人教版九年级数学上册教案:第24章 圆(第1课时)
2022年九年级数学上册第二十四章圆24.1圆的有关性质第1课时教案新版新人教版
24.1圆的有关性质第1课时教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用. 教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题. 从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O )的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结.(1)图上各点到定点(圆心O )的距离都等于定长(半径r ); (2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形. 同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ②经过圆心的弦叫做直径,如图24-1线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作”,读作“圆弧”或“弧AC ”.大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧.AC AC ABC AC BC④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到:(学生活动)请同学按下面要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,,,即直径CD 平分弦AB ,并且平分及. 这样,我们就得到下面的定理:下面我们用逻辑思维给它证明一下: 已知:直径CD 、弦AB 且CD ⊥AB 垂足为M 求证:AM=BM ,,.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB在Rt △OAM 和Rt △OBM 中 ∴Rt △OAM ≌Rt △OBM∴AM=BMAC BC =AD BD =AB ADB AC BC =AD BD =OA OBOM OM =⎧⎨=⎩B∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,与重合,与重合. ∴,进一步,我们还可以得到结论:(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中,点O 是的圆心,其中CD=600m ,E 为上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握. 解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m∵OE ⊥CD ∴CF=CD=×600=300(m ) 根据勾股定理,得:OC 2=CF 2+OF 2即R 2=3002+(R-90)2解得R=545 ∴这段弯路的半径为545m . 三、巩固练习 教材练习 四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由. 分析:要求当洪水到来时,水面宽MN=32m 是否需要采取紧急措施,只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30,CD=18R 2=302+(R-18)2 R 2=900+R 2-36R+324解得R=34(m )连接OM ,设DE=x ,在Rt △MOE 中,ME=16342=162+(34-x )2162+342-68x+x 2=342 x 2-68x+256=0 解得x 1=4,x 2=64(不合设) ∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.圆的有关概念;AC BC AD BD AC BC =AD BD =CD CD CD 12122.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用. 六、布置作业1.教材复习巩固1、2、3. 2.车轮为什么是圆的呢? 3.垂径定理推论的证明. 4.选用课时作业设计.第一课时作业设计一、选择题.1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是().A .CE=DEB .C .∠BAC=∠BAD D .AC>AD(1) (2) (3)2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是()A .4B .6C .7D .83.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是()A .AB ⊥CD B .∠AOB=4∠ACDC .D .PO=PD 二、填空题1.如图4,AB 为⊙O 直径,E 是中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.(4) (5)2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;最长弦长为_______.3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______(只需写一个正确的结论) 三、综合提高题1.如图24-11,AB 为⊙O 的直径,CD 为弦,过C 、D 分别作CN ⊥CD 、DM ⊥CD ,分别交AB 于N 、M ,请问图中的AN 与BM 是否相等,说明理由.BC BD =CAD BD =BC BA2.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.3.(开放题)AB 是⊙O 的直径,AC 、AD 是⊙O 的两弦,已知AB=16,AC=8,AD=8,求∠DAC 的度数.答案:一、1.D 2.D 3.D二、1.8 2.8 10 3.AB=CD三、1.AN=BM 理由:过点O 作OE ⊥CD 于点E ,则CE=DE ,且CN ∥OE ∥DM . ∴ON=OM ,∴OA-ON=OB-OM ,∴AN=BM .2.过O 作OF ⊥CD 于F ,如右图所示 ∵AE=2,EB=6,∴OE=2,∴,OF=1,连结OD ,在Rt △ODF 中,42=12+DF 2,.3.(1)AC 、AD 在AB 的同旁,如右图所示:∵AB=16,AC=8,∴AC=(AB ),∴∠CAB=60°, 同理可得∠DAB=30°, ∴∠DAC=30°.(2)AC 、AD 在AB 的异旁,同理可得:∠DAC=60°+30°=90°.121212。
九年级数学上册第24章圆教案(共23套新人教版)
九年级数学上册第24章圆教案(共23套新人教版)第二十四章圆1圆的有关性质1.1圆※教学目标※【知识与技能】探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.【过程与方法】体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.【情感态度】在解决问题过程中使学生体会数学知识在生活中的普遍性.【教学重点】圆的两种定义的探索,能够解释一些生活问题.【教学难点】圆的集合定义方法.※教学过程※一、情境导入观察下列图形,从中找出共同特点.学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.二、探索新知圆的定义观察下列画圆的过程,你能由此说出圆的形成过程吗?在学生归纳的基础上,引导学生对圆的一些基本概念作界定:在一个平面内,线段oA绕它固定的一个端点o旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点o叫做圆心,线段oA叫做半径.以点o为圆心的圆,记作“⊙o”,读作“圆o”.同时从圆的定义中归纳:圆上各点到定点的距离都等于定长;到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点o的距离等于定长r的点的集合.思考为什么车轮是圆的?把车轮做成圆形,车轮上各点到车轮中心的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与地面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.圆的有关概念弦:连接圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A,B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.优弧:大于半圆的弧叫做优弧.劣弧:小于半圆的弧叫做劣弧.等圆:能够重合的两个圆叫做等圆.半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.等弧:在同圆或等圆中,能够相互重合的弧叫做等弧.三、巩固练习如何在操场上画一个半径是5的圆?说出你的理由.你见过树木的年轮吗?从树木的年轮,可以很清楚地看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23c,这棵红杉树的半径平均每年增加多少?如图,一根5长的绳子,一端拴在柱子上,另一端拴着一只羊,请画出羊的活动区域.答案:1.首先确定圆心,然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆.23÷2÷20=0.575,故这棵红衫树的半径每年增加0.575c.四、归纳小结师生共同回顾圆的两种定义,弦,弧,等圆等知识点.通过这节课的学习,你还有那些收获?※布置作业※从教材习题24.1中选取.※教学反思※本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑的习惯,在操作过程中观察圆的特点,加深对所学知识的认识吗,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们的学习兴趣.24.1.1 圆01教学目标.了解圆的基本概念,并能准确地表示出来..理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.02预习反馈阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题..如图,在一个平面内,线段oA绕它固定的一个端点o 旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点o叫做圆心,线段oA叫做半径.2.圆心为o、半径为r 的圆可以看成是所有到定点o的距离等于定长r的点的集合..连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧..以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A为圆心,AB的长为半径,可以画1个圆.【点拨】确定圆的两个要素:圆心和半径.圆心确定圆的位置,半径确定圆的大小..到定点o的距离为5的点的集合是以o为圆心,5为半径的圆.03新课讲授例1 矩形ABcD的对角线Ac,BD相交于点o.求证:A,B,c,D四个点在以点o为圆心的同一个圆上.【思路点拨】要求证几个点在同一个圆上,即需要证明这几个点到同一个点的距离相等.【解答】证明:∵四边形ABcD为矩形,∴oA=oc=12Ac,oB=oD=12BD,Ac=BD.∴oA=oc=oB=oD.∴A,B,c,D四个点在以点o为圆心,oA为半径的圆上.例2 △ABc中,∠c=90°.求证:A,B,c三点在同一个圆上.【解答】证明:如图,取AB的中点o,连接oc.∵在△ABc中,∠c=90°,∴△ABc是直角三角形.∴oc=oA=oB=12AB.∴A,B,c三点在同一个圆上.【跟踪训练1】在图中,画出⊙o的两条直径;依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:作图略.矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形.【思考】由刚才的问题思考:矩形的四个顶点一定共圆吗?例3 已知⊙o的半径为2,则它的弦长d的取值范围是0<d≤4.【点拨】直径是圆中最长的弦.例4 在⊙o中,若弦AB等于⊙o的半径,则△AoB的形状是等边三角形.【点拨】与半径相等的弦和两半径构造等边三角形是常用数学模型.【跟踪训练2】如图,点A,B,c,D都在⊙o上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.04巩固训练.如图,图中有1条直径,2条非直径的弦,圆中以A 为一个端点的优弧有4条,劣弧有4条.【点拨】这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数..如图,⊙o中,点A,o,D以及点B,o,c分别在一条直线上,图中弦的条数为2..点P到⊙o上各点的最大距离为10c,最小距离为8c,则⊙o的半径是1或9c.【点拨】这里分点在圆外和点在圆内两种情况..如图,已知AB是⊙o的直径,点c在⊙o上,点D是Bc的中点.若Ac=10c,则oD的长为5__c.【点拨】圆心o是直径AB的中点..如图,cD为⊙o的直径,∠EoD=72°,AE交⊙o于B,且AB=oc,则∠A的度数为24°.【点拨】连接oB构造三角形,从而得出角的关系.05课堂小结.这节课你学了哪些知识?.学会了哪些解圆的有关问题的技巧?。
人教版数学九年级上册第24章圆24.1.1圆教学设计
5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。
最新人教版初中数学九年级上册《24.3 正多边形和圆(第1课时)》精品教学课件
探究新知
正多边形的外接圆和内切圆的公
(n 2)180
n
中心角
120 ° 90 ° 60 °
360 n
外角
120 ° 90 ° 60 °
360 n
正多边形的外
角=中心角
A
F
中心
中心角
B
O半径R E
边心距r
C
D
探究新知
知识点 3 正多边形的有关计算
如图,已知半径为4的圆内接正六边形ABCDEF:
①它的中心角等于 60 度 ;
② OC=BC (填>、<或=); F
探究新知
AC是∠DAB及∠DCB的角平
E A
B 分线,BD是∠ABC及∠ADC
的角平分线,
O
G
H ∴OE=OH=OF=OG.
DF
∴正方形ABCD还有一个以点O
C
为圆心的内切圆.
探究新知 想一想
1.所有的正多边形是不是也都有一个外接圆和一个内切圆?
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
F
抽象成
A
E
O
D
PC
探究新知
解:过点O作OM⊥BC于M.
在Rt△OMB中,OB=4,
MB=B2C
4 2, 2
利用勾股定理,可得边心距
r 42 22 2 3.
亭子地基的面积:
2024年人教版九年级数学上册教案及教学反思全册第24章 圆直线和圆的位置关系 (第1课时)教案
24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第1课时)一、教学目标【知识与技能】掌握直线和圆的三种位置关系及其数量间的关系,掌握运用圆心到直线的距离的数量关系或用直线与圆的交点个数来确定直线与圆的三种位置关系的方法.【过程与方法】通过生活中的实例,探求直线和圆的三种位置关系,并提炼出相关的数学知识,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】直线与圆的三种位置关系及其数量关系.【教学难点】通过数量关系判断直线与圆的位置关系.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课如图,在太阳升起的过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系吗?(出示课件2)解决这个问题要研究直线和圆的位置关系.(板书课题)(二)探索新知探究一用公共点个数判断直线与圆的位置关系教师问:如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?(出示课件4)学生交流,回答问题:有三种位置关系.教师问:如图,在纸上画一条直线l,把钥匙环看作一个圆,在纸上移动钥匙环,你能发现在钥匙环移动的过程中,它与直线l的公共点的个数吗?(出示课件5)学生交流,回答问题:0个,1个,2个.教师问:请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?(出示课件6)学生交流,回答问题:公共点个数最少时0个,公共点个数最多时2个.出示课件7:教师展示切割钢管过程,学生观察并填表.出示课件8:填一填:(教师引导学生构建并填写表格,帮助学生理清知识脉络)教师归纳:(出示课件9)直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A).练一练:判断正误.(出示课件10)(1)直线与圆最多有两个公共点.(2)若直线与圆相交,则直线上的点都在圆上.(3)若A是⊙O上一点,则直线AB与⊙O相切.(4)若C为⊙O外一点,则过点C的直线与⊙O相交或相离.(5)直线a和⊙O有公共点,则直线a与⊙O相交.学生独立思考后口答:⑴√⑵×⑶×⑷×⑸×探究二用数量关系判断直线与圆的位置关系教师问:同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?(出示课件11)学生讨论,归纳总结答案,并由学生代表回答问题.教师问:怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?(出示课件12)学生讨论,归纳总结答案后教师归纳:根据直线和圆相交、相切、相离的定义:直线和⊙O d<r;直线和⊙O d>r;直线和⊙O d = r.教师演示:根据直线和圆相切的定义,经过点A用直尺近似地画出⊙O的切线.(出示课件13)学生根据教师演示进行操作.教师归纳:(出示课件14)直线和⊙O d<r 两个直线和⊙O d>r 0个直线和⊙O d=r 1个位置关系公共点个数出示课件15-17:例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.教师分析:要了解AB 与⊙C 的位置关系,只要知道圆心C 到AB 的距离d 与r 的关系.已知r ,只需求出C 到AB 的距离d.师生共同解决如下:解:过C 作CD ⊥AB ,垂足为D.在△ABC 中,==5(cm ).根据三角形的面积公式有1122CD AB AC BC ⨯=⨯.∴342.4(cm),5AC BC CD AB ⨯⨯===即圆心C 到AB 的距离d=2.4cm.所以(1)当r=2cm 时,有d>r,因此⊙C 和AB 相离.(1) (2) (3) (2)当r=2.4cm 时,有d=r ,因此⊙C 和AB 相切. (3)当r=3cm 时,有d<r ,因此⊙C 和AB 相交. 巩固练习:(出示课件18-20)1.Rt △ABC,∠C=90°AC=3cm ,BC=4cm ,以C 为圆心画圆,当半径r 为何值时,圆C 与直线AB 没有公共点?学生独立思考后独立解答.解:当0cm<r<2.4cm或r>4cm时,⊙C与线段AB没有公共点.2.Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点?学生独立思考后独立解答.解:当r=2.4cm或3cm<r≤4cm时,⊙C与线段AB有一个公共点.当2.4cm<r≤3cm时,⊙C与线段AB有两公共点.3.圆的直径是13cm,如果直线与圆心的距离分别是(1)4.5cm ;(2)6.5cm;(3)8cm;那么直线与圆分别是什么位置关系?有几个公共点?学生独立思考后一生板演.解:如图所示.(1)圆心距d=4.5cm<r=6.5cm时,直线与圆相交,有两个公共点;(2)圆心距d=6.5cm=r=6.5cm时,直线与圆相切,有一个公共点;(3)圆心距d=8cm>r=6.5cm时,直线与圆相离,没有公共点.出示课件21:例2 如图,Rt △ABC 的斜边AB=10cm,∠A=30°.学生独立思考后师生共同解答. 解:过点C 作边AB 上的高CD. ∵∠A=30°,AB=10cm,15cm.2BC AB ==在Rt △BCD 中,有1 2.5cm,2BD BC CD ====时,AB 与☉C 相切. 巩固练习:(出示课件22)如图,已知∠AOB=30°,M 为OB 上一点,且 OM=5cm ,以M 为圆心、r 为半径的圆与直线OA 有怎样的位置关系?为什么?(1)r=2cm ;(2)r=4cm ;(3)r=2.5cm.学生思考后自主解答.解:(1)相离;(2)相交;(3)相切. (三)课堂练习(出示课件23-29)1.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O 的位置关系为()A.相交B.相切C.相离D.无法确定2.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为________.3.看图判断直线l与☉O的位置关系?4.直线和圆相交,圆的半径为r,且圆心到直线的距离为5,则有()A.r<5B.r>5C.r=5D.r≥55.☉O的最大弦长为8,若圆心O到直线l的距离为d=5,则直线l与☉O______.6.☉O的半径为5,直线l上的一点到圆心O的距离是5,则直线l与☉O的位置关系是()A.相交或相切B.相交或相离C.相切或相离D.上三种情况都有可能7.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点.若点M的坐标是(-4,-2),则点N的坐标为( )A.(-1,-2) B.(1,2)C.(-1.5,-2) D.(1.5,-2)8.已知☉O的半径r=7cm,直线l1//l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.参考答案:1.B2.13m0<<23.解:⑴相离;⑵相交;⑶相切;⑷相交;⑸相交.4.B5.相离6.A7.A8.解:(1)l2与l1在圆的同一侧:m=9-7=2cm;(2)l2与l1在圆的两侧:m=9+7=16cm.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从生活中的常见情况引出了直线和圆的位置关系,并且从两个不同方面去判定直线与圆的三种关系,让学生讨论并归纳总结常用的直线和圆位置关系的判定方法,让学生领会该判定方法的实质是看直线到圆心的距离与半径的大小.对于该判定方法,学生一般能够熟记图形,以数形结合的方法理解并记忆.。
2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径
24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
九年级数学上册(人教版)24.1.4圆周角(第一课时)优秀教学案例
1. 引导探究:引导学生观察、分析圆周角与圆心角的关系,引导学生归纳总结圆周角定理;
2. 解决问题:让学生运用圆周角定理解决实际问题,提高解决问题的能力;
3. 拓展思考:设计拓展性问题,如“圆周角定理在其他几何图形中的应用”,引导学生深入思考,提高逻辑思维能力。
问题导向环节是本节课的核心部分。在这一环节,我会引导学生观察、分析圆周角与圆心角的关系,让学生通过自主探究,归纳总结出圆周角定理。在解决问题环节,我会设计不同难度的题目,让学生运用所学知识解决实际问题,提高解决问题的能力。此外,我还会设计拓展性问题,激发学生的思考兴趣,提高学生的逻辑思维能力。
2. 问题情境:设计具有启发性的问题,如“圆周角与圆心角有什么关系?”,引导学生主动探究,引发思考;
3. 实践情境:让学生亲自动手作图,体验圆周角定理的应用,提高实践能力。
在情景创设环节,我会注重引导学生观察生活中的圆形物体,让学生感受到数学与生活的紧密联系。通过设计具有启发性的问题,激发学生的求知欲,引导学生主动探究。同时,我会组织学生进行实践操作,让学生在动手实践中体验圆周角定理的应用,提高实践能力。
(三)学生小组讨论
1. 讨论问题:让学生分组讨论如何运用圆周角定理解决实际问题;
2. 分享讨论成果:鼓励学生分享讨论过程中的收获和感悟,互相学习;
3. 教师指导:针对学生的讨论情况进行点评,引导学生进一步思考。
在学生小组讨论环节,我会提出讨论问题,让学生分组讨论如何运用圆周角定理解决实际问题。在讨论过程中,我会巡回指导,关注学生的讨论情况。讨论结束后,鼓励学生分享讨论成果,互相学习。最后,我会针对学生的讨论情况进行点评,引导学生进一步思考。
2. 问题导向的教学方式:通过设计具有启发性的问题,如“圆周角与圆心角有什么关系?”引导学生主动探究,引发思考。这种问题导向的教学方式,能够有效地激发学生的求知欲,培养学生的逻辑思维能力,并且能够让学生在学习过程中始终保持积极的状态。
人教版九年级数学上册《圆(第1课时)》优秀教学设计
人教版九年级数学上册《圆(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《圆(第1课时)》主要包括圆的定义、圆心和半径、圆的周长和面积等基础知识。
本节课的内容是学生对圆的初步认识,为后续学习圆的性质和应用打下基础。
教材通过生动的实例和图示,引导学生探索圆的特点,培养学生的观察能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识和简单的几何运算能力。
但针对圆这一概念,学生可能在生活中有所接触,但对其本质特征和数学定义的理解还有待提高。
因此,在教学过程中,需要注重培养学生对圆的认识,引导学生通过观察、操作、思考、探究等方式,掌握圆的基本知识。
三. 教学目标1.知识与技能:使学生理解圆的定义,掌握圆心和半径的概念,会计算圆的周长和面积。
2.过程与方法:通过观察、操作、思考、探究等活动,培养学生的观察能力、逻辑思维能力和动手实践能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受数学与生活的紧密联系。
四. 教学重难点1.重点:圆的定义、圆心和半径的概念,圆的周长和面积的计算。
2.难点:圆的周长和面积公式的推导,以及灵活运用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识圆,激发学生的学习兴趣。
2.探究教学法:引导学生分组讨论,自主探索圆的性质,培养学生的观察能力和逻辑思维能力。
3.实践教学法:让学生动手操作,实际测量和计算,提高学生的动手实践能力。
六. 教学准备1.准备圆的模型、图片等教具,用于引导学生观察和认识圆。
2.准备圆的周长和面积的计算练习题,用于巩固所学知识。
3.准备黑板、粉笔等教学工具,用于板书和讲解。
七. 教学过程1.导入(5分钟)利用生活中的实例,如硬币、轮子等,引导学生观察和认识圆。
提问:你们对这些圆有什么特点的认识?让学生发表自己的看法,从而引出圆的定义。
2.呈现(10分钟)呈现圆的模型和图片,让学生观察圆的特点。
新人教版9年级数学上册第24章圆教案
24.1.1 圆时间:年月日课型: 新授教学目标1.知识与技能1.了解圆的有关概念,并灵活运用圆的概念解决一些实际问题.2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.2.过程与方法通过举出生活中常见圆的例子,经历观察画圆的过程,多角度体会和认识圆.3.情感态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望教学重点圆、弧、等弧、弦、等圆、半圆、直径等有关概念的理解教学难点圆、弧、等弧、弦、等圆、半圆、直径等有关概念的区别与联系.教具准备:多媒体,ppt课件,课本教学方法:探究、引导、组织、合作教学过程的有关性质,用圆的知识解决一些实际问题(一)圆的概念1.有关圆的图片欣赏2.用圆规画圆根据画圆的过程给出圆的描述性定义,及圆心、半径的概念,强调“在一个平面内”.根据圆的定义可知“圆”指的是“圆周”而非“圆面”.3.圆的表示方法和读法4.从集合角度对圆刻画○3.车轮为什么做成圆形的? (二)弦、弧、半圆、等圆、等弧的概念1.连接圆上任意两点的线段叫做弦,如图线段AC ,AB ;2.经过圆心的弦叫做直径,如图中线段AB ;3.圆上任意两点间的部分叫做圆弧,简称弧, “以A 、C 为端点的弧记作AC ,读作“圆弧AC ”或“弧AC ”.圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆。
大于半圆的弧(如图所示 AC 叫做优弧,小于半圆的弧(如图所示 CAB 或BCA )叫做劣弧4.能够重合的圆叫等圆.半径相等的圆是等圆,等圆的半径一定相等5.在同圆或等圆中,能够互相重合的弧叫等弧6.直径与弦的区别与联系是什么? 、课堂训练完成课本80页练习补充:1.以点O 为圆心画圆可以画 个圆,以4㎝为半径画圆可以画 个圆2.下列说法错误的有( )○1经过P 点的圆有无数个;○2以P 为圆心的圆有无数个;○3半径为3㎝且过P 点的圆有无数个;○4以P 为圆心,半径为3㎝的圆有无数个; A.1个 B.2个 C.3个 D.4个3.一个点到圆的最小距离是4,最大距离是9,则圆的半径是( )A.5或13B.6.5C.2.5D. 2.5或6.54.判断:○1直径不是弦,弦不是直径;○2直径是圆中最长的弦; ○3圆上任意两点间的部分叫弧;一条弦 5.如右图,在⊙O 中,点A,O,D 以及点B,O,C 分别在同一条直线上,则图中弦的条数是( )A.2条B.3条C.4条D.5条B A CO ⌒1.圆的定义:○1.描述性;○2.集合定义2.弦、弧、半圆、等圆、等弧的概念3.直径与弦的区别与联系作业设计复习练习册作业和综合运用为全体学生必做;学有余力的学生拓广探索为成绩中上等学生必做.24.1.2 垂直于弦的直径时间:年月日课型: 新授教学目标1.知识与技能1.通过观察实验,使学生理解圆的对称性2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题.2.过程与方法1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.2.经历探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.3.情感态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望教学重点垂径定理及其运用教学难点发现并证明垂径定理教具准备:多媒体,ppt课件,课本教学方法:探究、引导、组织、合作教学过程设计一、导语直径是圆中特殊的弦,研究直径是研究圆的重要突破口,这节课我们就从对直径二、探究新知沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发现什么结论?得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.(二)、垂径定理1.如何说明图24.1-7是轴对称图形?2.你能用不同方法说明图中的线段相等,弧相等吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 即:直径CD 垂直于弦AB 则CD 平分弦AB ,并且平分弦AB 所对的两条弧.推理验证:可以连结OA 、•OB ,证其与AE 、BE 构成的两个全等三角形,进一步得到不同的等量关系分析:垂径定理是由哪几个已知条件得到哪几条结论? 即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所对的优弧,平分弦所对的劣弧 垂径定理推论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧思考:1.这条推论是由哪几个已知条件得到哪几条结论?2.为什么要求“弦不是直径”?否则会出现什么情况?垂径定理的进一步推广思考:类似推论的结论还有吗?若有,有几个?分别用语言叙述出来归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦所对的优弧,平分弦所对的劣弧.”中的两个条件,就可以得到另外三个结论(三)、垂径定理、推论的应用完成课本赵州桥问题分析:1.根据桥的实物图画出的几何图形应是怎样的?2.结合所画图形思考:圆的半径r 、弦心距d 、弦长a,弓形高h 有怎样的数量关系?3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径,作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的半径r 、弦心距d 、弦长a 的一半之间的关系式2222⎪⎭⎫ ⎝⎛+=a d r完成课本88页练习1. 垂径定理和推论及它们的应用2. 垂径定理和勾股定理相结合,将圆的问题转化为直角三角形问题3.圆中常作辅助线:半径、过圆心的弦的垂线段作业设计作业:课本94页 1,95页 9,12补充:已知:在半径为5㎝的⊙O 中,两条平行弦AB,CD 分别长8㎝,6㎝.求两条平行弦间的距离24.1.3弧、弦、圆心角时间:年月日课型: 新授教学目标1.知识与技能1.通过观察实验,使学生了解圆心角的概念2. 掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.2.过程与方法通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法3.情感态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望教学重点在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.教学难点探索定理和推导及其应用.教具准备:多媒体,ppt课件,课本教学方法:探究、引导、组织、合作教学过程设计 一、导语这节课我们继续研究圆的性质,请同学们完成下题.1.已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的二、探究新知一)、圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB 的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.(二)、圆心角、弧、弦之间的关系定理1.按下列要求作图并回答问题如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ‵OB ‵的位置,你能发现哪些等量关系?为什么?综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?4.定理拓展:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗? ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.(三)、定理应用1.课本例12.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?得到: 在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•则它们所对应的其余各组量都分别相等,及它们的应用.作业设计复习练习册作业和综合运用为全体学生必做;学有余力的学生拓广探索为成绩中上等学生必做.24.1.4圆周角定理时间:年月日课型: 新授教学目标1.知识与技能1.了解圆周角的概念,理解圆周角的定理及其推论.2.熟练掌握圆周角的定理及其推论的灵活运用.3.体会分类思想.2.过程与方法设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推论解决问题.3.情感态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望.教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点运用数学分类思想证明圆周角的定理.教具准备:多媒体,ppt课件,课本教学方法:探究、引导、组织、合作教学过程设计一、导语上节课我们学习了圆心角、弧、弦之间的关系定理,如果角的顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题二、探究新知(一)、圆周角定义问题:如图所示的⊙O,我们在射门游戏中,设EF是球门,•设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.观察∠EAF、∠EBF、∠ECF这样的角,它们的共同特点是什么?得到圆周角定义:顶点在圆上,且两边都与圆相交的角叫做圆周角分析定义:○1圆周角需要满足两个条件;○2圆周角与圆心角的区别(二)、圆周角定理及其推论1.结合圆周角的概念通过度量思考问题:○1一条弧所对的圆周角有多少个?②同弧所对的圆周角的度数有何关系?2.分情况进行几何证明①当圆心O在圆周角∠ABC的一边BC上时,如图⑴所示,那么∠ABC=1∠AOC吗?2②当圆心O在圆周角∠ABC的内部时,如图⑵,那么∠ABC=1∠AOC吗?2如图⑶,∠ABC=1∠AOC吗?可得到:一条弧所对的圆周角等于这条弧所对的圆心角的一半.2根据得到的上述结论,证明同弧所对的圆周角相等.得到:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.问题:将上述“同弧”改为“等弧”结论会发生变化吗?总结归纳出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.于是,在同圆或等圆中,两个圆心角,两个圆周角、两条弧、两条弦中有一组量相等,则其它各组量都分别相等.半圆作为特殊的弧,直径作为特殊的弦,运用上述定理有什么新的结论?推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(三)圆内接多边形与多边形的内接圆1.圆内接多边形与多边形的内接圆的定义如何区别两个定义?(前者是特殊的多边形后者是特殊的圆)这条性质的题设和结论分别是什么?怎样证明?四)定理应用三、课堂训练完成课本86页练习四、小结归纳1.圆周角的概念及定理和推论2. 圆内接多边形与多边形的内接圆概念和圆内接四边形性质3. 应用本节定理解决相关问题.作业设计复习练习册作业和综合运用为全体学生必做;学有余力的学生拓广探索为成绩中上等学生必做.24.2.1点与圆的位置关系时间:年月日课型: 新授教学目标1.知识与技能1.理解点与圆的位置关系并掌握其运用2.熟练掌握圆周角的定理及其推论的灵活运用.3.了解三角形的外接圆和三角形外心的概念及反证法的证明思想.2.过程与方法学生通过自主探索和交流合作的过程,经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.从三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论,并运用它们解决一些相关问题.3.情感态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望,发展实践能力与创新精神.教学重点点和圆的位置关系,过不在同一直线上的三点作圆的方法,运用反证法进行推理论证.教学难点过不在同一条直线上的三点作圆,反证法的证明思路.教具准备:多媒体,ppt课件,课本教学方法:探究、引导、组织、合作教学过程设计有好多知识,这节课开始我们来学习与圆有关的位置关系在圆外取一点呢?圆内呢?.得到:圆上的点到圆心的距离都等于半径;圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.即点与圆的位置关系有三种:点在圆内;点在圆上;点在圆外设⊙O的半径为r,点P到圆心的距离为OP=d点P在圆外⇒d>r;点P在圆上⇒d=r;点P在圆内⇒d<r反之,d>r⇒点P在圆外;d=r⇒点P在圆上;d<r⇒点P在圆内.综合可得:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r(二)确定圆的条件1.作图经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?①作圆,使该圆经过已知点A,你能作出几个这样的圆?②作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?③作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),•你是如何做的?你能作出几个这样的圆?分析:一个圆的圆心只确定它的位置,半径只确定它的大小,如果它的圆心和半径都确定了,那么这个圆的大小和位置就唯一确定了由③可知:①不在同一直线上的三个点确定一个圆.②经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.③外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心2.反证法l 2l 1P思考:经过同一条直线上的三个点能不能作出一个圆?证明:如图,假设过同一直线l 上的A 、B 、C 三点可以作一个圆,设这个圆的圆心为P ,那么点P 既在线段AB 的垂直平分线1l 上,又在线段BC 的垂直平分线2l 上,•即点P 为1l 与2l 的交点,而1l ⊥l ,2l ⊥l ,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆. 上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法.(三)应用1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心.2.如图,已知梯形ABCD 中,AB ∥CD ,AD=BC ,AB=48cm ,CD=30cm ,高27cm ,求作一个圆经过A 、B 、C 、D 四点,写出作法并求出这圆的半径(比例尺1:10)分析:要求作一个圆经过A 、B 、C 、D 四个点,应该先选三个点确定一个圆,•然后证明第四点也在圆上即可.要求半径就是求OC 或OA 或OB ,因此,•要在直角三角形中进行,不妨设在Rt △EOC 中,设OF=x ,则OE=27-x 由OC=OB 便可列出,•这种方法是几何问题代数方法解(数形结合法). 三、课堂训练四、小结归纳2.不在同一直线上的三个点确定一个圆.3.三角形外接圆和三角形外心的概念.4.反证法的证明原理.作业设计复习练习册作业和综合运用为全体学生必做;学有余力的学生拓广探索为成绩中上等学生必做.24.2.2直线与圆的位置关系时间:年月日课型: 新授教学目标1.知识与技能1.知道直线和圆相交、相切、相离的定义.2.根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线.3.根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置.2.过程与方法让学生通过观察、看图、列表、分析、对比,得到“圆心到直线的距离和半径之间的数量关系”与“直线和圆的位置关系”的对应与等价,揭示直线和圆的位置关系,实现位置关系和数量关系的结合..3.情感态度与价值观让学生感受到实际生活中存在的直线和圆的三种位置关系,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,进一步强化对分类和归纳的思想的认识,把实际的问题抽象成数学模型.教学重点直线和圆的三种位置关系教学难点直线和圆的三种位置关系的应用教具准备:多媒体,ppt课件,课本教学方法:探究、引导、组织、合作教学过程设计一、导语我们都知道,点和圆的位置关系有三种:点在圆内、点在圆上、点在圆外.那么直线和圆的位置关系又怎样呢?二、探究新知(一)直线和圆的位置关系定义1.大家也许看过日出,如果我们把太阳看作一个圆,那么太阳在升起的过程中,和地平线的关系体现了直线和圆的几种位置关系.2.在纸片上画一条直线,把硬币的边缘看作圆,在纸上推移硬币,你能发现直线与圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?请做完实验后把你的发现互相交流一下,把结论告诉老师?在实验中我们看到,直线与圆的公共点最少时没有,最多时有两个,在移动过程中发现直线与圆的公共点有时只有一个,即直线与圆的位置关系有三种:①如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离.②如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切.此时这条直线叫做圆的切线,这个公共点叫做切点.③如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交.此时这条直线叫做圆的割线点与圆的位置关系有三种,我们可以用点与半径的大小关系来描述点与圆的位置关系,直线与圆的位置关系也有三种(相离、相切、相交),那么能否用某种数量关系来描述直线与圆的位置关系呢?(二)直线和圆的位置关系定理1. 如何确定圆心到直线的距离?2.如图:⊙O的半径为r,圆心到直线的距离为d,如何用d和r之间的大小关系来判断直线与圆的位置关系?分析:当圆心O到直线l的距离d大于半径r时,直线上的所有点到圆心的距离都大于半径r,说明直线l在圆的外部,与圆没有公共点,因此当d>r时,直线与圆的位置关系是相离.反之,如果已知直线l与⊙O相离,则d>r.即:d>r直线与圆相离,同理可知,d=r直线与圆相切.d<r直线与圆相交.(三)应用例1 在△ABC中,AB=10cm,BC=6cm,AC=8cm,(1)若以C为圆心,4 cm 长为半径画⊙C,则⊙C与AB的位置关系怎样?(2)若要使AB与⊙C相切,则⊙C的半径应当是多少?(3)若要以AC为直径画⊙O,则⊙O与AB、BC的位置关系分别怎样?分析:判断⊙C与AB的位置关系应求出点C到AB的距离CD的长,然后再与半径作比较,即可求出⊙C与AB的位置关系.而要求CD 的长,可利用 △ABC 的面积,但应首先 判断 △ABC 为直角三角形?例2 在Rt △ABC 中,∠C =90°,O 是BC 的中点,以O 为圆心的圆与线段AB 有两个交点,若AC =3,BC =4,求半径r 的取值范围例3 如图,△ABO 中,OC ⊥AB 于C ,∠AOC =∠B ,AC =16cm ,BC =4cm ,⊙O 的半径为8cm ,AB 是⊙O 的切线吗?试说明.三、课堂训练完成课本94页练习 四、小结归纳 直线和圆的位置关系相交 相切 相离 公共点个数2 1 0 圆心到直线的距离与半径的关系d <r d =r d >r 公共点的名称交点 切点 无 直线名称 割线 切线 无板 书 设 计作业设计复习练习册作业和综合运用为全体学生必做;学有余力的学生拓广探索为成绩中上等学生必做..课题直线与圆有三种位置关系例1 例2 例3 归纳24.2.3圆与圆的位置关系时间:年月日课型: 新授教学目标1.知识与技能1.了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交、圆心距等概念.2.理解两圆的位置关系与d、r1、r2数量关系的等价条件并灵活应用.2.过程与方法通过复习直线和圆的位置关系和几何操作,迁移到圆与圆之间的五种位置关系并运用它们解决一些具体的问题.3.情感态度与价值观让学生感受到实际生活中存在的圆与圆之间的五种位置关系,有利于学生把实际的问题抽象成数学模型。
2022年人教版九年级数学上册第二十四章 圆教案 弧长和扇形面积 (第1课时)
24.4 弧长和扇形的面积第1课时一、教学目标【知识与技能】经历探索弧长计算公式的过程,培养学生的探索能力.了解弧长计算公式,并会应用弧长公式解决问题,提高学生的应用能力.【过程与方法】通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.【情感态度与价值观】通过对弧长和扇形面积公式的推导,理解整体和局部的关系.通过图形的转化,体会转化在数学解题中的妙用.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】弧长和扇形面积公式,准确计算弧长和扇形的面积.【教学难点】运用弧长和扇形面积公式计算比较复杂图形的面积.五、课前准备课件、图片、直尺、圆规等. 六、教学过程 (一)导入新课教师问:如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?(出示课件2)学生答:因为要保证这些弯道的“展直长度”是一样的. 教师问:怎样来计算弯道的“展直长度”?(板书课题) (二)探索新知探究一 弧长计算公式及相关的计算教师问:半径为R 的圆,周长是多少?(出示课件4)学生答:=2C R .教师问:①360°的圆心角所对的弧长是多少?②1°的圆心角所对的弧长是多少?③n °的圆心角所对的弧长是多少?学生答:①360°的圆心角所对的弧长是圆的周长;②1°的圆心角所对的弧长是圆的周长的1360;③n °的圆心角所对的弧长是圆的周长的360n . 教师问:下图中各圆心角所对的弧长分别是圆周长的几分之几?弧长是多少?(出示课件5)学生观察,计算,交流,教师抽查学生分别口答.教师归纳:(出示课件6) 弧长公式:2360180n n R l R ππ=•= 用弧长公式进行计算时,要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的.算一算:已知弧所对的圆心角为60°,半径是4,则弧长为____.学生代入公式进行计算:43π出示课件7:例 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)学生观察思考后,师生共同解答. 解:由弧长公式,可得弧AB 的长:1009005001570(mm),180⨯⨯π==π≈l因此所要求的展直长度l=2×700+1570=2970(mm ).答:管道的展直长度为2970mm . 巩固练习:(出示课件8)一滑轮起重机装置(如图),滑轮的半径r=10cm,当重物上升15.7cm 时,滑轮的一条半径OA 绕轴心O 逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动,π取3.14)?学生自主思考后,独立解答,一生板演.解:设半径OA 绕轴心O 逆时针方向旋转的度数为n °.15.7,180n Rπ=解得n ≈90°.因此,滑轮旋转的角度约为90°.探究二 扇形面积计算公式及相关的计算出示定义:圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.如图,黄色部分是一个扇形,记作扇形OAB.(出示课件9)判一判:下列图形是扇形吗?(出示课件10)学生观察后口答:×;×;√;×;√.教师问:半径为r的圆,面积是多少?(出示课件11)学生答:2 =S r.教师问:①360°的圆心角所对扇形的面积是多少?②1°的圆心角所对扇形的面积是多少?③n°的圆心角所对扇形的面积是多少?学生答:①360°的圆心角所对扇形的面积是圆的面积;②1°的圆心角所对扇形的面积是圆的面积的1.360③n°的圆心角所对扇形的面积是圆的面积的360n.教师问:图中各扇形面积分别是圆面积的几分之几,具体是多少呢?(出示课件12)学生观察计算并填表.出示课件13:教师归纳:扇形面积公式:半径为r 的圆中,圆心角为n °的扇形的面积为2=.360n r S π扇形教师强调:①公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).教师问:扇形的面积与哪些因素有关?(出示课件14)学生答1:圆心角大小不变时,对应的扇形面积与半径有关,半径越长,面积越大.学生答2:圆的半径不变时,扇形面积与圆心角有关,圆心角越大,面积越大. 教师总结:扇形的面积与圆心角、半径有关.教师问:扇形的弧长公式与面积公式有联系吗?(出示课件15) 学生板演:11.180221802n r r n r S r lr ππ=⋅=⋅⋅=扇形 教师问:扇形的面积公式与什么公式类似? 学生答:1.2S ah ∆=出示课件16:例1 如图,圆心角为60°的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm 2和0.01cm )学生独立思考后师生共同解答. 解:∵n=60,r=10cm, ∴扇形的面积为扇形的周长为巩固练习:(出示课件17)1.已知半径为2cm 的扇形,其弧长为43π,则这个扇形的面积S 扇= .2.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇= .学生独立思考后口答:1.24cm 3π;2.43π.出示课件18,19:例2 如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm )教师问:(1)截面上有水部分的面积是指图上哪一部分? 学生答:阴影部分.教师问:(2)水面高0.3m 是指哪一条线段的长?这条线段应该怎样画出来? 学生答:线段DC.过点O 作OD 垂直于AB 并交圆O 于C. 教师问:(3)要求图中阴影部分面积,应该怎么办? 学生答:阴影部分面积=扇形OAB 的面积-△OAB 的面积. 师生共同解答如下:(出示课件20)解:如图(3),连接OA,OB,过点O 作弦AB 的垂线,垂足为D,交AB 于点C,连接AC.∵OC =0.6,DC =0.3, ∴OD =OC-DC =0.3, ∴OD =DC. 又AD ⊥DC,∴AD 是线段OC 的垂直平分线, ∴AC =AO =OC.从而∠AOD =60˚,∠AOB=120˚. 有水部分的面积: S =S 扇形OAB -S ΔOAB22120π10.6360210.12π0.22(m 0.32)=⨯-•=-⨯≈AB OD 出示课件21:弓形的面积公式:教师归纳:弓形的面积=扇形的面积±三角形的面积. 巩固练习:(出示课件22)如图,扇形OAB 的圆心角为60°,半径为6cm,C,D 是弧AB 的三等分点,则图中阴影部分的面积和是_____.学生独立思考后解答:阴影部分的面积就是扇形OAC 的面积,由题意得: ∠AOC=60°÷3=20°.S 扇形OAC =⨯220π6360=2π.(三)课堂练习(出示课件23-29)1.如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则 的长为( )A .23π B .43π C .2π D .83π 2.如图,在平行四边形ABCD 中,∠B=60°,⊙C 的半径为3,则图中阴影部分的面积是( )A .πB .2πC .3πD .6π 3.已知弧所对的圆心角为90°,半径是4,则弧长_____.4.如图,Rt△ABC中,∠C=90°, ∠A=30°,BC=2,O、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()5.如图,☉A、☉B、☉C、☉D两两不相交,且半径都是2cm,则图中阴影部分的面积是_____.6.如图,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为________(结果用含π的式子表示).7.如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.8.如图,一个边长为10cm的等边三角形模板ABC在水平桌面上绕顶点C按顺时针方向旋转到△A′B′C的位置,求顶点A从开始到结束所经过的路程为多少.参考答案:1.D2.C3.2π4.C5.212πcm6.(4+π7.解:=OAB S S S +△弓形扇形224010.60.30.63602π=⨯+⨯⨯0.24π=+()20.91cm .≈8.解:由图可知,由于∠A ′CB ′=60°,则等边三角形木板绕点C 按顺时针方向旋转了120°,即∠ACA ′ =120°,这说明顶点A 经过的路程长等于弧AA ′的长.∵等边三角形ABC 的边长为10cm,∴弧AA ′ 所在圆的半径为10cm.∴l 弧AA ′1201020(cm).1803ππ⨯⨯== 答:顶点A 从开始到结束时所经过的路程为20cm.3π (四)课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?(五)课前预习预习下节课(24.4第2课时)的相关内容.七、课后作业1.教材113页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,再由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.。
人教版九年级数学上册《圆的有关性质(第1课时)》示范教学设计
圆的有关性质(第1课时)教学目标1.通过观察、操作、归纳等数学活动理解圆的定义,感受圆和实际生活的联系,体会数学知识在生活中的普遍性.2.理解弦、直径、弧、优弧、半圆、劣弧、等圆、等弧的概念,能够在图形中识别弦和弧.3.理解概念之间的区别和联系,能灵活运用圆的有关概念解决问题.教学重点圆的定义的形成过程;理解与圆有关的概念.教学难点圆的集合性定义.教学准备准备直尺和圆规.教学过程新课导入希腊数学家毕达哥拉斯认为:“一切立体图形中最美的是球,一切平面图形中最美的是圆.”圆是常见的图形,生活中的许多物体都给我们以圆的形象.你能发现下面图片中的圆形吗?【师生活动】教师展示图片,学生指出图片中的圆形.【设计意图】结合生活实际,列举生活中的圆,让学生体会圆在日常生活和生产实践中有着广泛的应用,激发学生的学习兴趣,引出本节课要学习的“圆的有关性质”.新知探究一、探究学习【问题】我们在小学已经对圆有了初步认识.请仿照图中方法,在纸上画一个半径为3 cm的圆.观察画圆的过程,你能说出圆是如何画出来的吗?【师生活动】学生先自己画图,教师演示画圆的动态过程;然后学生小组讨论圆的形成过程,教师进行总结.【新知】在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作⊙O,读作“圆O”.【设计意图】学生动手操作中发现圆的形成过程,得出圆的描述性定义.【问题】量一量,圆上各点到定点(圆心O)的距离有什么特点?反过来,到定点的距离等于定长的点又有什么特点?【师生活动】学生独立操作,思考答案,教师进行演示,师生一起总结.【新知】(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.【设计意图】学生动手操作中得出圆的集合性定义.让学生认识到,把一个图形看成满足某种条件的点的集合,必须符合:(1)图形上的每一点都满足某个条件;(2)满足这个条件的每一个点,都在这个图形上.这两个条件缺一不可.【思考】(1)以2 cm为半径能画几个圆?(2)在同一个平面内,以点O为圆心能画几个圆?(3)在同一个平面内,以点O为圆心、以2 cm为半径,能画几个圆?(4)确定一个圆需要哪几个要素?【师生活动】学生先自己画图,然后小组讨论交流,教师进行演示,师生一起总结.【归纳】确定圆的两个要素:圆心和半径;圆心确定圆的位置,半径确定圆的大小.【设计意图】让学生在交流讨论中,体会到只有圆心和半径都确定,才能确定一个圆.【新知】连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.如图,AB,AC是弦,AB是直径.圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.【思考】直径与弦有什么关系?半圆与弧有什么关系?【师生活动】学生小组讨论得出:直径一定是弦,但弦不一定是直径;弦包括直径,直径是特殊的弦.半圆一定是弧,但弧不一定是半圆.【设计意图】引导学生分析弦与直径、弧与半圆之间的区别与联系.【新知】大于半圆的弧(用三个点表示,如图中的ABC)叫做优弧;小于半圆的弧(如图中的AC)叫做劣弧.【思考】图中还有其他的优弧或劣弧吗?【师生活动】学生独立思考后回答:优弧BAC,劣弧BC.【设计意图】巩固新学习的优弧和劣弧的概念.【问题】仔细观察下面的动图,想一想什么情况下两个圆能够完全重合?【师生活动】学生小组讨论,教师进行延伸、总结.【新知】能够重合的两个圆叫做等圆.容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.在同圆或等圆中,能够互相重合的弧叫做等弧.如图,AB,CD,EF是等弧.【设计意图】借助动图和动画,形象地展示等圆和等弧的特点,让学生对等圆和等弧的理解更深一层.二、典例精讲【例1】矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.【师生活动】学生独立完成,并小组讨论,尝试进行解答,教师给予帮助.【答案】证明:∵四边形ABCD是矩形,∴AO=OC=12AC,OB=OD=12BD.又∵AC=BD,∴OA=OB=OC=OD.∴A,B,C,D四个点在以点O为圆心的同一个圆上(如图).【归纳】巧用圆的特性,判断多点共圆.判断多点是否在同一个圆上的问题,实质上是寻找一个定点,判断这些点到定点的距离是否相等,若存在这样的定点,则这些点在同一个圆上;若不存在这样的定点,则这些点就不在同一个圆上.【设计意图】巩固学生对圆的定义的理解和掌握.【例2】写出图中⊙O的直径、弦、优弧、劣弧.【师生活动】学生独立完成,教师出示答案.【答案】解:直径AC;弦AB,BC,AC;优弧BCA,BAC;劣弧AB,BC.【设计意图】锻炼学生在图形中识别弦和弧的能力.【例3】有以下结论:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中正确的有().A.1个B.2个C.3个D.0个【师生活动】学生独立完成,教师出示答案.【答案】A【解析】直径相等即半径相等,所以①正确;等弧是指在同圆或等圆中能够互相重合的弧,长度相等的弧不一定是等弧,所以②错误;直径把圆分成的两个半圆就是等弧,所以③错误.【提醒】(1)直径是圆中最长的弦,而弦不一定是直径.(2)半圆是弧,但弧不一定是半圆.(3)弧包括优弧、劣弧和半圆.(4)等圆只和半径的大小有关,和圆心的位置无关.(5)等弧的长度一定相等,但长度相等的弧不一定是等弧.【设计意图】帮助学生理解圆的相关概念之间的区别和联系.课堂小结板书设计一、圆的描述性定义二、圆的集合性定义三、圆的相关概念课后任务完成教材第81页练习第1~3题.。
XX年九年级数学上第24章圆教案(人教版)
XX年九年级数学上第24章圆教案(人教版)本资料为woRD文档,请点击下载地址下载全文下载地址24.3 正多边形和圆.了解正多边形的概念.2.会判定一个正多边形是中心对称图形还是轴对称图形.3.会进行有关圆与正多边形的计算.4.会通过等分圆心角的方法等分圆周,从而画出所需的正多边形.5.能够用直尺和圆规作图,作出一些特殊的正多边形.阅读教材第105至107页,完成下列知识探究.知识探究.________相等,________也相等的多边形叫做正多边形.2.一个正多边形的外接圆的________叫做这个正多边形的中心,外接圆的________叫做正多边形的半径,正多边形每一边所对的________叫做正多边形的中心角,中心到正多边形的一边的________叫做正多边形的边心距.3.把一个圆分成几等份,连接各点所得到的多边形是________,它的中心角等于________.4.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有________条,并且还是中心对称图形;当边数为奇数时,它只是____________.自学反馈.如果正多边形的一个外角等于60°,那么它的边数为________.2.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为________.3.已知正六边形的外接圆半径为3cm,那么它的周长为________cm.4.正多边形的一边所对的中心角与该正多边形的一个内角的关系是________.5.两个正六边形的边长分别是3和4,这两个正六边形的面积之比等于________.边数相等的正多边形是相似的.6.圆内接正方形的半径与边长的比是________;圆内接正方形的边长为4cm,那么边心距是________.7.已知圆内接正方形的边长为4,则该圆的内接正六边形边长为________;圆内接正六边形的边长是8cm,那么该正六边形的半径为________;边心距为________.8.利用你手中的工具画一个边长为3cm的正五边形.要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径.活动1 小组讨论例1 如图所示,⊙o中,AB︵=Bc︵=cD︵=DE︵=EF︵=FA︵.求证:六边形ABcDEF是正六边形.证明:略.由本题的结论可得:只要将圆分成n等分,顺次连接各等分点,就可得到这个圆的内接正n边形.例2 如图,正六边形ABcDEF内接于⊙o,若⊙o的内接正△AcE的面积为483.试求正六边形的周长.解:48.圆的内接正6边形的边长等于圆的半径,故要求正6边形的边长,需先求圆的半径.例3 已知⊙o的半径为2cm,求作圆的内接正△ABc.①用量角器度量,使∠AoB=∠Boc=∠coA=120°;②用量角器或30°角的三角板度量,使∠BAo=∠cAo=30°.例4 你能用以上方法画出正四边形、正五边形、正六边形吗?只要作出已知⊙o的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙o相交,或作各中心角的角平分线与⊙o相交,即得圆内接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……活动2 跟踪训练.正n边形的一个内角与一个外角之比是5∶1,那么n 等于________.2.若一正四边形与一正八边形的周长相等,则它们的边长之比为________.3.正八边形有________条对称轴,它不仅是________对称图形,还是________对称图形.正n边形的中心对称性和轴对称性.4.有两个正多边形边数比为2∶1,内角度数比为4∶3,求它们的边数.本题应用方程的方法来解决.5.教材第106页练习.6.如图,已知正△ABc,求作:正△ABc的外接圆和内切圆.正三角形内心、外心合一,即正三角形的中心.7.教材第108页练习.活动3 课堂小结.正多边形的概念及正多边形与圆的关系.2.正多边形的半径、中心、边心距、内角度数、中心角度数.3.通过等分圆心角的方法等分圆周,从而画出圆内接正多边形.4.用直尺和圆规作一些特殊的正多边形的方法.【预习导学】知识探究.各边各角 2.圆心半径圆心角距离 3.正多边形360°边数 4.n 轴对称图形自学反馈.6 2.4 3.18 4.互补 5.9∶16 6.1∶2 2cm 7.22 8cm 43cm 8.略.【合作探究】活动2 跟踪训练.12 2.2∶1 3.8 轴中心 4.10. 5.略. 6.略.7.略.。
人教版九年级数学上册第二十四章:圆(教案)
-圆与直线、圆与圆的位置关系:识别并理解相离、外切、相交、内切、内含五种位置关系,以及对应的几何特征和计算方法。
-实际应用题:运用圆的相关知识解决实际问题,如计算弓形面积、弧长和扇形面积等。
-弓形面积和弧长的计算:这部分涉及到圆的扇形和弓形的相关计算,学生需要理解并掌握相应的计算公式。
-解决实际应用题:将圆的知识应用于解决综合性问题,如涉及多个圆或圆与其他几何图形的组合问题。
举例:在讲解圆与圆的位置关系时,难点在于如何通过比较两圆半径之和与圆心距离的大小来判断它们的位置关系。教师需要通过图示和具体例子来帮助学生理解和记忆这个判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调圆的基本性质和圆的方程这两个重点。对于难点部分,如圆的一般方程推导,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如圆的面积和周长的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用绳子画圆,演示圆的基本原理。
2022年人教版九年级数学上册第二十四章 圆教案 圆
24.1 圆的有关性质24.1.1 圆一、教学目标【知识与技能】1.通过观察实验操作,使学生理解圆的定义.2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.【过程与方法】通过举出生活中常见圆的例子,经历观察画圆的过程多角度体会和认识圆.【情感态度与价值观】结合本课教学特点,向学生进行爱国主义教育和美育渗透.激发学生观察、探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的理解.【教学难点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的区别与联系.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课圆是生活中常见的图形,许多物体都给我们以圆的形象.观察下列生活中的图片,找一找你所熟悉的图形.(出示课件2)观察漫画《骑车运动》,思考:车轮为什么做成圆形?做成三角形、正方形可以吗?(出示课件3)(二)探索新知探究一圆的定义教师问:一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?(出示课件5)学生答:为了使游戏公平,在目标周围围成一个圆排队.因为圆上各点到圆心的距离都等于半径.(出示课件6)教师演示画圆,学生观察画圆的过程,尝试说出圆是如何画出来的.(出示课件7)教师加以规范:圆的旋转定义(描述性定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.有关概念:固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.教师强调:确定一个圆的要素(出示课件8)一是圆心,圆心确定其位置;二是半径,半径确定其大小.教师出示同心圆等圆的定义:同心圆:圆心相同,半径不同;等圆:半径相同,圆心不同.出示课件9,10:师生共同探究深化认知:1.圆可以看成到定点距离等于定长的所有点组成的.2.(1)圆上各点到定点(圆心O)的距离都等于定长r.(2)到定点的距离等于定长的点都在同一个圆上.3.圆的集合定义圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.出示课件11:教师通过课件演示,得到圆的基本性质:同圆半径相等.教师问:圆是一条曲线,还是一个曲面?(出示课件12)学生交流后回答:圆是一条封闭的曲线,它是由到圆心的距离等于半径的点组成的曲线,而不是曲面.出示课件13:例矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.学生独立思考后,师生共同解答如下:证明:∵四边形ABCD是矩形,∴AO=OC,OB=OD.又∵AC=BD,∴OA=OB=OC=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.巩固练习:(出示课件14)如图,☉O的半径OA,OB分别交弦CD于点E,F,且CE=DF.求证:△OEF是等腰三角形.教师分析:作辅助线构造△OCE和△ODF,然后证明两三角形全等,最后根据全等的性质得出结论.学生解答:连接OC,OD,∵OC=OD,∴∠C=∠D,∵CE=DF.∴△OCE≌△ODF(SAS),∴OE=OF,∴△OEF是等腰三角形.探究二圆的有关概念弦(出示课件15)连接圆上任意两点的线段(如图中的AC)叫做弦.经过圆心的弦(如图中的AB)叫做直径.教师强调:1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.出示课件16:通过课件演示,得出:直径是最长的弦.弧(出示课件17)圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.劣弧:小于半圆的弧叫做劣弧.如图中的.优弧:大于半圆的弧叫做优弧.如图中的教师强调:劣弧用两个字母表示,优弧用三个字母表示.等圆:能够重合的两个圆叫做等圆.(出示课件18)教师强调:等圆是两个半径相等的圆.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.教师问:长度相等的弧是等弧吗?(出示课件19)教师举例:如图,如果和的拉直长度都是10cm,平移并调整小圆的位置,是否能使这两条弧完全重合?教师演示课件后强调:两条弧不可能完全重合,实际上这两条弧弯曲程度不同,“等弧”要区别于“长度相等的弧”.师生共同深化认知:等弧仅仅存在于同圆或者等圆中.出示课件20:例1 如图.(1)请写出以点A为端点的优弧及劣弧;劣弧:优弧:(2)请写出以点A为端点的弦及直径;弦AF,AB,AC.其中弦AB又是直径.(3)请任选一条弦,写出这条弦所对的弧.答案不唯一,如:弦AF,它所对的弧是和.巩固练习:(出示课件21) 在以下所给的命题中:①半圆是弧;②弦是直径;③如图所围成的图形是半圆. 其中正确的命题有 .学生思考后独立解答:弧不但包括半圆,还包括优弧、劣弧,所以①正确,③不正确;弦包括经过圆心的弦(即直径)与不经过圆心的弦所以②不正确.出示课件22:例2 如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上.(1)求证:OB=OC.(2)设⊙O 的半径为10,则正方形ABCD 的边长为 .学生独立思考后,师生共同解答如下:解:(1)连接OA,OD,证明Rt ∆ABO ≌Rt ∆DCO.(2)设OB=x,则AB=2x,在Rt △ABO 中,222AB BO AO ,22210x x +=(2)即 解得:25x .巩固练习:(出示课件23)CD 为⊙O 的直径,∠EOD=72°,AE 交⊙O 于B,且AB=OC,则∠A=_______.图4D B ON M A C学生自主解决:∵OB=OC,AB=CO,∴AB=OB,∴∠A=∠BOA.又∵OB=OE,∴∠E=∠EBO,∵∠EBO=2∠A,∴∠E=2∠A,又∵∠EOD=∠E+∠A,∴3∠A=∠EOD,∵∠EOD=72°,∴∠A=24°.(三)课堂练习(出示课件24-30)1.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理2.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.0.5πC.0.25πD.2π3.填空:(1)______是圆中最长的弦,它是______的2倍.(2)图中有______条直径,______条非直径的弦,圆中以A为一个端点的优弧有______条,劣弧有______条.4.一点和⊙O上的最近点距离为4cm,最远的距离为10cm,则这个圆的半径是______.5.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.6.一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.7.求证:直径是圆中最长的弦.参考答案:1.B2.B3.⑴直径;半径⑵一;二;四;四4.7cm或3cm5.⑴×⑵√⑶×⑷×⑸×⑹√⑺×6.解:如图所示:7.证明:如图,在⊙O中,AB是⊙O的直径,半径是r. CD是不同于AB的任意一条弦.连接OC、OD,则OA+OB=OC+OD=2r,即AB=OC+OD.在△OCD中,OC+OD>CD,∴AB>CD.即直径是圆中最长的弦.(四)课堂小结1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.(五)课前预习预习下节课(24.1.2)的相关内容.七、课后作业1.教材81页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑习惯,在操作过程中观察圆的特点,加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.。
人教版九年级数学24章《圆》全章教案
人教版九年级数学24章《圆》全章教案课时计划第9周第24课(章、单元)第1节第 1课时2014 年10月29日课时计划第9周第24课(章、单元)第1节第2课时2014 年10月30日课时计划第9周第24课(章、单元)第1节第3课时2014 年10月31日课时计划第10周第24课(章、单元)第1节第 4课时2014 年11月3日课时计划第10周第24课(章、单元)第2节第 1课时2014 年11月5日课时计划第10周第24课(章、单元)第2节第 2 课时2014 年11月6日例1、已知:AB是⊙O的直径,∠ABT=45°,AT=AB.求证:AT是⊙的切线.例2、如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.例3、如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:AC是⊙O的切线四、练习1.已知⊙O的半径为5cm,点O到直线a的距离为3cm,则⊙O与直线a的位置关系是课时计划第11周第 24课(章、单元)第2节第 3课时2014 年11月12日角形三条角平分线的交点)思考:一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?四、运用举例:例1:已知:在△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。
解:(略)例2:直角三角形的两直角边分别是5cm, 12cm 则其内切圆的半径为______。
五、练习:P100 练习 P101 1六、小结:复述本节所学内容板书设计:切线长定理1、切线长定义:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。
2、切线长定理:从圆外一点可以引圆的两条切课时计划第 11周第24课(章、单元)第2节第4课时2014 年11月13日课时计划第11周第24课(章、单元)第3节第1课时2014 年11月14日课时计划第12周第24课(章、单元)第4节第 1课时2014 年11月17日课 时 计 划第12周第 24课(章、单元)第4节 第2课时2014 年11月19日课时计划第12周第 24课(章、单元)第5节第 1课时2014 年11月20日为半圆上一点,的垂线CP,P为垂足,于点F.求证:AD=CD.3、在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以点C为圆心,2.4 cm为半径画圆.求(1)AB的中点D与⊙C的位置关系;(2)直线AB 与⊙C的位置关系.图24-17。
人教版九年级数学上册教案:第24章 圆》24.1 圆的有关性质
杭后六中九年级数学科目课堂教学设计过程设计一、归纳概念观察导入一中折扇收拢的过程,这些重合的角有什么特征?学生归纳出特征以后给出圆心角的概念.【课件3】顶点在圆心的角叫做圆心角.【考虑】1.图中有几个圆心角?分别是什么?(三个,分别是∠AOB,∠AOC,∠BOC.)2.图中的圆心角所对的弧、弦分别是什么?【师生活动】学生答复,老师点评.二、共同探究1【考虑】如下图,☉O中,当圆心角∠AOB=∠A'OB'时,它们所对的和、弦AB和A'B'相等吗?为什么?思路一1.将∠AOB旋转到∠A'OB'的位置,它能否与∠A'OB'完全重合?2.假如能重合,你会发现哪些等量关系?3.你能证明这些结论吗?4.如下图,☉O与☉O'是等圆,假如圆心角∠AOB=∠A'O'B',你能否得到一样的结论?5.你能用语言表达上面的命题吗?【师生活动】学生独立考虑后小组合作交流,老师帮助有困难的学生完成考虑过程,学生板书证明过程,老师点评.【课件4】我们把∠AOB连同绕圆心O旋转,使射线OA与OA'重合.∵∠AOB=∠A'OB',∴射线OB与OB'重合.又OA=OA',OB=OB',∴点A与A'重合,点B与B'重合.因此,与重合,AB与A'B'重合.即,AB=A'B'.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.[设计意图]让学生通过动手操作、观察、猜测、证明、归纳得出圆心角、弦、弧之间的关系定理,让学生亲自经历定理的形成过程,培养学生分析问题、解决问题的才能.三、共同探究2【考虑】1.在圆心角的性质定理中,为什么要说“在同圆或等圆中〞?能不能去掉?2.在同圆或等圆中,假如两条弧相等,能得到什么结论?3.在同圆或等圆中,假如两条弦相等,能得到什么结论?【师生活动】学生小组讨论,答复后老师点评,总结.【课件5】在同圆或等圆中,假如两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,假如两条弦相等,那么它们所对的圆心角相等,所对的弧相等.即:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.【课件6】填空:如下图,AB,CD是☉O的两条弦.(1)假如AB=CD,那么,.(2)假如,那么,.(3)假如∠AOB=∠COD,那么,.[设计意图]学生通过小组合作学习,用类比的方法得到圆心角定理的推论,培养学生分析问题才能及合作精神.通过填空,及时运用所学知识解决问题,培养学生数学应用意识和解决问题的才能,同时让学生体会将数学语言向几何语言转化的过程.【例题讲解】【课件7】(教材例3)如下图,在☉O中,,∠ACB=60°.求证∠AOB=∠BOC=∠AOC.老师引导:要证∠AOB=∠BOC=∠AOC,需证或;而由,可得,又∠ACB=60°,所以ΔABC是三角形,那么,从而得证.在老师引导下,学生独立考虑,书写过程,有困难的学生小组合作交流,学生板书后,老师进展点评,标准解题格式.证明:∵,∴AB=AC,ΔABC是等腰三角形,又∠ACB=60°,∴ΔABC是等边三角形,AB=BC=CA.∴∠AOB=∠BOC=∠AO C.[设计意图]通过分析例题,让学生掌握并能灵敏运用所学知识解决问题,培养学生正确应用所学知识的才能,增强应用意识,同时标准学生书写格式,到达稳固知识的目的.[知识拓展]1.圆心角、弦、弧之间的关系的结论必须是在同圆或等圆中才能成立.2.利用同圆(或等圆)中圆心角、弦、弧之间的关系可以证明角、弦或弧相等.3.圆心角的度数与所对弧的度数相等.板书设计及课堂小结:课堂小结1.圆是中心对称图形,圆有旋转不变性.2.圆心角的概念:顶点在圆心的角.3.圆心角、弧、弦之间的关系:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.4.利用同圆或等圆中圆心角、弧、弦之间的关系可以证明角、弦或弧相等.(1)运用此定理时,应注意其成立的条件是“在同圆或等圆中〞.(2)由弦相等推出弧相等时,这里的弧要求同是优弧或同是劣弧,一般选劣弧.板书设计24.1.3弧、弦、圆心角一、归纳概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1圆的有关性质
24.1.1圆(第1课时)
一、基本目标
【知识与技能】
理解并掌握圆的两种定义及与圆有关的概念,并能够从图形中识别.
【过程与方法】
通过实际操作体会圆的不同定义,数形结合理解与圆有关的概念,掌握学习几何的一些常用方法:实际操作法、数形结合法等.
【情感态度与价值观】
通过实际操作,体会数学中的创造与探索精神,体会圆的有关概念.
二、重难点目标
【教学重点】
圆的有关概念.
【教学难点】
用集合观点定义圆.
环节1自学提纲,生成问题
【5 min阅读】
阅读教材P79~P81的内容,完成下面练习.
【3 min反馈】
1.(1)到定点O的距离为5的点的集合是以__O__为圆心,__5__为半径的圆.
(2)连结圆上任意两点的__线段__叫做弦,经过圆心的弦叫做__直径__;圆上任意两点间的部分叫做__圆弧__;圆上任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做__优弧__,小于半圆的弧叫做__劣弧__.
2.如图,图中有__1__条直径,__2__条非直径的弦;圆中以点A为一个端点的优弧有__4__条,劣弧有__4__条.
3.什么叫等圆?什么叫等弧?
解:能够重合的两个圆叫做等圆;在同圆或等圆中,能够互相重合的弧叫做等弧. 环节2 合作探究,解决问题
【活动1】 小组讨论(师生互学)
【例1】下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中正确的是________.(填序号)
【互动探索】(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?
【答案】②
【互动总结】(学生总结,老师点评)由圆的有关概念可知,连结圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.
【例2】如图,在Rt △ABC 和Rt △ABD 中,∠C =90°,∠D =90°,点O 是AB 的中点.求证:
A 、
B 、
C 、
D 四个点在以点O 为圆心的同一圆上.
【互动探索】(引发学生思考)要使A 、B 、C 、D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,圆上各点到定点(圆心O )的距离有什么关系?点A 、B 、C 、D 与点O 有什么关系?
【证明】连结OC 、OD .
∵在Rt △ABC 和Rt △ABD 中,∠ACB =90°,∠ADB =90°,点O 是AB 的中点,
∴OA =OB =OC =OD =12
AB , ∴A 、B 、C 、D 四个点在以点O 为圆心的同一圆上.
【互动总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ).
【活动2】 巩固练习(学生独学)
1.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是__①__.(填序号)
2.如图,点A 、B 、C 、E 在⊙O 上,点A 、O 、D 与点B 、O 、C 分别在同一直线上,图中有几条弦?分别是哪些?
解:图中有3条弦,分别是弦AB、BC、CE.
3.如图,点A、N在半圆O上,四边形ABOC、DNMO均为矩形,求证:BC=MD.
证明:连结ON、OA.
∵点A、N在半圆O上,∴ON=OA.
∵四边形ABOC、DNMO均为矩形,
∴ON=MD,OA=BC,∴BC=MD.
【活动3】拓展延伸(学生对学)
【例3】下列说法:①经过点P的圆有无数个;②以点P为圆心的圆有无数个;③半径为3 cm,且经过点P的圆有无数个;④以点P为圆心,以3 cm为半径的圆有无数个,其中错误的有()
A.1个B.2个
C.3个D.4个
【互动探索】(引发学生思考)结合圆的定义,怎样确定一个圆?确定一个圆的条件有哪些?
【答案】A
【互动总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.
【例4】A、B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()
A.AB>0B.0<AB<5
C.0<AB<10D.0<AB≤10
【互动探索】(引发学生思考)连结圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连结圆上任意两点构成的最长线段和最短线段分别是什么?
【答案】D
【互动总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.
环节3课堂小结,当堂达标
(学生总结,老师点评)
圆⎩⎪⎪⎨⎪⎪⎧ 圆的集合性定义圆的有关概念⎩⎪⎨⎪⎧ 弦——直径弧⎩⎪⎨⎪⎧ 劣弧半圆优弧等圆等弧
请完成本课时对应练习!。