基于PID控制器的温度控制系统设计
基于单片机的pid温度控制系统设计
一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。
在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。
PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。
本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。
二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。
比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。
PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。
2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。
常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。
在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。
三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。
在设计单片机PID温度控制系统时,需要选择合适的单片机。
常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。
2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。
常见的温度传感器接口有模拟接口和数字接口两种。
模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。
3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。
在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。
四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。
常见的PID算法包括位置式PID和增量式PID。
在设计时需要考虑控制周期、控制精度等因素。
2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。
基于PID的温度控制系统设计
基于PID的温度控制系统设计PID(比例-积分-微分)控制系统是一种常见的温度控制方法。
它通过测量实际温度和设定温度之间的差异,并相应调整加热器或冷却器的输出来控制温度。
在本文中,将介绍PID控制系统的基本原理、设计步骤和实施细节,以实现一个基于PID的温度控制系统。
一、基本原理PID控制系统是一种反馈控制系统,其核心思想是将实际温度值与设定温度值进行比较,并根据差异进行调整。
PID控制器由三个部分组成:比例控制器(P),积分控制器(I)和微分控制器(D)。
比例控制器(P):根据实际温度与设定温度之间的差异,产生一个与该差异成正比的输出量。
比例控制器的作用是与误差成正比,以减小温度偏差。
积分控制器(I):积分控制器是一个与误差积分成比例的系统。
它通过将误差累加起来来减小持续存在的静态误差。
积分控制器的作用是消除稳态误差,对于不稳定的温度系统非常有效。
微分控制器(D):微分控制器根据温度变化速率对输出进行调整。
它通过计算误差的变化率来预测未来的误差,并相应地调整控制器的输出。
微分控制器的作用是使温度系统更加稳定,减小温度变化速率。
二、设计步骤1.系统建模:根据实际温度控制系统的特点建立数学模型。
这可以通过使用控制理论或系统辨识技术来完成。
将得到的模型表示为一个差分方程,包含输入(控制输入)和输出(测量温度)。
2.参数调整:PID控制器有三个参数:比例增益(Kp)、积分时间(Ti)和微分时间(Td)。
通过试验和调整,找到最佳的参数组合,以使系统能够快速稳定地响应温度变化。
3.控制算法:根据系统模型和参数,计算控制器的输出。
控制器的输出应是一个与实际温度偏差有关的控制信号,通过改变加热器或冷却器的输入来调整温度。
4.硬件实施:将控制算法实施到硬件平台上。
这可以通过使用微控制器或其他可编程控制器来实现。
将传感器(用于测量实际温度)和执行器(用于控制加热器或冷却器)与控制器连接起来。
5.调试和测试:在实际应用中,进行系统调试和测试。
基于PID调节的锅炉温度串级控制系统设计
6 9
基于 P I D调节的锅炉温度串级控制系统设计
De s i g n o f Bo i l e r T e mp e r a t u r e Ca s c a d e Co n t r o l Sy s t e m B a s e d o n PI D Co n t r o l
c u s e d t h e p a p e r a n a l y s e s t h e c h a r a c t e r i s t i c s o f t h e p r o c e s s . t h e s e l e c t e d b o i l e r t a n k t e mp e r a t u r e a s c o n t ol r 0 b i e t。 c t h e b o i l e r
K e y wo r d s : b o i l e r t e mp e r a t u r e . P I D a l g o r i t h m. c a s c a d e c o n t r o l s y s t e m, t h e d e p u y t o b j e c t s
李红梅
( 雅化集 团攀枝花恒泰4 b - T - 有限公 司, 四川 攀枝花 6 1 7 0 0 0 )
摘要 : 基 于锅 炉 的 生 产 工 艺进 行 分 析 和设 计 , 旨在 实现 锅 炉 温度 的 良好 控 制 , 以 确 保产 品质 量 的优 良。通 过 对 被 控 对 象 模 型和 被 控 过 程 特 性 的 分 析 , 选 定 锅 炉 内胆 温度 为 主控 对 象 , 锅 炉 冷 却 水 流 量 为 副控 对 象 , 在S i mu l i n k中设 计 并 建 立 相 应 的 串级 控 制 系统 模 型 , 通 过 控 制 冷 却 水 的 流 量 来 实现 对锅 炉 温度 的控 制 ,其 作 用 是 消 除 系统 在 控 制 过 程 中受 到 的 二 次 干 扰, 使 系统 能 在 一 个稳 定 的 状 态 下工 作 , 提 高控 制 精 度 , 同时 , 设 计 采 用 两 步 整 定 法 对 所 建 立 的 串级 控 制 系统 模 型 进 行 P I D
基于数字PID的电加热炉温度控制系统设计
计算机控制技术课程设计报告题目基于数字PID的电加热炉温度控制系统设计授课教师盖宁学生姓名学号专业教学单位完成时间目录摘要 (1)第1章课程设计方案 (1)1.1系统组成中体结构 (1)第2章控制系统的建模和数字控制器设计 (1)2.1 数字PID控制算法 (1)第3章硬件设计 (4)3.1 温度检测及功率放大电路 (4)3.2 AD574A模/数转换电路 (4)3.3执行机构 (5)3.4 报警电路设计 (6)3.5 设计输入输出通道 (7)第4章软件设计 (8)4.1 系统程序流程图 (8)4.1.1 系统主程序框图 (8)4.1.2 A/D转换子程序流程图 (9)4.1.3 LED显示流程图 (10)4.1.4 报警程序流程图 (11)4.1.5数字控制算法子程序流程图 (12)第5章总结以及电路图 (12)5.1系统电路图 (12)参考文献 (14)基于数字PID的电加热炉温度控制系统设计摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。
本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。
电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电。
调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。
本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。
关键词:电加热炉;PID ;功率;温度控制;一.课程设计方案1.1 系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。
(完整版)基于单片机的PID温度控制毕业设计论文
前言温度是表征物体冷热程度的物理量。
在很多生产过程中,特别是在冶金、化工、建材、食品、机械、石油等工业中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。
因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。
单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。
将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。
现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。
但随之而来的是巨额的成本。
在很多的小型系统中,处理机的成本占了系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。
随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。
现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且可以很容易地做到多点的温度检测,如果对此原理图稍加改进,还可以进行不同地点的实时温度检测和控制。
1绪论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。
工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。
这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。
单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益[9]。
基于PID控制算法的温室温度控制系统设计与优化
基于PID控制算法的温室温度控制系统设计与优化温室温度对于植物的生长发育起着至关重要的作用。
然而,在不同季节或气候条件下,温室内的温度往往难以保持在理想范围内,这就需要一个高效可靠的温室温度控制系统来实现温室内的温度调节。
本文将介绍基于PID控制算法的温室温度控制系统的设计与优化。
PID控制算法,即比例-积分-微分控制算法,是一种经典的控制算法,广泛应用于工业过程控制中。
它通过根据系统当前状态和期望状态之间的差异,计算出一个控制信号来调节输出,以保持系统的稳定性和准确性。
温室温度控制系统的设计主要包括传感器、执行器和控制器三个部分。
传感器用于实时采集温室内的温度数据,执行器用于调节温室内的温度,而控制器则根据传感器采集的数据和设定的目标温度,计算出执行器的控制信号。
在PID控制算法中,比例项用于根据当前温度与目标温度的差异来计算控制信号的大小,积分项用于根据温度偏差的累积误差来消除静差,微分项用于根据温度变化的速率来预测未来的温度变化趋势。
通过调节PID控制算法中的三个参数,即比例系数、积分时间和微分时间,可以实现对温室温度的精确控制。
在设计温室温度控制系统时,首先需要选择合适的传感器和执行器。
温度传感器应具有高精度和快速响应的特点,以便能够准确测量温室内的温度变化。
执行器可以选择电热器、风扇或冷却设备等,根据温室的大小和温度变化幅度来确定。
接下来是PID控制器的参数调节。
常见的方法是进行试错调整法,通过不断调整比例系数、积分时间和微分时间,观察温室温度的变化情况,逐步优化控制效果。
比例项的增大会使控制器对温度差异更敏感,但可能会引起震荡;积分项的增大可以消除静差,但可能会导致超调和温度震荡;微分项用于预测未来的温度变化趋势,使控制器更加稳定。
除了PID控制算法的参数调节,还可以考虑采用模糊逻辑控制、遗传算法等优化方法来进一步提高温室温度控制系统的性能。
模糊逻辑控制通过将温度误差与设定的规则进行模糊化,利用专家经验和模糊推理算法来计算控制信号。
基于PLC的PID温度控制系统设计(附程序代码)
基于PLC的PID温度控制系统设计(附程序代码)摘要自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着PLC技术的飞速发展,通过PLC对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统。
而温度控制在许多领域中也有广泛的应用。
这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 然而PLC 在这方面却是公认的最佳选择。
根据大滞后、大惯性、时变性的特点,一般采用PID调节进行控制。
随着PLC功能的扩充,在许多PLC 控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。
本设计是利用西门子S7-200PLC来控制温度系统。
首先研究了温度的PID调节控制,提出了PID的模糊自整定的设计方案,结合MCGS监控软件控制得以实现控制温度目的。
关键词:PLC;PID;温度控制沈阳理工大学课程设计论文目录1 引言...................................................................... (1)1.1 温度控制系统的意义...................................................................... .. (1)1.2 温度控制系统背景...................................................................... .................. 1 1.3 研究技术介绍...................................................................... .. (1)1.3.1 传感技术...................................................................... (1)1.3.2PLC .................................................................... . (2)上位机...................................................................... ............................1.3.3 31.3.4 组态软件...................................................................... ........................ 3 1.4 本文研究对象...................................................................... .. (4)2 温度PID控制硬件设计...................................................................... (5)2.1 控制要求...................................................................... .................................. 5 2.2 系统整体设计方案...................................................................... .................. 5 2.3 硬件配置...................................................................... . (6)2.3.1 西门子S7-200CUP224 ................................................................. .. (6)2.3.2 传感器...................................................................... . (6)2.3.3 EM235模拟量输入模块.....................................................................72.3.4 温度检测和控制模块...................................................................... .... 8 2.4 I/O分配表 ..................................................................... ................................ 8 2.5 I/O接线图 ..................................................................... .. (8)3 控制算法设计...................................................................... .. (9)3.1 P-I-D控制...................................................................... .............................. 9 3.2 PID回路指令 ..................................................................... .. (11)3.2.1 PID算法 ..................................................................... .. (11)3.2.2 PID回路指令 ..................................................................... (14)3.2.3 回路输入输出变量的数值转换 (16)3.2.4 PID参数整定 ..................................................................... (17)4 程序设计...................................................................... .. (19)4.1 程序流程图...................................................................... .............................. 19 4.2 梯形图...................................................................... .. (19)I沈阳理工大学课程设计论文5 调试...................................................................... . (23)5.1 程序调试...................................................................... .. (23)5.2 硬件调试...................................................................... .. (23)结束语...................................................................... .................................................... 24 附录程序代码...................................................................... ........................................ 25 参考文献...................................................................... (27)II沈阳理工大学课程设计论文1引言1.1 温度控制系统的意义温度及湿度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
基于PID算法的恒温控制系统设计
基于PID算法的恒温控制系统设计一、引言恒温控制系统是指通过对温度进行实时监测和反馈调节,使得系统内的温度能够稳定在设定的目标温度上。
PID控制是一种常用的控制策略,它将比例控制、积分控制和微分控制三种控制方式相结合,能够快速、精确地调节系统的动态响应和稳定性。
本文将介绍基于PID算法的恒温控制系统的设计流程和关键技术。
二、系统设计1.系统结构PID控制系统由传感器、控制器和执行器三部分组成。
传感器负责实时监测系统内的温度值,并将监测结果反馈给控制器。
控制器根据温度的反馈值与设定的目标温度之间的差异,通过比例、积分和微分三个环节,计算出控制信号,并将控制信号发送给执行器。
执行器根据控制信号的大小,调节加热或制冷设备的功率,以使系统的温度稳定在设定的目标温度上。
2.PID算法PID控制算法使用控制器计算出的控制信号uc,其计算公式如下所示:uc = Kp * e + Ki * ∫e + Kd * △e/dt其中,uc为控制信号,Kp、Ki和Kd分别为比例、积分和微分环节的增益系数,e为设定目标温度与反馈温度的差值,∫e为差值的积分值,△e/dt为差值的微分值。
通过调节这三个环节的增益系数,可以实现对温度控制系统的动态响应和稳定性的调节。
3.系统实现系统实现的关键技术包括传感器的选择与接口设计、控制器的算法实现、执行器的选择和驱动电路设计等。
传感器应具有高精度、快速响应和稳定性好的特性,能够实时监测温度值并将监测结果传递给控制器。
控制器应具有高计算性能和稳定性,能够准确计算出控制信号。
执行器应根据控制信号的大小调节加热或制冷设备的功率,以使系统温度稳定在目标温度上。
三、系统优化为进一步提高恒温控制系统的性能,可以通过以下几个方面进行优化。
1.增益系数的选择根据实际系统的特性,通过试验和调整,优化比例、积分和微分环节的增益系数。
比例增益系数的增加可以提高系统的响应速度,但也容易引起系统的振荡;积分增益系数的增加可以减小系统的稳态误差,但也会增加系统的超调量和调节时间;微分增益系数的增加可以改善系统的过渡过程,但也容易引起系统的噪声干扰。
基于PID的温度控制系统设计
基于PID的温度控制系统设计PID(Proportional-Integral-Derivative)是一种常见的控制算法,被广泛应用于各种工业自动化系统中,其中包括温度控制系统。
本文将基于PID算法设计一个温度控制系统。
1.温度控制系统概述温度控制系统是一种典型的反馈控制系统,用于维持系统的温度在预定范围内。
温度传感器将感测到的温度信号反馈给控制器,控制器根据反馈信号与设定的温度进行比较,并根据PID算法计算出控制信号,通过执行器(例如加热器或冷却器)改变环境温度,以使温度保持在设定值附近。
2.PID控制算法原理2.1 比例控制(Proportional Control)比例控制根据设定值与反馈值之间的偏差大小来调整控制信号。
偏差越大,控制信号的改变越大。
比例控制能够快速减小偏差,但无法消除稳态误差。
2.2 积分控制(Integral Control)积分控制通过累积偏差来调整控制信号。
积分控制可以消除稳态误差,但过大的积分参数会引起控制系统的不稳定。
2.3 微分控制(Derivative Control)微分控制根据偏差的变化率来调整控制信号。
微分控制可以快速响应温度的变化,但不适用于快速变化的温度。
3.PID控制器设计PID控制器的输出可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)为控制器的输出,Kp、Ki、Kd为比例、积分和微分增益,e(t)为温度的偏差,即设定值与反馈值之差,de(t)/dt为温度偏差的变化率。
3.1比例增益的选择比例增益决定了系统对偏差的响应速度。
如果比例增益太大,系统会产生超调现象;如果比例增益太小,系统的响应速度会变慢。
因此,在实际应用中需要通过试验来选择合适的比例增益。
3.2积分时间的选择积分时间决定了系统对稳态误差的补偿能力。
如果积分时间太大,系统对稳态误差的补偿能力会增强,但会导致系统的响应速度变慢,甚至产生振荡现象;如果积分时间太小,系统对稳态误差的补偿能力会减弱。
基于PID算法的水温控制系统设计报告
基于PID的水温控制系统设计摘要本次设计采用proteus仿真软件,以AT89C51单片机做为主控单元,运用PID控制算法,仿真实现了一个恒温控制系统。
设计中使用温度传感器DS18B20采集实时温度,不需要复杂的信号调理电路和A/D转换电路,能直接与单片机完成数据的采集和处理,使用PID算法控制加热炉仿真模型进行温度控制,总体实现了一个恒温控制仿真系统。
系统设计中包含硬件设计和软件设计两部分,硬件设计包含显示模块、按键模块、温度采集模块、温度加热模块。
软件设计的部分,采用分层模块化设计,主要有:键盘扫描、按键处理程序、液晶显示程序、继电器控制程序、温度信号处理程序。
另外以AT89C51 单片机为控制核心,利用PID 控制算法提高了水温的控制精度,使用PID 控制算法实施自动控制系统,具有控制参数精度高、反映速度快和稳定性好的特点。
关键词:proteus仿真,PID,AT89C51,DS18B20温度控制目录1 系统总体设计方案论证 (1)1.1 设计要求 (1)1.2 总体设计方案 (2)2 系统的硬件设计 (3)2.1 系统硬件构成概述 (3)2.2 各单元总体说明 (4)2.3 按键单元 (5)2.4 LCD液晶显示单元 (6)2.5 温度测试单元 (7)2.6 温度控制器件单元 (8)3 恒温控制算法研究(PID)............................................................................. 错误!未定义书签。
3.1 PID控制器的设计 (10)3.2 PID算法的流程实现方法与具体程序 (12)4 系统的软件设计 (17)4.1 统软件设计概述 (17)4.2 系统软件程序流程及程序流程图 (18)4.3 温度数据显示模块分析 (19)4.4 测试分析 (22)5 模拟仿真结果 ...................................................................................................... 错误!未定义书签。
基于PID算法的温度控制系统软件设计
基于PID算法的温度控制系统软件设计引言电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。
而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。
且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。
模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。
将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。
基于PID控制算法,以ADuC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。
该控制器控制精度高,具有较高的灵活性和可靠性。
2温度控制系统硬件设计该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。
由图1可见,以内含C52兼容单片机的ADuC845为控制核心.配有640KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。
电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。
此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。
一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。
基于PID控制算法的温度控制系统设计与优化
基于PID控制算法的温度控制系统设计与优化随着科技的发展和人们生活水平的提高,温度控制系统在各个领域得到了广泛应用。
PID控制算法是一种常用的控制算法,具有简单、稳定和可靠的特点。
本文将以基于PID控制算法的温度控制系统设计与优化为主题,详细介绍如何设计和优化一个基于PID控制算法的温度控制系统。
首先,我们需要了解PID控制算法的基本原理和结构。
PID控制算法是根据当前误差、误差的变化率和误差的积分来计算控制器的输出值。
PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。
比例部分根据当前误差来计算输出值,积分部分根据误差累计值来计算输出值,微分部分根据误差变化率来计算输出值。
PID控制算法通过不断调节这三个部分的权重来实现温度的精确控制。
在设计温度控制系统时,首先需要选择合适的传感器来感知环境温度。
常见的温度传感器有热电偶、热电阻和红外线温度传感器等。
选择合适的传感器可以提高温度测量的精度和可靠性。
接下来,需要选择合适的执行机构来控制温度。
常见的执行机构有加热器和制冷器。
加热器可以增加温度,制冷器可以降低温度。
根据实际需求选择合适的执行机构,并采用PID控制算法控制执行机构的输出。
在温度控制系统的设计中,需要根据实际需求设定温度控制的目标值和控制范围。
目标值是系统希望达到的温度值,控制范围是允许的温度波动范围。
设置合适的目标值和控制范围可以使系统运行稳定,并且在控制过程中不会出现过大的温度波动。
在设计温度控制系统时,还需要根据系统的特征进行参数调节。
PID控制算法的参数包括比例增益、积分时间和微分时间。
比例增益决定了控制器对误差的敏感程度,积分时间决定了控制器对误差积累的敏感程度,微分时间决定了控制器对误差变化率的敏感程度。
通过合理调节PID控制算法的参数,可以提高系统的响应速度和稳定性。
在实际应用中,温度控制系统可能受到外部环境的影响。
例如,温度控制系统可能受到气温变化、风速变化和湿度变化等因素的影响。
基于PID控制算法的温度控制系统的设计与仿真
摘要本设计是一种温度控制系统,温度控制在工业生产和科学研究中具有重要意义。
其控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。
采用单片机进行炉温控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等具有重要的现实意义。
PID控制法最为常见,控制输出采用PWM波触发可控硅来控制加热通断。
使系统具有较高的测量精度和控制精度。
单片机控制部分采用AT89S51单片机为核心,采用Keil 软件进行编程,同时采用分块的模式,对整个系统的硬件设计进行分析,分别给出了系统的总体框图、温度检测调理电路、A/D转换接口电路,按键输入电路以及显示电路,并对相应电路进行相关的阐述软件采用PID算法进行了建模和编程,在Proteus环境中进行了仿真。
关键词:PID;单片机;温度控制;Keil;ProteusAbstractThis design is a kind of temperature control system,The temperature control in industrial production and scientific research is of great significance.Belongs to pure first-order lag link, the control system has the characteristics of big inertia, pure lag and nonlinear, the traditional control overshoot and adjustment time is long, low control precision.By single chip microcomputer temperature control, has simple circuit design, high accuracy and good control effect, to improve the production efficiency, promote the progress of science and technology has important practical significance.PID control is the most common, the control output PWM wave triggering thyristor is used to control the heating on and off.Make the system has high accuracy of measurement and control precision.Single-chip microcomputer control part adopts single chip microcomputer A T89S51 as the core,Using Keil software programming,Using block pattern at the same time, analyzes the hardware design of the whole system, respectively, of the overall system block diagram is given, the temperature detection circuit, A/D conversion interface circuit, key input circuit and display circuit, and the corresponding circuit are related in this paper, the software, the PID algorithm is used for modeling and programming in the Proteus simulation environment.Key words:PID;Single chip microcomputer;The temperature control;Keil;Proteus目录1绪论 (1)2设计方案 (2)3系统硬件仿真电路 (3)3.1 温度测量调理电路 (3)3.2 A/D转换电路 (4)3.3 按键输入电路 (5)3.4 数码管显示电路 (6)3.5 温度控制电路 (7)4程序设计 (9)4.1 程序整体设计 (9)4.2 子程序设计 (1111)4.3源程序设计 (119)5软件调试与运行结果 (41)结论 (42)致谢 (43)参考文献 (44)1绪论现代工业生产过程中,用于热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶大惯性环节。
控制技术基础_项目三_基于PID调节器的温度控制系统
单元组合仪表中有
1 100% y K P
t
δ越大,比例控制作用越弱, δ越小,比例控制作用越强。
比例度(1/Kp)对控制过程的影响
比例度的选择原则: 若对象的滞后较小 ,时间常数较大以及放 大倍数较小,那么可以 选择小的比例度来提高 系统的灵敏度,从而使 过渡过程曲线的形状较 好。反之,为保证系统 的稳定性,就要选择大 的比例度来保证稳定。
c (t ) T
dr ( t ) dt
25
微分(D)对控制过程的影响
理想微分控制器 输出变化量与输入偏差的变化
e
速度成正比。
t0
t
微分时间
de y Td dt
u
∞ t0 t
在阶跃信号输入的瞬间,控制 器的输出为无穷大,其余时间输出 为零。
微分(D)对控制过程的影响
理想微分控制器 输出变化量与输入偏差的变化
•
结构最简单,只有一个可调节参数,就是比例系数。
如果设置过大,会调节过头,容易引起系统输出的振 荡;反之,如果比例系数过小,调节作用太弱,系统 变化过于缓慢。
比例控制规律对控制过程的影响
u K Pe
KP为比例增益,表征比例控制作用的强弱程度。
e
比例度δ
一般表达式:
max min
控制技术基础
Fundamentals of Control Technology
项目三
基于PID调节的温度控制系统
任务描述
设计温度控制系统的PID控制器
控制框图
前导知识
• P——比例作用 • I——积分作用 • D——微分作用
基于PID控制算法的温度控制系统的设计与仿真
基于PID控制算法的温度控制系统的设计与仿真一、介绍温度控制是很多工业自动化系统中常见的任务之一、PID控制算法是目前最常用的控制算法之一,具有简单、稳定和高效的特点。
本文将以基于PID控制算法的温度控制系统为例,介绍其设计与仿真。
二、PID控制算法简介PID控制算法是一种经典的反馈控制算法,它根据当前系统的误差,计算出最佳的控制输出,以使系统的输出稳定在期望值附近。
PID控制算法由三个部分组成:比例(P)、积分(I)和微分(D)。
比例部分根据当前误差的大小调整输出控制量,积分部分通过累积误差来调整输出控制量,微分部分根据误差变化率调整输出控制量。
PID控制算法的输出控制量是由三个部分叠加而成。
1.系统模型的建立在设计温度控制系统之前,首先需要建立系统的数学模型。
以一个加热器控制系统为例,假设该系统的输入为加热功率,输出为温度。
2.控制器的设计根据系统模型,设计PID控制器。
首先调试比例参数P,使得系统的温度能够在误差范围内稳定下来;然后调试积分参数I,以减小系统的稳态误差;最后调试微分参数D,以提高系统的响应速度。
3.仿真实验在仿真软件中进行温度控制系统的仿真实验。
首先输入一个初始温度值,观察系统的响应;然后根据设定的期望温度,实时调整控制器的输出,观察系统的稳定状态。
4.结果分析根据仿真实验的结果,分析系统的稳态误差和响应速度。
根据实际需求和性能要求,调整控制器的参数,使得系统能够更好地满足要求。
四、结论本文以基于PID控制算法的温度控制系统为例,介绍了温度控制系统的设计与仿真过程。
通过调试PID控制器的参数,可以使系统的温度稳定在期望值附近,并且具有较好的稳态误差和响应速度。
PID控制算法在温度控制系统中有广泛的应用前景,但是需要根据具体的系统要求和性能要求进行参数调整和优化。
未来可以进一步研究温度控制系统的自适应PID控制算法,以提高控制系统的性能和鲁棒性。
基于PID算法温度控制系统设计
基于PID算法温度控制系统设计作者:杨伟浩来源:《数字技术与应用》2019年第05期摘要:本文采用NTC热敏电阻温度采集,STC15F2K60S2单片机为主控芯片,以PID为核心算法、PWM控制方式控制半导体制冷片,实现恒温的温度控制系统。
硬件主要分为电源压降电路、温度采集电路、温控电路等三大部分。
关键词:PID算法;PWM;温度控制中图分类号:TP273 文献标识码:A 文章编号:1007-9416(2019)05-0016-020 绪论目前PID控制的理论研究和工程实践非常广泛,有三种比较常见的PID控制算法,分别是:位置式算法、增量式算法和积分分离算法。
本设计采用积分分离算法,要求温度可以设置在15℃到80℃之间,控制精度±0.5℃。
1 系统的硬件架构设计1.1 电源压降电路本系统电源电路采用TI公司的升降压开关稳压器MC33063芯片,它具有宽电压3V至40V输入,可调输出电压1.25V至40V,输出开关电流最高达到1.5A。
根据MC33063芯片手册Vout=1.25*(1+(R2/R1)),将R1=1.2K,R2=3.6K,可得出Vout=5V。
1.2 温度采集电路温度采集电路是采用U.S.Sensor公司生产的热敏电阻KS103J2做为温度传感器PT4,与电阻R74串联构成一个分压电阻电路,分压电阻的计算公式为Uo=(PT4/(R74+PT4))/Ui。
输出电压Uo通过LMP2012A放大信号作用,将电压放大了3倍,其放大倍数是由R73跟R67决定的,等同于公式(R73+R67)/R73=3,然后由ADS8325进行16位AD转换得到电压Vad,此时Uo=(5*Vad)/(65535*3),设R74=75K,Ui=5V,将Uo、R74、Ui代入分压电阻计算公式,可得出热敏电阻PT4此时的阻值,然后进行查表,可得出此时的温度,如图1所示。
1.3 温控电路温控电路如图2所示。
基于PID的简单水温控制系统设计
基于PID的简单水温控制系统设计摘要:本文提出了一种基于PID控制器的简单水温控制系统,在此系统中通过使用PID控制算法来控制水温。
该系统由传感器、PID控制器和执行机构组成。
传感器用于实时监测水温,PID控制器接收传感器反馈的水温信息,并输出相应的控制信号给执行机构,从而调整水温。
实验结果表明,该控制系统能够实现快速而稳定的水温调节。
1.引言水温控制是许多工业和生活中常见的控制问题。
例如,温水供应系统、加热器和制冷系统等都需要对水温进行准确控制。
PID控制器是一种常用的控制算法,它通过不断调整输出信号来维持被控对象的温度在设定值附近。
2.PID控制器原理PID控制器由比例项(P)、积分项(I)和微分项(D)组成。
其中,比例项根据偏差的大小来产生控制信号,积分项根据偏差的累积来产生控制信号,微分项根据偏差的变化率来产生控制信号。
PID控制器通过组合这三个项的控制信号,来实现对被控对象的温度调节。
3.系统设计本系统采用了传感器、PID控制器和执行机构的结构。
传感器负责实时监测水温,并将获取的数据传输给PID控制器。
PID控制器接收传感器反馈的水温数据,并计算出相应的控制信号。
最后,执行机构根据PID控制器输出的信号,来调整水温。
4.实验设置在实验中,我们使用了一台水温调节装置作为被控对象,通过加热和冷却控制来调整水温。
传感器通过测量水温来获取反馈数据,PID控制器计算出相应的控制信号,控制执行机构的动作。
5.实验步骤(1)首先,设定一个目标水温。
(2)然后,将传感器固定在被控对象中,用于监测水温。
(3)将PID控制器与传感器连接,以获取水温反馈数据。
(4)设置PID控制器的参数,根据实际需求进行调整。
(5)最后,将执行机构与PID控制器连接,用于根据控制信号调整水温。
6.实验结果与讨论实验结果表明,通过调整PID控制器的参数,可以实现快速而稳定的水温调节。
在设定目标水温后,PID控制器能够迅速响应,并快速调节执行机构以达到目标水温。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PID控制器的温度控制系统设计
随着现代工业的快速发展,各种自动控制系统也得到了广泛应用。
其中,基于PID控制器的温度控制系统设计广泛应用于化工、制药、冶金等行业。
本文将从基
本原理入手,详细论述基于PID控制器的温度控制系统设计。
一、PID控制器的原理
PID控制器是一种经典的控制器,它采用比例、积分、微分三个控制量的组合,通过对控制量不同比例的组合,实现对被控对象的精确控制。
具体来说,PID控制
器将被控对象的当前状态与期望的目标状态进行比较,计算出误差值,然后对误差值进行P、I、D三个控制量的加权计算,得到控制输出值,通过执行控制动作,
使被控对象达到期望的目标状态。
其中,比例控制P以被控对象的当前状态与期望目标状态之间的误差值为输入,按比例放大输出控制信号,其控制效果主要针对误差量的大小。
积分控制I主要是
针对误差值的积累程度,在误差值持续存在的情况下逐渐加大控制输出的幅度,使被控对象逐渐趋近期望的目标状态。
微分控制D主要是针对误差值的变化速度,
当偏差值增加或减小的速率较快时,将适当增大或减小控制输出量的幅度,以加快误差的消除速度。
综上所述,PID控制器的优点在于能够快速消除误差,避免超调和欠调,稳定
性强,且对于被控对象的性质要求不高。
因此,PID控制器成为了温度控制系统设
计的主要控制器之一。
二、温度传感器的选取
温度控制系统的核心是温度控制器,其中最关键的部分是温度传感器。
良好的
温度传感器应具有温度响应时间短、测量范围广、精度高等特点。
其中最常用的温度传感器是热电偶和热电阻。
热电偶是一种基于热电效应的温度测量传感器,它是利用不同材料所产生的热
电动势的差别测量温度。
热电偶具有灵敏度高、阻抗小、动态响应快等特点,但受到热电对、交流电干扰等因素影响较大,测量过程中容易出现漂移现象。
热电阻是一种利用金属或半导体的电阻随温度变化的特性测量温度的传感器。
热电阻具有较高的精度、长期稳定性好的特点,但响应迟缓,对于超出其量程的高温不可用。
因此,在进行温度控制系统设计时,应考虑被控对象的特性,选取合适的温度
传感器。
如果被控对象的温度范围较宽,则应选取热电偶作为温度传感器;如果被控对象的温度范围较窄,可以选用热电阻。
三、PID控制器参数调节
PID控制器的参数调节对于控制系统的性能影响极大,其中最关键的是控制器
参数的选择。
在进行参数调节时,应根据实际反馈情况进行选择,具体来说应遵循以下原则:
1、比例系数的选择
比例系数直接影响系统的动态性能,如果比例系数过小,则控制速度慢,超调
量大,若过大,则会引起强烈的震荡。
因此,比例系数需要根据实际情况进行选择,在实际控制中,可通过实验方法来选择最佳的比例增益值。
2、积分系数的选择
积分系数主要影响系统的稳态精度,当比例控制器和微分控制器的作用无法消
除误差时,可通过增大积分系数来消除系统的静态误差。
但是,积分系数过大会导致系统产生过调,因此积分系数需要根据实际情况进行逐步增加,直到达到满意的效果即可。
3、微分系数的选择
微分系数能够使控制器对于温度变化率的快速反应,缩短系统的响应时间,但如果微分系数过大,则会引起控制器的不稳定,因此要逐步增加微分系数,直到达到理想效果为止。
四、温度控制系统的实现
在确定合适的温度传感器和PID控制器参数后,温度控制系统即可开始实现,其中关键步骤如下:
1、将温度传感器与控制器的输入端连接。
2、调节PID控制器的比例、积分、微分系数,使得系统能够较快稳定地到达期望温度。
3、设置控制器输出的控制量,将其传递到加热器上,使被控对象的温度得以控制。
4、进行实际控制操作时,应使用实验室温度计等相似仪器进行精确测量,检验控制效果,并根据测量结果进行PID控制器参数的逐步调整,直至达到最佳控制效果。
五、总结
基于PID控制器的温度控制系统设计是现代自动化控制领域的重要应用,具有控制精度高、应用广泛等优点。
在实践中,我们需要根据被控对象的性质,选取合适的温度传感器,以及根据实际情况进行PID控制器参数的调节,才能得到最佳的控制效果。