一元二次方程求解万能公式
一元二次方程的解法
一元二次方程的解法一般解法1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时x无实数根(初中)2.当Δ=b^2-4ac=0时x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0解:利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
1、直接开平方法直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2;=n (n≥0)的方程,其解为x=±√n+m .例(3x+1)^2;=7 解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)例x^2-4x-12=0 (x-2)^2-4-12=0 (x-2)^2=16 x-2=±4 x=6或-2 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2;-4ac的值,当b^2;-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b^2;-4ac)]/(2a) , (b^2;-4ac≥0)就可得到方程的根。
函数求解万能公式
函数求解万能公式万能公式是指一种可以解决多种问题的通用公式。
在数学和科学中,存在一些公式可以适用于多个领域,在求解各种问题时提供便利。
然而,要找到一个可以解决所有问题的万能公式是不可能的,因为问题的复杂性和多样性使得每个问题都有其特定的解决方法。
然而,在特定领域中,可能存在一些常用的公式,被广泛应用于各种问题的求解。
下面将列举一些常见的万能公式。
1. 抛物线方程:y = ax² + bx + c。
这是一种可以描述抛物线形状的公式。
可以根据具体的a、b、c值来确定抛物线的开口方向、顶点位置等信息。
2. 二次方程求根公式:x = (-b ± √(b² - 4ac)) / 2a。
这是解决二次方程的常用公式,通过求解二次方程的根可以确定方程的解。
3.等比数列求和公式:Sn=a(1-r^n)/(1-r)。
这是求解等比数列的前n项和的公式,其中a为首项,r为公比。
4. 物理力学中的运动方程:v = u + at、s = ut + 1/2at²。
这些是描述物体在直线运动中的速度、位移与时间关系的公式,其中v为末速度,u为初速度,a为加速度,t为时间,s为位移。
5.欧姆定律:V=IR。
这是描述电流、电压和电阻之间关系的公式,其中V为电压,I为电流,R为电阻。
6. 狄拉克方程:Eψ = (mc² - ħc∇)²ψ。
这是描述粒子与反粒子以及与电磁场相互作用的量子方程。
狄拉克方程的求解可以得到一系列粒子的能级和波函数。
以上只是一些常见的万能公式示例,可以解决特定领域中的一些问题。
然而,并不存在一个能解决所有问题的单一公式。
每个问题都具有其特定的条件和特征,需要根据具体情况采用相应的方法和公式来求解。
对于数学和科学领域的问题求解,需要综合运用数学原理、物理定律、逻辑推理等多种方法,而不是依赖于单一的公式。
因此,学好基础知识、培养分析和解决问题的能力,以及广泛阅读和学习不同领域的知识,才能在实际问题中找到恰当的求解方法。
一元二次方程的万能解法
2 2
例2 用公式法解下列方程: (3) 5x2 3x x 1
x b b2 4ac 2a
解:方程可化为 5x2 4x 1 0
a 5,b 4, c 1
b2 4ac (4)2 4 5 (1) 360
x (4) 36 4 6
3、说出用公式法解一元二次方程的一般步聚。
因此解一元二次方程时可以先将方程化为一般形式axbx就得到方程的根这个式子叫做一元二次方程的求根公式利用它解一元二次方程的方法叫做公式法由求根公式可知一元二次方程最多有两个实数根
21.2.2 一元二次方程的解法 ——公式法
用配方法解一元二次方程的步骤
1、 常数项 移到方程右边. 2、二次项系数化为1; 3、将方程左边配成一个 完全平方 式。 (两边都加上 一次项系数一半的平方 ) 4、用 平方根的意义 写出原方程的解。
用配方法解方程: 4x2 6x 3 0
温
解:移项,得: 4x2 6x 3,
故
二次项系数化为1,得 x2 3 x 3 ,
知
24
配方,得:
x2
3 2
x
3 4
2
3 4
3 4
2
,
新
(x 3)2 21 4 16
由此得: x 3 21
拓展延伸
1、关于x的一元二次方程 x2 2x m 0
有两个实根,则m的取值范围是—— .
解:b2 4ac (2)2 41 m 4 4m 0
∴ m1
注意:一元二次方程有实根, 说明方程可能有两个不等实根 或两个相等实根的两种情况。
一元二次方程的解法总结
x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
用公式法求解一元二次方程课件北师大版数学九年级上册
c=0
Δ=b2-4ac<0 方程没有实数根
知2-讲
特别说明:(1)由Δ=b2-4ac 的符号可判定ax2+bx+c=
0(a ≠ 0)的根的情况. 反之,由ax2+bx+c= 0(a ≠ 0)的根的
情况也可得到Δ=b2-4ac 的符号.
(2)一元二次方程有实数根(或有两个实数根)包括有两
2k-1=0 的根的情况为(
A. 有两个相等的实数根
B. 没有实数根
C. 有两个不等的实数根
D. 无法判断
)
知2-练
思路导引:
解:∵ a=1,b=-2(k+1),c=-k2+2k-1,
∴ Δ =b2-4ac=[-2(k+1)]2-4×1×(-k2+2k-
1)=8+8k2>0.
当方程中的a,b,c含有字母时,求出
第二章 一元二次方程
3 用公式法求解一元二次方程
1 课时讲授 用公式法解一元二次方程
一元二次方程根的判别式
2 课时流程
逐点
导讲练
课堂
小结
作业
提升
知识点 1 用公式法解一元二次方程
知1-讲
1. 求根公式:对于一元二次方程ax2+bx+c= 0(a ≠ 0),当
b2-4ac
≥ 0 时,它的根是x =
知1-练
(3)x2-2x+3=0.
解:这里a=1,b=-2,c=3 .
∵ b2 -4ac=(-2)2 -4×1×3=-8<0,
∴方程无实数根.
知1-练
知1-练
1-1. 用公式法解下列方程:
(1)y2-2y-2=0;
解:这里 a=1,b=-2,c=-2.
一元二次方程的根的公式
一元二次方程的根的公式一元二次方程是数学中常见的一类方程,它的一般形式为ax²+bx+c=0,其中a、b、c是已知的实数,且a≠0。
解一元二次方程的关键是求出方程的根,而求根的公式被称为一元二次方程的根的公式。
一元二次方程的根的公式如下:x = (-b ± √(b²-4ac))/(2a)在这个公式中,x表示方程的根,±表示两个根的取值可能性,b²-4ac表示判别式,√表示平方根,a、b、c分别表示方程的系数。
根据这个公式,我们可以通过代入方程的系数,计算出方程的根。
但在计算之前,我们需要先判断方程的根的情况,即判别式的值。
当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根,而是有两个共轭的复根。
在解一元二次方程时,我们需要注意以下几点:1. 判别式的值决定了方程的根的情况:大于0时有两个不相等的实根,等于0时有两个相等的实根,小于0时没有实根;2. 当判别式大于0时,我们可以使用根的公式直接计算出方程的两个实根;3. 当判别式等于0时,我们可以使用根的公式计算出方程的两个相等的实根;4. 当判别式小于0时,我们无法直接计算出方程的实根,而是得到两个共轭的复根,其中实部为-b/(2a),虚部为√(4ac-b²)/(2a)。
下面我们通过几个例子来说明一元二次方程的根的公式的应用。
例1:解方程x²-4x+3=0。
根据方程的系数,我们得到a=1,b=-4,c=3。
将这些值代入根的公式,我们可以计算出方程的根。
判别式为b²-4ac=(-4)²-4(1)(3)=16-12=4,大于0,说明方程有两个不相等的实根。
根的公式为x = (-b ± √(b²-4ac))/(2a),代入系数得到x = (4 ± √4)/(2)。
化简得到x = (4 ± 2)/(2),即x = 3或x = 1。
四种解一元二次方程的方法
四种解一元二次方程的方法嘿,咱今儿个就来唠唠解一元二次方程的那四种法子!这可都是数学里的宝贝呀!先说说直接开平方法。
这就好比是一把钥匙,能直接打开那扇困住方程的门。
遇到那种能直接写成平方形式的方程,嘿,用它就对啦!就像一把精准的钥匙,咔嗒一下,答案就出来了。
比如说,一个方程是(x-3)²=4,那咱不就能直接得出 x-3=±2,进而算出 x 的值啦,多简单直接呀!再讲讲配方法。
这就像是给方程做一顿美味大餐,得精心调味、搭配。
把方程通过一些巧妙的操作,配成完全平方的形式。
这可得有点耐心和技巧呢!就好像要把各种食材搭配得恰到好处,才能做出美味佳肴。
举个例子,x²+4x-5=0,咱就给它加上 4 变成 x²+4x+4-4-5=0,然后就变成了(x+2)²=9,这不就好解了嘛。
因式分解法呢,就如同拆礼物。
把方程拆呀拆,拆成几个因式相乘等于零的形式。
这可需要一双敏锐的眼睛,能找到那些隐藏的线索,把方程巧妙地拆解开来。
比如 x²-3x+2=0,就能分解成(x-1)(x-2)=0,那答案不就呼之欲出啦!最后说说公式法。
这可是个厉害的大绝招!不管啥样的一元二次方程,它都能给你搞定。
就像是一个万能工具,啥难题都能解决。
只要记住那个神奇的公式,往里一套,答案就出来啦。
不过用的时候可得小心,别算错咯。
哎呀呀,这四种方法各有各的妙处呀!就好像是武林高手的不同绝技,在不同的场合都能大显身手。
咱在解一元二次方程的时候,就得像个聪明的侠客,根据不同的情况,灵活运用这些方法。
有时候一种方法就能搞定,有时候得几种方法结合起来呢。
你想想啊,要是遇到个难题,你能一下子就找到合适的方法把它解开,那得多有成就感呀!就好像是攻克了一座坚固的城堡。
而且呀,这四种方法在生活中也有类比呢!比如说直接开平方法就像直截了当地解决问题,配方法就像精心准备去做一件事,因式分解法就像把复杂的事情拆解成简单的步骤,公式法就像有个通用的规则可以遵循。
一元二次方程的解法(公式法)
∵b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0,
∴原方程没有实数根.
我最棒
解下列方程:
,解题大师——规范正确!
参考答案:
(1). x2-2x-8=0;
(2). 9x2+6x=8;
1.x1 2; x2 4.
2.x1 2 ; x2 4 .
例3:
x 3 2 3x
2
解:化简为一般式:x2
2 3x 3 0
这里 a=1, b= 2 3 , c= 3. ∵b2 - 4ac=( 2 3)2 - 4×1×3=0,
2 3 0 2 3 x 21 2
即:x1= x2=
3,
3
想一想
例 4 解方程:(x-2)(1-3x)=6 解:去括号:x-2-3x2+6x=6 化简为一般式:-3x2+7x-8=0 3x2-7x+8=0 这里 a=3, b= -7, c= 8.
一元二次方程的解法
回顾与复习 1
配方法
我们通过配成完全平方式的方法,得到了一元二次方 程的根,这种解一元二次方程的方法称为配方法 (solving by completing the square) 用配方法解一元二次方程的方法的
助手:
平方根的意义: 如果x2=a,那么x= a. 完全平方式:式子a2±2ab+b2叫完全平方式,且 a2±2ab+b2 =(a±b)2.
(1)直接开平方法
ax2=b(b≥0)
1、提取公因式法
适应于没有一次项的 一元二次方程
一 元 二 次 方 程 的 解 法
(2)因式分解法
2、平方差公式 3、完全平方公式
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程的解法是每一个中学生都必须掌握的,共有 5 种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法.在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法.我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解.一、直接开平方法解形如x2 p (p≥0)和ax b 2 c(c ≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤:(1)把一元二次方程化为x2 p (p≥0)或ax b 2 c(c ≥0)的形式;(2)直接开平方, 把方程转化为两个一元一次方程;(3)分别解这两个一元一次方程, 得到一元二次方程的两个解. 注意:(1)直接开平方法是最直接的解一元二次方程的方法, 并不适合所有的一元二次方程的求解;(2)对于一元二次方程x2 p,当p 0时,方程无解;(3)对于一元二次方程ax b 2 c:①当 c 0时, 一元二次方程有两个不相等的实数根;②当 c 0时, 一元二次方程有两个相等的实数根;③当 c 0 时, 一元二次方程没有实数根.例 1. 解下列方程:(1)x2 2 0; (2)16x2 81 0.分析:观察到两个方程的特点,都可以化为x2 p(p≥0)的形式,所有选择用直接开平方法求解. 当一元二次方程缺少一次项时, 考虑使用直接开平方法求解.解:( 1) x 2 2 x2∴x 1 2,x 22;2 281(2)16x 2 81,x 21681 9 x 16 4∴9 9 ∴ x1,x 2.44例 2. 解下列方程 :22(1) x 3 2 9 0; (2)12 2 x 2 9 0.分析:观察到两个方程的特点 ,都可以化为 ax b 2 c ( c ≥0)的形式 ,所有选择用直接开 平方法求解 . 解:( 1) x 3 2 9 x 3 3∴ x 3 3 或 x 3 322)12 x 2 2 9293x 2 2 192 34 ∴ x 2 3 342 33∴ x 2 或 x 2 2233∴x 1 2 , x 2 2 1 2 2习题 2. 若 x 2 y 2 12 4,则 x 2 y 2___________________习题 1. 下列方程中 ,不能用直接开平方法求解的是A ) x 2 3 0B ) x 1 240C ) x 22 02D ) x 1 222习题 3. 若a,b为方程x2 4 x 1 1的两根,且a b,则 a b(A5 (B)4 (C)1(D)3)习题4. 解下列方程:(1)2x 8 2 16 ;(2) 29 3x 2 64.习题 5. 解下列方程:1)4x 1 2 9 0 ;习题 6. 对于实数p,q ,我们用符号min p,q 表示p,q两数中较小的数,如min 1,2 1.(1)min 2 , 3 _____________ ;(2)若min x 1 2, x2 1,则x ______________.习题7. 已知直角三角形的两边长x, y满足x2 16 y2 9 0 ,求这个直角三角形第三边的长.(注意分类讨论第三边的长)、因式分解法 因式分解法解一元二次方程的一般步骤是 : (1)移项 把方程的右边化为 0;(2)化积 将方程的左边分解为两个一次因式的乘积 ; (3)转化 令每个因式等于 0, 得到两个一元一次方程 ;(4)求解 解这两个一元一次方程 , 得到一元二次方程的两个解 例 1. 用因式分解法解方程 : x 2 3x . 解:x 2 3x 0 x x 3 0 ∴ x 0 或 x 3 0∴x 1 0,x 2 3.解 : x 1 x 1 2x 0∴x 1 1, x 2 1.例 3. 解方程 :3x 2 12x 12. 解:3x 2 12x 12 0 3 x 2 4x 4 0 3 x 2 2 0∴x 1 x 2 2.例 4. 解方程 :x 2 x 3x 3. 解:x 2 x 3x 3 0∴x 11,x 2 3.因式分解法解高次方程 例 5. 解方程 : x 2 1 2 3 x 2 1 0. 解: x 2 1 x 2 1 3 0例 2. 用因式分解法解方程 2: x 1 22x x 1 0.x2 1 x 2 4 0x 1 x 1 x 2 x 2 0∴ x 1 0 或x 1 0或x 2 0 或x 2 0∴x11, x2 1,x32, x4 2.例 6. 解方程: x2 3 2 4 x2 3 0.解: x2 3 x2 3 4 022x2 3 x2 1 0x2 3 x 1 x 1 0∵ x2 3 0∴ x 1 x 1 0∴ x 1 0 或x 1 0∴x1 1,x2 1.用十字相乘法分解因式解方程对于一元二次方程ax2 bx c 0 a 0 , 当b2 4ac ≥0 且的值为完全平方数时可以用十字相乘法分解因式解方程.例7. 解方程:x2 5x 6 0.分析: 5 2 4 6 25 24 1,其结果为完全平方数,可以使用十字相乘法分解因式解: x 2 x 3 0∴ x 2 0 或x 3 0∴ x1 2,x2 3.例 8. 解方程 :2x 2 7x 3 0. 分析 : 72 4 2 3 49 24 25, 其结果为完全平方数 , 可以使用十字相乘法分解因式.解 : 2x 1 x 3 0 ∴ 2x 1 0 或 x 3 0例 9. 设方程 2013x 2 2014 2012x 1 0的较大根为 a ,方程 x 2 2011x 2012 0 的较 小根为 b ,求 a b 的值 .2 解 : 2013x 22014 2012x 1 0 22013x 22013 1 2013 1 x 1 0 2 2 220132x 2 20132 x x 1 02 20132x x 1 x 1 0 x 1 20132 x 1 0 ∴ x 1 0 或 20132 x 1 01∴ x11,x 2 21220132∵ a 是该方程的较大根 ∴ a 12x 2 2011x 2012 0 x 1 x 2012 0 ∴ x 1 0 或 x 2012 0 ∴ x 1 1, x 2 2012 ∵ b 是该方程的较小根 ∴ b 2012∴ a b 1 2012 2013.1∴x 1 2 ,x 23.习题 1. 方程x2 2x的根是___________ .习题 2. 方程x x 2 x 2 0 的根是 ________________ .习题 3. 方程x2 4x 4 0 的解是______________ .习题 4. 方程x 2 x 3 x 2 的解是 _________________习题 5. 如果x 2 x 1 x 1 ,那么x 的值为(A)2 或1 (B)0或1(C)2(D)1习题 6. 方程x x 2 x 的根是_________ .习题7. 已知等腰三角形的腰和底的长分别是一元二次方程x 2 6x 的周长为_________ .习题8. 解下列方程:(1)3x x 2 2 2 x ;(2)x2 3 2 x 1 ;22 (3)x 2 4x 4 3 2x ;2(4)2x2 4x 2 .0的根,则该三角形习题9. 解下列方程:22)x 2 5x 4 0 .2习题 10. 解方程 : 2x 1 2 2 2x 1 1 0 .、配方法解用配方法解一元二次方程 ax 2 bx c 0 a 0 共分六步 :一移、二化、三配、四开、五转、 六解 .1)一移 把常数项移到方程的右边 ,注意变号 ;ax 2 bx c2)二化 在方程的左右两边同时除以二次项系数a ,化二次项系数为 1;x 2 b x c aa3)三配 即配方 ,把方程的左边配成完全平方的形式 ,需要在方程的左右两边同时加上次项系数一半的平方 ;说明 :由上面配方的结果可以确定一元二次方程有实数根的条件和求根公式bx abc 2a a2ab 2 4ac4a 2(4)四开直接开平方 ; b b 24acx(注意 2a2a(5)五转 把第( 4)步得到的bb 2 4acbx 或x2a 2a2a(6)解 解这两个一元一次方程2:当b 2 4ac ≥ 0 时方程有实数根)元一次方程 ;b b 2 4ac 2ab b 2 4ac2ax 12b a2b 2 4ac2a,x 2,得到一元二次方程的两个解22一元二次方程 ax 2 bx c 0 a 0 有实数根的条件是b 2 4ac ≥0, 求根公式为b b 2 4acx . 2a例 1. 用配方法解方程 :x 2 4x 1 0 . 解:x 2 4x 1 2 x 24x 4 1 4 2x 2 5 x 2 5∴ x 2 5 或 x 2 5 ∴ x 1 2 5, x 2 2 5 . 例 2. 解方程 :3x 2 2x 3 0 .分析:按照用配方法解一元二次方程的一般步骤 ,在移项之后 , 要化二次项系数为“ 1 解:3x 2 2x 3x2 2x 1 322 1 1 x 2x139 921210 x3 91 10x331 10 1 10∴x 或 x3 3 3 3 1 10 1 10∴ x 1 ,x 21 3 323 3 例 3. 用配方法解关于 x 的方程 :22x px q 0 ( p4q ≥ 0) .解:x 2 px q 222p p x px q44 x p p 2 4q x 2 4p p 2 4qx pp 2 3 4q ,x p p 2 4qx2 2 ,x 2 2 p 2 4q ≥022p p 4q p p 4q∴ x12,x22说明:p 2 4q ≥0 既是二次根式 p 2 4q 有意义的条件 ,也是一元二次方程 x 2 px q 0有实数根的前提 . 因此把 p 2 4q 叫做一元二次方程 x 2 px q 0 的根的判别式 . 习题 1. 用配方法解方程 x 2 4x 1 0,配方后的方程是【 】22(A ) x 2 2 3(B ) x 2 2 3 22(C ) x 2 2 5(D ) x 2 2 5习题 2. 若方程 x 2 8x m 0 可以通过配方写成 x n 2 6 的形式 ,那么 x 2 8x m 5 可以配成2(A ) x n 5 2 12( B ) x n 2 12( D ) x n 2 1122) 3x 2 6x 1 0;2 4) 4x 212x 1 0 .2(C ) x n 5 2 11 习题 3. 用配方法解方程 (1) x 2 x 1 0; 3 x 2 5x 6 0;四、公式法元二次方程的求根公式b b 2 4ac x2a例 1. 证明一元二次方程的求根公式 分析 :用配方法可以证明一元二次方程的求根公式bb2 4ac( b 2 4ac ≥0).2a注意:当b 2 4 ac ≥ 0时,一元二次方程 ax 2 bx c 0(a 0 )有实数根 ;当b 2 4ac 0时, 二次根式 b 2 4ac 无意义 ,方程无实数根 .公式法解一元二次方程的一般步骤 : 用公式法解一元二次方程的一般步骤是 : (1)把一元二次方程化为一般形式 ; (2)确定 a,b,c 的值, 包括符号 ;(3)当 b 2 4ac ≥0时,把 a,b,c 的值代入求根公式求解 ;当b 2 4ac 0时,方程无实数根 .证明 :ax 2 bx c 0ax 2 bx c a b 2 4ba 22 b x a b x a b 2 b 2a c b 2 a 4a 2 x 2a 4ac4a2b b 2 4ac2a ∴ x b 2ab 2 4ac 或x 2a b b 2 4ac2a2ab b 2 4ac ∴ x 1 2a , x 2b b 2 4ac2a元二次方程 ax 2bx c 0 ( a 0 )的求根公式为 :当 b 2 4ac 0 时 ,元二次方程无实数根2b4ac ≥ 0)即一元 次方程 ax 2 bx c 0( a 0)的根为例 1. 用公式法解方程 :2x 3 x 6 0 . 分析:用公式法解一元二次方程时要先将方程化为一般形式 ,并正确确定 a,b,c 的值 ,包括符 号.解:a 2,b 1,c 6 ∴ b 2 4ac 12 4 2 6 494 173∴x 1,x 242例 2. 解下列方程 :解:( 1) x 2 4x 2 0 22b 24ac 42 4 2 242 6,x 2 2 6 ;2) 4x 2 12x 9 022b 24ac 122 4 4 9 144 144 03 ax 2bx c 0 ( a 0 )有两个相等的实数根 .x 1 0.4 322 2.次方程获得的启示a 0 ),可以用 a,b,c 的值确定方程解的情况以及方12 0 12 0 ∴x 83∴x 1 x 21 22说明:当b 2 4ac 0 时,一元二次方程对于一元二次方程 ax 2 bx c 01 49 1 7 ∴x 1) x 2 4x 2;22) 4x 2 4x 10 1 8x .4 24 4 2 6 ∴x26b 2 4ac 有意义的条件即为方程有解的条件:当程的解,并且求根公式里面的二次根式∴x 1 3,x 2 4.b 2 4ac ≥0 时,二次根式 b 2 4ac ,一元二次方程有实数根 ;当b 2 4ac 0时,二次根式 b 2 4ac 无意义 ,一元二次方程无实数根 .(1)当 b 2 4ac 0 时,一元二次方程有两个不相等的实数根 ;(2)当 b 2 4ac 0 时,方程有两个相等的实数根 .把 b 2 4ac 叫做一元二次方程根的判别式 ,用 “ ”表示 ,所以 b 2 4ac .在不解方程的前提下 ,可以由 的符号确定一元二次方程根的情况 . 习题 1. 解方程 :1)求 a 2 4a 2018的值 ;1 2a a2 a 2 2a 1 12a 1 a a a1) 2x 2 x 6 ;22) 4x 2 3x 1 x 2 ;3) x 2 2x 2 0 ;4) 2x x 2 1 .习题 2. 已知 a 是一元二次方程 x 2 4x 1 0 的两个实数根中较小的根2)化简并求值五、换元法解某些高次方程或具有一定结构特点的方程时 ,我们可以通过整体换元的方法 ,把方程转 化为一元二次方程进行求解 ,从而达到降次或变复杂为简单的目的 .换元法的实质是换元 ,关键是构造元和设元 ,体现的是转化化归思想 . 用换元法解某些高次方程 例 1. 解方程 :x 4 2x 2 3 0.分析 : 这是一元四次方程 , 可设 x 2 y (注意 : y ≥0), 这样通过换元就把原方程转化为关于 y 的一元二次方程 . 解:设 x 2 y ,则有 : y ≥0 ∴ y 2 2y 3 0∴ y 1 1, y 2 3∵ y ≥0∴ y 3 ( y 1 舍去) ∴ x 2 3用换元法解具有一定结构特点的方程 例 2. 解方程 : x 2 2 3 x 2 2 0.分析 : 注意到该方程中整体 x 2 出现了两次 , 可整体设元 , 从结构上简化方程 解:设 x 2 t ,则有 :t 2 3t 2 0∴t 1 1,t 2 2∴ x 2 1 或 x 2 2∴x 13,x 2 3.∴x 1 3,x 2 4.例 3. 解方程 : x 2 x 8 x 2 x 12 0.分析 : 本题中的方程若展开整理 , 则得到的是一个高次方程 , 但方程本身具有非常明显的结 构特点 , 可整体换元 , 不用展开即可得到一个简洁的一元二次方程 . 解:设 x 2 x y ,则有 : y 2 8y 12 0 y 2 y 6 0∴y 2 0 或y 6 0 ∴y 1 2,y 2 6∴ x 2 x 2 或 x 2 x 6解方程 x 2 x 2得: x 1 1,x 2 2 ; 解方程 x 2 x 6 得: x 1 2,x 2 3综上 ,原方程的解为 x 1 1,x 2 2,x 3 2,x 4 3.原方程转化为关于 t 的整式方程 , 且为一元二次方程 . x 1 2 解:设 x 21 t ,则有 : t 2 1 x 2t 整理得 :t 2 t 2 0∴t 1 1,t 2 2x 1 2由 2 1得: x 2x 1 0 ,此时方程无解 ;x x 1 1由 2 2得:2x 2x 10,解之得 :x 1 ,x 21.x 221综上 ,原方程的解为 x 1 1,x 2 1.1 2 211 例 5. 解方程 :x 22 x 0.x 2x2分析 : 设 x 1 y , 则 x 2 12x 1 2 y 2 2.xx 2x2 x 1 2x 2 例 4. 解方程 : x 1 2x2x x 1 x2分析 : 方程中 x 1 与 x x 11.x 2x 1x1互为倒数 , 若设 x 1 t , 则x11 1, 经过这样的换元 , 最后可把 t1或 x 2 1x2x211解:x 22 x 0 x 2x1 21 x x2 0 xx设 x 1 y ,则有 : y y 2 0 x y 1 y 2 0 ∴ y 1 0 或 y 2 0 ∴ y 1 1, y 2 211 ∴x 1 或 x 2xx 12 由 x 1得: x 2 x 1 0,此时方程无解 ; x 12 由 x 2得: x 2 2x 1 0,解之得 :x 1 x 2 1. x综上 ,原方程的解为 x 1 x 2 1.211 1本题变式 : 已知实数 x 满足 x 212x 10,那么 x1的值是【 】 x 2xx(A )1或 2(B ) 1或 2 (C )1 (D ) 2例 6. 已知 x 2 y 2 x 2 y 2 1 12 ,求 x 2 y 2 的值 .分析:整体设元 :设 x 2 y 2 m ,则 m ≥ 0,据此注意根的取舍 . 解:设 x 2 y 2 m ,则有 :m ≥0 ∴m m 1 12 整理得 :m 2 m 12 0 解之得 :m 1 3,m 2 4∵ m ≥ 0 ∴ m 3 22∴ x 2 y 2 的值为 3.习题 1. 解下列方程 :22习题 2. 解方程 : x 2 x 22 1.x 2 x习题 3. 阅读下面的材料 ,回答问题 :解方程 x 4 5x 2 4 0 ,这是一个一元四次方程 ,根据该方程的特点 ,它的解法通常是 : 设 x 2 y ,则原方程变形为 : y 2 5y 4 0 ①解之得 :y 1 1, y 2 4当 y 1时, x 2 1,解之得 : x 1 ;2当 y 4时,x 2 4,解之得 : x 2.综上 ,原方程的解为 : x 1 1, x 2 1, x 3 2, x 4 2 .(1)在由原方程得到方程 ①的过程中 ,利用 ________ 法达到 ________ 的目的 ,体现了数学的转化思想 ;(2)解方程 : x 2 x 2 4 x 2 x 12 0 .1) x 2 x 2 x 2 x 6 ;22) x 1 5 x 1 6 0 .特殊一元二次方程的解法举例某些方程的解需采用特殊的处理和方法,下面列举几例.例 1. 解方程: x2 5x 1 x2 5x 7 7.分析:若把该方程展开并整理,会得到一个一元四次方程, 这不是我们想看到的结果. 可使用换元法解该方程: 设x2 5x 1 t , 这样就能把原方程转化为关于t 的一元二次方程解:设x2 5x 1 t ,则原方程可转化为:t t 6 7∴ t 2 6t 7 0t 1 t 7 0∴ t 1 0或t 7 0∴ t1 1,t 27∴ x2 5x 1 1 或x2 5x 1 7由x2 5x 1 1得:x2 5x 0,解之得:x1 0,x25;由x2 5x 1 7 得:x2 5x 8 0 ,此时方程无解.综上,原方程的解为x1 0,x2 5.例 2. 解方程:x 2 x 2 0.解法1:当x ≥0,原方程可化为: x2 x 2 0,解之得:x 1(x 2舍去);当x 0 时,原方程可化为:x2 x 2 0,解之得:x 1(x 2 舍去).综上所述,原方程的解为x1 1,x2 1.解法2:原方程可化为: x 2 x 2 0∴ x 1 x 2 0∵ x 2 0∴ x 1 0, x 1∴x1 1, x2 1∴原方程的解为x1 1, x2 1.解法3:(图象法)原方程可化为: x 2 2 x设 f (x) x2 2,g(x) x ,在同一平面直角坐标系中画出二者的图象如图所示∵两个函数的图象有两个交点1,1 和1,1∴方程x2 2 x 有两个实数根,且根为x1 1, x2 1 ∴原方程的解为x11, x2 1 .习题 1. 参照例 2 的解法,解方程: x2 6x x 3 3 0 .例 3. 解方程: x 1 x 2 x 3 x 4 48 .解: x 1 x 4 x 2 x 3 48∴ x 2 5x 4 x 2 5x 6 48设x2 5x 5 t ,则有: t 1 t 1 48∴ t2 1 48,t 2 49∴ t1 7, t 2 7第 21 页 5x 5 7时,解之得: x 15 33,x 2 5 33 ; 22当 x 2 5x 5 7 时,此时方程无解 . 综上所述 ,原方程的解为 x 1 5 233,x 2 5 233习题 2. 方程 x 2 2 x 4 27 0的所有根的和为 ________________ 1 1 1 习题 3. 已知实数 x 满足 x 2 2 x 0 ,那么 x 的值是 x 2x x (A )1或 2 (B ) 1或 2(C )1 【】 D ) 2。
公式法解一元二次方程
这个式子称为一元二次方程的求根公式
注意1公式中的a,b,c的含义
2 式子b² -4ac≥0
例1 用公式法解方程-5x² =4x-1 解:移项得 5x² +4x-1=0 ∵
∴
∴
∴
例2 用公式法解方程
解移项得 ∵
∴ ∴
∴
2、解一元二次方程各式各法
练习1.用公式法解下列方程
(1) (2)
(3) (4)
5) (6) (7)
1.用公式法解方程
,得到( B .
)
A.
C.
D .
2方程
整理成一般形式后,其中的a,b,c 分别 是( )
A
B C
D
C
公式法: 一般地,对于一元二次方程
2+bx+c=0 (a≠0) ax
当b² -4ac≥0时,它的根为:
b b 2 4ac x 2a 4a 2
2
即
b b 2 4ac x 2a 4a 2
2
当
b2-4ac≥0 即
b b 4ac x 2a 4a 2
2
b b 4ac x 2a 2a
2
该式叫一元二次方 程的求根公式
b b 4ac x 2a
3、x² -5x=-4 4、2x² -3x-1=0
四、探索发现
X1= X2=
1、从两根的代数式结构上有什么特点? 2、根据这种结构可以进行什么运算? 你发现了什么?
验证你的结论
2+bx+c=0(a≠0)的两个根 若x1,x2是ax
。
一元二次方程的根与系数的关系: (韦达定理)
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 c b 那么X1+x2= , X1x2= a a
一元二次方程展开公式
一元二次方程展开公式一元二次方程展开公式,这可是数学学习中的一个重要知识点啊!咱们先来说说一元二次方程的一般形式:$ax^2 + bx + c = 0$($a ≠0$)。
那它的展开公式是啥呢?就是大名鼎鼎的求根公式:$x = \frac{-b ± \sqrt{b^2 - 4ac}}{2a}$。
还记得我当年教学生这个公式的时候,有个学生叫小明,特别有意思。
那时候刚讲到这个公式,我在黑板上写了一道例题:$x^2 + 2x - 3 = 0$,然后就开始带着大家用求根公式来解题。
小明一开始一脸懵,看着公式直发愣。
我就问他:“小明,咋啦,是不是被这个公式吓到啦?”小明挠挠头说:“老师,这公式看起来好复杂,我怕我记不住。
”我笑着跟他说:“别担心,咱们多练练,你就会发现它其实没那么可怕。
”然后我就一步一步地带着大家推导这个公式。
先计算判别式$\Delta = b^2 - 4ac = 2^2 - 4×1×(-3) = 16$,接着把数值代入求根公式,算出$x_1 = \frac{-2 + \sqrt{16}}{2×1} = 1$,$x_2 = \frac{-2 - \sqrt{16}}{2×1} = -3$。
我看着小明说:“你看,是不是算出来啦?”小明眼睛一下子亮了,说:“老师,好像是没那么难。
”从那以后,小明每次遇到一元二次方程的题,都会先试着用求根公式来解。
其实啊,这个求根公式就像是一把万能钥匙,不管什么样的一元二次方程,只要它有实数根,咱们用这个公式都能把根给找出来。
比如说方程$2x^2 - 5x + 2 = 0$,这里$a = 2$,$b = -5$,$c = 2$,先算判别式$\Delta = (-5)^2 - 4×2×2 = 9$,然后代入公式,$x_1 = \frac{5 + 3}{4}= 2$,$x_2 = \frac{5 - 3}{4} = \frac{1}{2}$。
一元二次方程的最值公式
一元二次方程的最值公式好的,以下是为您生成的关于“一元二次方程的最值公式”的文章:咱先来说说一元二次方程的最值公式,这玩意儿在数学里可重要啦!想当年我教过一个学生小明,他刚开始接触一元二次方程的时候,那叫一个头疼。
特别是碰到求最值的问题,整个人都懵圈了。
一元二次方程的一般形式是$ax^2 + bx + c = 0$,其中$a\neq 0$。
而它的最值公式呢,就是$y = \frac{4ac - b^2}{4a}$。
就拿一个简单的例子来说,比如方程$y = 2x^2 + 4x - 1$。
这里$a =2$,$b = 4$,$c = -1$。
咱们把这些值带进最值公式里算算,先算$b^2$,那就是$4^2 = 16$。
然后算$4ac$,就是$4×2×(-1) = -8$。
接着一减,$-8 - 16 = -24$,最后再除以$4a$,也就是$4×2 = 8$,所以最值就是$-24÷8 = -3$。
小明一开始可搞不明白这一套,总是算错。
我就跟他说,你别着急,咱一步一步来。
先把系数看准喽,再按照公式往里带。
他就瞪着大眼睛,一脸认真地点点头。
其实啊,一元二次方程的最值公式就像是一把万能钥匙,能帮我们打开很多难题的锁。
比如说,在实际生活中,我们要围一个矩形的花园,知道周长,要让面积最大,这时候就能用到最值公式啦。
再比如,有些物理问题,像小球的抛射高度和时间的关系,也能通过构建一元二次方程,然后用最值公式求出最大高度。
小明后来慢慢掌握了这个公式,做题也越来越顺手。
有一次考试,有一道求最值的题目,好多同学都做错了,可小明做对了。
他那高兴劲儿啊,脸上笑开了花,跑过来跟我说:“老师,多亏您教我这个公式,我终于搞明白了!”所以说,一元二次方程的最值公式虽然看起来有点复杂,但只要咱用心学,多练习,它就能成为我们解题的好帮手。
可别小瞧这公式,说不定啥时候就能派上大用场呢!。
一元二次方程求根公式
一元二次方程求根公式一元二次方程是数学中常见的一种方程形式,其一般形式为ax^2 + bx + c = 0,其中a、b、c为已知的常数,x为未知数。
解一元二次方程的方法有很多种,其中最常用的方法之一就是利用求根公式来求解。
本文将详细介绍一元二次方程求根公式的推导过程和应用方法。
一、求根公式的推导。
我们先来推导一元二次方程的求根公式。
设一元二次方程为ax^2 + bx + c = 0,我们要求出方程的根。
首先,我们假设方程有两个根x1和x2,那么根据因式分解的性质,我们可以将方程写成(x x1)(x x2) = 0的形式。
展开这个式子得到x^2 (x1 +x2)x + x1x2 = 0。
比较这个式子和原方程ax^2 + bx + c = 0的系数,我们可以得到以下关系:x1 + x2 = -b/a。
x1x2 = c/a。
接下来,我们要解出x1和x2的具体值。
我们可以利用上面的两个关系式来求解。
首先,我们可以将x1表示成-x2,然后代入第二个关系式中,得到x1 = (-b +√(b^2 4ac)) / (2a),同理可得x2 = (-b √(b^2 4ac)) / (2a)。
这就是一元二次方程的求根公式,也称为根的公式。
二、求根公式的应用。
一元二次方程的求根公式在实际问题中有着广泛的应用。
比如在物理学中,当我们需要求解抛体运动的轨迹方程时,就会遇到一元二次方程。
又比如在工程学中,当我们需要求解某些结构的受力情况时,也会用到一元二次方程的求解。
下面我们通过一个例子来说明一元二次方程求根公式的应用。
例,已知一元二次方程x^2 3x + 2 = 0,求出方程的根。
根据一元二次方程的求根公式,我们可以直接代入a=1,b=-3,c=2,然后带入公式x1 = (-b + √(b^2 4ac)) / (2a)和x2 = (-b √(b^2 4ac)) / (2a)中进行计算。
计算的结果为x1=2,x2=1,所以方程的根为x1=2和x2=1。
一元二次方程实数根公式
一元二次方程实数根公式一元二次方程,这可是咱们数学学习中的一个重要“关卡”。
那今天咱就好好聊聊一元二次方程的实数根公式。
先来说说啥是一元二次方程,就像 ax² + bx + c = 0 这样的式子(其中 a、b、c 是常数,a ≠ 0 ),就是一元二次方程啦。
那一元二次方程的实数根公式到底是啥呢?它就是:x = [-b ± √(b² - 4ac)] / (2a)。
我还记得当年我上中学的时候,我们班有个同学叫小李,数学成绩一直不太好。
每次遇到一元二次方程的题目,他就抓耳挠腮。
有一次考试,正好考到了一元二次方程实数根的计算。
老师在讲台上说:“同学们,认真算啊,这可是重点。
”小李盯着试卷上的题目,那道题是:x² + 5x + 6 = 0 。
他咬着笔头,就是不知道该怎么下手。
后来老师讲卷子的时候,重点讲了这道题,把实数根公式搬了出来,一步步地带着大家算。
小李眼睛瞪得大大的,好像突然开窍了。
从那以后,他一遇到一元二次方程的题,就先把公式写在草稿纸上,慢慢地,他做这类题的正确率越来越高。
咱们再来说说这个公式怎么用。
比如说有个方程 2x² - 3x - 5 = 0 ,这里 a = 2 ,b = -3 ,c = -5 。
把这些值带进公式里,先算Δ = b² - 4ac = (-3)² - 4×2×(-5) = 9 + 40 = 49 。
因为Δ 大于 0 ,所以方程有两个不同的实数根。
再接着算 x = [ -(-3) ± √49 ] / (2×2) ,也就是 x = [ 3 ± 7 ] / 4 ,最后得出 x₁ = 5 / 2 ,x₂ = -1 。
其实啊,一元二次方程实数根公式就像是一把万能钥匙,能帮咱们打开很多难题的大门。
只要咱们把 a、b、c 找对,然后按照公式一步步来,就没啥能难住咱们的。
一元二次方程的原理
一元二次方程的原理宝子,今天咱们来唠唠一元二次方程。
你可别一听方程就觉得头疼,这一元二次方程啊,就像是一个藏着小秘密的魔法盒子。
一元二次方程长啥样呢?它一般是这种形式:ax²+bx + c = 0(a≠0)。
这里的a、b、c呢,就像是方程这个小家庭里的成员,各有各的作用。
a呀,就像是这个家庭的老大,它可不能为0哦,要是a为0了,那这个方程就降级了,就不是一元二次方程啦,就变成一元一次方程那个小老弟了。
那这个方程是咋来的呢?其实啊,它在生活里到处都是。
比如说,你扔一个小球,这个小球在空中的运动轨迹就可以用一元二次方程来描述呢。
小球往上飞,然后再落下来,它在不同时刻的高度就和这个方程有关系。
又比如说,你想围一个长方形的小花园,你知道这个花园的面积,还知道长和宽之间的某种关系,那一元二次方程就可以闪亮登场来帮你算出长和宽到底是多少啦。
咱们再来看看这个方程怎么解。
有好几种办法呢。
有一种叫配方法,就像是给方程做个小整容。
我们要把方程左边那一堆ax²+bx啊,整成一个完全平方式。
这就像是把一个有点乱的发型,精心打理成一个超级帅气的造型。
比如说,对于方程x²+4x - 5 = 0,我们就想办法在x²+4x这里加上一个4,让它变成(x + 2)²,然后再去求解。
这个过程就像是在拼图,一块一块地把答案拼凑出来。
还有公式法呢。
这个公式啊,就像是一个万能钥匙。
对于一元二次方程ax²+bx + c = 0,它的解是x = [-b ±√(b² - 4ac)] / 2a。
这个公式可不得了,不管是什么样的一元二次方程,只要把a、b、c的值往里面一代,就能算出答案。
不过要小心哦,根号里面的b² - 4ac可不能随便乱来,这个东西叫判别式。
如果b² - 4ac 大于0呢,方程就有两个不同的解,就像是有两条不同的路可以走;如果b² - 4ac 等于0,那就只有一个解啦,就像走到了一个小胡同的尽头只有一条路;要是b² - 4ac小于0呢,那方程在实数范围内就没有解啦,就像你在找一个根本不存在的宝藏一样。
一元二次求根公式定理
一元二次求根公式定理一元二次求根公式定理,这可是数学学习中的一个重要家伙!咱们先来说说啥是一元二次方程。
就像“ax² + bx + c = 0”(a≠0)这样的式子,这里的 a、b、c 都是已知数,x 是未知数。
那怎么求出 x 的值呢?这时候一元二次求根公式就闪亮登场啦!求根公式是:x = [-b ± √(b² - 4ac)] / (2a)。
这公式看起来有点复杂,是吧?但别怕,咱们来仔细瞅瞅。
比如说,有个方程 x² + 2x - 3 = 0,这里 a = 1,b = 2,c = -3。
把这些数带进求根公式里,先算 b² - 4ac ,就是 2² - 4×1×(-3) = 16。
然后再算√16 = 4 。
接下来,x = [-2 ± 4] / 2 ,就能得出 x₁ = 1,x₂ = -3 。
我还记得之前给学生们讲这部分内容的时候,有个小家伙一脸懵地看着我,嘴里嘟囔着:“老师,这也太难了!”我笑着跟他说:“别着急,咱们一步一步来。
”我拿起笔,在黑板上一步一步地推导,让他跟着我的思路走。
慢慢地,他那紧锁的眉头松开了,眼睛里也有了光,兴奋地说:“老师,我好像懂了!”那一刻,我心里别提多有成就感了。
再来说说这个求根公式的厉害之处。
它就像是一把万能钥匙,不管什么样的一元二次方程,只要能确定 a、b、c 的值,就能用它来找到方程的根。
而且,在实际生活中,一元二次求根公式也大有用处呢。
比如说,计算抛物线与 x 轴的交点,或者解决一些与面积、速度有关的问题。
不过,要想熟练掌握这个公式,可得多做练习。
不能只是死记硬背,得理解其中的道理。
就像学骑自行车,刚开始可能摇摇晃晃,但多练几次,掌握了平衡的技巧,就能骑得又稳又快。
总之,一元二次求根公式定理虽然有点复杂,但只要咱们用心去学,多思考,多练习,一定能把它拿下!相信大家在数学的海洋里,都能凭借这个有力的工具,畅游无阻,发现更多的精彩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程求解万能公式
ax^2 + bx + c = 0
在这个方程中,a、b和c是已知的常数,x是未知变量。
解一元二次方程的万能公式如下:
x = (-b ± √(b^2 - 4ac)) / 2a
在这个公式中,±表示在两个解中选择一个,√表示平方根,b^2 - 4ac称为判别式。
现在让我们来看一个实际的例子,以更好地理解这个公式的应用。
考虑一元二次方程x^2+4x-3=0。
我们可以将a、b和c的值代入公式中进行计算。
根据公式,我们有:
a=1,b=4,c=-3
现在让我们将这些值代入公式中:
x=(-4±√(4^2-4(1)(-3)))/2(1)
=(-4±√(16+12))/2
=(-4±√28)/2
=(-4±2√7)/2
现在我们可以对这个结果进行简化:
x=-2±√7
因此,原方程的解是x=-2+√7和x=-2-√7
这个万能公式对于解任何一元二次方程都是适用的。
它提供了一个通
用的方法,可以用于计算方程的解。
然而,需要注意的是,有时判别式可
能为负数,这意味着方程没有实数解。
在这种情况下,方程的解将是复数。
在实际应用中,一元二次方程的解可以用于解决各种问题。
例如,它
可以用于计算物体的运动轨迹、建模自然现象或求解几何问题。
因此,掌
握这个公式对于数学的学习和实际应用都是非常重要的。
总结起来,一元二次方程的解可以通过万能公式来计算。
这个公式提
供了一个通用的方法,可以用于解决任何一元二次方程。
这种方法是通过
将方程转化为标准形式,并应用配方法得到的。
掌握这个公式对于数学的
学习和实际应用都是非常重要的。