两点方位角计算公式
坐标方位角的计算
坐标方位角的计算前言在地理学、天文学和导航等领域,我们经常需要计算两个地点之间的方位角。
方位角是从一个地点指向另一个地点的方向角度。
本文将介绍如何计算坐标方位角,并提供一个简单的示例。
坐标系在计算方位角之前,我们需要了解坐标系。
在地理学中,常用的坐标系有经纬度和笛卡尔坐标系。
经纬度坐标系使用经度和纬度来表示地球上的坐标,而笛卡尔坐标系使用直角坐标系来表示。
方位角的定义在计算方位角之前,我们需要了解方位角的定义。
方位角是指从一个点指向另一个点的方向角度。
在地理学中,方位角一般从北方向开始计算,顺时针方向为正,逆时针方向为负。
方位角的计算经纬度坐标系下的方位角计算在经纬度坐标系下,我们可以使用球面三角法来计算方位角。
具体步骤如下:1.将经纬度坐标转换为弧度表示。
2.使用球面三角法计算两个点之间的距离。
3.使用球面三角法计算两个点之间的方位角。
下面是一个示例,假设点A的经纬度为(latA, lonA),点B的经纬度为(latB, lonB):# 计算两点之间的距离dist = 2 * R * sin(sqrt(sin((latB - latA)/2)^2 + cos(latA) * cos(latB)* sin((lonB - lonA)/2)^2))# 计算方位角bearing = atan2(sin(lonB - lonA) * cos(latB), cos(latA) * sin(latB) - sin(latA) * cos(latB) * cos(lonB - lonA))笛卡尔坐标系下的方位角计算在笛卡尔坐标系下,我们可以使用向量的方法来计算方位角。
假设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则方位角可以通过以下公式计算:# 计算方向向量dx = x2 - x1dy = y2 - y1# 计算方位角bearing = atan2(dy, dx)示例我们以经纬度坐标系为例来计算方位角。
坐标方位角计算公式过程
坐标方位角计算公式过程
一、坐标方位角的定义。
在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。
二、坐标方位角计算公式推导过程。
1. 已知两点坐标计算坐标方位角。
- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。
- 首先计算Δx=x2 - x1,Δy=y2 - y1。
- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。
- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。
- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。
- 当Δ x<0时,坐标方位角β=α + 180^∘。
- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。
例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。
再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。
方位角反算公式
方位角反算公式方位角反算公式在数学和地理等学科中可有着不小的作用呢!咱们先来说说啥是方位角。
想象一下,你站在一个地方,想要知道另一个地方相对于你所在位置的方向,这时候方位角就派上用场啦。
简单说,方位角就是从正北方向顺时针转到目标方向线的水平夹角。
那方位角反算公式到底是啥呢?其实就是通过已知的两个点的坐标,来算出它们之间连线的方位角。
比如说,有 A 点和 B 点,知道了它们的横纵坐标,就能通过一系列的计算得出 A 到 B 的方位角。
这公式看起来可能有点复杂,但别怕,咱们来一步步拆解。
就像解一个谜题,每一步都有它的小窍门。
我记得有一次给学生们讲这个知识点的时候,有个小家伙瞪着大眼睛,一脸迷茫地问我:“老师,这东西在生活里到底有啥用啊?”我笑着跟他们说:“同学们,假设你们在野外探险,迷路了,手里只有一张简单的地图,知道了方位角反算公式,就能搞清楚自己应该朝哪个方向走,才能找到回家的路。
” 这一下,他们好像来了精神,听得更认真了。
在实际运用中,方位角反算公式可帮了大忙。
比如说在建筑设计里,工程师得精确计算不同建筑物之间的相对方位,才能保证整体布局合理。
还有在航海中,船长要根据方位角来确定船只的航行方向,避免偏离航线。
咱们再回到公式本身。
要计算方位角,得先算出两点之间的坐标差值。
这就像是在地图上找出两点之间的水平和垂直距离。
然后再通过一些三角函数的运算,就能得出方位角啦。
这里面涉及到的数学知识,其实都是咱们平时学过的,只是把它们组合起来,解决一个新的问题。
有些同学可能会觉得,哎呀,这么多计算步骤,好麻烦呀!但其实,只要多做几道练习题,熟练掌握了方法,就会发现也没那么难。
就像骑自行车,一开始可能摇摇晃晃,但练得多了,就能轻松驾驭。
对于方位角反算公式,大家一定要多动手练习,不能光靠眼睛看。
只有亲自去算,才能真正理解其中的奥秘。
而且,当你算出正确结果,那种成就感可太棒啦!总之,方位角反算公式虽然有点小复杂,但只要咱们用心去学,多练习,它就能成为我们解决问题的有力工具。
excel已知两点坐标求方位角
Excel已知两点坐标求方位角在Excel中,当我们已知两个点的坐标时,可以通过一定的数学计算求解这两个点之间的方位角。
方位角是指一个点相对于参考点的角度,通常以北为参考方向,由正北顺时针计算。
本文将通过Excel的计算功能,详细介绍已知两点坐标求方位角的步骤。
步骤一:确定两点的坐标首先,需要确定已知两个点的坐标。
假设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By)。
这两个点可以是二维平面上的任意两个点。
步骤二:计算斜率通过已知两点的坐标,我们可以计算出这两个点连线的斜率。
斜率表示了直线的倾斜程度,它等于两点之间纵坐标的差值除以横坐标的差值。
斜率 = (By - Ay) / (Bx - Ax)步骤三:计算方位角已知斜率后,我们可以通过以下公式计算出方位角:方位角 = ATAN2(By - Ay, Bx - Ax) * (180 / PI())其中,ATAN2函数是Excel中常用的反正切函数,它可以接受纵坐标差和横坐标差作为参数。
乘以(180 / PI())是为了将弧度转换为角度。
如果计算结果为负值,需要将其加上360,使其保持在0-360度的范围内。
示例假设有两个点的坐标分别为点A(0, 0)和点B(5, 5),我们可以按照上述步骤进行计算。
首先计算斜率:斜率 = (5 - 0) / (5 - 0) = 1然后计算方位角:方位角 = ATAN2(5 - 0, 5 - 0) * (180 / PI()) = 45度因此,点A相对于点B的方位角为45度。
结论通过Excel的数学计算功能,我们可以很方便地求解已知两点坐标求方位角的问题。
这在一些地理信息系统、导航系统或测绘领域中具有重要的应用价值。
希望本文对你有所帮助!。
两点方位角计算公式
两点方位角计算公式
两点方位角是指从一个点出发,经过直线路径到达另一个点的方向。
一般通过经纬度的坐标来计算两点方位角,以下是计算公式:
1. 根据起点和终点的经纬度计算它们之间的距离,可以使用以下公式:
a = sin(Δlat/2) + cos(lat1) * cos(lat2) * sin(Δlong/2)
c = 2 * atan2( √a, √(1a) )
d = R * c
其中,Δlat和Δlong分别表示起点和终点的纬度和经度之差,R为地球半径,d表示两点之间的距离。
2. 计算起点和终点的方位角,可以使用以下公式:
y = sin(Δlong) * cos(lat2)
x = cos(lat1) * sin(lat2) sin(lat1) * cos(lat2) * cos(Δlong)
θ = atan2(y, x)
其中,θ表示起点指向终点的方位角,正北方向为0°,顺时针方向为正。
以上就是计算两点方位角的公式,可以通过这些公式来快速计算出两点间的方位角。
- 1 -。
坐标反算正算计算公式
坐标反算正算计算公式坐标反算和正算是地理测量学中常见的问题,用于计算地球表面上两点之间的距离、方位角和坐标。
坐标反算是根据已知的两个地点的经纬度和距离,来计算出另一个点的经纬度坐标。
坐标正算则是根据已知的一个地点的经纬度和另一个地点的方位角和距离,来计算出第二个地点的经纬度坐标。
下面简单介绍一下坐标反算和正算的计算公式。
坐标反算坐标反算通常用于计算两点间的距离和方位角。
1.距离计算两点间的距离可以通过公式:D = 2 * R * asin(sqrt(sin((lat2-lat1)/2)^2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)^2))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度,R为地球平均半径。
2.方位角计算两点间的方位角可以通过公式:brng = atan2(sin(lon2-lon1) * cos(lat2), cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) *cos(lon2-lon1))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度。
坐标正算坐标正算通常用于根据已知一个点的经纬度和另一个点的方位角和距离,计算出第二个点的经纬度。
1.纬度计算第二个点的纬度可以通过公式:lat2 = asin(sin(lat1) * cos(d/R) + cos(lat1) * sin(d/R) * cos(brng))其中,lat1为第一个点的纬度,d为距离,R为地球平均半径,brng 为方位角。
2.经度计算第二个点的经度可以通过公式:lon2 = lon1 + atan2(sin(brng) * sin(d/R) * cos(lat1), cos(d/R) - sin(lat1) * sin(lat2))其中,lon1为第一个点的经度,d为距离,R为地球平均半径,brng 为方位角。
测量学坐标方位角计算例题
测量学坐标方位角计算例题引言在测量学中,坐标方位角是指一个点相对于参考线的方位角度。
通过计算坐标方位角,可以确定点在平面直角坐标系中的位置。
本文将介绍一个测量学的坐标方位角计算例题,帮助读者更好地理解和运用坐标方位角的计算方法。
问题描述假设在平面直角坐标系中,有两个点A和B,已知点A的坐标为(2, 3),点B的坐标为(5, 6),求点B相对于点A的方位角。
计算步骤为了求解点B相对于点A的方位角,需要进行以下步骤的计算:1.计算两个点的坐标差值,得到点B相对于点A的坐标差(ΔX, ΔY)。
根据给定的数据,可以计算得到ΔX = 5 - 2 = 3,ΔY = 6 - 3 = 3。
2.根据坐标差值计算点B相对于点A的方位角。
方位角可以通过以下公式进行计算:方位角(θ) = arctan(ΔY / ΔX)其中,arctan表示反正切函数。
将ΔY和ΔX代入公式中,可以得到:方位角(θ) = arctan(3 / 3)3.计算反正切值。
通过数学计算或使用计算器,可以计算得到反正切值为1。
为了得到方位角的度数表示,需要将弧度转换为度数。
由于正切值1对应的弧度为π/4或45度,可以得出:方位角(θ) = 45度结论根据以上计算步骤,可以得出点B相对于点A的方位角为45度。
方位角的计算方法可以在测量学中应用于确定点在平面直角坐标系中的位置关系。
总结本文介绍了一个测量学的坐标方位角计算例题,通过计算两个点的坐标差值和应用反正切函数,得出了点B相对于点A的方位角为45度。
坐标方位角的计算对于确定点在平面直角坐标系中的位置非常重要,掌握这一计算方法对于测量学的学习和实践具有重要意义。
以上是关于测量学坐标方位角计算的例题说明,希望能够对读者理解和运用坐标方位角的计算方法有所帮助。
方位角的计算方法
方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。
要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。
已知两点坐标求方位角
已知两点坐标求方位角AB α——坐标方位角。
将式(5-2)代入式(5-1),则有 ABAB A BABAB A B S y yS x x ααsin cos +=+= }(5—3)当A 点的坐标Ax 、Ay 和边长ABS 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B的坐标。
式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。
从图5—5可以看出ABx ∆是边长ABS 在x 轴上的投影长度,ABy ∆是边长ABS 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。
从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。
图5— 5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x⊿y0~9090~ⅠⅡⅢ+++-例1 已知A 点坐标Ax =100.00m ,Ay =300.10m ;边长ABs =100m ,方位角ABα=330°。
求B 点的坐标Bx 、By 。
解:根据公式(5—3)有 ms y yms x x AB AB A BAB AB A B 6.249330sin 1001.300sin 1.186330cos 100100cos =︒⋅+=+==︒⋅+=+=αα2、坐标反算由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。
由式(5—1)有 AB ABAB AB y y y x x x -=∆-=∆ }(5—4)该式说明坐标增量就是两点的坐标之差。
在图5—5中ABx ∆ 表示由A 点到达B 点的纵坐标之差称纵坐标增量; ABy ∆表示由A 点到B 点的横坐标之差称横坐标增量。
两点反算方位角的通用公式
两点反算方位角的通用公式两个点之间计算方位角普通的办法是计算角度,然后根据X/Y的正负号判断在哪个象限,然后再计算出来,这是很麻烦的一件事,下面和大家介绍一个比较简单的通用计算公式。
假设A、B连个点,坐标分别为(XA、YA),(XB、YB),下面计算A—to—B的坐标方位角,我们可以用以下公式进行计算:a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))SIGN()是取符号(正负)函数Excel中三角函数计算出来的是弧度下面用该公式对方位角在四个象限的情况进行证明:1、第一象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为正,(XB-XA)为正,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=PI/2-a由此可见公式正确2、第二象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为正,(XB-XA)为负,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=PI/2+a由此可见公式正确3、第三象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为负,(XB-XA)为负,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=3/2PI-a由此可见公式正确4、第四象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为负,(XB-XA)为正,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=3/2PI+a由此可见公式正确从以上证明可以确定该公式对于四个象限的方位角都能进行正确计算。
不过需要说明的是当(YB-YA)为0时会出现bug,这种特例需要我们在实际工作中进行特殊处理。
测量学正反坐标方位角计算例题
测量学正反坐标方位角计算例题
在测量学中,方位角是指点的方向与参考方向之间的角度。
正反坐标方位角是
指在正反测量中,通过测定两点的坐标值来计算两点间的方位角。
本文将通过一个具体的计算例题,介绍如何计算测量学中的正反坐标方位角。
问题描述
已知点A的坐标为(100,200),点B的坐标为(200,300)。
请计算点A相对
于点B的方位角。
解题过程
第一步,我们需要获得AB线段的坐标差值。
根据已知数据,点A与点B的坐
标差值为(200-100,300-200) = (100,100)。
第二步,我们需要计算方位角。
正反坐标方位角的计算公式如下:
方位角 = atan(X差值 / Y差值)
其中,atan为反正切函数,用来求取给定参数的反正切值。
将AB线段的坐标差值代入上述公式,我们得到方位角为:
方位角= atan(100 / 100) = atan(1) ≈ 45°
因此,点A相对于点B的方位角约为45°。
结论
通过以上计算,我们得出点A相对于点B的方位角约为45°。
总结
测量学中的正反坐标方位角是指通过测定两点的坐标值来计算两点间的方位角。
本文通过一个具体的计算例题,详细介绍了计算的步骤和公式。
在实际测量中,熟练掌握正反坐标方位角的计算方法,能够帮助测量人员准确地确定方向,提高测量结果的精度。
角度坐标测量计算公式细则
角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。
式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y2-y1)/(x2-x1)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。
2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。
3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
3、高程计算:目标高程=测点高程+h+仪器高—占标高。
4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。
方位角及坐标计算
方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(k0~zh):f=arctgδy/δx备注:直线方位角必须考量象限角就可以厘定恰当线路迈向2、第一缓解曲线段(kzh~khy):δ1=(k0-kzh)2/(2rlh)×180/π3、圆曲线段(khy~kyh):δ2=[2(k0-kzh)-lh]/2r×180/πδ2=(khy-kzh)/2r×180/π+(k0-khy)/r×180/π无缓和曲线时:δ2=(k0-khy)/r×180/π(即圆曲线圆心角)4、第二缓和曲线段(kyh~khz):δ3=(khz-k0)2/(2rlh)×180/π5、第二直线段(khz~kzh):f±α(左偏时f-α,右偏时f+α)备注:k0――排序点的程α――曲线交点偏角lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算xzh=xjd-t?cosfxhz=xjd+t?cos(f±α)yzh=yjd-t?sinfyhz=yjd+t?sin(f±α)1、第一直线段:x=xzh+(k0-kzh)?cosf中桩y=yzh+(k0-kzh)?sinfx边=x中±b?cos(f-δ)边桩y边=y中±b?sin(f-δ)备注:b――中桩至所求点的距离(左幅时为+b,右幅时为-b,当设计轴线与线路不横向时b取斜短,即b/sinδ)设计轴线线路方向。
bδ图s-12、第一缓和曲线段:xx=xzh-y′?sinθ+x′?cosθxx′x′中桩′y=yzh+y′?cosθ+x′?sinθyzhyθhzx边=x中±b?cos(f+μδ1-δ)hyyh边桩y边=y中±b?sin(f+μδ1-δ)jdy′注:(本公式只适用与图s-2线形)图s-2μ――曲线左转为-1,右转为+1θ――线路方位角与y轴所缠的锐角,见到图s-2y′=l-l5/(40r2lh2);x′=l3/(6rlh)-l7/(336r3lh3);(r―圆曲线半径,l―缓解曲线就任一点至曲线起点长度)3、圆曲线段:x=xhy+2r?sinφ?cos(f+μ(ξ+φ))中桩y=yhy+2r?sinφ?s in(f+μ(ξ+φ))x边=x中±b?cos(f+μδ2-δ)边桩y边=y中±b?sin(f+μδ2-δ)备注:φ=(k0-khy)/2r×180/π;ξ=(khy-kzh)/2r×180/π4、第二缓解曲线段:x=xhz-y′?sinθ+x′?cosθ中桩y=yhz-y′?cosθ-x′?sinθx边=x中±b?cos(f+μδ1-δ)边桩y边=y中±b?sin(f+μδ1-δ)注:1、本公式只适用于与图s-2线形,其他线形可以根据本线形公式转换2、式中符号与第一缓解曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:x=xhz+(k0-khz)?cos(f±α)中桩y=yhz+(k0-khz)?sin(f±α)x边=x中±b?cos(f±α-δ)边桩y边=y中±b?sin(f±α-δ)备注:f――第一直线段的方位角(三)用casiofx-4500p计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标x、y)pol(x-xhz,y-yhz):k=v?cos(f-w)+khzb=v?sin(f-w)备注:1、在fx-4500p中计算结果取走变量储存区v和w,必须表明储存区内容时按rclv、w键。
已知两点坐标求方位角
二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。
下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。
一、坐标正算和坐标反算公式 1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。
如图5—5所示,已知A 点的坐标为A x 、A y,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为ABA B AB A B y y y x x x ∆+=∆+= } (5—1)式中 AB x ∆ 、AB y ∆——坐标增量.由图5—5可知ABAB AB AB AB AB S y S x ααsin cos =∆=∆ } (5—2)式中 AB S —-水平边长;AB α-—坐标方位角。
将式(5—2)代入式(5—1),则有ABAB A B AB AB A B S y y S x x ααsin cos +=+= } (5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。
式(5—2)是计算坐标增量的基本公式,式(5-3)是计算坐标的基本公式,称为坐标正算公式.从图5-5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。
从式(5-2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5-3.图5-5 坐标计算 图5—6 坐标增量符号 表5—3 坐标增量符号表坐标方位角 (°) 所在象限坐标增量的正负号 ⊿x ⊿y 0~90 90~180 180~270 270~360Ⅰ Ⅱ Ⅲ Ⅳ + - - ++ + - -例1 已知A 点坐标A x =100.00m ,A y =300.10m;边长AB s =100m ,方位角AB α=330°。
正反方位角计算公式
我们要找出正反方位角的计算公式。
首先,我们需要了解什么是正反方位角。
方位角是一个角度,通常用于描述一个方向相对于北方的角度。
正方位角是目标方向与北方向的夹角,而反方位角是目标方向与南方向的夹角。
正方位角(A)和反方位角(B)可以用以下的数学公式表示:
A = arctan(y/x)
B = 180° - A
其中,x 和y 是目标点的坐标。
这个公式告诉我们如何根据目标点的坐标计算正反方
位角。
计算结果为:正方位角是26.57°, 反方位角是26.57°。
所以,正反方位角的计算公式为:
正方位角 A = arctan(y/x)
反方位角 B = 180° - A。
坐标方位角EXCEL计算公式
坐标方位角EXCEL计算公式1.计算坐标方位角的基本公式:方位角=ATAN2(y轴坐标差,x轴坐标差)2.公式解释:ATAN2是Excel的一个数学函数,用于计算给定点的反正切值。
其中,y轴坐标差为点的纵坐标与原点纵坐标之差,x轴坐标差为点的横坐标与原点横坐标之差。
3.公式应用示例:假设在A1单元格中输入点的横坐标,B1单元格中输入点的纵坐标,C1单元格中输入原点的横坐标,D1单元格中输入原点的纵坐标。
则在E1单元格中输入如下公式:=ATAN2(B1-$D$1,A1-$C$1)这样就可以得到点相对于原点的坐标方位角。
需要注意的是,Excel中的数学函数ATAN2返回的角度以弧度为单位,如果需要以度数显示,可以使用Excel的DEGREES函数将结果转换为度数。
例如,在F1单元格中输入如下公式:=DEGREES(E1)这样就可以得到以度数表示的坐标方位角。
在使用以上公式计算坐标方位角时,需要确保原点的横纵坐标与点的横纵坐标分别对应。
另外,Excel中的坐标系正方向为向右为x轴正方向,向下为y轴正方向,因此计算得到的方位角范围为-π到π,即-180°到180°。
如果需要将角度值映射到0°到360°的范围,可以使用如下公式:IF(F1<0,F1+360,F1)总结:在Excel中,我们可以使用ATAN2函数来计算坐标方位角,公式为方位角 = ATAN2(y轴坐标差, x轴坐标差)。
在计算得到的结果为弧度时,可以使用DEGREES函数将其转换为度数。
另外,如果需要将角度值映射到0°到360°的范围,可以使用IF函数进行判断和调整。
以上是关于在Excel中计算坐标方位角的基本方法和公式示例。
测量中的坐标方位角怎么求
测量中的坐标方位角怎么求在测量学中,坐标方位角是指一个点在平面直角坐标系下相对于原点的角度。
它在实际测量中被广泛应用于方位角测量、导航以及地图制作等领域。
求解坐标方位角的方法有很多,本文将介绍两种常用的方法:直角坐标法和极坐标法。
1. 直角坐标法直角坐标法是根据一个点在平面直角坐标系中的坐标来确定其方位角的方法。
通过求解该点相对于原点的角度,可以得到坐标方位角。
设我们有一个点P(x, y),在平面直角坐标系中,其中x表示点P相对于原点在x轴上的坐标,y表示点P相对于原点在y轴上的坐标。
步骤如下:1.计算点P与原点之间的水平距离d,可以使用勾股定理计算:d =sqrt(x^2 + y2),其中表示指数运算,sqrt表示求平方根。
2.计算点P与原点之间的方位角θ,可以使用反三角函数arctan计算:θ = arctan(y / x),其中arctan表示反正切函数,y / x表示y除以x的结果。
需要注意的是,计算得到的角度θ是弧度表示,如果需要转换为度数表示,可以使用以下公式:θ = θ * 180 / π,其中π表示圆周率。
3.根据计算结果,得到点P的坐标方位角为θ。
2. 极坐标法极坐标法是通过一个点在极坐标系中的坐标来确定其方位角的方法。
在极坐标系中,一个点由径向距离和角度两个参数来确定。
设我们有一个点P(r, θ),其中r表示点P与极点之间的距离,θ表示点P相对于参考方向的角度。
步骤如下:1.将点P的坐标由直角坐标系转换为极坐标系,可以使用以下公式进行计算:r = sqrt(x^2 + y^2),θ = arctan(y / x)。
2.根据计算结果,得到点P的坐标方位角为θ。
需要注意的是,在极坐标法中,角度θ的取值范围一般是[0, 2π]或[-π, π],具体取决于使用的角度单位制(弧度制或度数制)。
总结本文介绍了在测量中求解坐标方位角的两种常用方法:直角坐标法和极坐标法。
直角坐标法是根据点在平面直角坐标系中的坐标求解方位角,而极坐标法是通过点在极坐标系中的距离和角度参数求解方位角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两点方位角计算公式
以两点方位角计算公式为标题,写一篇文章,要求符合标题内容,不少于300字
方位角是指从某一点出发,以正北方向为基准,逆时针旋转的角度,到达另一点的方向。
在实际应用中,我们常常需要计算两点之间的方位角,以便确定方向和位置。
本文将介绍两点方位角的计算公式及其应用。
两点方位角的计算公式如下:
tanθ = sin(ΔL) / (cos(φ1) * tan(φ2) - sin(φ1) * cos(ΔL))
其中,θ为两点之间的方位角,ΔL为两点经度差,φ1和φ2为两点的纬度。
这个公式的推导过程比较复杂,不在本文的讨论范围内。
我们只需要知道如何使用这个公式来计算两点之间的方位角即可。
假设我们要计算A点(40.7128°N, 74.0060°W)到B点(37.7749°N, 122.4194°W)的方位角。
首先,我们需要将经纬度转换为弧度:
φ1 = 40.7128° * π / 180 = 0.7102 rad
φ2 = 37.7749° * π / 180 = 0.6598 rad
ΔL = (122.4194° - 74.0060°) * π / 180 = 0.8727 rad
将这些值代入公式中,得到:
tanθ = sin(0.8727) / (cos(0.7102) * tan(0.6598) - sin(0.7102) * cos(0.8727))
θ = 1.768 rad = 101.3°
因此,A点到B点的方位角为101.3°,即从A点出发,顺时针旋转101.3°后到达B点的方向。
两点方位角的应用非常广泛,例如在航海、航空、地图制作等领域都有重要的应用。
在航海中,船舶需要根据两点方位角确定航向,以便到达目的地。
在航空中,飞机需要根据两点方位角确定飞行方向,以便安全到达目的地。
在地图制作中,我们需要根据两点方位角确定地图上两点之间的方向和距离。
两点方位角的计算公式是一项非常重要的数学工具,它在实际应用中具有广泛的应用价值。
掌握这个公式,可以帮助我们更好地理解和应用地理信息,为我们的生活和工作带来更多的便利和效益。