分式方程第三课时教案

合集下载

人教版八年级上册数学教案:15.3分式方程(第3课时)

人教版八年级上册数学教案:15.3分式方程(第3课时)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯
做一做:1.某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?
2.某自来水公司水费计算办法如下:若每户每月用水不超过5 m3,则每立方米收费1.5元;若每户每月用水超过5 m3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量
是李家用水量的,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m3的部分每立方米收费多少元?。

可化为一元二次方程的分式方程(第3课时)八年级数学下册(沪教版)

可化为一元二次方程的分式方程(第3课时)八年级数学下册(沪教版)

是原方程的根
2:解方程
x2
x
3
+
3x x2
3
13 2
解:设
x2 3 x
y,则
x x2 3
1 y
原方程变为:y+ 3 = 13 y2
去分母得: 2y2 13y 6 0
解得:y1
6,
y2
1 2
当y=6时,x2 3 6 x
解得:x1 3 2 3, x2 3 2 3
当y= 1 时,x2 3 1
解得y1
2 3 , y2
1 2
当y1
2时, x 3 x2 1
2 3
去分母整理得2x2 3x 2 0
解得x 1 , 2
x2
当y2
1时, x 2 x2 1
1 2
去分母整理得x2 2x 1 0
解得x 1 2
经检验x 1 , x 2, 2
x 1 2是原方程的解
所以原方程的解是x1
象以上这种用一个字母(y)
来代替原方程中的一个较复杂
的代数式 (x2 + 2x),从而
使原方程简化,易于求解的方 法,叫换元法。
例题4:用换元法解方程
3x x2 1
x2 1 x
7 2
分析 观察方程左边的两个分式,可见

为数于是可通过“换元"把原方程化成较简单的分式方程.
两边都乘以2y得到
6y2 7y 2 0
44
代入原方程组各分式的分母都不为零,
所以原方程组的解为
x y
3 4 1 4
归纳
用换元法解分式方程的方法和步骤:
(1)设元、换元。 (2)解换元后的方程。 (3)把换元后方程的解还原成原未知数的

分式方程第三课时 教案doc

分式方程第三课时 教案doc

课题:8.5分式方程(第3课时)教学目标:会列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理。

教学重点:如何结合实际分析问题,列出分式方程教学难点:分析过程,得到等量关系教学方法:探索法 教学过程:教学活动 集体讨论一、 复习巩固 1、解分式方程的一般步骤(1)去分母(2)去括号(3)移项,合并同类项(4)系数化为1(5)检验2、练习:解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 二、例题讲解例4.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。

这样,这两个小组的每个同学就要比原计划多做 4面。

如果这3个小组的人数相等,那么每个小组有多少名学生?分析:本题中的等量关系是什么?你会根据等量关系列出分式方程吗?例5、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。

问甲、乙两公司各有多少人?例6、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1。

2元,小明和小丽能买到相同本数的笔记本吗?总结用分式方程解实际问题的一般步骤:(1) 设未知数(2) 根据题意列方程(3) 解方程(4) 检验(5) 答学生练习:第68页1、2三、 思维拓展某市从今年1月1日起调整居民的用水价格,每立方米水费上涨31。

小丽家去年12月份的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多53m ,求该市今年居民用水的价格。

四、小结 五、板书设计 六、教后记。

分式方程教学设计

分式方程教学设计

分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计一. 教材分析《可化为一元一次方程的分式方程》是华师大版数学八年级下册第16.3节的内容。

本节课的主要内容是让学生掌握分式方程的解法,通过将分式方程转化为整式方程,让学生理解分式方程的解法实质,提高学生解决实际问题的能力。

二. 学情分析学生在八年级上册已经学习了分式的概念、性质和运算,对分式有了一定的认识。

但是,对于分式方程的解法,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生将分式方程转化为整式方程,让学生通过已有的知识解决新的问题。

三. 教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用到实际问题中。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。

四. 教学重难点1.重点:分式方程的解法。

2.难点:如何将分式方程转化为整式方程,以及如何运用分式方程解决实际问题。

五. 教学方法1.自主学习:让学生在课堂上自主探究分式方程的解法。

2.合作交流:引导学生分组讨论,分享解题心得。

3.实例讲解:通过具体例子,让学生理解分式方程的解法在实际问题中的应用。

六. 教学准备1.课件:制作课件,展示分式方程的解法。

2.练习题:准备一些分式方程的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,让学生回顾分式的性质和运算。

2.呈现(10分钟)展示分式方程的解法,引导学生将分式方程转化为整式方程。

3.操练(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。

4.巩固(10分钟)讲解一些典型的分式方程案例,让学生进一步理解分式方程的解法。

5.拓展(10分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。

6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的解法及其在实际问题中的应用。

《分式方程》第三课时参考教案

《分式方程》第三课时参考教案

3.4.3 分式方程(三)●教学目标(一)教学知识点1.用分式方程的数学模型反映现实情境中的实际问题.2.用分式方程来解决现实情境中的问题.(二)能力训练要求1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力.2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.(三)情感与价值观要求1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.2.培养学生的创新精神,从中获得成功的体验.●教学重点1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.●教学难点寻求实际问题中的等量关系,寻求不同的解决问题的方法.●教具准备实物投影仪投影片三张第一张:做一做,(记作§3.4.3 A)第二张:例3,(记作§3.4.3 B)第三张:随堂练习,(记作§3.4.3 C)●教学过程Ⅰ.提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.Ⅱ.讲授新课出示投影片(§3.4.3 A )[生]第二年每间房屋的租金=第一年每间房屋的租金+500元. (1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租?[生]问题也可以是:这两年每年房屋的租金各是多少?[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租?[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x 96000元,第二年每间房屋的租金为x102000元,根据题意,得 x 102000=x96000+500 解这个方程,得x=12经检验x=12是原方程的解,也符合题意.所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得:第一年每间房屋的租金为1296000=8000(元), 第二年每间房屋的租金为12102000=8500(元).[师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得x 96000= 500102000+x 解,得x=8000x+500=8500(元)经检验:x=8000是原分式方程的解,也符合题意.所以这两年每间房屋的租金分别为8000元,8500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.出示投影片(§3.4.3 B )[生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表)[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.[师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水,每立方米收费设为x 元,则1月份, 张家超出 5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.17⨯-m 3,总用水量为5+x55.15.17⨯-; 李家超出 5 m 3部分的水费为(27.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.27⨯-m 3,总用水量为(5+x55.15.27⨯-) m 3 根据等量关系,得x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×32 解这个方程,得x=2.经检验x=2是所列方程的根.所以超出5 m 3部分的水,每立方米收费2元.Ⅲ.随堂练习出示投影片(§3.4.3 C )[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本.硬皮本的价格=软皮本的价格×(1+21) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )21(15+本.根据题意,得, x 15= x )211(15++1解,得x=5经检验x=5是原方程的根,也符合题意,所以(1+21)x=23×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元.Ⅳ.课时小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.Ⅴ.课后作业习题3.8图3-4Ⅵ.活动与探究如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为 3 km ,王老师家到学校的路程为0.5 km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)[过程]分析题目中的等量关系:王老师骑车速度=王老师步行速度×3;王老师从家出发骑车接小明所用的时间=平时步行上学所用时间+20分钟. [结果]设王老师步行速度为x km/h ,则骑自行车的速度为3x km/h. 依题意,得x 35.032+⨯=x 5.0+6020 解得x=5经检验x=5是原方程的根,这时3x=15答:王老师步行速度为5 km/h,骑自行车的速度为15 km/ h.●板书设计。

八年级数学教案:分式方程(全3课时)

八年级数学教案:分式方程(全3课时)
教学过程
一.自学检测 1、什么叫做分式方程?解分式方程的步骤有哪几步?
个案补充
2、判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:x-2 1 =3-xx+ -11
解:两边同乘以(x-1),得
2=3-x+1, ①
x=3+1-2, ②
所以 x=2。

二.探究交流 探索点一:可以采用不同方式,探寻各个实际问题中的相等关系 1、甲、乙两人加工同一种服装,乙每天比甲多加工 1 件,已知乙加工 24 件服装所用时间与甲加工 20 件服装所用时间相同。甲每天加工多少件服 装?
课外作业:
布置作业
板书设计
教后札记
-6-
课时 NO: 教学课题
教学目标
主备人: 审核人
用案时间:
§10.5 分式方程(3)
年 月 日 星期
1.能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能
根据实际问题的意义检验所得的结果是否合理. 2.发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

4、因为解分式方程可能产生增根,所.以.

-4-
你能用比较简洁的方法,检验解分式方程产生的增根吗? 5、想一想解分式方程一般需要经过哪几个步骤?
探索点二:分式方程的解法会检验根的合理性
例 解下列方程:(1)30 = 20 ; x x+1
x-2 x+2 16 (2)x+2 -x-2 =x2-4 .
课时 NO: 教学课题
主备人: 审核人
用案时间:
年 月 日 星期
§10.5 分式方程(1)
1、经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中

5.4 分式方程 第3课时 教案

5.4 分式方程 第3课时 教案

一、情境导入1.引导学生回顾列方程解应用题的一般步骤.学生积极思考,并交流、讨论总结出: 第一步,审清题意;第二步,根据题意设未知数;第三步,列式子并找出等量关系,建立方程; 第四步,列方程,并解出答案;第五步,检查方程的解是否符合题意; 最后作答.2.提问:分式方程的应用题应该怎么解呢? 二、合作探究探究点:列分式方程解决实际问题 【类型一】 工程问题抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合作2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?解析:设甲队单独完成需要x 小时,则乙队需要(x +3)小时,根据等量关系“甲工效×2+乙工效×甲队单独完成需要时间=1”列方程.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1.解得x =6.经检验x=6是方程的解.∴x +3=9.答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.方法总结:解决工程问题的思路方法:各部分工作量之和等于1,常从工作量和工作时间上考虑相等关系.【类型二】 行程问题从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可;(2)设普通列车的平均速度是x 千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.解:(1)根据题意得400×1.3=520(千米). 答:普通列车的行驶路程是520千米;(2)设普通列车的平均速度是x 千米/时,则高铁的平均速度是2.5x 千米/时,根据题意得520x -4002.5x =3,解得x =120,经检验x =120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时.方法总结:解决问题的关键是分析题意,找到关键描述语和合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.【类型三】 图表信息类问题某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?解析:设排球的单价为x 元,则篮球的单价为(x +60)元,根据“总价÷单价=数量”的关系建立方程.解:设排球的单价为x 元,则篮球的单价为(x +60)元,根据题意,列方程得2000x =3200x +60.解得x =100.经检验,x =100是原方程的根,当x =100时,x +60=160.答:排球的单价为100元,篮球的单价为160元.方法总结:解答此类问题要结合图表提供的信息,找出相等关系列方程. 【类型四】 销售盈亏问题佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解析:(1)根据第二次购买水果数多20千克,可列出方程,解出即可得出答案;(2)先计算两次购买水果的数量,赚钱情况:销售的水果量×(实际售价-当次进价),两次合计,就可以求得是盈利还是亏损了.解:(1)设第一次购买的单价为x 元,则第二次的单价为1.1x 元,根据题意得14521.1x -1200x =20,解得x =6.经检验,x =6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是: 第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程; 第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答. 1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等。

分式方程(第3课时)

分式方程(第3课时)

徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清 第 周 星期 第 节 本学期学案累计: 16 课时 姓名:________课题:16.3 分式方程(第3课时)学习目标 我的目标 我实现 1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.学习过程 我的学习 我作主导学活动1:知识回顾解下列方程 1.1441222-=-x x 2.xx x -=+--23123解分式方程的步骤: 。

导学活动2:知识引入1.引导说出列方程解应用题的步骤 .2.相关背景:相关背景:时间速度路程⨯= 时间路程速度= 速度路程时间= 导学活动3:知识转化例4:从2004年5月起,某列车平均速度提速40千米/小时,用相同的时间,列车提速前行驶125千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?练习1.从2004年5月起,某列车平均速度提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!学习评价 我的评价 我自信当堂检测(限时:12分钟 )我自信 我进取1、解方程: 22122=-+-x x x x2.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发.结果他们同时到达,已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.3.两个小组同时开始攀登一座450米高的山,第一组的攀登速度是第二组的2倍,他们比第二组早15分钟到达了顶峰,求两个小组的攀登速度各是多少?自我小结:列方程解应用题的步骤 自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P32)习题16.3 第6、7题。

《分式方程》(第3课时)教案doc初中数学

《分式方程》(第3课时)教案doc初中数学

《分式方程》(第3课时)教案doc初中数学[教学目标]1. 明白分式方程的意义, 会解可化为一元一次方程的分式方程.2, 了解分式方程产生增根的缘故, 会判定所求得的根是否是分式方程的增根.3. 会列出方程解决简单的实际咨询题, 并能依照实际咨询题的意义检验所得结果是否合理.此外, 通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程, 体验解决咨询题的差不多策略, 进展应用意识和解决咨询题的技能.[教学过程(第三课时)]1. 情境创设课本以3个实际咨询题, 引导学生学习用分式方程解决实际咨询题的差不多方法, 进一步感受〝实际咨询题一建立方程一求解并讲明〞的过程.有时, 所列出的分式方程尽管有解, 但解却不符合实际情形, 这时原实际咨询题无解, 例3的设置正是为了表达这一点.2. 探究活动采纳〝个人摸索一小组交流一汇报方案’’的方式, 尝试从不同角度寻求解决咨询题的方法, 并能用文字、图表等手段清晰地表达解决咨询题的过程, 并会讲明结果的合理性. 例如:关于例4, 有以下两种解决方案可供选择:假设每小组有x名学生, 可得分式方程: , 解得x=10, 即每小组有10名学生;假设原先每人平均做c面彩旗, 可得分式方程:, 解得x=8, 从而确定每个小组有 10名学生.例5能够仿惯例4设计解决方案, 但由于例5中的数量关系较例4略为复杂, 因此可用表格的方式进行分析, 找出数量之间的相等关系, 从而得到方程.如:依照〝乙公司比甲公司人均多捐20元〞, 得方程:通过例6的探究和求解, 让学生感受在解决实际咨询题时, 存在如此的现象: 所列方程以及求得的根尽管正确, 但不符合咨询题的实际意义, 因此原实际咨询题仍旧无解.解分式方程(组)的检验是不可缺少的步骤.只是要注意检验的目的有两个方面:一方面是看所得数值是不是原方程的增根, 另一个方面, 关于应用题来讲, 还要检查所得的解是否合乎实际意义。

《分式方程》第三课时教案

《分式方程》第三课时教案

第二章分式与分式方程4 分式方程(三)课型:新授主备人:审核人:初三数学组一、教学目标1.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.2.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.教学难点:理解解分式方程的基本思想是把分式方程转化成整式方程.三、教学方法自主探索、合作交流;讲练结合四、教具设计电子白板五、教学过程(一)复习提问1.解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.2.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.3.由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?在学生讨论的基础上,教师归纳总结基本上有五种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v 顺水=v 静水+v 水.v 逆水=v 静水-v 水.(二)新课例1.两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队一个月完成总工程的31,设乙队如果单独施工1个月能完成总工程的x 1,那么甲队半个月完成总工程的61,乙队半个月完成总工程的x21,两队半个月完成总工程的61+x21. 等量关系为:甲、乙两个工程总量=总工程量,则有31+61+x21=1 例2:从2004年5月起某列列车平均提速v 千米/时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少? 分析:这里的字母v ,s 表示已知数据,设提速前的平均速度为x 千米/时,则提速前列车行驶s 千米所用的时间为xs 小时,提速后列车的平均速度为(x +v )千米/时,提速后列车行驶(s +50)千米所用的时间为v x s ++50小时. 等量关系:提速前行驶50千米所用的时间=提速后行驶(s +50)千米所用的时间; 列方程得:x s =vx s ++50 (三)小结对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系.对于我们常见的几种类型题,我们要熟悉它们的基本关系式.(四)随堂练习做课本P42随堂练习六、作业布置做课本P42习题2.10七、板书设计解分式方程的步骤:31+61+x 21=1 (1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;x s =v x s ++50 (4)验根八、教学反思在教学中应结合具体的数学内容采用"问题情境-建立模型-解释、应用与拓展"的模 式展开,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心.在教学中始终把学生置于一种动态、开放、生动、多元的教学环境中.这种动态的开放式的学习,体现了活动、内容、问题的开放性,从探究实践中形成想象,抓本质、揭规律、找方法.。

人教版八年级数学上册《分式》导学案:分式方程(第三课时)

人教版八年级数学上册《分式》导学案:分式方程(第三课时)

人教版八年级数学上册《分式》导学案分式方程(第三课时)【学习目标】1.经历将实际问题中的等量关系用分式方程表示的过程;2.会列出分式方程解决简单的应用题,并掌握列分式方程解应用题的一般步骤;3.发展分析问题和解决实际问题的能力,体会数学的应用价值.【知识梳理】1.列分式方程解应用题的关键是找出题目中的 .2.分式方程解应用题的一般步骤:(1)审:审清题意,找 . (2)设:设未知数.(3)列:根据,列分式方程. (4)解:解分式方程.(5)检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合 .(6)答:写出答案.【典型例题】知识点一列分式方程解决实际问题1.某单位将沿街的一部分房租出租,每间房屋的租金相同.已知每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)填表:设第一年每间房屋的租金为x元.(3)你能利用方程求出这两年每间房屋的租金各是多少吗?2.某农场开挖一条长960米的渠道,开工后工作效率比计划提高50%,结果提前4天完成任务.原计划每天挖多少米?【巩固训练】1.某市在道路改造过程中,需要铺设一条长为m 千米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了n %,结果提前了8天完成任务,设原计划每天铺设管道x 千米,根据题意,下列方程正确的是( ) A.8%m m x n x-= B.8(1%)m m x n x -=+ C.8(1%)m m n x x -=+ D.8(1%)m m n x x -=- 2.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种 31 ,结果提前 4天完成任务,原计划每天种多少棵树?3.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2023年底,全市已有公租自行车25000辆,租赁点600个,预计到2025年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2023年底平均每个租赁点的公租自行车数量的1.2倍.预计到2025年底,全市将有租赁点多少个?4.为应对新冠疫情,某药店到厂家选购A 、B 两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.7元,若用7200元购进A 品牌数量是用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2元,B 品牌口罩每个售价为3元,药店老板决定一次性购进A 、B 两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个?5.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?。

《分式方程第3课时》 示范公开课教学设计【部编北师大版八年级数学下册】

《分式方程第3课时》 示范公开课教学设计【部编北师大版八年级数学下册】

5.4《分式方程》教学设计第3课时一、教学目标1.经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识.2.会用分式方程解决简单的实际问题.二、教学重点及难点重点:分式方程的应用.难点:将实际问题中的等量关系用分式方程表示并且求得结果.三、教学用具多媒体课件四、教学过程【问题导入】教师提出问题:列方程的步骤是什么?引导学生归纳列方程的基本步骤:一审:审清题意,弄清已知量与未知量之间的数量关系和相等关系.二设:设未知数.三列:列代数式,列方程.【探究新知】某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)根据这一情境你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?答案:(1)等量关系包括:第二年每间房屋的租金=第一年每间房屋的租金+500;第一年出租房屋的间数=第二年出租房屋的间数;出租房屋的间数=所有出租房屋的租金.每间房屋的租金(2)求出租房屋的总间数;分别求出两年每间房屋的租金.(3)解:设第一年每间房屋的租金为x元,则第二年每间房屋的租金为(x+500)元.由题意得96000102000500 x x=+.方程两边乘x (x +500),得96(x +500)=102x .解这个方程,得x =8000.经检验x =8000是原方程的根,所以x +500=8500.因此第一年每间房屋的租金为8000元,则第二年每间房屋的租金为8500元.设计意图:引导学生从不同角度寻求等量关系,发展学生分析问题、解决问题的能力,培养学生的应用意识.【典例精讲】某市从今年1月1日起调整居民用水价格,每立方米水费上涨31,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.分析:此题的主要等量关系是:小丽家今年7月的用水量-小丽家去年12月的用水量=5 m 3.所以,首先要表示出小丽家这两个月的用水量,而用水量可以用水费除以水的单价得出.解:设该市去年居民用水的价格为x 元/m 3.则今年的水价为11+3x ⎛⎫ ⎪⎝⎭元/m 3,根据题意,得 30155113x x -=⎛⎫+ ⎪⎝⎭. 解这个方程,得32x =. 经检验32x =是所列方程的根. 311223⎛⎫⨯+= ⎪⎝⎭(元/m 3). 所以该市今年居民用水的价格为2元/m 3.首先,老师询问学生家中的每月用水情况,要求学生能关心家庭生活,又得到了节约用水的教育.学生根据一个月的总水费等于每一吨水费乘以一个月的用水的总吨数,再根据“小丽家今年7月份的用水量比去年12月份的用水量多5立方米”这一条件,列出等量关系式,从而列出分式方程,有了前面的基础,学生能很快和老师一起完成上述过程.设计意图:引导学生一起完成“设未知数——分析等量关系——列代数式——列出方程——解方程——验证解的合理性”这一完整过程,并规范书写.【课堂练习】小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,困此他们所买的科普书比所买的文学书少1本,这种科普书和这种文学书的价格各是多少?解:设这种文学书的价格为x 元/本.则科普书的价格为1.5x 元/本,根据题意,得151511.5x x=+. 解这个方程,得x =5.经检验x =5是所列方程的根,且符合题意.所以1.5x=1.5×5=7.5(元/本).答:这种文学书的价格为5元/本.则科普书的价格为7.5元/本.【课堂小结】列分式方程解应用题的步骤:(1)审:审清题意,了解已知量与所求量各是什么,找出等量关系;(2)设:设未知数(要有单位);(3)列:依据等量关系,列出相应的分式方程;(4)解:解方程;(5)验:看方程的解是否满足方程和符合题意;(6)答:写出答案(要有单位).【板书设计】解:设该市去年居民用水的价格为x 元/m 3.则今年的水价为11+3x ⎛⎫ ⎪⎝⎭元/m 3,根据题意,得 30155113x x -=⎛⎫+ ⎪⎝⎭. 解这个方程,得32x =. 经检验32x =是所列方程的根. 311223⎛⎫⨯+= ⎪⎝⎭(元/m 3).所以该市今年居民用水的价格为2元/m3.列分式方程解应用题的步骤:(1)审(2)设(3)列(4)解(5)验(6)答。

分式方程教案

分式方程教案

分式方程教案分式方程教案「篇一」关于分式方程的应用的教案范本关于分式方程的应用的教案范本教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的.方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点重点:列分式方程解应用题。

难点:根据题意,找出等量关系,正确列出方程。

教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1。

解 (1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以 x=6。

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。

解这个整式方程,得x=12。

检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1。

即 2x+xx+3=1。

方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3)。

分式方程教案「篇二」一、教学目标1.知识与技能能掌握解分式方程的步骤,会如何解分式方程2.过程与方法通过一步步引导,使学生掌握解分式方程其实是转化为整式方程求解后验证解是否成立个一个过程。

3.情感、态度与价值观探求新知是一个将新知与旧知如何建模链接的过程,边探索,边完成这个过程。

二、重点与难点1.重点分式方程的解法2、难点分式方程转化整式方程时的理论依据及具体步骤三、学情分析及课前反思本节课的学习前,学生已经熟练掌握解整式方程的求解,等式的基本性质,分式的运算。

因此只需要点一下,应该就可以顺利过渡。

教师的任务是如何能恰当地点一下,并让学生知其所以然。

四、重难点突破1、前面复习时复习分式的性质要详尽并板书2、不按照传统的顺序,给出题目后马上给出整式方程,引起学生的学习兴趣。

人教版初中数学八年级上册教学课件 第十五章 分式 分式方程(第3课时)

人教版初中数学八年级上册教学课件 第十五章 分式 分式方程(第3课时)

1.理清速度、路程和时间对应的式子 2.关键词:“相同的时间” 3.数量关系:“提速前的路程÷提速前 的速度=提速后的路程÷提速后的速 度”,从而建立方程.
表达问题时,用字母不仅可以表示未 知数(量),也可以表示已知数(量).
这里的字母v,s 表示已知数据,设提速前列车
的平均速度为x km/h,那么提速前列车行驶s km 所
A. 720 720 2B. 720 720 2
x (x 20%)x
(1 20%)x x
C. 720 720 2D. 720 720
(1 20%)x x
x 2 (1 20%)x
1.某小区为了排污,需铺设一段全长为720米的排污
管道,为减少施工对居民生活的影响,需缩短施工时 间,实际施工时每天的工作效率比原计划提高20%,
新课标 人
数学
8年级/上
八年级数学·上 新课标 [人]
第十五章 分 式
学习新知
检测反馈
解下列方程.
(1) (x 1)2 3x 1 2 0;
x2
x
(2) 2x 1 1 1. x 3x
解:
(1)x 1.(2)x 4 . 3
学习新知
例1 两个工程队共同参与一项筑路工
程,甲队单独施工1个月完成总工程
时间非负、人数为正整数等.
(3)在一些实际问题中,有时直接 设问题所求的量为未知数可能比 较麻烦,可以间接地设未知数.
知识小结
列分式方程解应用题按下列步骤进行:
(1)审题了解已知量与所求各量所表示 的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部(或大部分) 含义的相等关系,列出分式方程;
1.关键词:“增加” 2.“5月份的销售量比4月份的销售量 增加20件”

3.4分式方程 第3课时 教案(北师大版八年级下)

3.4分式方程 第3课时 教案(北师大版八年级下)

3.4 分式方程第三课时一、教学目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想。

2.经历探索分式方程概念、分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系。

3.经历“实际问题——分式方程模型——求解——解释几解的合理性”的过程,发展学生分析问题的能力,培养学生的应用意识。

二、教学重难点教学重点:分式方程解法的过程,检验根的合理性。

教学难点:掌握“实际问题——分式方程模型——求解——解释几解的合理性”的过程。

三、教学过程设计1.创设情景,探索交流做一做:(课本问题)某单位将沿街的一部分房屋出租。

每间房屋的租金第二年比第一年多500元,所有的房屋出租的租金第一年为9.6万元,第二年为10.2万元。

(1)你能找出这一情景中的等量关系吗?(2)根据这一情景你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?(引导学生从不同角度寻求等量关系,让学生明白解决此类问题的关键是找出等量关系。

)答案:(1)第二年每间房屋的租金=第一年每间房屋的租金+500元第一年出租的房屋的间数=第二年出租的房屋的间数(2)求出租的房屋总间数;分别求出两年每间房屋的租金(3)设第一年每间房屋的租金为x元,则第二年每间房屋的租金为(x+500)元,根据题意,得2.例题讲解,分析应用例3(课本例题)某市从今年1月1日起调整居民用水价格,每立方米水费上涨1/3。

小丽家去年12月份的水费是15元,而今年7月份的水费则是30元。

已知小丽家今年7月份的用水量比去年12月份的用水量多5m3,求该市今年居民用水的价格。

此题的主要等量关系是什么?请大家找找看主要的等量关系是:小丽家今年7月份的用水量—小丽家去年12月份的用水量=5m 3所以,首先要表示出小丽家这两个月的用水量,而用水量可以用水费除以水的单价得出。

八年级分式方程教案

八年级分式方程教案

八年级分式方程教案一、教学目标:1. 让学生掌握分式方程的定义和基本性质。

2. 培养学生解决实际问题能力,提高分析问题和解决问题的能力。

3. 培养学生合作交流意识,提高学生数学思维能力。

二、教学内容:1. 分式方程的定义及基本性质。

2. 解分式方程的方法和技巧。

3. 分式方程在实际问题中的应用。

三、教学重点与难点:1. 重点:分式方程的定义、解法及应用。

2. 难点:分式方程的解法,特别是含字母系数和分式系数的分式方程。

四、教学方法:1. 采用问题驱动法,引导学生主动探究分式方程的解法。

2. 运用案例分析法,让学生在解决实际问题中掌握分式方程的应用。

3. 采用合作交流法,培养学生的团队协作能力和沟通能力。

五、教学过程:1. 引入:通过生活中的实际问题,引导学生思考分式方程的定义和应用。

2. 讲解:讲解分式方程的定义、基本性质和解法。

3. 练习:让学生独立解决一些简单的分式方程问题。

4. 拓展:引导学生思考分式方程在实际问题中的应用。

5. 总结:对本节课的内容进行总结,强调分式方程的重要性和应用价值。

6. 作业布置:布置一些有关的练习题,巩固所学知识。

后续章节待您提供要求后,我将为您编写。

六、教学评价:1. 评价学生对分式方程定义和基本性质的理解。

2. 评价学生解决实际问题时运用分式方程的能力。

3. 评价学生在合作交流中对分式方程的解法和应用的掌握。

七、教学资源:1. 教材:八年级数学教材及相关分式方程教学辅导书。

2. 课件:制作与教学内容相关的课件,辅助讲解和展示。

3. 练习题:提供一定数量的练习题,用于巩固所学知识。

八、教学进度安排:1. 第1课时:介绍分式方程的定义和基本性质。

2. 第2课时:讲解分式方程的解法和技巧。

3. 第3课时:通过案例分析,讲解分式方程在实际问题中的应用。

4. 第4课时:进行分式方程的综合练习。

5. 第5课时:总结本单元内容,进行复习和检测。

九、教学反思:在教学过程中,教师应不断反思自己的教学方法和解题策略,以便更好地指导学生。

分式方程第三课时

分式方程第三课时

想一想,做一做 例1:某单位将沿街的一部分房屋出租,每间房屋的 租金第二年比第一年多500元,所有房屋的租金第一 年为9.6万元,第二年为10.2万元。 你能利用方程求出这两年每间房屋的租金各是多少? 解:设共有x套房间 ,根据题意,得
102000 96000 500. x x 解这个方程得: x =12
答:(1)第二年每间房屋的租金=第一年每间房屋的租金+500元
(2)第一年出租房屋间数=第二年出租的房屋间数 (3)出租房屋间数=(所有出租房屋的租金)÷(每间房屋的租金)
2.根据这一情境你能提出哪些问题?
答:(1)求出租的房屋总间数; (2)分别求两年每间房屋的租金
想一想,做一做 例1:某单位将沿街的一部分房屋出租,每间房屋的 租金第二年比第一年多500元,所有房屋的租金第一 年为9.6万元,第二年为10.2万元。 你能利用方程求出这两年每间房屋的租金各是多少? 解:设第一年每间房屋的租金为x元,则第二年每间 房屋的租金为(x+500)元,根据题意,得 96000 102000 x x 500 解这个方程得: x =8000 经检验 x =8000是所列方程的根 所以,8000+500=8500(元) 答:第一年每间房屋的租金为8000元,第二年每间 房屋的租金为8500元。
15 15 1 x 1.5 x
随堂练习
2.某商店销售一批服装,每件售价150元,可获利 25%。求这种服装的成本. 解: 设这种服装的成本价为x元. 根据题意: 解方程得:
150 x 25% x
x =120
经检验 x =120是原方程的根. 答:这种服装的成本价为120元。
随堂练习
试一试
解:设去年用水的价格为x元/m3,则今年的水价为 (1 根据题意,得
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程第三课时教案
〔第3课时〕
教学目标:会列出分式方程解决简单的实际咨询题,并能依照实际咨询题的意义
检验所得的结果是否合理。

教学重点:如何结合实际分析咨询题,列出分式方程
教学难点:分析过程,得到等量关系
教学方法:探究法 教学过程:
教学活动 集体讨论
一、 复习巩固 1、解分式方程的一样步骤
〔1〕去分母
〔2〕去括号
〔3〕移项,合并同类项
〔4〕系数化为1
〔5〕检验
2、练习:
解方程:
〔1〕13-x =x 4;〔2〕1210-x +x
215-=2. 二、例题讲解
例4.为迎接市中学生田径运动会,打算由某校八年级
〔1〕班的3个小组制作240面彩旗,后因一个小组另有任
务,改由另外两个小组完成制作彩旗的任务。

如此,这两个
小组的每个同学就要比原打算多做 4面。

假如这3个小组的
人数相等,那么每个小组有多少名学生?
分析:此题中的等量关系是什么?
你会依照等量关系列出分式方程吗?
例5、甲、乙两公司各为〝见义勇为基金会〞捐款30000
元,乙公司比甲公司人均多捐款20元,且甲公司的人数比
乙公司的人数多20%。

咨询甲、乙两公司各有多少人?
例6、小明买软面笔记本共用去12元,小丽买硬面笔记
本共用去21元,每本硬面笔记本比软面笔记本贵1。

2元,
小明和小丽能买到相同本数的笔记本吗?
总结用分式方程解实际咨询题的一样步骤:
(1) 设未知数
(2) 依照题意列方程
(3) 解方程
(4) 检验
(5) 答
学生练习:第68页1、2
三、 思维拓展
某市从今年1月1日起调整居民的用水价格,每立方米
水费上涨3
1。

小丽家去年12月份的水费是15元,而今年7月份的水费那么是30元,小丽家今年7月份的用水量比去年12月份的用水量多53m ,求该市今年居民用水的价格。

四、
小结 五、
板书设计 六、
教后记。

相关文档
最新文档