的直线段. C
2. 设C 是由点 0 到 3 的直线段与点 3 到点 3 i 的直线段组成的折线,
求积分 I Re zdz . C
二、计算积分
(2z100 ez cos z)dz .
z 5
复变函数目标检测练习测验题册
练习一 复数及其代数运算、复数地几何表示一、填空题 1.(ii +-11)4=2.i +1= Arg )(i +1= arg )(i +13.已知z=())())((i i i i +--+131131,则z = argz=4.将z=-cos 5π + isin 5π表示成三角形式为 表示成指数形式为 Argz= argz=b5E2R 。
5.3-i 地三角表示形式为,指数表示形式为二.分别就0<α≤π与-π<α<-2π两种情形将复数z=1 - cos α + isin α化成三角形式与指数形式,并求它地辐角主值.p1Ean 。
三.利用复数表示圆地方程)(0≠a a (x 2+y2)+ bx + cy + d = 0,其中a , b , c , d 是实常数.DXDiT 。
四.求下列方程所表示地曲线 ①)(i+1z + )(i —1z = 1②z z -)(i +2z -)(i -2z = 4五.证明⑴若z1 + z2 + z3 = 0且z1=z2=z3=1,则点z1 , z2 , z3为一内接单位圆地等边三角形地顶点.RTCrp。
⑵若z1 + z2 + z3 + z4 = 0且z1=z2=z3=z4,则点z1 , z2 , z3 , z4或者为一矩形地顶点,或者两两重合.5PCzV。
练习二复数地乘幂与方根、区域一、填空题1.(1+i)3+(1-i)3=2.31-=3.{z1<z<2}地内点是外点是边界点是4.0<Re(z)<1所确定地是(区域、闭区域)它是(有界、无界)二、求下列复数地值(1)⎪⎪⎭⎫⎝⎛-+ii313110(2)32221)+(i三、已知正方形地两个相对顶点为z1(0,-1)于z3(2,5),求另外两个顶点z2于z4地坐标.四、画出23--zz≥1所表示地图形,并指出所表示地图形是否是区域,是否有界?五、已知x2+x+1=0,求x11+x7+x3地值.六、求证:(1+cosθ+isinθ)n=2ncosn2θ(cos2θn+isin2θn)练习三复变函数、复变函数地极限和连续性一、选择题1.下列函数极限存在地是()A.lim→z zz)Re(B.lim→z zzC.lim→z1222---+zzzz zD.lim→z i21(zz-zz)2.将Z平面上地曲线x2+y2=4映射成W平面上地曲线u2+v2=41地映射函数f(z)为()A.W=Z B.W=Z2 C.W=Z1D.W=Z3.复变函数W=Z2确定地两个实元函数为()A.u=x2+y2 v=2xyB.u=2xy v=x2-y2C.u=x2v=2xyD.u=x2+y2v=2xy jLBHr。
复变函数测试题及答案
第一章 复数与复变函数一、 选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A)i (B)i - (C)1 (D)1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A)i 31+- (B)i +-3 (C)i 2321+-(D)i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式就是( ) (A))]2sin()2[cos(sec θπθπθ+++i (B))]23sin()23[cos(sec θπθπθ+++i (C))]23sin()23[cos(sec θπθπθ+++-i (D))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系就是( ) (A)z z z z 222≥- (B)z z z z 222=- (C)z z z z 222≤- (D)不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹就是( )(A)圆 (B)椭圆 (C)双曲线 (D)抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数就是( )(A)2 (B)i 31+(C)i -3 (D)i +37.使得22z z =成立的复数z 就是( )(A)不存在的 (B)唯一的 (C)纯虚数 (D)实数 8.设z 为复数,则方程i z z +=+2的解就是( )(A)i +-43 (B)i +43 (C)i -43 (D)i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合就是( ) (A)有界区域 (B)无界区域 (C)有界闭区域 (D)无界闭区域 10.方程232=-+i z 所代表的曲线就是( )(A)中心为i 32-,半径为2的圆周 (B)中心为i 32+-,半径为2的圆周 (C)中心为i 32+-,半径为2的圆周 (D)中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不就是圆周的为( ) (A)221=+-z z (B)433=--+z z (C))1(11<=--a azaz (D))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A)i 44-- (B)i 44+ (C)i 44- (D)i 44+- 13.00)Im()Im(lim0z z z z x x --→( )(A)等于i (B)等于i - (C)等于0 (D)不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件就是( ) (A)),(y x u 在),(00y x 处连续 (B)),(y x v 在),(00y x 处连续(C)),(y x u 与),(y x v 在),(00y x 处连续(D)),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( )(A)3- (B)2- (C)1- (D)1 二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域就是曲线 的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线就是连续点 与 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22、五、设复数i z ±≠,试证21zz+就是实数的充要条件为1=z 或0)(=z IM 、六、对于映射)1(21zz +=ω,求出圆周4=z 的像、 七、试证1、)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2、)),,2,1,,,0(021n j k j k z z z j Λ=≠≠≥的充要条件为 n n z z z z z z +++=+++ΛΛ2121、八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>、 九、设iy x z +=,试证y x z y x +≤≤+2、十、设iy x z +=,试讨论下列函数的连续性:1、⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2、⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处就是( )(A)解析的 (B)可导的(C)不可导的 (D)既不解析也不可导 2.函数)(z f 在点z 可导就是)(z f 在点z 解析的( )(A)充分不必要条件 (B)必要不充分条件(C)充分必要条件 (D)既非充分条件也非必要条件3.下列命题中,正确的就是( )(A)设y x ,为实数,则1)cos(≤+iy x(B)若0z 就是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的就是( )(A)xyi y x 222-- (B)xyi x +2(C))2()1(222x x y i y x +-+- (D)33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A)等于0 (B)等于1 (C)等于1- (D)不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A)0 (B)1 (C)2 (D)2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A)0 (B)1 (C)1- (D)任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的就是(A)若)(z f 在D 内就是一常数,则)(z f 在D 内就是一常数 (B)若))(Re(z f 在D 内就是一常数,则)(z f 在D 内就是一常数 (C)若)(z f 与)(z f 在D 内解析,则)(z f 在D 内就是一常数 (D)若)(arg z f 在D 内就是一常数,则)(z f 在D 内就是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A)2 (B)i 2 (C)i +1 (D)i 22+10.ii 的主值为( )(A)0 (B)1 (C)2πe (D)2π-e11.ze 在复平面上( )(A)无可导点 (B)有可导点,但不解析 (C)有可导点,且在可导点集上解析 (D)处处解析 12.设z z f sin )(=,则下列命题中,不正确的就是( )(A))(z f 在复平面上处处解析 (B))(z f 以π2为周期(C)2)(iziz e e z f --= (D))(z f 就是无界的13.设α为任意实数,则α1( )(A)无定义 (B)等于1(C)就是复数,其实部等于1 (D)就是复数,其模等于1 14.下列数中,为实数的就是( )(A)3)1(i - (B)i cos (C)i ln (D)i e 23π-15.设α就是复数,则( )(A)αz 在复平面上处处解析 (B)αz 的模为αz(C)αz 一般就是多值函数 (D)αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内就是解析的,如果v u +就是实常数,那么)(z f 在D 内就是3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w . 四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz wd dz dw 、 六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导、七、已知22y x v u -=-,试确定解析函数iv u z f +=)(、 八、设s ρ与n ρ为平面向量,将s ρ按逆时针方向旋转2π即得n ρ、如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ρ,n ρ的方向导数)、 九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析、 十、解方程i z i z 4cos sin =+、第三章 复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A)i 6561- (B)i 6561+- (C)i 6561-- (D)i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc ⎰+-2)1)(1(为( ) (A)2i π (B)2i π- (C)0 (D)(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ( ) (A ) i π2- (B)0 (C)i π2 (D)i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( ) (A)1sin - (B)1sin (C)1sin 2i π- (D)1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( )(A))1sin 1cos 3(2-i π (B)0 (C)1cos 6i π (D)1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( ) (A)i π2- (B)1- (C)i π2 (D)17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A)于i π2 (B)等于i π2- (C)等于0 (D)不能确定 8.设c 就是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A)21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A)i π22(B)i π2 (C)0 (D)i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰c dz i a zz 2)(cos ( ) (A)ie π2 (B)eiπ2 (C)0 (D)i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A)等于0 (B)等于1 (C)等于2 (D)不能确定 12.下列命题中,不正确的就是( ) (A)积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B)2)(22≤+⎰cdz iy x,其中c 为连接i -到i 的线段(C)若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D)若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调与函数22y x u -=确定的解析函数iv u z f +=)(就是 ( )(A)c iz +2(B) ic iz +2(C)c z +2(D)ic z +214.下列命题中,正确的就是( )(A)设21,v v 在区域D 内均为u 的共轭调与函数,则必有21v v = (B)解析函数的实部就是虚部的共轭调与函数 (C)若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调与函数 (D)以调与函数为实部与虚部的函数就是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调与函数,则下列函数中为D 内解析函数的就是( )(A)),(),(y x iu y x v + (B)),(),(y x iu y x v -(C)),(),(y x iv y x u - (D)xv i x u ∂∂-∂∂ 二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π 6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调与函数xy y x =),(ϕ的共轭调与函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调与函数为),(y x v ,那么),(y x v 的共轭调与函数为 三、计算积分 1、⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2、⎰=++22422z z z dz. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-、试证1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()(Λ=≤n r r M n a fnn 、六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e 、 七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理)、八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值、九、设iv u z f +=)(就是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f y z f x z f +'=∂+∂+∂+∂、十、若)(22y x u u +=,试求解析函数iv u z f +=)(、第四章 级 数一、选择题:1.设),2,1(4)1(Λ=++-=n n nia n n ,则n n a ∞→lim ( ) (A)等于0 (B)等于1 (C)等于i (D)不存在2.下列级数中,条件收敛的级数为( )(A)∑∞=+1)231(n ni (B)∑∞=+1!)43(n n n i(C) ∑∞=1n nn i (D)∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B)∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n nni (D)∑∞=-12)1(n nn n i 4.若幂级数∑∞=0n nnz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( ) (A)绝对收敛 (B)条件收敛(C)发散 (D)不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 与∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系就是( )(A)321R R R << (B)321R R R >> (C)321R R R <= (D)321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A)q (B)q1(C)0 (D)∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B)2 (C)2 (D)∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的与函数为 (A))1ln(z + (B))1ln(z -(D)z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A)∞+ (B)1 (C)2π(D)π 10.级数Λ+++++22111z z z z的收敛域就是( ) (A)1<z (B)10<<z (C)+∞<<z 1 (D)不存在的11.函数21z 在1-=z 处的泰勒展开式为( ) (A))11()1()1(11<++-∑∞=-z z n n n n(B))11()1()1(111<++-∑∞=--z z n n n n(C))11()1(11<++-∑∞=-z z n n n (D))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( )(A)12-ic π (B)12ic π (C)22ic π (D))(20z f i 'π14.若⎩⎨⎧--==-+=ΛΛ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A)3141<<z (B)43<<z (C)+∞<<z 41 (D)+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A)1 (B)2 (C)3 (D)4 二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为 .2.设幂级数∑∞=0n nn z c与∑∞=0)][Re(n nnz c 的收敛半径分别为1R 与2R ,那么1R 与2R 之间的关系就是 . 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 .6.设幂级数∑∞=0n nnzc的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. 四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ、2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。
《复变函数》练习题册
第一章1. 设,43,5521i z i z +−=−=求21z z 与21z z . 参考答案:i 515721−−=z z ,i 515721+−=z z2.iii z −−−=131求()().,Im ,Re z z z z参考答案:()().25,21Im ,23Re =−==z z z z3. (1)证明:().Re 2212121z z z z z z =+ (2)证明:11Re()();Im()()22zz z z z z i=+=+4. 求下列复数的辐角主值、三角表示式、指数表示式123456781,1,1,1,2023,,1,z z z z z z i z z i=+==−+=−===−=−参考答案:1234567822arg ,arg ,arg ,arg ,3333arg 0,arg,arg ,arg 22z z z z z z z z πππππππ==−==−====−23i cossin221cos sin 12cos sin 233ii i i e i e i e πππππππππ=+=−=+= ++=,,,5 求i z 212−−=的三角表示式。
参考答案:−=−−=65sin 65cos4212ππi i z6. 求下列复数z 的实部与虚部,共轭复数,模与辐角()()821112432i i i i−++,参考答案:()()()()()()3arctan arg ,10z i 31,3Im ,1Re i,i 4i 4.32arctan arg ,131z i 132133,132Im ,133Re i 2311218−==+=−==+−−==+=−==+z z z z z z z z ,,,7.求下列各式的值(幂)()()()()361121i ++ ())53i − 参考答案:()()()())365511i 8i 21855(3)2(cos()sin())66i ππ+=−+=−−=−+−,8.求下列各式的值(方根)((12()()1331i −参考答案:((1601234522441cossin ,0,1,2,3.442221cos()sin(),0,1,2,3,4,5.661111,,,,,2222k k i k k k i k w i w i w i w i w i w i ππππππππ+++=+++=+=+−=−−()()130********cos sin ,0,1,2.337755cos sin ,cossin ,cos sin 1212121244k k i i kw i w i w i ππππππππππ−+−+ −=+=−++第二章1研究函数()()()22,2,z z h yi x z g z z f =+==和的解析性。
复变函数练习题
复变函数练习题一、选择题1. 复数 \( z = x + yi \) 中,\( x \) 和 \( y \) 分别代表什么?A. 模和幅角B. 实部和虚部C. 虚部和实部D. 幅角和模2. 以下哪个是复平面上的单位圆?A. \( |z| = 1 \)B. \( |z| = 2 \)C. \( |z| > 1 \)D. \( |z| < 1 \)3. 复数 \( z \) 的共轭 \( \bar{z} \) 表示什么?A. \( z \) 的实部B. \( z \) 的虚部C. \( z \) 的实部和虚部的相反数D. \( z \) 的虚部的相反数二、填空题4. 若 \( z = 3 - 4i \),则 \( z \) 的模是________。
5. 复数 \( z \) 的导数 \( \frac{d}{dz} \) 在 \( z \) 为纯虚数时,等于________。
三、简答题6. 描述复数的四则运算规则,并给出一个具体的例子。
7. 解释什么是解析函数,并给出一个解析函数的例子。
四、计算题8. 计算复数 \( z = 2 + 3i \) 的幅角 \( \arg(z) \)。
9. 给定 \( f(z) = z^2 + 2z + 1 \),求 \( f(2 + i) \)。
五、证明题10. 证明 \( |z_1 z_2| = |z_1| \cdot |z_2| \) 对所有复数\( z_1 \) 和 \( z_2 \) 成立。
11. 证明 \( \frac{1}{z} = \frac{\bar{z}}{|z|^2} \) 对所有非零复数 \( z \) 成立。
六、综合题12. 考虑函数 \( f(z) = \frac{1}{z - 1} \),求其在 \( z = 2 \) 处的留数。
13. 利用柯西积分公式,计算 \( \oint_C \frac{e^z}{z^2} dz \),其中 \( C \) 是以原点为圆心,半径为 \( 1 \) 的圆周。
复变函数目标检测练习册_2011年
WORD 格式整理版专业学习 参考资料练习一 复数及其代数运算、复数的几何表示一、填空题 1.(ii +-11)4= 2.i +1= Arg )(i +1= arg )(i +13.已知z=())())((i i i i +--+131131,则z = argz= 4.将z=-cos 5π + isin 5π表示成三角形式为 表示成指数形式为Argz= argz=5.3-i 的三角表示形式为 ,指数表示形式为二.分别就0<α≤π与-π<α<-2π两种情形将复数z=1 - cos α + isin α化成三角形式与指数形式,并求它的辐角主值。
三.利用复数表示圆的方程)(0≠a a (x 2+y2)+ bx + cy + d = 0,其中a , b , c , d 是实常数。
四.求下列方程所表示的曲线 ①)(i +1z + )(i —1z = 1②z z -)(i +2z -)(i -2z = 4五.证明⑴若z1 + z2 + z3 = 0且z1=z2=z3=1,则点z1 , z2 , z3为一内接单位圆的等边三角形的顶点。
⑵若z1 + z2 + z3 + z4 = 0且z1=z2=z3=z4,则点z1 , z2 , z3 , z4或者为一矩形的顶点,或者两两重合。
练习二复数的乘幂与方根、区域一、填空题1.(1+i)3+(1-i)3=2.31-=3.{z1<z<2}的内点是外点是边界点是4.0<Re(z)<1所确定的是(区域、闭区域)它是(有界、无界)二、求下列复数的值(1)⎪⎪⎭⎫⎝⎛-+ii313110(2)32221)+(i三、已知正方形的两个相对顶点为z1(0,-1)于z3(2,5),求另外两个顶点z2于z4的坐标。
四、画出23--zz≥1所表示的图形,并指出所表示的图形是否是区域,是否有界?五、已知x2+x+1=0,求x11+x7+x3的值。
六、求证:(1+cosθ+isinθ)n=2ncosn2θ(cos2θn+isin2θn)练习三复变函数、复变函数的极限和连续性一、选择题1.下列函数极限存在的是()A.lim→z zz)Re(B.lim→z zzC.lim→z1222---+zzzz zD.lim→z i21(zz-zz)2.将Z平面上的曲线x2+y2=4映射成W平面上的曲线u2+v2=41的映射函数f(z)为()A.W=Z B.W=Z2 C.W=Z1D.W=Z3.复变函数W=Z2确定的两个实元函数为()A.u=x2+y2 v=2xyB.u=2xy v=x2-y2C.u=x2v=2xyD.u=x2+y2v=2xy 4.两个实二元函数u=5.在映射W=Z2之下,Z平面的双曲线x2-y2=4映射成W平面上的图形为()A.直线u=4 B.圆u2+v2=4 C.直线v=4 D.双曲线uv=4二、考虑f(z)=z z +zz在z=0的极限三、函数W=Z1把下列z 平面上的 曲线映射成W 平面上怎样的曲线? (1)y=x (2) x=1 (3) (x -1)2+y 2=1 四、试讨论函数f(z)=⎪⎪⎩⎪⎪⎨⎧+022y x xy00=≠z z 的连续性练习四 解析函数的概念 函数解析的充要条件 一、选择题1.下列命题正确的是( )A .如果)(z f 在z 0连续,那么)('0z f 存在B .如果)('0z f 存在,那么)(z f 在z 0解析C .如果)(z f 在z 0解析,那么)('0z f 存在D .如果z 0是)(z f 的奇点,那么)(z f 在z 0不可导 2.下列函数仅在z=0处可导的是( )A. )(z f =z 2B. )(z f =x+2yiC. )(z f =z 2D. )(z f =z13.下列函数在复平面内处处解析的是( )A .f(z)=z B.f(z)=e x(cosy+isiny) C.f(z)=z 1 D.f(z)=zz 4.下面各式是柯西—黎曼方程的极坐标形式的是( )A .r u ∂∂=θ∂∂v θ∂∂u =-r v ∂∂ B.r u ∂∂=r 1θ∂∂v θ∂∂u =-r 1r v ∂∂ C.r u ∂∂=r 1θ∂∂v r v ∂∂=-r 1θ∂∂u D.r u ∂∂=r θ∂∂v θ∂∂u =-r rv ∂∂ 5.下列说法正确的是( )A .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)+g(z)的一个奇点B .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)-g(z)的一个奇点C .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)g(z)的一个奇点D .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)/g(z)的一个奇点 二.设ay 3+bx 2y+i(x 3+pxy 2)为解析函数,试求a,b,p 之值。
(完整版)复变函数测试题及答案
第一章 复数与复变函数一、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+(C )i -3 (D )i +37.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( )(A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→( )(A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域是曲线 的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xvix u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w .四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz w d dz dw .六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ,n 的方向导数).九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.十、解方程i z i z 4cos sin =+.第三章 复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( ) (A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc 2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A )i π22 (B )i π2 (C )0 (D )i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰c dz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段 (C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调和函数xy y x =),(ϕ的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.⎰=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.⎰=++22422z z z dz.四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n rr M n a f nn .六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设iv u z f +=)(是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f y z f x z f +'=∂+∂+∂+∂.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章 级 数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n n n i(C ) ∑∞=1n nni (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n nn i (D )∑∞=-12)1(n nn n i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为 (A ))1ln(z + (B ))1ln(z -(D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<z (B )43<<z (C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为 . 2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 . 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=0)()(n n nz z cz f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 . 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式.四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z z e e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。
复变函数目标检测练习册答案10页
复变函数目标检测练习册答案练习一 一.1.12.2,)(24Z k k ∈+ππ,4π 3.1,6π 4.54sin 54cos ππi z +=,54πi e5.)611sin 611(cos 2ππi +,6112πi e二.(1)πϕ≤<0= 2⎥⎦⎤⎢⎣⎡-+-=+)22sin()22cos(2sin 2)2cos 2(sin 2sin ϕπϕπϕϕϕϕi i 为三角形式z=2sin 2ϕ)22(ϕπ-i e 为指数形式argz =22ϕπ-(2)2πϕπ-<<-三角形式为z=⎥⎦⎤⎢⎣⎡-+--)223sin()223cos(2sin2ϕπϕπϕi 指数形式为z=)223(2sin 2ϕπϕ--i eargz=)22(ϕπ+-三.根据共轭复数的形式 2z z x +=, 2z z y -=, z z z y x ==+222 令i c b 22+=α 四.(1)1))(1())(1(=--+++iy x i iy x i21=-y x 直线 (2)4222222=+++-+---+y ix iy x y ix iy x y x9)1()2(22=++-y x 以(2,-1)为圆心,3为半径的圆 五.(1)21212221212121212212))((z z z z z z z z z z z z z z z z --=+--=--=- 同理 32322322z z z z z z --=- 同理 12121-=+z z z z ,13131-=+z z z z∴ 3231232221=-=-=-z z z z z z 即 3313221=-=-=-z z z z z z(2)24322143214321)(0z z z z z z z z z z z z +=+⇒+-=+⇒=+++ 同理 4132z z z z -=-若上式全不为0,则为一矩形若上式有一式为0,则两两重合 练习二一.1.-4;2.32sin32cosππππk i k +++ (k =0,1,2);3.{}{}{}21;21;21==><<<z z z z z z z z 或或;4.区域,无界二.(1)i 2321+- (2)324sin 324cos ππππk i k +++ (k =0,1,2)三.)3,2(2-z )1,4(4z 四.25123≤⇒≥--x z z 闭区域 无界 五. 012=++x x ∴ 10)1)(1(32=⇒=++-x x x x ∴ 29211x x x x ==x xx x ==67 13=x ∴ 0123711=++=++x x x x x练习三一.1.C 2.C 3.A 4.B 5.A二.22222222)(y x y x zz z z z z z z z f +-=+=+= 沿 kx y = 2222222201)1(222lim k k x k x x k x x +-=+-→ 与k 有关所以 )(z f 的极限不存在 三.z1=ω (1) y=x (2) x=1(3) 1)1(22=+-y x 四.关键在于讨论分界点z=01)1(lim lim )(lim 222202200+=+=+=→=→→k kx k kx y x xy z f x kx y z z 与k 有关 所以)(lim 0z f z →不存在 则f(z)在z=0处不连续 当0≠z 时,f(z)连续 五.xyb t bt e y bt e x iy x bt i bt e e e z at at at ibt at t arctan 1sin ,cos )sin (cos =⇒==⇒+=+===+αxyatc b a ey x tan 222=+练习四一.1.C 2.A 3.B 4.C 5.C 二.b=p=-3,a=1三.1.f(z)在i z ±≠处可导,解析。
复变函数测试题及答案
复变函数测试题及答案第一章复数与复变函数一、选择题1.当ii z -+=11时,5075100z z z ++的值等于()(A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ()(A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是()(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是()(A )z z z z 222≥- (B )z z z z 222=-(C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是()(A )圆(B )椭圆(C )双曲线(D )抛物线6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是()(A )2 (B )i 31+ (C )i -3 (D )i +37.使得22z z =成立的复数z 是()(A )不存在的(B )唯一的(C )纯虚数(D )实数8.设z 为复数,则方程i z z +=+2的解是()(A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是()(A )有界区域(B )无界区域(C )有界闭区域(D )无界闭区域 10.方程232=-+i z 所代表的曲线是()(A )中心为i 32-,半径为2的圆周(B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周(D )中心为i32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ()(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→()(A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z 所表示的区域是曲线的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点和的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+;2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.??=≠+=0,00,2)(22z z y x xyz f2.??=≠+=0,00,)(223z z y x y x z f第二章解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的(B )可导的(C )不可导的(D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<="" f="" p="" 内≡)(z="" 内处处为零,且1)0(-="f" ,那么在1(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义(B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析(B )αz 的模为αz(C )αz 一般是多值函数(D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xv i x u z f ??+??=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(i zz z z iv i z z z z u z z w -++-+=,则0=??zw .四、试证下列函数在z 平面上解析,并分别求出其导数1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz wd dz dw .六、设??=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s vn u n v s u ??-==??,(s ??与n分别表示沿s ,n 的方向导数).九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.十、解方程i z i z 4cos sin =+.第三章复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+?cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc ?+-2)1)(1(为( ) (A )2i π (B )2i π- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=?+=dz z zc c c 212sin ( ) (A )i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-?dz z zc2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--?dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ?=-=4)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c+'+'')()()(2)( ( ) (A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=?cz dz ze ()(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-?dz z z c1)4sin(2π( )(A )i π22 (B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-?c dz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分=--ra z dz a z 1的值与半径)0(>r r 的大小无关(B )2)(22≤+?cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析(D )若)(z f 在10<<<="r" 的积分等于零,则<="">)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数(C )若iv u z f +=)(在区域D 内解析,则xu为D 内的调和函数(D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ??-??二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=?c dz z 22.设c 为正向圆周14=-z ,则=-+-?c dz z z z 22)4(233.设?=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+?cdz zzz 5.设c 为负向圆周4=z ,则=-?c zdz i z e 5)(π6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=?c dz z f ,那么)(z f 在B 内8.调和函数xy y x =),(?的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.?=++22422z z z dz.四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ;2.对于B 内任意一条闭曲线c ,都有0)()(=''?cdz z f z f五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n r r M n a f nn .六、求积分?=1z zdz z e ,从而证明πθθπθ=?0cos )cos(sin d e .七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><="" p="" r="" z="" 内解析,且2)0(,1)0(="=f f ,试计算积分</p><p>?</p><p>=+1</p><p>2</p><p>2</p><p>)</p>< p>()1(z dz z z f z 并由此得出?</p><p>π</p><p>θθθ</p><p>20</p><p>2</p><p>)(2 </p><p>cos d e f i 之值.</p><p> </p><p>九、设iv u z f +=)(是z 的解析函数,证明</p><p>2</p><p>222</p><p>2</p><p>22</p><p>2</p> <p>2)</p><p>)(1()</p><p>(4)</p><p>)(1ln()</p><p>)(1ln(z f z f y z f x z f +">+?++?.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章级数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C )∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B )∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛(B )条件收敛(C )发散(D )不能确定5.设幂级数∑∑∞=-∞=01,n n n n nnznc z c和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<∑∞=0n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<="">(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++2111z z z z的收敛域是( ) (A )1<<<=""> 11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(01 2+∞<--+-∑∞=+ππz z n n n n (B ))2()2()!2()1(02+∞<- --∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2 ()2()!2()1(021+∞<- --∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-?c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若?--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<<="">+∞<<="" 41="" p="" (d="" )+∞<115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为. 2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是. 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=0)()(n n nz z cz f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为. 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为.7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为. 8.函数zze e 1+在+∞<<<0内的洛朗展开式为∑∞<="" cot="" p="" z="" 在原点的去心邻域r="" .="">-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式.四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++?ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-?=++ξξξξπξ)。
数学复变函数理论单元测试
数学复变函数理论单元测试一、选择题1. 复变函数是指具有复变量的自变量和因变量之间的关系的函数。
以下哪个函数不是复变函数?A. f(z) = z + 1B. f(z) = e^zC. f(z) = |z|D. f(z) = 2z^2 - iz2. 设f(z) = x^2 + iy^2,其中z = x + iy为复数。
则f(z)的实部和虚部分别为:A. Re(f(z)) = x^2, Im(f(z)) = y^2B. Re(f(z)) = x^2 - y^2, Im(f(z)) = 2xyC. Re(f(z)) = x^2 + y^2, Im(f(z)) = 2xyD. Re(f(z)) = x^2 - y^2, Im(f(z)) = 2ixy3. 连续函数是数学中重要的概念。
对于复变函数而言,下列哪个条件能够保证函数在某点处连续?A. 函数的实部和虚部分别在该点处连续B. 函数的实部和虚部分别在该点处可导C. 函数的微分在该点处存在D. 函数的导数在该点处存在二、填空题1. 定义在D上的复变函数f(z) = u(x, y) + iv(x, y)在点z = x + iy处的导数定义为_____________。
2. 设z = x + iy是复平面上的任意一点,其中x和y分别表示实轴和虚轴上的坐标,则z的共轭复数为_____________。
3. 当u(x, y) = x^2 - y^2,v(x, y) = 2xy时,函数f(z) = u(x, y) + iv(x, y)的导函数为________________。
三、计算题1. 设f(z) = z^2 - z + 1,求f(i)的值。
2. 设复变函数f(z) = e^z,则f'(z)的值为________________。
3. 设复变函数f(z) = e^z - 1,求f'(1 + i)的值。
四、解答题1. 请证明:若f(z)在区域D上解析,则它的虚部和实部分别在D上满足某个著名的偏微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 复数及其代数运算、复数的几何表示一、填空题 1.(ii +-11)4=2.i +1= Arg )(i +1= arg )(i +13.已知z=())())((i i i i +--+131131,则z = argz=4.将z=-cos 5π + isin 5π表示成三角形式为 表示成指数形式为 Argz= argz=5.3-i 的三角表示形式为,指数表示形式为二.分别就0<α≤π与-π<α<-2π两种情形将复数z=1 - cos α + isin α化成三角形式与指数形式,并求它的辐角主值。
三.利用复数表示圆的方程)(0≠a a (x 2+y2)+ bx + cy + d = 0,其中a , b , c , d 是实常数。
四.求下列方程所表示的曲线 ①)(i+1z + )(i —1z = 1②z z -)(i +2z -)(i -2z = 4五.证明⑴若z1 + z2 + z3 = 0且z1=z2=z3=1,则点z1 , z2 , z3为一内接单位圆的等边三角形的顶点。
⑵若z1 + z2 + z3 + z4 = 0且z1=z2=z3=z4,则点z1 , z2 , z3 , z4或者为一矩形的顶点,或者两两重合。
练习二复数的乘幂与方根、区域一、填空题1.(1+i)3+(1-i)3=2.31-=3.{z1<z<2}的内点是外点是边界点是4.0<Re(z)<1所确定的是(区域、闭区域)它是(有界、无界)二、求下列复数的值(1)⎪⎪⎭⎫⎝⎛-+ii313110(2)32221)+(i三、已知正方形的两个相对顶点为z1(0,-1)于z3(2,5),求另外两个顶点z2于z4的坐标。
四、画出23--zz≥1所表示的图形,并指出所表示的图形是否是区域,是否有界?五、已知x2+x+1=0,求x11+x7+x3的值。
六、求证:(1+cosθ+isinθ)n=2ncosn2θ(cos2θn+isin2θn)练习三复变函数、复变函数的极限和连续性一、选择题1.下列函数极限存在的是()A.lim→z zz)Re(B.lim→z zzC.lim→z1222---+zzzz zD.lim→z i21(zz-zz)2.将Z平面上的曲线x2+y2=4映射成W平面上的曲线u2+v2=41的映射函数f(z)为()A.W=Z B.W=Z2 C.W=Z1D.W=Z3.复变函数W=Z2确定的两个实元函数为()A.u=x2+y2 v=2xyB.u=2xy v=x2-y2C.u=x2v=2xyD.u=x2+y2v=2xy 4.两个实二元函数u=5.在映射W=Z2之下,Z平面的双曲线x2-y2=4映射成W平面上的图形为()A.直线u=4 B.圆u2+v2=4 C.直线v=4 D.双曲线uv=4二、考虑f(z)=z z +zz在z=0的极限三、函数W=Z1把下列z 平面上的 曲线映射成W 平面上怎样的曲线? (1)y=x (2) x=1 (3) (x -1)2+y 2=1 四、试讨论函数f(z)=⎪⎪⎩⎪⎪⎨⎧+022y x xy00=≠z z 的连续性练习四 解析函数的概念 函数解析的充要条件 一、选择题1.下列命题正确的是( )A .如果)(z f 在z 0连续,那么)('0z f 存在B .如果)('0z f 存在,那么)(z f 在z 0解析C .如果)(z f 在z 0解析,那么)('0z f 存在D .如果z 0是)(z f 的奇点,那么)(z f 在z 0不可导 2.下列函数仅在z=0处可导的是( )A.)(z f =z 2B.)(z f =x+2yiC.)(z f =z 2D.)(z f =z13.下列函数在复平面内处处解析的是( )A .f(z)=z B.f(z)=e x(cosy+isiny) C.f(z)=z 1 D.f(z)=zz 4.下面各式是柯西—黎曼方程的极坐标形式的是( )A .r u ∂∂=θ∂∂v θ∂∂u =-rv ∂∂ B.r u ∂∂=r 1θ∂∂v θ∂∂u =-r 1r v ∂∂C.r u ∂∂=r 1θ∂∂v r v ∂∂=-r 1θ∂∂uD.r u ∂∂=r θ∂∂v θ∂∂u =-r rv ∂∂ 5.下列说法正确的是( )A .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)+g(z)的一个奇点B .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)-g(z)的一个奇点C .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)g(z)的一个奇点D .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)/g(z)的一个奇点 二.设ay 3+bx 2y+i(x 3+pxy 2)为解析函数,试求a,b,p 之值。
三.下列函数在何处可导,何处解析,并求可导处的导数 1.f(z)=112+z 2.f(z)=zIm(z) 3.f(z)=(y 3-3x 2y)+i(x 3-3xy 2+1) 四.设f(z)=u+iv=ρθi e 为解析函数,证明:若函数u,v,θρ,之一恒等于常数,则函数f(z)亦为常数。
练习五 初等函数 一.填空题1.i 2-i= (-1)2= 1i =2.e21πi -= eln(1-i)= 3.lni= Lni= 4.sin(i+2i)= 二.解方程1.sinz+1=0 z 为复数 2.e z=-1 z 为复数三.求22i的主值及主值的辐角主值 四.当z=x+iy 时,试证下列不等式(1)zsin y ye e -≥-21 (2)yy y y ee e e z --+-≥tan练习六 复变函数积分的概念 柯西——古萨基本定理 复合闭路定理一.填空题1. 设C 为正向圆周:z =3 则⎰-c z dz2=⎰-cz dz 4=()⎰-c n z dz2=(n 为大于1的正整数) 2.⎰+cz z dz)1(=其中C 为正向圆周:z =2 3.⎰cdz zz=其中C 为正向圆周:z =4 4.⎰++cz z dz422=其中C 为正向圆周:z =1 5.⎰+cz z dz)1(2=其中C 为正向圆周:21=z 二.求⎰Γ1Re zdz 和⎰Γ2Re zdz ,其中1Γ和2Γ的起点和终点相同,都是0和1+i ,但路径不同,1Γ是连接这两点的直线段,2Γ是经过z=1的折线段。
三.试求下列积分的值dz z z z c⎰++212 (1)c={z 41=z } (2)c={z 4121=-z } (3)c={z 411=+z } (4)c={z 2=z }四.设0<r<R,求函数ZZ R ZR )(-+沿圆周r z =(正向)的积分,并由此推证1cos 221202222=+--⎰θθππd rRr R r R 练习七 原函数与不定积分 柯西积分公式 一.填空题1.⎰-ciz z e 2πdz =其中C 为正向圆周:2=z2.⎰+iz dz ze 11= 3.若f n (z)=(z-z 1)(z-z 2)…(z-z n )(z i ≠z j ;i ≠j,i,j=1,…,n,n>1),又若封闭曲线C 不通过每一点z i ,则积分⎰c nz f dz )(能取个不同的值。
4.⎰=--21212z zz z dz = 5.⎰=--3sin i z dz i z z= ⎰=+-22sin z i z zdz = 二.求积分⎰-czi z z e )2(dz 其中C 为正向圆周:43=-i z三.求函数1122-+z z 沿正向圆周C :10=-z z 的积分值,设圆周C 的圆心分别在:(1)z 0=1; (2) z 0=21; (3) z 0=-1; (4) z 0=-i四.设f(z)=⎰=-+-22123ξξξξξd z (1)试证f(1)=4πi(2)当2≠z 时,试求f(z)之值练习八 解析函数的高阶导数 解析函数与调和函数的关系 一.填空题1.⎰=-22)1(z zdz z ze = 2.⎰=12sin z n dz zz= 3.如果二元实变函数f(x,y)在区域D 内具有二阶连续偏导数,并且满足 ,那么称f(x,y)为区域D 内的调和函数。
4.区域D 内的解析函数的虚部(是,不是)实部的共轭调和函数,实部(是,不是)虚部的共轭调和函数。
二.设C 是不通过z 0的简单闭曲线,试求g(z 0)=⎰-+c z z z z 3024)(的值。
三.求积分dz z z zc ⎰-2)1(sin 的值,若C 为正向圆周: (1)21=z (2)211=-z (3)3121=-z 四.已知y x u )1(2-=为调和函数,求满足f(2)=-i 的解析函数f(z)=u+iv 练习九 复数项级数 幂级数一.选择题1.下列数列极限不存在的是( )A .ni ni n -+=11α B.nn i -+=)21(α C.in n e 2πα-= D.i n n e n21πα-=2.下列结论正确的是( )A .每一个幂级数在它的收敛圆内与收敛圆上收敛B .每一个幂级数收敛于一个解析函数C .每一个在z 0连续的函数一定可以在z 0的领域内展开成幂级数D .在收敛圆内,幂级数的和函数是解析函数 3.下列级数绝对收敛的是( )A .∑∞=1n n n i B.∑∞=2ln n n n i C.∑∞=+08)56(n n ni D.∑∞=⎥⎦⎤⎢⎣⎡+-121)1(n nn i n 4.下列级数收敛半径为e1的是( ) A .∑∞=+0)1(n nnz i B.∑∞=1n nniz e πC.∑∞=0)(cos n nz in D.∑∞=-1)1(n nn z5.∞→n lim nα=( )A .0 B.∞ C.1 D.1<α为0 1>α为∞1=α为1 1=α1≠α时不存在二.下列级数是否收敛?是否绝对收敛?(1)∑∞=++1121n n n i (2)∑∞=+1)1(2n nn i n (3)∑∞=+12cos 2)1(n n n ini (4)∑∞=1n n ni三.设级数∑∞=0n nC收敛,而∑∞=0n nC发散,证明n n nz C∑∞=0的收敛半径为1练习十 泰勒级数 洛朗级数一.将函数f(z)=322--z z z展开成z 的幂级数,写出它的收敛圆周。
二.求函数21z 在点z 0=-1处的泰勒展开式,并指出它的收敛半径。
三.(1)求函数f(z)=2122-++z z z 在以z =0为中心,由它的奇点互相隔开的各个不同圆环域内的洛朗展开式。
(2)求函数f(z)=212-+z z 在以z =1为中心的圆环域:①310<-<z ②+∞<-<13z 内的洛朗展开式。