铝铜合金金相显微组织分析
铝合金的金相组织观察
实验套数
1
每组人数
6
最多容纳人数
10
实验项目简介:
通过制备试样,并在显微镜下观察对比铝合金热处理前后的金相组织,使学生掌握金相试样制备的方法,认识铝合金的金相组织和形态特征,建立成分与组织之间相互关系的概念,进一步认识热处理的目的和作用。
实验目的:
1.掌握铝合金的制备过程和抛光机等仪器设备的使用方法;
4.要求用正规实验报告纸,书写清晰。
其他特殊要求:
无。
2.掌握金相显微镜的使用方法;
3.认识Al-Si合金热处理前后的金相组织;
4.结合理论,理解Al-Si合金成分、热处理工艺与组织之间的相互关系。
对实验原理与方法的要求:
要求学生掌握相关教材的基本知识,通过查阅手册和文献了解铝合金常规的金相组织,对有关名词、概念有清楚地认识,了解观察显微组织的原理、方法和作用。
铝合金的金相组织观察
项目编号
08505923
项目名称
铝合金的金相组织观察
面向专业
材料成型与控制工程
课程名称
材料成型与控制工程专业综合实验
教材、实习指导名称
材料成型与控制工程专业实验指导书
所属院系
材料科学与工程学院
所属实验室
材料成型实验室
实验类别
选做
难易程度
中等
计划学时
15
学分
对操作技能与仪器设备的要求:
要求学生有较强的动手能力,了解砂纸的型号和使用,熟悉抛光机和显微镜的使用,会判断试样制备的好坏。仪器设备:手锯、砂纸、抛光机、吹风机、金相显微镜等。
对实验报告的要求:
1.记录实验过程;
2.根据金相照片分析成分和金相组织的关系;
铝合金金相实验方法及实验结果
铝合金金相实验方法及实验结果引言铝合金是一种常用的轻质金属材料,在工业生产中具有广泛的应用。
金相实验是一种常用的材料测试方法,通过观察材料的组织结构和相变情况,可以评估其性能和质量。
本文旨在介绍铝合金金相实验的方法与实验结果。
方法1. 样品准备:选择合适的铝合金样品,并进行表面处理,如去除氧化层等。
2. 组织切割:使用金相切割机将铝合金样品切割成适当大小的试样。
3. 粗磨与细磨:使用金相磨片对试样进行粗磨和细磨,以去除表面的砂痕和切割留下的痕迹。
4. 电解腐蚀:将试样放入适当的电解液中进行腐蚀处理,以去除试样表面的氧化物和污染物。
5. 腐蚀后的清洗:将试样从电解液中取出,并用酒精和蒸馏水进行清洗。
6. 试样打磨:使用金相打磨机对试样进行打磨,以获得光滑的表面。
7. 试样腐蚀:将试样放入适当的腐蚀液中进行腐蚀处理,以显现材料的细微组织结构。
8. 显微镜观察:将腐蚀后的试样放在金相显微镜下观察,通过调整放大倍数和焦距,可以获取不同放大倍数下的图像。
9. 实验数据记录:对观察到的组织结构进行描述,并记录下相关的实验数据。
实验结果经过金相实验,我们观察到了铝合金的组织结构和相变情况。
具体实验结果如下:1. 铝合金的组织结构:我们观察到铝合金由颗粒状、晶粒状和晶界等组织结构组成。
不同的铝合金材料具有不同的组织特征,如晶粒大小、晶界分布等。
2. 相变情况:通过金相显微镜的观察,我们可以发现铝合金在不同条件下发生的相变情况,如固溶体的析出、晶格形变等。
3. 实验数据记录:我们记录了每个观察点的放大倍数、焦距和所观察到的组织结构特征等数据。
结论铝合金金相实验是评估铝合金材料性能和质量的重要方法。
通过观察铝合金的组织结构和相变情况,可以了解其内部结构和性能特点。
金相实验结果的准确记录和分析,有助于指导铝合金材料的生产和应用。
参考文献(请根据需要列出参考文献)。
实验二 有色金属的显微组织观察与分析
实验一有色合金显微组织观察与分析一、实验目的1. 观察常见的铝合金、铜合金、镁合金及轴承合金等有色金属试样的显微组织特征。
2. 了解有色金属中合金元素对其组织和性能的影响。
二、实验说明(一)铝合金1.铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝合金。
典型的硅铝合金牌号为ZL102,含硅11~13%,在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。
铸造后几乎全部得到共晶组织即粗大灰色针状的共晶硅分布在白亮色的α-Al固溶体基体上,这种粗大的针状硅晶体严重降低合金的塑性,因此通常在浇铸时向合金溶液中加入2~3%的变质剂,进行变质处理,合金共晶点向右移,原来的合金变成亚共晶,其组织为枝晶状初生α固溶体(白亮色)+细的(α+Si)共晶体(黑色),如图1-1所示,从而提高合金强度和塑性。
(a)未经变质处理(b)变质处理图1-1 铸造铝合金(ZL102)的显微组织500X2.形变铝合金:硬铝是Al-Cu-Mg系合金,是重要的形变铝合金,具有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故而称Al-Cu-Mg系合金为硬铝合金。
在Al-Cu-Mg系中,形成了CuAl2(θ相)、CuMgAl2(S相),这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。
如图1-2所示。
(a)铸态(b)时效板材图1-2 硬铝(ZL12)的显微组织 100X(二)铜合金1. 普通黄铜普通黄金是Cu-Zn合金,其含锌量均在45%以下,根据Cu-Zn合金状态图,含锌量在32%以下的黄铜(如H80、H70)为α相固溶体的单相组织;而含锌量在32~45%之间的黄铜(H62、H59)则为(α+β)两相组织。
(1)α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70。
铸态组织为α固溶体呈树枝状,经变形和再结晶退火,其组织为多边形晶粒,有退火孪晶。
7xxx铝合金的微观组织(金相分析)
a)未浸蚀 b)晶界浸蚀 c)晶粒浸蚀
2. 1 多相合金的浸蚀
多相合金的浸蚀,除了有 单相合金反应特征外,由 于组织中有明显的相组成 物,电位差距较大,发生 相之间的电化学腐蚀,其 中一相被溶去一薄层,而 相界被浸蚀较深呈现凹坑, 结果在相与相界间相与相 间出现凹坑,从而显示出 相或组织
不同放大倍数下的珠光体 a)高倍 b)中倍 c)低倍
合金成分设计
熔炼、铸造
均匀化处理
热加工(轧制、挤 压、锻造)
微观组织检测
固溶 + 时效
性能测试
机理研究
3. 7xxx铝合金的微观组织(金相分析) 3. 1 铸锭的金相分析
7136铝合金铸态金相组织照片 (1)晶界存在较多非平衡结晶相 (2)晶界较粗、弯曲(铸造缺陷多) (3)存在过饱和固溶体(冷却速度快) (4)存在成分偏析现象(晶粒内部有枝晶)
BSE分析:
再结晶晶粒 :内部均匀 未再结晶晶粒:内部不均匀
EBSD分析(晶界图):
EBSD 再结晶:晶粒内部无小角度晶界 未再结晶: 晶粒内部有小角度晶界
3. 5.1 轧制变形铝合金的微观组织(典型组织)
等轴晶粒沿轧制方
向被拉长为纤维组
织
未溶相沿轧制方向 呈链状排列
7B50铝合金轧制变形态金相组织图 a)80% b)90% c)95% d)图b局部放大
常用的金相பைடு நூலகம்示方法
1. 光学法
把金相试样放在反射光中,把 肉眼无法分辨的光学信息转化 为可变衬度的方法。如偏振状 态与位向差异,试样不经过其
他显示方法,只利用显微镜上
铝合金铸锭(未腐蚀) 组成相与基体对入射 光的反射能差异大 的特殊附件来实现的
2. 化学浸蚀法
铝合金金相组织检验与力学性能实验
实验1.31.4铝合金金相组织的观察及力学性能测定一、实验目的1. 巩固制备金相试样的方法与技术2. 了解各种加工工艺对铝合金显微组织以及力学性能(硬度)的影响二、实验内容1.对4种试样进行硬度测试本次试验采用的是TH320全洛氏硬度计。
洛氏硬度的试验原理:将压头(金刚石圆锥、钢球或硬质合金球)分两个步骤,在初试验力F 和主试验力F 先后作用下,压入试样表面,保持一定时间,卸除主试验方,保留初试验力,此时的压入深度为h ,在初试验力作用下的压入深度为h ,它们之差e (^h )来表示压痕深度的永久增量。
每压入0.002mm 为一个洛氏硬度单位。
°洛氏硬度试验原理图如图1所示样品测试面需要经过200号水砂纸磨光,以满足测试得粗糙度要求。
背面平整,测试面与背面没有明显歪斜。
测试过程中,总试验力的保持时间:5s ;主试验力卸除时间:2s 。
之所以选择5s 的总试验力保持时间,是考虑样品较软,但又没有明确的实验表明,铝合金样品在硬度测试过程中存在缓慢变形的明确说法,所以,选择居中的时间6至7s ,也是可以的。
本次实验所涉及的样品中内应当包括:铸态、固溶处理、固溶处理+轧制、固溶处理+轧制+时效,4种样品。
每个样品至少测试4点,第一点不计。
两相邻压痕中心之间的距离至少应为压痕直径的4倍,并且不应小于2mm ;任一压痕中心距离试样边缘的距离至少应为压痕直径的2.5倍,并且不应小于1mm 。
分别记录4种样品的硬度数据,并结合之后所观察得到的金相组织作出恰当分析。
2.制备、观察4种金相试样。
本次实验制备、显示一个样品,此样品是在之前的课程中制作的。
样品涉及4种工艺,具体参见下表: 工艺 编号 说明 铸造状态 1 每位学样品制备合格后, 固溶处理 2 除了察自己的样品,还需 固溶处理+轧制 3 要观察其他同学制备的其他固佑处J 效轧制+时 43种工艺的样品。
领取属于自己的铝合金样品后,按照金相样品制备的一般要求进行。
实验二 有色金属的显微组织观察与分析
实验一有色合金显微组织观察与分析一、实验目的1. 观察常见的铝合金、铜合金、镁合金及轴承合金等有色金属试样的显微组织特征。
2. 了解有色金属中合金元素对其组织和性能的影响。
二、实验说明(一)铝合金1.铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝合金。
典型的硅铝合金牌号为ZL102,含硅11~13%,在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。
铸造后几乎全部得到共晶组织即粗大灰色针状的共晶硅分布在白亮色的α-Al固溶体基体上,这种粗大的针状硅晶体严重降低合金的塑性,因此通常在浇铸时向合金溶液中加入2~3%的变质剂,进行变质处理,合金共晶点向右移,原来的合金变成亚共晶,其组织为枝晶状初生α固溶体(白亮色)+细的(α+Si)共晶体(黑色),如图1-1所示,从而提高合金强度和塑性。
(a)未经变质处理(b)变质处理图1-1 铸造铝合金(ZL102)的显微组织500X2.形变铝合金:硬铝是Al-Cu-Mg系合金,是重要的形变铝合金,具有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故而称Al-Cu-Mg系合金为硬铝合金。
在Al-Cu-Mg系中,形成了CuAl2(θ相)、CuMgAl2(S相),这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。
如图1-2所示。
(a)铸态(b)时效板材图1-2 硬铝(ZL12)的显微组织 100X(二)铜合金1. 普通黄铜普通黄金是Cu-Zn合金,其含锌量均在45%以下,根据Cu-Zn合金状态图,含锌量在32%以下的黄铜(如H80、H70)为α相固溶体的单相组织;而含锌量在32~45%之间的黄铜(H62、H59)则为(α+β)两相组织。
(1)α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70。
铸态组织为α固溶体呈树枝状,经变形和再结晶退火,其组织为多边形晶粒,有退火孪晶。
铝金相实验报告
一、实验名称铝金相分析二、实验目的1. 掌握铝金相试样的制备方法。
2. 学习使用金相显微镜观察和分析铝的显微组织。
3. 了解铝的成分、组织结构与其性能之间的关系。
4. 结合理论,加深对金属材料微观结构的认识。
三、实验原理金相分析是一种利用光学显微镜观察金属材料的显微组织结构的方法。
通过制备金相试样,并在金相显微镜下观察,可以了解材料的内部结构,从而分析其性能和工艺过程。
铝是一种轻质金属,具有良好的塑性、导电性和耐腐蚀性。
其显微组织主要由固溶体、析出相和杂质相组成。
通过金相分析,可以观察铝的晶粒大小、形态、分布以及析出相的类型和分布情况。
四、实验材料与仪器1. 实验材料:纯铝、铝合金试样。
2. 仪器设备:金相显微镜、抛光机、砂轮机、各号金相砂纸、脱脂棉、3~5硝酸酒精溶液。
五、实验步骤1. 试样制备1.1 取样:从纯铝和铝合金试样上截取一定尺寸的试样。
1.2 粗磨:使用砂轮机对试样进行粗磨,去除表面的氧化层和杂质。
1.3 细磨:使用不同号数的砂纸对试样进行细磨,直至达到所需的抛光程度。
1.4 抛光:使用抛光机对试样进行抛光,使其表面光滑。
1.5 浸蚀:将抛光后的试样放入3~5硝酸酒精溶液中,进行浸蚀,以突出组织结构。
1.6 清洗:将浸蚀后的试样用脱脂棉擦干。
2. 金相显微镜观察2.1 将制备好的试样放置在金相显微镜的载物台上。
2.2 调整显微镜的焦距和光圈,使试样清晰可见。
2.3 观察试样的晶粒大小、形态、分布以及析出相的类型和分布情况。
六、实验结果与分析1. 纯铝试样1.1 晶粒大小:纯铝的晶粒大小较为均匀,平均晶粒尺寸约为5μm。
1.2 晶粒形态:纯铝的晶粒呈多边形,具有一定的方向性。
1.3 析出相:纯铝中几乎没有析出相。
2. 铝合金试样1.1 晶粒大小:铝合金的晶粒大小与纯铝相似,平均晶粒尺寸约为5μm。
1.2 晶粒形态:铝合金的晶粒形态与纯铝相似,具有一定的方向性。
1.3 析出相:铝合金中存在析出相,主要呈针状或片状分布。
铝合金金相观察资料
1)铸造组织:
铸造金属在冷却时由于局部负温度梯度,导致过冷度不同,金属晶粒多呈树枝晶生长。
又由于冷却的速度较快,各组分析晶温度不同,固相中的原子来不及扩散,以至于结晶分先后顺
序,在枝晶间产生成分偏析。
所以在凝固后的铸造组织中,可观察到树枝状晶粒。
在高倍显微镜下观察时,还能明显地观察到枝晶间的成分偏析现象,表现为颜色深度不同的带状分界,颜色深度不同是因为其中的铜元素含量不同,因而在腐蚀液作用下产生颜色梯度,在局部还能看到CuAl2存在于枝晶间。
(2)固溶处理:
固溶处理将金相组织中的成分逐渐均匀化。
由于温度再次升高,导致晶粒长大。
高倍镜下晶界间有黑色小点(CuAl2杂质),这是由于冷却过程中得到过饱和固溶体,固溶处理保温的时间较短,铸态组织中的树枝状晶粒并未完全转化,枝晶偏析未完全消除,存在杂质CuAl2。
(3)固溶处理+轧制:
轧制是通过应力使金属内部的位错产生运动从而发生塑性变形。
在金相组织中,可观察到晶粒呈纤维状,顺着轧制方向被拉长,而沿其他方向的尺寸无明显变化。
在高倍镜下可观察到大量明显的位错。
(4)固溶处理+轧制+时效:
时效是过饱和固溶体的脱溶分解,析出第二相的过程。
但实验中在低倍显微镜观察下时只发现很少的第二相。
其金相组织与固溶处理+轧制后的金相组织没有明显的区别。
铝合金的显微组织与疲劳性能研究
铝合金的显微组织与疲劳性能研究近年来,铝合金作为一种广泛应用于航空航天、汽车制造等领域的重要材料,其性能研究日益受到关注。
其中,显微组织与疲劳性能是铝合金研究中的重点内容。
本文将对铝合金的显微组织和疲劳性能进行深入探讨。
1. 铝合金的显微组织铝合金的显微组织是指铝合金材料在显微镜下呈现的微观结构。
铝合金主要由铝和其他合金元素组成,例如铜、锌、镁等。
这些合金元素的含量和比例可以调控铝合金的性能。
显微组织中的晶粒尺寸、相的类型和分布、亚晶等也对铝合金的力学性能和疲劳性能有着重要影响。
铝合金的显微组织可以通过金相显微镜等设备观察和分析。
常见的铝合金显微组织包括等轴晶粒、柱状晶粒和细晶组织。
等轴晶粒由于其颗粒形状均匀,其力学性能相对较好,但疲劳寿命较短。
柱状晶粒则具有相对更高的强度和硬度,但其断裂韧性较差。
而细晶组织在疲劳寿命方面有一定的优势,但机械性能相对较差。
2. 铝合金的疲劳性能疲劳是材料在受到交变载荷或循环加载作用下发生破坏的现象。
铝合金在使用过程中,常常会遇到复杂的载荷情况,例如风、震动等作用下的循环加载。
因此,疲劳性能的研究对于铝合金的可靠性和安全性至关重要。
铝合金的疲劳性能可以通过疲劳试验等方法进行评估。
疲劳试验的基本原理是对材料进行交替加载,观察其在不同循环次数下的疲劳寿命。
常用的疲劳试验方法包括拉伸-压缩疲劳试验、弯曲疲劳试验和旋转弯曲疲劳试验等。
研究发现,铝合金的疲劳寿命常与显微组织的细化有关。
较细的晶粒尺寸可以增加材料的界面数目,从而能更好地吸收应力和延缓疲劳损伤的发展。
此外,亚晶和非晶态相对于晶粒边界也具有较好的阻碍裂纹扩展的能力,有利于提高疲劳寿命。
3. 铝合金的改进与应用为提高铝合金的疲劳性能,研究人员采取了不少措施。
例如通过热处理和合金元素的添加来改变铝合金的显微组织,实现性能提升。
采用过热变形、等温退火和再结晶退火等方法,可以调控铝合金的晶粒尺寸和相的类型。
同时,适量添加元素,如镁、锌等,可以改善铝合金的强度和韧性。
ZnAl10Cu2合金铸态显微结构及相结构分析
ZnAl10Cu2合金铸态显微结构及相结构分析邬小萍 李德富郭胜利许晓庆胡捷贺金宇北京有色金属研究总院,北京 100088通信作者,wuxp040301@摘要通过金相显微镜(OM)、扫描电镜(SEM)、EDS和XRD等对ZnAl10Cu2合金的铸态显微结构和相结构进行了观察和分析,并对其组织的形成机制进行了研究。
研究表明:铸态ZnAl10Cu2合金的凝固组织由初生枝晶α1及其外围的棒状共晶(α2+β)组成,在随后的冷却过程中初生α1相和共晶组织中的α2相均发生共析反应,得到层片状共析组织(α+η),而在室温时效中未完全转变的α1相和α2相均发生不连续沉淀形成粒状沉淀组织,其中初生α1相,为富Al相,是Zn在Al中形成的固溶体,属于强化相,晶体结构为面心立方,β为富Zn相,晶体结构为密排六方。
关键词 ZnAl10Cu2合金;显微组织;共晶;共析;不连续沉淀Analysis of as-cast microstructure and phase structure ofZnAl10Cu2 alloyWU Xiao-ping , LI De-fu, GUO Sheng-li, XU Xiao-qing, Hu Jie, HE Jin-yuBeijing General Research Institute for Non- ferrous Metals, Beijing 100088, ChinaCorresponding author,wuxp040301@ABSTRACT The as-cast microstructure and phase structure of ZnAl10Cu2 alloy were observed and analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The formation mechanism of structures was also studied. The results show that the solidification of cast ZnAl10Cu2 alloy is consisted of primary dendrites α1 and rod-like eutectic (α2 + β) surrounding primary α1 dendrites. Primary phase α1 and α2 phase in the eutectic structure occur eutectoid reaction during the subsequent cooling process, and lamellar (α + η) eutectoid organization is formed. The retained α1 and α2 phase precipitate discontinuously and form granular precipitates at room temperature aging. Primary α1 is theAl-rich ( Al forms solid solution with Zn) and strengthening phase, with crystal structure of face-centered cubic lattice. And for β, the crystal structure of the Zn-rich phase is hexagonal lattice.KEY WORDS ZnAl10Cu2 alloy; microstructure; eutectic; eutectoid; discontinuous precipitation锌铝合金具有良好的力学性能、耐磨性能以及其他一些特殊性能(如碰撞时不产生火花、无磁性等),作为铜合金甚至铝合金的替代材料具有广泛的应用前景。
实验十四 有色金属的组织观察与检验
实验十四有色金属的组织观察与检验(验证性)一、实验目的1.观察铝合金、铜合金及轴承合金的显微组织。
2.了解这些合金材料的成分、组织及性能的特点以及它们的应用。
二、实验原理(一)铝合金:在工业上常用的铝合金为Al-Si系、Al-Cu系、Al-Mg系和Al-Zn系四大类。
(1)ZL102属二元铝-硅合金,又名硅铝明,含Si%=10~13%。
ZL102的铸造组织为粗大针状硅晶体和固溶体组成的共晶体,以及少量呈多面体形的初生硅晶体,。
粗大的硅晶体极脆,严重降低铝合金的塑韧性。
为了改善合金的性能,通常进行变质处理,即浇注之前在合金液体中加入占合金重量2~3%的变质剂。
由于这些变质剂能促进硅的生核,并能吸附在硅的表面阻碍硅的生长,而使合金组织大大细化,同时使合金共晶右移,使合金变为亚共晶成分。
经变质处理后的组织由α固溶体和细密的共晶体(α+Si)组成。
由于硅的细化,使合金的强度塑性明显改善。
(2)ZL109属共晶型铝合金。
成分为Si%=11~13%,Cu%=0.5~1.5%,Mg%=0.8~1.3%,Ni%=0.8~1.5%,Fe%=0.7%,余量为铝。
其金相显微组织为α(Al)+Si+Mg2Si+Al3Ni相组成。
其中α(Al)为白色基体,灰色板片为Si,黑色板块状为Al3Ni,黑色骨骼状为Mg2Si。
该合金加入NI的目的主要是形成耐热相。
(3)ZL203属Al-Cu系合金,该合金的成分为Wcu=4.0-5.0%,余量为铝。
在铸态下它是由α(Al)和晶间分布的α(Al)+Al2Cu+N(Al2Cu2Fe)相组成,经淬火处理后,Al2Cu全部溶入α(Al),其强度和塑性都比铸态高。
(二)铜合金:工业上常用的铜合金有纯铜(紫铜)、黄铜、(铝锌合金)和青铜三大类。
(1)纯铜:纯铜又称紫铜,具有良好的导电、导热性和耐蚀性。
经退火后的组织为具有孪晶的等轴晶粒。
(2)黄铜:常用的黄铜中含锌量﹤45%,含锌量<39%的黄铜具有单相α晶粒呈多边形,并有大量的孪晶产生。
铝合金金相报告
铝合金金相报告1. 引言铝合金是一种重要的结构材料,具有良好的强度和轻质化特性,广泛应用于航空航天、汽车制造、建筑等领域。
金相分析是研究铝合金组织和性能的重要手段之一。
本报告旨在对一种铝合金样品的金相组织进行分析和描述,以了解其组织特征和性能表现。
2. 实验材料和方法2.1 实验材料本实验使用的铝合金样品为Al-Mg-Si系列合金,化学成分含有3%的镁和1%的硅。
2.2 试样制备首先,从铝合金板材中切取合适大小的试样。
然后,通过机械打磨和研磨,将试样表面进行粗磨和细磨处理,直到试样表面平整光滑。
最后,使用电解腐蚀法进行腐蚀处理,去除试样表面的氧化层。
2.3 金相试样制备将腐蚀后的试样进行清洗,去除残留的腐蚀液和污物。
然后使用酸性溶液(如HCl)进行脱脂处理,并用酒精进行清洗和干燥。
最后,使用光学显微镜切割机将试样切割成适当大小,以便于金相观察和分析。
2.4 金相观察将制备好的金相试样放置在金相显微镜上,调节显微镜的放大倍数和对焦,以获得清晰的金相图像。
通过观察试样的组织结构、晶粒形貌和相分布等特征,进行组织分析和描述。
3. 实验结果与分析根据金相观察结果,铝合金试样的组织主要由铝基体、Mg2Si相和Al-Mg-Si共晶相组成。
铝基体呈现出均匀的晶粒分布,晶粒尺寸较小。
Mg2Si相以细小的颗粒形式存在于铝基体中,分布较为均匀。
Al-Mg-Si共晶相以细小的片状或条状晶粒形式存在,分布相对较稀疏。
通过观察铝合金试样的金相组织,可以得出以下结论: 1. 试样的晶粒尺寸较小,晶界清晰,具有良好的晶粒织构性能。
2. Mg2Si相的细小颗粒分布均匀,可以有效提高合金的强度和硬度。
3. Al-Mg-Si共晶相的存在可能对合金的塑性和韧性产生一定影响。
4. 结论通过金相分析,我们对铝合金试样的组织特征和相分布有了详细的了解。
该铝合金样品具有良好的晶粒织构性能,Mg2Si相和Al-Mg-Si共晶相的存在对合金的力学性能具有一定影响。
铝合金材料的显微组织与力学性能研究
铝合金材料的显微组织与力学性能研究铝合金是一种常见而重要的金属材料,其具有良好的机械性能和广泛的应用领域。
在铝合金的研究中,显微组织与力学性能之间的关系一直是一个重要的研究方向。
本文将从显微组织和力学性能两个方面探讨铝合金材料的研究进展和相关问题。
一、铝合金的显微组织研究铝合金的显微组织主要由晶粒、相分布和晶界等组成。
晶粒是组成铝合金材料的基本单元,晶粒的尺寸和形态与材料的力学性能密切相关。
随着材料制备方法和热处理工艺的不同,铝合金的晶粒尺寸和形态会发生变化。
研究表明,晶粒尺寸越小,材料的强度和硬度越高,但韧性和塑性会相应降低。
相分布是指铝合金中不同相的分布情况。
铝合金中常见的相有析出相、溶固相和沉淀相等。
这些相的存在与晶粒的尺寸、形态和分布密切相关。
相分布的研究有助于了解铝合金的相变和相互作用规律,从而指导制备和改性铝合金材料。
晶界是晶粒之间的界面区域,是铝合金中的强度和韧性的重要因素。
晶界的特征和稳定性决定材料的抗拉强度、断裂韧性和疲劳寿命。
研究表明,晶界的结构、平衡和迁移行为对铝合金材料的性能具有重要影响。
因此,晶界的研究对于理解铝合金的显微组织演化和力学性能提升具有重要意义。
二、铝合金的力学性能研究铝合金的力学性能包括强度、硬度、韧性和塑性等参数。
随着显微组织的改变,铝合金的力学性能也会相应变化。
强度是材料抵抗变形和断裂的能力,与晶粒尺寸、相分布和晶界特性等因素密切相关。
硬度是材料抵抗切削和磨损的能力,与晶粒大小和晶界特征有关。
韧性是材料抵抗断裂和剪切的能力,主要受晶界和析出相的影响。
塑性是材料变形和变型的能力,也与晶界的稳定性和迁移性有关。
为了提高铝合金材料的力学性能,研究人员通过改变制备方法、热处理工艺和合金配方等途径进行了大量的研究。
针对不同应用领域的需求,开发出了一系列具有优异力学性能的铝合金。
同时,利用计算模拟方法对铝合金进行力学性能预测也成为了研究的热点。
这些研究工作为铝合金的应用提供了重要的理论和实践基础。
铝铜合金金相显微组织分析
铝铜合金金相显微组织分析
铝铜合金金相显微组织分析是一种重要的手段,它可以为我们提供有关金属材料组织和微观性能的定量测量及诊断信息。
它将金相显微镜与X射线能谱仪相结合,具有双重功能:提供细微结构的定量测量及物质成分的分析。
近年来,由于全新的光学显微技术和数据处理技术的发展,金相显微组织分析技术取得了显着的进步,在金属材料研究中也受到了广泛的应用。
借助于这一分析技术,可以获得关于金属材料表面的金属组分、结构形状、化学成分、均匀度和尺寸等金相参数的准确信息。
具体而言,金相显微组织分析能够检测出铝铜合金的组织形貌、结构及元素分布等,以及材料材料的物理性能和力学性能,提供及时准确的分析结果,有利于深入了解材料的失效机理,减少产品的质量事故,提高工作效率。
此外,金相显微组织分析还可以用于诊断金属材料的微细损伤,帮助我们更加清楚地了解损伤的类型、厚度和形状,以及发展对应的检修保养措施。
本文介绍了铝铜合金金相显微组织分析的基本原理、便利性及应用,它不仅能帮助我们了解金属材料的微观形态及化学成分,而且可以为研究金属材料的性能和失效机理提供有力的支持。
在探索金属材料的新应用时,金相显微组织分析技术将成为不可缺少的重要工具。
有色金属及其合金显微组织分析
退火
α白+β'黑
ZChSnSb11-6
铸态
α黑 +β'白方块+Cu3Sn(枝晶) (枝晶)
ZChPbSb17-1
铸态
(α+β)共晶+SbSn+Cu2Sb
Cu-Pb合金 合金
铸态
Cu(白色)+Pb(黑色) (白色) (黑色)
QAL10
铸态
α(白色 白色)+(α+γ2)共析 黑色 共析(黑色 白色 共析 黑色)
处理状态 变质处理
未变质处理
显微组织 α枝晶 ( α+Si)共晶 枝晶+( 枝晶 ) Si块+(α+Si针)共晶 ( α α白+β'黑
浸蚀剂 氢氟酸水溶液 氢氟酸水溶液
三氯化铁盐酸水溶液 三氯化铁盐铸态 固溶处理 930℃淬火 ℃ 形变退火 铸态
α黑 +β‘白方块+Cu3Sn(枝晶) 4%硝酸酒精溶液 硝酸酒精溶液 (枝晶) (α+β)共晶+SbSn+Cu2Sb Cu(白色)+Pb(黑色) (白色) (黑色) α(白色 白色)+(α+γ2)共析 黑色 共析(黑色 白色 共析 黑色) β'(相当于 相当于M) 相当于 退火孪晶 α +(α+δ)共析 ( ) 4%硝酸酒精溶液 硝酸酒精溶液 未浸蚀
二、实验报告要求
1、在显微镜下观察制备好的一套有色合金样品。 、在显微镜下观察制备好的一套有色合金样品。 2、完成电子实验报告。 、完成电子实验报告。
有色金属及其合金显微组织
序号 1 2 3 4 5 6 7 8 9 10 11 材料 ZL102 ZL102
铝铜合金金相显微组织分析
铝铜合金金相显微组织分析铝铜合金是世界上最常用的金属合金,由于其优良的力学性能和良好的加工性能,在建筑、制造、交通等各个领域得到了广泛的应用。
但是,为了获得良好的性能,在开发铝铜合金时,必须综合考虑多种因素,包括其微观组织、晶粒尺寸、均匀度和含量等。
从金相显微镜的角度来看,金相显微组织分析可以更全面地了解铝铜合金的组织结构和性能特征,从而更好地实现性能的优化和改进。
铝铜合金金相显微组织分析主要可以从两个相关性方面进行。
首先,金相显微镜可以观察到合金中细小晶粒的形状、尺寸和分布情况,以及合金组织中相互关系的特征。
其次,金相显微镜可以准确地分析铝铜合金中基体和夹杂物之间的相互作用,揭示合金中基体、析出物、熔合现象以及其他特殊组织成分的聚集状态和分布规律。
进行金相显微组织分析前,需要准备具有良好的外观性质的铝铜合金,以确保技术结果的准确性。
通常,需要对样品进行热处理,以消除机械冲击、疲劳和拉伸等影响,从而有效地稳定晶界和含量,使分析结果更准确。
其次,样品需要进行锉削,以消除表面的划痕和污染,使表面的晶界更加明晰和更加自然。
此外,金相显微镜分析一般采用原子比色分析技术,通过观察晶界的颜色差异,从而准确地识别和分析基体与夹杂物之间的特征和分布规律。
铝铜合金金相显微组织分析技术的准确性和可靠性决定了铝铜合金加工工艺的发展,同样也直接影响着性能的优化和改进。
因此,在实际应用中,金相显微组织分析无论对于对新型铝铜合金的开发和改进,以及对现有材料应用的改进都是至关重要的。
综上所述,金相显微组织分析可以更准确地解释铝铜合金的组织结构,揭示其微观组织的特性和分布规律,提高合金的性能,并有效地指导铝铜合金的开发和应用。
因此,金相显微组织分析一直是铝铜合金加工的重要技术,也是未来铝铜合金加工产业发展的核心能力。
Al_Zn_Mg_Cu系高强铝合金显微组织的定量分析
文章编号:100422261(2004)022*******Al 2Zn 2Mg 2Cu 系高强铝合金显微组织的定量分析Ξ赵 捷(天津理工学院材料科学与工程系,天津300191)摘 要:借助于光学显微镜、SEM 、EDS 和M TS 拉伸试验机等测试手段,研究Al 2Zn 2Mg 2Cu 系新型高强铝合金不同制备工艺下断口形貌、显微组织及力学性能,利用定量金相技术对该合金中残留第二相尺寸、数量及圆滑度等特征参数进行较系统的定量分析.实验结果表明:制备工艺不同,合金中残留第二相的特征参数有较大差异,对合金的断裂韧性影响显著;通过制定合理的工艺参数,可达到控制显微组织和改善性能的目的.关键词:高强铝合金;定量分析;断口分析;残留第二相中图分类号:TG 146 文献标识码:AQ uantitative analysis and study on microstructureof Al 2Zn 2Mg 2Cu high 2strength aluminum alloyZHAO Jie(Dept.of Materials Sci.and Eng.,Tianjin Institute of Technology ,Tianjin 300191,China )Abstract :By means of microscope 、SEM 、EDS and MTS ,the microstructure ,fracture behavior and mechanical properties of high 2strength aluminum alloy were studied.The size ,quantity and x/y of remained second phase were measured using quantitative analysis technology.The results showed that there were differences in char 2acter parameter of remained second 2phase under different manufacture process.Size ,quantity ,x/y and distri 2bution of remained second 2phase have important influence on fracture toughness.Microstructure and properties may be improved through the controlling process.K eyw ords :high 2strength aluminum alloy ;quantitative analysis ;remained second phase ;fracture analysis 可变形高强铝合金,因具有高的比强度、较好的耐腐蚀性、耐久且经济、易于加工等,已成为航空航天领域、军事、交通运输及其它工业领域中最重要的结构材料之一.随着航空、航天、核工业等高科技领域的迅速发展,对高强铝合金的性能提出了越来越高的要求.多年来,为获得更高性能的铝合金,国内外研究人员围绕其优化合金成分、制备技术及热处理工艺上等方面开展了大量的研究工作[1-8],但很少对高强铝合金组织中残留第二相的数量、尺寸、形状及分布等特征参数做过系统的定量分析和计算,也就是说显微组织与宏观性能之间的联系,尚缺乏规律的定量描述.为加速高强铝合金的研究进程,在该领域取得突破性进展,加强基础研究已成为当务之急[9].为此,在完成热处理与力学性能测试的前提下,利用光学显微镜,扫描电镜观察、分析不同工艺下高强铝合金的显微组织和断口形貌,并对组织中残留第二相的数量、尺寸、形状及分布进行较系统的定量分析,以揭示该铝合金显微组织与宏观力学性能之间的联系,为研究与开发高性能的新型铝合金提供理论依据.1 实验方法 本实验采用Al 2Zn 2Mg 2Cu 系高强铝合金,化学成分见表1.Ξ收稿日期:2003211213 作 者:赵 捷(1958— ),女,副教授,硕士 第20卷第2期2004年6月天 津 理 工 学 院 学 报JOURNA L OF TIAN JIN INSTITUTE OF TECHN OLOG Y Vol.20No.2J un.2004表1 试验材料的化学成分T ab.1 Chemical composition of tested aluminum alloy元素Zn Mg Cu Zr Al含量(wt0 0)7.6~8.4 1.8~2.3 2.0~2.60.1~0.25余量 主要制备工艺流程为:合金熔炼—半连续铸造—均匀化处理—挤压成型—淬火处理—拉伸矫直—人工时效.表2 试样编号与相应制备工艺T ab.2 Specimen code and manufacture process试样编号S1S2S3S4S5制备工艺ⅠⅡⅢⅣⅤ 使用M TS液压伺服万能材料试验机测试抗拉强度σb和断裂韧性K c性能指标.采用philips ESEM XL30扫描电镜,观察试样的断口形貌,并对残留第二相质点的尺寸、数量、分布及圆滑度进行定量分析,其方法如下:将断口形貌放大1200倍,在断口的各个区(疲劳区、拉断区、舌状区)随机选取6个视场,记录断口形貌,每个试样共采集18张图象存入光盘,利用计算机逐一测量每张图片中残留第二相质点数量、尺寸、质点的横(x)纵(y)向长度,并对质点的数量、尺寸分布,圆滑度即横纵比(x/y)等特征参数进行统计.在拉断的试样上截取金相试样,在蔡司AXIO TECH2100型金相显微镜上观察组织,将拍摄的金相照片作为测试视场,选择多点点算法测量,在每个视场内随机移动网格测量8组数据,研究残留第二相质点的体积分数[10211]. 利用X射线能谱仪(英国OXFORD L IN K),对断口上不同形状、尺寸的残留第二相质点以及基体成分进行能谱无标样定量计算,得出其成分和含量.2 实验结果及分析2.1 断口形貌观察 经观察与分析,可以看出5种试样的宏观断裂特征基本相同,均为灰色无光泽粗糙层状断口,主要包括疲劳区、舌状区、拉断区,各区之间有清晰的分界线.见图1(a).微观特征均为:分层、韧窝和第二相质点,见图1(b).不同工艺条件下的断口形貌特征如图2、图3所示.(a)断口宏观形貌 X50(b)断口微观形貌 X2400图1 S5拉伸断口形貌Fig.1 Fracture morphology of specimen S5(SEM) 从图上可看出,工艺条件不同,拉伸断口在第二相质点数量、尺寸、形状、分布的弥散性、韧窝的大小与深浅等方面有一些差异.S2、S5试样断口上质点分布比较均匀,尺寸较小;舌状区韧窝较多且深,分层之间均可观察到质点的存在,质点边界清晰.S3试样拉伸断口舌状区韧窝较多也较深,无分层现象,质点尺寸相对较大但分布弥散均匀.在拉断区,有明显分层.S1、S4试样断口舌状区分层壁上韧窝较少,质点分布不均,局部出现细小质点的堆积.(a)舌状区 X1200・74・ 2004年6月 赵 捷:Al2Zn2Mg2Cu系高强铝合金显微组织的定量分析(b )拉断区 X1200图2 S 1试样拉伸断口形貌Fig.2 Fracture morphology of specimen S 1(SEM)(a )舌状区 X1200(b )拉断区 X1200图3 S 3试样拉伸断口形貌Fig.3 Fracture morphology of specimen S 3(SEM)2.2 断口定量分析 对不同试样断口上残留第二相质点尺寸、数量及分布进行测量和统计,结果见表3,表4. 实验结果表明:工艺参数不同,残留第二相尺寸分布有较大差别.S 2试样中1μm ~3μm 的质点数较多、其它试样中质点主要集中在1μm ~4μm. 从表4可以看出,制备工艺不同,残留第二相平均尺寸与数量有一些差别.试样S 2平均尺寸最小,质点数最多;试样S 4平均尺寸最大.试验结果与断口形貌定性分析结果基本吻合.对残留第二相质点圆滑度分布的统计结果见图4. 由图4可以看出,4种试样中x/y 值位于1~2的质点数较多,其中S 2、S 3中残留第二相等轴性较好,x/y 比值在1~2的质点数占质点总数的700 0以上.表3 残留第二相尺寸分布及数量T ab.3 Size distribution of remained second phase 尺寸(μm )试样号 <1μm1~2μm2~3μm3~4μm4~5μm5~6μm>6μmS 13566349342119S 22828556221613S 30577041201412S 40406756331918S 51716551231412表4 4种试样中第二相的平均尺寸与数量比较T ab.4Everage size and qu antity of remained second phase 试样编号残留第二相质点平均尺寸(μm )统计个数(个)S 1 2.66245S 2 2.26276S 3 2.70214S 42.87233S 52.51237・84・天 津 理 工 学 院 学 报 第20卷 第2期 图4 4种试样圆滑度分布图Fig.4 x/y distribution2.3 残留第二相成分分析 为了弄清第二相质点成分对性能的影响,进行微区成分分析,其结果如表5所示:表5 材料微区成分分析结果T ab.5 R esults of E DS试样编号区域化学元素(wt0 0)Mg Cu Zr AlS2基体 3.06 2.508.74余量质点10.8916.2020.18余量 可以看出,第二相质点处Mg、Cu和Zn的含量均高于基体,说明这些残留第二相质点为富Mg、Zn、Cu的金属间化合物.2.4 力学性能测试结果 试验材料力学性能测试结果见表6.表6 力学性能测试结果Tab.6 R esults of mechanical property testing试样编号S1S2S3S4S5σb(MPa)0.97M0.84M0.96M M0.98M K C(N/mm3/2)0.57N N0.90N0.49N0.75N 从表6可知,制备工艺不同,抗拉强度变化不明显;而断裂韧性则有较大的差别,试样S2的断裂韧性最高,S4最低,约为S2的1/2.2.5 光学组织观察与定量分析2.5.1 组织观察 光学组织观察结果如图6、图7所示. 经挤压后的合金晶粒沿主变形方向被拉长,纤维状组织上分布着粒状或絮状残留第二相质点,其分布因制备工艺不同而有差异.S1试样中质点尺寸相对较大,少数区域有质点堆积,呈团絮状;S2、S3试样中质点形状比较圆滑且分布弥散;S4试样中质点出现链状聚集分布.(a)横向 X250(b)纵向 X250图6 S2试样显微组织Fig.6 Microstructure of specimen S2(a)横向 X250・94・ 2004年6月 赵 捷:Al2Zn2Mg2Cu系高强铝合金显微组织的定量分析(b)纵向 X250图7 S4试样显微组织Fig.7 Microstructure of specimen S42.5.2 第二相体积分数 按多点点算法进行定量分析,测出残留第二相体积分数,其结果见表7.表7 残留第二相质点体积分数T ab.7 V olum fraction of remained second phase试样编号S1S2S3S4S5体积分数(0 0) 4.6 3.9 3.7 4.2 3.8 由表7可以看出,制备工艺不同,残留第二相体积分数有差别.S1试样中残留第二相相体积分数最大,其数值达4.60 0,S2、S3、S5试样则相对较小.3 讨 论 通过对上述残留第二相特征参数及力学性能的测试结果进行综合分析,可以看出残留第二相尺寸、形状、体积分数及分布等,因制备工艺不同而有较大的区别,力学性能也随之发生了相应的变化.从实验数据中还可以看出,随拉伸区残留第二相质点尺寸的增加(2. 26μm→2.51μm→2.66μm→2.87μm),断裂韧性(K C)基本随尺寸增大表现出下降的规律(M→0.75M →0.57M→0.49M).残留第二相质点主要为含有Cu、Al、Mg、Zn的金属间化合物,在材料内部起着裂纹源的作用,在应力作用下,当局部应力超过临界值时,残留第二相质点与基体分离,产生起始裂纹,降低了裂纹扩展所需的能量,成为裂纹萌生、扩展的通道,最终导致材料断裂[8],从而降低材料的断裂韧性.显然,残留第二相质点越粗大对断裂韧性越不利;因此,减少残留第二相质点尺寸是提高材料断裂韧性的有效途径.但尺寸不是影响断裂韧性的唯一因素,质点圆滑度及分布弥散性也有影响,如试样S3尽管平均尺寸较大,但因残留第二相质点圆滑度较好,分布比较弥散,不利于裂纹的形成,对断裂韧性损害程度并不大.实验结果还表明,随残留第二相质点体积分数的增大,断裂韧性基本上呈下降的趋势(S2除外,残留第二相质点体积分数比S3、S5略高一点,但K C值最高,这与残留第二相尺寸只有2.26μm、圆滑度较好且呈分布弥散有密切关系),这主要是由于质点体积分数增加,裂纹源增加,而质点的圆滑度差有利于裂纹的扩展,因而残留第二相体积分数与圆滑度也对断裂韧性产生较大的影响[12]. 实验数据表明,残留第二相质点特征参数对高强铝合金抗拉强度的影响不是很大,因为随残留第二相质点特征参数的变化,高强铝合金的抗拉强度变化不显著,也看不出其变化规律. 综上所述,这类新型高强铝合金中残留第二相数量、尺寸、圆滑度及分布与断裂韧性关系比较密切,质点尺寸越小、分布越弥散、相体积分数越小及形状越圆滑,对断裂韧性越有利,所以,控制这类新型铝合金中残留第二相质点的大小、数量及分布等将成为改进材料断裂韧性的主要途径.通过提高铝合金的纯度及调整合金元素组元的含量,可有效减少残留第二相质点的大小、数量;在强化固溶中使其溶入固溶体中或通过加工变形细化其尺寸,改善残留第二相质点的形态(圆滑)和分布(弥散均匀),来达到改善可变形高强铝合金性能的目的[7-8].4 结 论 1)断口分析表明,该合金宏观断裂特征为:灰色无光泽粗糙层状断口,主要包括疲劳区、舌状区、拉断区;微观断裂特征为:分层、韧窝和第二相质点; 2)定量分析结果表明,制备工艺不同,合金中残留第二相特征参数(如尺寸,形状、数量及分布等)有较大的差异; 3)Al2Zn2Mg2Cu系高强铝合金中残留第二相特征参数与断裂韧性关系密切,而对合金抗拉强度的影响不大.残留第二相质点尺寸小,体积分数小,圆滑度好且分布弥散,对合金断裂韧性十分有利.参 考 文 献:[1] 邹景霞,潘青林,彭志辉.Al2Mg2Si2Mn2Cr合金的显微组织与拉伸性能[J].轻合金加工技术,2001,29(5):47—・5・天 津 理 工 学 院 学 报 第20卷 第2期 49.[2] 汝继刚,依琳娜,张禄山.超高强铝合金热处理工艺研究[J].材料工程,1999,(2):37—42.[3] Polmear I J,Ringer S P.Evolution and Control of Mi2crostructure in Aged Aluminum Alloy[J].Journal of JapanInstitute of Light Metals,2000,50(12):633—642. [4] 谷亦杰,林建国,张永刚,等.回归再时效(RRA)处理对7050铝合金的影响[J].金属热处理,2001,(10):31—27.[5] 陈康华,刘红卫,刘允中.强化固溶对7075铝合金组织与性能的影响[J].金属热处理,2000,(9):16—19.[6] Mukhopadhyay A K.Development of Reproducible and In2creased Strength Properties in Al2Cu2Mg2Ag Based AA7075 [J].Metallurgical and Materials Transation A,1997,28A: 2429—2435.[7] 杨 磊,潘青林,尹志民,等.微量Sc和Zr对Al2Zn2Mg合金组织与性能的影响[J].材料工程,2001,(70):29—33.[8] 陈康华,刘红卫,刘允中.强化固溶对Al2Zn2Mg2Cu合金力学性能和断裂行为的影响[J].金属学报,2001,37(1):30—37.[9] 钟 崛.提高铝材质量基础研究的进展[A].铝加工高新技术文集[C].北京:中国有色金属加工工业协会,2001.16—33.[10] 秦国友.定量金相[M].四川:四川科学技术出版社,1979.[11] 上海市机械制造工艺研究所.金相分析技术[M].上海:上海科学技术文献出版社,1987.[12] 汪 洋.显微组织定量参数的物理意义和应用(1)(2)[J].轻合金加工技术,1998,26:23—16.(上接第38页)振动情况. 用有限元方法对图1所示的安装有吸振器的结构和没有吸振器的结构分别进行计算,在f=0.0Hz~20Hz频率范围,得到振幅与频率的关系曲线如图2所示. 由图2可见,安装吸振器后,在共振点附近,使建筑结构的振动响应急剧减小,抗振效果明显提高,说明本文提出的设计方法适用于结构减振.图2 安装吸振器的减振效果Fig.2 The d amping effect of vibration absorbers intalled4 结 论 1)通过本文的理论分析结果表明,用优化设计方法确定安装在结构上的吸振器参数,对振动系统来说,具有良好的减振效果,可以实现抑制由地震和风载荷引起的结构震动. 2)本文提出的吸振器优化设计方法具有设计简单、容易,运用优化设计方法使设计结果达到最优,能够很好的解决实际振动问题,同时,采用有限元分析的方法,使复杂的振动系统设计计算问题变得简单,在振动系统设计阶段就能进行仿真预测振动响应值.参 考 文 献:[1] Ajjan M,Al2hadid,Wright J R.Developments in the Force2State Mapping Technique for Non2Linear Elements in aLumped2Parameter System[J].Mechanical Systems and Sig2nal Processing,1989,3(3):269—290.[2] 张洪田,刘志刚,张志华,等.动力吸振技术的现状与发展[J].噪声与控制,1996,(3):22—25.[3] 黄豪彩,黄宜坚.磁流变技术及其在机械工程中的应用[J].设计与研究,2003,(4):24—26.・15・ 2004年6月 赵 捷:Al2Zn2Mg2Cu系高强铝合金显微组织的定量分析。
铝合金显微组织及断口分析论文
目录1 绪论 (1)1.1断口分析的意义 (1)1.2 对显微组织及断口缺陷的理论分析 (1)1.3研究方法和实验设计 (3)1.4预期结果和意义 (3)2 实验过程 (4)2.1 生产工艺 (4)2.1.1 加料 (4)2.1.2 精炼 (4)2.1.3 保温、扒渣和放料 (5)2.1. 4 单线除气和单线过滤 (5)2.1. 5连铸 (6)2.2 实验过程 (6)2.2. 1 试样的选取 (6)2.2.2 金相试样的制取 (8)2.2.3 用显微镜观察 (9)2.3 观察方法 (10)2.3.1显微组织的观察 (10)2.3.2 对断口形貌的观察 (11)3 实验结果及分析 (12)3.1对所取K模试样的观察 (12)3.2 金相试样的观察及分析 (13)3.2.1 对显微组织的观察 (13)3.2.2 断口缺陷 (16)结论 (24)致谢 (25)参考文献 (26)附录 (28)1 绪论1.1断口分析的意义随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。
长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。
尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。
然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。
这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。
所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。
有色金属显微组织分析
五、钛合金
钛及合金特点:密度小、强度高、耐蚀 性能好,具有良好的中温强度和低温韧 性,钛是无磁的。 它们是良好的结构材料和耐蚀材料。 2. 使用最广泛的双相钛合金: TC4 (Ti-6Al-4V)。它可以热处理强化。
1.
3. TC4退火后组织:. а (白色条状、块状)+β (黑色条状)
有色金属显微组织分析
一.金属材料分类
金属
黑色金属:主要指钢和铸铁。
有色金属:指非铁金属及合金,如Al、 Cu、Mg、Ti、Sn、Pb等金属及合金。
二.铝合金
1.铝合金分类:
形l-Si系、Al-Cu系、Al-Mg系、 Al-Zn系等,Al-Si系应用最广。 Al-Si系代表:ZL102(10.0%--13.0%Si) 共晶点成分11.7%Si。
Al-Si合金ZL102铸造组织
铸造组织:а
+Si;硅呈粗大针状,会降低合 金的机械性能.
2)变质处理:
在液体合金中加入2~3%的变质剂,进行变
质处理,促进Si形核,并阻碍晶体长大,使 Si晶体成为极细的粒状均匀分布在铝的基体 上。显著提高机械性能(180MN/m2)。
变质后组织:白色а 固溶体+细粒状Si与а 组成的共晶组织。
⑵ QSn10-1挤压棒组织:
固溶单项组织,晶粒内有有滑移带。
四.轴承合金
1.轴承合金性能: ⑴具有良好的减摩性(摩擦系数低,磨合性
好,抗咬合性好)。 ⑵具有足够的机械性能。 2..轴承合金种类:锡基与铅基轴承合金、铜 基轴承合金、铝基轴合金等。
3.锡基轴承合金:锡中加入锑、铜等元素组成
组织:а (黑色基体)+β (SnSb白色方块) + Cu6Sn5(白色针状或星状)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝铜合金金相显微组织分析
铝铜合金是由铝和铜两种金属混合而成的复合材料,具有良好的力学性能和耐腐蚀性能,因此在航空、船舶、汽车、石油和化工等行业得以广泛应用。
尽管已经有大量研究表明铝铜合金具有多种特性,然而要理解材料的性能,就必须研究其微观组织。
在此基础上,金相显微组织分析可以有效地识别和定量分析铝铜合金内部的金属结构。
金相显微组织分析可以用各种光学显微镜观察金属结构,并采用先进的形貌分析技术。
使用该分析方法,可以清楚地查看和测量合金组织中晶粒形貌、尺寸和分布。
除此之外,还可以检测金属结构中的杂质、气孔和疲劳裂纹等缺陷。
金相显微组织分析可以确定材料的晶粒尺寸、形貌和分布,以及对外界的反应。
通过对表面、边缘、表界面和焊点等结构的研究,可以有效地确定合金的物理和化学性能,比如硬度、塑性和抗腐蚀性等。
与传统的显微组织分析相比,金相显微组织分析更加准确、可靠,能够更深入地了解材料的微观结构。
在铝铜合金实际应用中,金相显微组织分析可以作为一种强大的工具用于控制材料性能和质量,并研究和设计新型材料。
它可以有效地洞察材料性能,揭示成败的关键所在,并提出改善性能的建议。
总之,金相显微组织分析在铝铜合金的研究、开发和应用中占有重要地位,可以有效地探索、分析和控制材料的微观结构,从而提高材料的性能和使用寿命。
- 1 -。