2021-2022学年上海市浦东新区多校联考八年级(上)期末数学试卷

合集下载

2022-2022年上海市浦东新区八年级上学期期末教学

2022-2022年上海市浦东新区八年级上学期期末教学

2022-2022年上海市浦东新区八年级上学期期末教学八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生某人,小学在校生y人,由题意可列方程组()A.30008%11%300010%某y某y+=+=B.30008%11%3000(110%)某y某y+=+=+C.()()300018%111%300010%某y某y+=+++=D.30008%11%10%某y某y+=+=【答案】A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答【详解】设这所学校现初中在校生某人,小学在校生y人,则30008%11%300010%某y某y+=+=故选A【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程2.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根【答案】D【解析】试题分析:分式方程的增根是最简公分母为零时,未知数的值.解:分式方程的增根是使最简公分母的值为零的解.故选D.考点:分式方程的增根.3.三角形的三边长可以是()A.2,11,13B.5,12,7C.5,5,11D.5,12,13【答案】D【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.2,11,13中,2+11=13,不合题意;B.5,12,7中,5+7=12,不合题意;C.5,5,11中,5+5<11,不合题意;D.5,12,13中,5+12>13,能组成三角形;故选D.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4.下列电视台的台标中,是轴对称图形的是()A.B.C.D.【答案】A【解析】B,C,D不是轴对称图形,A是轴对称图形.故选A.5.如果()Pm3,2m4++在y轴上,那么点P的坐标是()A.()2,0-B.()0,2-C.()1,0D.()0,1【答案】B【分析】根据点在y轴上,可知P的横坐标为1,即可得m的值,再确定点P的坐标即可.【详解】解:∵()Pm3,2m4++在y轴上,∴30m+=解得3m=-,()242342m+=-+=-∴点P的坐标是(1,-2).故选B.【点睛】解决本题的关键是记住y轴上点的特点:横坐标为1.6.在tRABC中,3,5ab==,则c的长为()A.2B34C.4D.434【答案】D【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c224ba-=,当b是直角边时,c2234ba+=,则c=4或34,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.7.下列条件中,不能作出唯一三角形的是()A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度【答案】C【解析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.8.如图,直线a,b被直线c所截,下列条件一定能判定直线//ab的是()A.13∠=∠B.14∠=∠C.23∠∠=D.24180∠+∠=【答案】C【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【详解】由∠1=∠3,不能判定直线a与b平行,故A不合题意;由∠3=∠4,不能判定直线a与b平行,故B不合题意;由∠3=∠2,得∠4=∠2,能判定直线a与b平行,故C符合题意;由24180∠+∠=,不能判定直线a与b平行,故D不合题意;故选:C.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2022的面积是()A.504m2B.10092m2C.10112m2D.1009m2【答案】A【分析】由OA4n=2n知OA2022=20222+1=1009,据此得出A2A2022=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA4n=2n,∴OA2022=2022÷2=1008,即A2022坐标为(1008,0),∴A2022坐标为(1009,1),则A2A2022=1009-1=1008(m),∴22022OAAS=12A2A2022某A1A2=12某1008某1=504(m2).故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.10.分式12某+有意义,某的取值范围是()A.某≠2B.某≠﹣2C.某=2D.某=﹣2【答案】B【分析】分式中,分母不为零,所以某+2≠0,所以某≠-2【详解】解:因为12某+有意义,所以某+2≠0,所以某≠-2,所以选B【点睛】本题主要考查分式有意义的条件二、填空题11.由ab>,得到22acbc>的条件是:c______1.【答案】≠【分析】观察不等式两边同时乘以一个数后,不等式的方向没有改变,由此依据不等式的性质进行求解即可.【详解】∵由ab>,得到22acbc>,∴c2>1,∴c≠1,故答案为:≠.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于1的整式,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于1的整式,不等号方向改变.12.已知4y2+my+1是完全平方式,则常数m的值是______.【答案】1或-1【解析】∵1y2-my+1是完全平方式,∴-m=±1,即m=±1.故答案为1或-1.13.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为某秒,y与某之间的关系如图所示,则甲的速度为每秒___________米.【答案】6【解析】由函数图像在B点处可知50秒时甲追上乙,C点为甲到达目的地,D点为乙达到目的地,故可设甲的速度为某,乙的速度为y,根据题意列出方程组即可求解.【详解】依题意,设甲的速度为某米每秒,乙的速度为y米每秒,由函数图像可列方程50()1001300100300某yy-=-=解得某=6,y=4,∴甲的速度为每秒6米故填6.【点睛】此题主要考查函数图像的应用,解题的关键是根据函数图像得到实际的含义,再列式求解.14_________.【答案】±8=,然后根据平方根的定义求出8的平方根.【详解】解:8=,8∴的平方根为=±故答案为±【点睛】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a 的平方根,记作0)a.15.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如113237某y某y+=+=,此题设“1a某=,by=”,得方程3237abab+=+=,解得2ab==,某y=∴=.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做6需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,设甲公司单独完成需某周,乙公司单独完成需y周,则得到方程_______.利用整体思想,解得__________.【答案】116()149某y某y+=+=10某y==【分析】设甲公司单独完成需某周,乙公司单独完成需y周,依题意得分式方程组,换元后得关于a和b的二元一次方程组,解得a和b,再根据倒数关系可得某和y的值,从而问题得解.【详解】设甲公司单独完成需某周,乙公司单独完成需y周,依题意得:116()149某y某y+=+=,设11b某ay==,,原方程化为:()61491abab++==,解得:110115ab==,∴1015某y==,故答案为:116()1491某y某y+=+=;1015某y==.【点睛】本题考查了换元法解分式方程组在工程问题中的应用,要注意整体思想在该类型习题中的应用.16.使分式1某某-有意义的某的范围是________【答案】某≠1【分析】根据分式有意义的条件可求解.【详解】分母不为零,即某-1≠0,某≠1.故答案是:某≠1.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零.17.已知关于某的不等式组0521某a某-≥只有四个整数解,则实数a的取值范是______.【答案】-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.详解:0521某a某①②,-≥->由不等式①解得:某a≥;由不等式②移项合并得:2某>4,解得:某<2,∴原不等式组的解集为2a某,≤<由不等式组只有四个整数解,即为1,0,1,2,可得出实数a的范围为32.a-<≤-故答案为32.a-<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a的取值范围.三、解答题18.我国的农作物主要以水稻、玉米和小麦为主,种植太单调不利于土壤环境的维护,而且对农业的发展也没有促进作用,为了鼓励大豆的种植,国家对种植大豆的农民给予补贴,调动农民种植大豆的积极性.我市乃大豆之乡,今年很多合作社调整种植结构,把种植玉米改成种植大豆,今年我市某合作社共收获大豆200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出14吨,由于今年我市小型大豆深加工企业的增多,预计能提前完成销售任务,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划的2倍还多14吨,结果提前5天完成销售任务。

2020-2021学年上海市浦东新区八年级上学期期末数学试题(解析版)

2020-2021学年上海市浦东新区八年级上学期期末数学试题(解析版)

2020学年第一学期期末质量检测八年级数学学科(满分100分,时间90分钟)一、选择题.(本大题共6题,每题2分,满分12分)1.下列二次根式中,最简二次根式是()A. B. C. D.【答案】D【解析】【分析】根据最简二次根式的定义进行化简即可.【详解】解:A =2,故A 选项错误;B =3,故B 选项错误;C =,故C 选项错误;D D 正确.故选D .【点睛】本题考查了最简二次根式的定义,掌握最简二次根式的定义是解题的关键.2.下列方程中,没有实数根的是()A.230x x -= B.26100x x +=-C.2690x x -+= D.21x =【答案】B【解析】【分析】利用根的判别式24b ac ∆=-逐项判断即可.【详解】A .2(3)090∆=--=>,所以原方程有两个不相等的实数根,故A 不符合题意.B .2(6)41040∆=--⨯=-<,所以原方程没有实数根,故B 符合题意.C .2(6)490∆=--⨯=,所以原方程有一个实数根,故C 不符合题意.D .0(1)10∆=--=>,所以原方程有两个不相等的实数根,故D 不符合题意.故选:B .【点睛】本题考查判断一元二次方程根的情况.熟记判别式公式是解答本题的关键.3.已知三点(),a m 、(),b n 和(),c t 都在反比例函数2021y x=的图像上,若0a b c <<<,则m 、n 和t 的大小关系是()A.t n m<< B.t m n << C.m t n << D.m n t <<【答案】C【解析】【分析】反比例函数(0)k y k x =>的图象分布在第一、三象限,根据图象每个分支的增减性解题即可.【详解】反比例函数2021y x =图象分布在第一、三象限,且在每个分支,y 随x 的增大而减小,0a b c <<< ,∴m t n <<.故选:C .【点睛】本题考查反比例函数图象的增减性,是重要考点,难度较易,掌握相关知识是解题关键.4.下列命题中,是真命题的是()A.三角形的外角大于三角形的任何一个内角B.线段的垂直平分线上的任一点与该线段两个端点能构成等腰三角形C.三角形一边的两个端点到这边上的中线所在的直线的距离相等D.面积都相等的两个三角形一定全等【答案】C【解析】【分析】A 、B 、D 均可举反例说明错误,C 选项可构造图形证明.【详解】解:A.钝角三角形与钝角相邻的外角小于该角,原命题是假命题,故该选项不符合题意;B.如果该点在线段上,那么不能构成等腰三角形,原命题是假命题,故该选项不符合题意;C.当该中线为等腰三角形底边上的中线时,根据三线合一即可得出这两个端点到这边上的中线所在的直线的距离相等,当三角形不是等腰三角形或中线不是等腰三角形底边上的中线时,如图所示,AD 为△ABC 的中线,BF ⊥AD ,CE ⊥AD ,∵AD 为△ABC 的中线,∴BD=CD ,∵BF ⊥AD ,CE ⊥AD ,∴∠BFD=∠CED=90°,∵∠ADB=∠EDC ,∴△BDF ≌△CDE (AAS ),∴BF=CE ,综上,三角形一边的两个端点到这边上的中线所在的直线的距离相等,原命题是真命题,故该选项符合题意;D.如果是一个钝角三角形和锐角三角形,某边相等且该边上的高相等,但它们不全等,原命题是假命题,故该选项不符合题意;故选:C .【点睛】本题考查判断命题的真假,主要考查三角形外角的性质,等腰三角形的性质和判定,垂直平分线的性质,全等三角形的判定与性质.说明一个命题是假命题只需要举一个反例,判断一个命题是真命题需要证明它.5.在ABC 中,6AC =,8BC =,10AB =,AD 平分BAC ∠交BC 于点D ,那么点D 到AB 的距离是()A.4.8B.4C.3D.74【答案】C【解析】【分析】如图,过D 作DH AB ⊥于H ,先证明:90C ∠=︒,再证明:DC DH =,再利用面积比证明:CD AC BD AB=,再求解CD ,即可得到答案.【详解】解:如图,过D 作DH AB ⊥于H,6,8,10,AC BC AB === 2222268100,AC BC AB ∴+=+==90C ∴∠=︒,AD 平分BAC ∠,,DC DH ∴=11221122ACD ABD AC CD AC CD S S BD AC AB DH ∴== ,CD AC BD AB ∴=63105CD BD ∴==,8BC CD BD =+= ,35CD BD ∴==,,3.DH =故选:.C 【点睛】本题考查的是勾股定理逆定理的应用,角平分线的性质,掌握以上知识是解题的关键.6.在ABC 中,A ∠、B Ð、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是()A.222b a c =-B.C A B∠=∠+∠C.::3:4:5A B C ∠∠∠= D.::5:12:13a b c =【答案】C【解析】【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键.二、填空题.(本大题共12题,每题3分,满分36分)7.=_____.【解析】【分析】先化简二次根式,再合并同类二次根式即可..【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.8.函数y =【答案】2021x >【解析】【分析】根据二次根式的被开方数非负且分母不等于0列出不等式即可得解.【详解】解:由题意得,20210->x 则2021x >故答案为:2021x >【点睛】本题考查了函数的定义域,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.已知函数2()2f x x x =-,则f =__________.【解析】【分析】二次根式的混合运算,将代入原式求值计算,注意计算顺序,先算乘除,然后算加减.【详解】解:2f =【点睛】本题考查二次根式的混合运算,注意计算顺序,先算乘除,然后算加减.10.在实数范围内因式分解2243=x x +-_____________.【答案】210210222x x ⎛⎫⎛⎫++ ⎪⎪ ⎪⎪⎝⎭⎝⎭【解析】【分析】当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.2x 2+4x-3不是完全平方式,所以只能用求根公式法分解因式.【详解】2x 2+4x-3=0的解是x 1=2102-+,x 2=-2102--,所以可分解为2x 2+4x-3=2(x-2102-)(x-2102--).即:2x 2+4x-3=22222x x ⎛⎫⎛⎫+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:22 222x x ⎛-++ ⎝⎭⎝⎭.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.求根公式法分解因式:ax 2+bx+c=a (x-x 1)(x-x 2),其中x 1,x 2是方程ax 2+bx+c=0的两个根.11.经过A 、B 两点的圆的圆心的轨迹是______.【答案】线段AB 的垂直平分线【解析】【分析】根据线段垂直平分线的性质即可得答案.【详解】∵线段垂直平分线上的点到线段两端点的距离相等,∴经过A 、B 两点的圆的圆心的轨迹是线段AB 的垂直平分线,故答案为线段AB 的垂直平分线【点睛】本题考查了相等垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等;熟练掌握性质是解题关键.12.命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形【解析】【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.13.已知关于x 的方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是______.【答案】1a ->且0a ≠【解析】【分析】根据根的判别式即可求出a 的取值范围.【详解】解:根据题意得0a ≠且()22410a =-⨯- >,解得1a ->且0a ≠.故答案为1a ->且0a ≠.【点睛】本题考查了一元二次方程的根的问题,掌握根的判别式是解题的关键.14.直角坐标平面内的两点()4,5P --、()2,3Q 的距离为__________.【答案】10【解析】【分析】根据两点间的距离公式直接计算即可.【详解】由两点间的距离公式可得:PQ =10=,故答案为:10.【点睛】本题考查两点间的距离公式,理解公式并熟练运用是解题关键.15.边长为6的等边三角形的面积是__________.【答案】【解析】【分析】作出相应图形ABC 中,作AD BC ⊥,由三线合一性质解得DC=3,继而根据勾股定解得AD 的长,最后根据三角形面积公式解题.【详解】如图,在ABC 中,作AD BC ⊥,6,AB BC AC AD BC===⊥3DC ∴=AD ∴===11622ABC S BC AD ∴=⋅⋅=⨯⨯=故答案为:.【点睛】本题考查等边三角形的性质、三线合一性质、勾股定理、三角形面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.小明的叔叔家承包了一个长方形的鱼池,这个长方形鱼池的面积为40平方米,其对角线长为10米.为建栅栏,那么这个长方形鱼池的周长是__________米.【答案】【解析】【分析】根据长方形的面积公式得到长与宽的积,再根据勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.【详解】解:设长方形的长是a ,宽是b ,根据题意,得:()()222401102ab a b ⎧=⎪⎨+=⎪⎩(2)+(1)×2,得2()180a b +=,即a +b =,所以长方形的周长是m .【点睛】注意根据题意结合勾股定理联立解方程组,只需求得长与宽的和即可.熟练掌握掌握长方形的面积计算公式和勾股定理是解题的关键.17.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,如果6AC =,3AD =,那么BD =__________.【答案】9【解析】【分析】证明△ACD 和△CBD 相似得到对应线段成比例,根据勾股定理求出CD 的长,再把AD 、CD 的值代入比例式中,即可求出结论;【详解】解:∵CD ⊥AB ,∴∠CDA=∠CDB=90°,∴∠ACD+∠A=90°,又∵∠ACB=90°,∴∠ACD+∠DCB=90°,∴∠DCB=∠A在△ACD 和△CBD 中,A DCB CDA CDB∠=∠⎧⎨∠=∠⎩∴△ACD ∽△CBD ∴AD CD CD BD=∵AC=6,AD=3,∴由勾股定理得,33BD=∴BD=9故答案为:9.【点睛】本题考查三角形相似性质和判定、勾股定理等知识点,熟练运用相似的判定定理,判定三角形相似是解题的关键.18.如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为__________.【答案】7【解析】【分析】根据已知利用全等三角形的判定可得到△BCG≌△GJF,从而得到正方形BEFG的面积=正方形ABCD的面积+正方形FHIJ的面积.【详解】解:∵∠BGC+∠FGJ=90°,∠GFJ+∠FGJ=90°∴∠BGC=∠GFJ∵∠BCG=∠GJF,BG=GF∴△BCG≌△GJF∴CG=FJ,BC=GJ,∴BG2=BC2+CG2=BC2+FJ2∴正方形DEFG的面积=正方形ABCD的面积+正方形FHIJ的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.三、简答题.(本大题共5小题,19-20每题5分,21-23每题6分.满分28分)+-19.2)【答案】2-.【解析】【分析】先去括号和分母,再进行二次根式的加减运算即可.=+【详解】原式24(31)1=+-1)=+-+2=+-2=-.【点睛】本题考查二次根式的混合运算,正确化简二次根式是计算本题的关键.20.解方程:240x --=.【答案】13x =+,23x =-.【解析】【分析】直接利用公式法即可求出方程的解.【详解】利用公式法求解,根据方程可知14a b c ==-=-,,∴32b x a -±==,∴1233x x ==,.【点睛】本题考查用公式法求一元二次方程的解,熟记解一元二次方程的公式法是解题的关键.21.已知12y y y =+,1y 与2x -成反比例,2y 与2x +成正比例,并且当1x =时,3y =;当3x =时,13y =.求:y 关于x 的函数解析式.【答案】3242y x x =++-【解析】【分析】首先根据题意,分别表示出y 1与x ,y 2与x 的函数关系式,再进一步表示出y 与x 的函数关系式;然后根据已知条件,得到方程组,即可求解.【详解】设1y =12k x -,2y =2k (x+2),∵12y y y =+,∴y=12k x -+2k (x+2),由1x =时,3y =;3x =时,13y =,得121233513k k k k -+=⎧⎨+=⎩,解得1232k k =⎧⎨=⎩,∴y 关于x 的函数解析式是3242y x x =++-.【点睛】此题考查正比例函数的定义,反比例函数的定义,求函数解析式,熟记正比例函数及反比例函数的定义,设出函数解析式进行计算是解题的关键.22.作图:已知ABC 和线段r ,请在ABC 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)【答案】图见解析.【解析】【分析】根据题意点P 到AC 和BC 的距离相等,可知点P 在ACB ∠的角平分线上,点A 到点P 的距离等于定长r ,可知点P 在以点A 为圆心,以定长r 为半径的圆上,由此作图即可.【详解】如图,先作ACB ∠的角平分线,再以点A 为圆心,以定长r 为半径作圆弧,圆弧与ACB ∠角平分线的交点即为点P.【点睛】本题主要考查角平分线的画法,属于基础题,需要有一定的画图能力,熟练掌握角平分线的画法是解题的关键.23.如图已知Rt △ABC 中,∠ACB=90°,∠B=15°,边AB 的垂直平分线交边BC 于点E,垂足为点D ,取线段BE 的中点F,联结DF,求证:AC=DF 。

2021-2022学年沪科版八年级上册数学期末练习试卷 (word版 含答案)

2021-2022学年沪科版八年级上册数学期末练习试卷 (word版 含答案)

2021-2022学年沪科新版八年级上学期数学期末练习试卷一.选择题(共10小题,满分30分,每小题3分)1.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.52.下列函数的图象y随x的增大而减小的是()A.y=2x B.y=3x+1C.y=4x﹣1D.y=﹣2x+13.下列命题是真命题的为()A.若两角的两边分别平行,则这两角相等B.若两实数相等,则它们的绝对值相等C.对应角相等的两个三角形是全等三角形D.锐角三角形是等边三角形4.若函数y=kx(k≠0)的图象过点P(﹣1,3),则该图象必过点()A.(1,3)B.(1,﹣3)C.(﹣3,1)D.(3,﹣1)5.如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC 6.三边都不相等的三角形有两边长分别为3和5,第三边长是奇数,则其周长为()A.15B.13C.11D.15或13或11 7.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.∠BAD=∠CAE B.AC=DE C.∠ABC=∠AED D.AB=AE8.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A.2B.3C.4D.无法确定9.已知方程组的解为,则直线y=﹣x+2与直线y=2x﹣7的交点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,△ABC的面积是16,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.6B.7C.8D.9二.填空题(共8小题,满分24分,每小题3分)11.函数y=中自变量x的取值范围是.12.在平面直角坐标系xOy中,点A(﹣4,0),B(2,0)在x轴上,若点P到两坐标轴的距离相等,且∠APO=∠BPO,则点P的坐标为.13.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线DE分别交AB,BC于点F,G,连接AG,若AG平分∠CAB,AC=5,则AB的长为.14.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC 和∠A1CD的平分线交于点A2,得∠A2,…,∠A2017BC和∠A2017CD的平分线交于点A2018,则∠A2018=度.15.已知一次函数y=2x+5,当﹣2≤x≤6时,y的最大值是.16.如图,等腰Rt△OAB,∠AOB=90°,斜边AB交y轴正半轴于点C,若A(3,1),则点C的坐标为.17.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点P为AB边上一点,EF垂直平分线段BP,EF与线段AD交于F,连接CF、PF,以下结论:①PF=CF;②∠PFC=120°,③∠PFE+∠ACF=90°;④∠PFA=∠DCF.其中一定正确的有.(填序号即可)18.如图,若AB∥CD,AB⊥AF,E是AF的中点,AF=14,BD=50,CD=30,则CF=.三.解答题(共6小题,满分46分)19.(6分)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.20.(8分)如图,直线y1=x+3与直线y2=mx+交于点M(﹣1,2),与x轴分别交于点A,B,与y轴分别交于C,D.(1)根据图象写出方程组的解是.(2)根据函数图象写出不等式x+3≤mx+的解集.(3)求直线AC,直线BD与x轴围成的△ABM的面积.21.(8分)如图,在△ABC中,AB=AC,点D在BC上,BD=CD,DE⊥AB于点E,DF ⊥AC于点F.求证:△BED≌△CFD.22.(8分)如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.23.(8分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积24.(8分)如图,在△ABC中,BD平分∠ABC,E是BD上一点,EA⊥AB,且EB=EC.(1)如果∠ABC=40°,求∠DEC的度数;(2)求证:BC=2AB.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选:B.2.解:A、k=2>0,y随着x的增大而增大,不符合题意;B、k=3>0,y随着x的增大而增大,不符合题意;C、k=4>0,y随着x的增大而增大,不符合题意;D、k=﹣2<0,y随着x的增大而减小,符合题意;故选:D.3.解:A、若两角的两边分别平行,则这两角相等或互补,故本选项说法是假命题;B、若两实数相等,则它们的绝对值相等,本选项说法是真命题;C、对应角相等的两个三角形不一定是全等三角形,故本选项说法是假命题;D、锐角三角形不一定是等边三角形,故本选项说法是假命题;故选:B.4.解:∵一次函数y=kx的图象经过点(﹣1,3),∴3=﹣k,解得k=﹣3.∴函数解析式为y=﹣3x,∴该图象必过点(﹣1,3).故选:B.5.解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.6.解:设第三边长为x.根据三角形的三边关系,则有5﹣3<x<5+3,即2<x<8,因为三边都不相等,第三边长是奇数,所以x=7,所以周长=3+5+7=15.故选:A.7.解:A、∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,本选项结论成立;B、∵△ABC≌△ADE,∴AC=AE,而AC与DE不一定相等,本选项结论不成立;C、∵△ABC≌△ADE,∴∠C=∠AED,而∠ABC与∠AED不一定相等,本选项结论不成立;D、∵△ABC≌△ADE,∴AB=AD,而AB与AE不一定相等,本选项结论不成立;故选:A.8.解:当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.由作图可知:AE平分∠BAC,∵DC⊥AC,DP⊥AB,∴DP=CD=2,∴PD的最小值为2,故选:A.9.解:∵方程组的解为,∴直线y=﹣x+2与直线y=2x﹣7的交点坐标为(3,﹣1),∵x=3>0,y=﹣1<0,∴交点在第四象限.故选:D.10.解:∵点D是BC的中点,∴AD是△ABC的中线,∴△ABD的面积=△ADC的面积=×△ABC的面积,同理得:△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=×16=2,△AEG的面积=2,△BCE的面积=×△ABC的面积=8,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=×8=2,∴△AFG的面积是2×3=6,故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:依题意有5﹣x≠0,解得:x≠5.故自变量x的取值范围是x≠5.故答案为:x≠5.12.解:当点P在第一象限时,设(m,m),过点O作OE⊥PA于E,OF⊥PB于F.∵∠OPA=∠OPB,∴OE=OF,∴===,∴==2,∴PA2=4PB2,∴(m+4)2+m2=4[(m﹣2)2+m2],解得m=4或0(舍弃),∴P(4,4),当点P在第四象限时,根据对称性可知,P′(4,﹣4),故答案为:(4,4)或(4,﹣4).13.解:∵DE是AB的垂直平分线,∴GA=GB,AF=BF,∠AFE=90°,∵∠C=90°,AG平分∠CAB,∴GC=GF,在Rt△ACG和Rt△AFG中,,∴Rt△ACG≌Rt△AFG(HL),∴AD=AC,∵AC=5,∴AF=5,∴AB=2AF=10,故答案为:10.14.解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2018=∠A=()°,故答案为:.15.解:∵一次函数y=2x+5,∴该函数的图象y随x的增大而增大,∵﹣2≤x≤6,∴当x=6时,y取得最大值,此时y=17,故答案为:17.16.解:过B作BE⊥y轴于E,过A作AF⊥x轴于F,∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOC≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+,当x=0时,y=,∴点C的坐标为(0,),故答案为:(0,).17.解:如图,∵△ABC为等边三角形,AD⊥BC,∴∠ABC=∠ACB=60°,AD垂直平分BC,AD平分∠BAC,∴FB=FC,∠5=30°,∵EF垂直平分线段BP,∴FB=FP,∴FP=FC,所以①正确;∵FP=FB,FB=FC,∴∠3=∠4,∠1=∠2,∴∠1+∠2+∠3+∠4=2(∠1+∠3)=2×60°=120°,∴∠PFB+∠BFC=180°+180°﹣120°=240°,∴∠PFC=360°﹣240°=120°,所以②正确;∵∠ACF=60°﹣∠2=60°﹣∠1,∠PFE=90°﹣∠4=90°﹣∠3,∴∠ACF+∠PFE=60°﹣∠1+90°﹣∠3=60°﹣(∠1+∠3)+90°=90°,所以③正确;∵∠4=∠5+∠AFP,∴∠AFP=∠4﹣30°=∠3﹣30°,∵∠DCF=∠1,而∠1+∠3=60°,∴只有当∠3=45°,∠1=15°,∠PFA=∠DCF,所以④错误.故答案为①②③.18.解:∵E是AF的中点,∴AE=EF=AF=7,∵AB∥CD,∴∠A=∠DFE=90°,在△ABE和△FDE中,,∴△AEB≌△FED(ASA),∴BE=DE=BD=25,∴DF===24,∴CF=CD﹣DF=6,故答案为:6.三.解答题(共6小题,满分46分)19.解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.20.解:∵直线y1=x+3与直线y2=mx+交于点M(﹣1,2),∴方程组的解是,故答案为;(2)由图象可得不等式x+3≤mx+的解集为:x≤﹣1,故答案为x≤﹣1;(3)∵直线y2=mx+过点M(﹣1,2),∴2=﹣m+,解得m=﹣,∴直线BD的解析式为y=﹣x+,∴当y=0时,x=2,∴B(2,0).∵直线AC的解析式为y=x+3,∴当y=0时,x=﹣3,∴A(﹣3,0).∴AB=5,∴S=×5×2=5.△ABM21.证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS).22.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∴∠ACD=60°,∵AB∥CD,∴∠BAC=∠ACD=60°;(2)证明:在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC+∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.23.解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),=2×1=1.(3)S△BOD24.(1)解:∵∠ABC=40°,BD平分∠ABC,∴,∵EB=EC,∴∠ECB=∠EBC=20°,∵∠DEC是△EBC的一个外角,∴∠DEC=∠ECB+∠EBC=40°;(2)证明:过点E作EF⊥BC于点F,∵BD平分∠ABC,EA⊥AB,∴EA=EF,在Rt△AEB和Rt△FEB中,∵∴Rt△AEB≌Rt△FEB(HL),∴AB=FB(全等三角形的对应边相等),∵EB=EC,EF⊥BC,∴BC=2FB,∴BC=2AB.。

2021学年上海市浦东新区沪教版八年级(上)期末数学试卷(五四学制含解析)

2021学年上海市浦东新区沪教版八年级(上)期末数学试卷(五四学制含解析)

2020-2021学年上海市浦东新区八年级(上)期末数学试卷(五四学制)一、选择题(本大题共6题,每题2分,满分12分)1.(2021春•饶平县校级期末)下列二次根式中,最简二次根式是()A.B.C.D.2.(2020秋•上海期末)下列方程中,没有实数根的是()A.x2﹣3x=0B.x2﹣6x+10=0C.x2﹣6x+9=0D.x2=13.(2021•东西湖区模拟)已知三点(a,m)、(b,n)和(c,t)都在反比例函数y=的图象上,若a <0<b<c,则m、n和t的大小关系是()A.t<n<m B.t<m<n C.m<t<n D.m<n<t4.(2020秋•上海期末)下列命题中,是真命题的是()A.三角形的外角大于三角形的任何一个内角B.线段的垂直平分线上的任一点与该线段两个端点能构成等腰三角形C.三角形一边的两个端点到这边上的中线所在的直线的距离相等D.面积都相等的两个三角形一定全等5.(2020秋•上海期末)在△ABC中,AC=6,BC=8,AB=10,AD平分∠BAC交BC于点D,那么点D 到AB的距离是()A.4.8B.4C.3D.6.(2020秋•上海期末)在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,下列条件中不能说明△ABC是直角三角形的是()A.b2=a2﹣c2B.∠C=∠A+∠BC.∠A:∠B:∠C=3:4:5D.a:b:c=5:12:13二、填空题(本大题共12题,每题3分,满分36分)7.(2020•乐陵市二模)﹣=.8.(2020秋•上海期末)函数y=的定义域是.9.(2020秋•上海期末)已知函数f(x)=2x﹣,则f)=.10.(2020秋•上海期末)在实数范围内因式分解:2x2+4x﹣3=.11.(2020秋•浦东新区期末)经过A、B两点的圆的圆心的轨迹是.12.(2021•新吴区二模)命题“等腰三角形的两个底角相等”的逆命题是.13.(2021•丹东)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.14.(2020秋•上海期末)直角坐标平面内的两点P(﹣4,﹣5)、Q(2,3)的距离为.15.(2020秋•上海期末)边长为6cm的等边三角形的面积是.16.(2020秋•上海期末)小明的叔叔家承包了一个长方形的鱼池,这个长方形鱼池的面积为40平方米,其对角线长为10米.为建栅栏,那么这个长方形鱼池的周长是米.17.(2020秋•上海期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=6,AD=3,那么BD=.18.(2020秋•上海期末)如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.三、简答题。

2020-2021学年上海市浦东新区八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年上海市浦东新区八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年上海市浦东新区八年级上学期期末数学复习卷一、选择题(本大题共6小题,共12.0分)1.下列计算正确的是()A. √2+√3=√5B. √4+9=5C. √(−4)2+√42=0D. √2⋅√2=√42.下列式子配方正确的是()A. x2−2x−1=(x+1)2−1B. x2−4x+1=(x−2)2−4C. x2−4x+1=(x−2)2−3D. x2−2x−2=(x−1)2+13.下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A. x2−2x+2B. 2x2−mx+1C. x2−2x+mD. x2−mx−14.下列命题的逆命题是真命题的是()A. 若a=b,则a2=b2B. 对顶角相等C. 若(a+1)x>(a+1),则x>1D. 三角形中,等边对等角5.已知点(1,y1),B(2,y2),C(−3,y3)都在反比例函数y=6的图象上,则y1,y2,y3的大小关系是x()A. y3<y1<y2B. y1<y2<y3C. y2<y1<y3D. y3<y2<y16.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E.若S△ABC=7,DE=2,AB=4,则AC的长是()A. 4B. 3C. 6D. 5二、填空题(本大题共12小题,共36.0分)7.化简:√18−√8=______.8.(1)方程(x+2)(x−3)=x+2的根是________;(2)方程x2+6x+9=0的根是________.9.已知函数f(x)=1,那么f(3)=_______________.1−x10.函数y=1的定义域是___________.√x−211.若关于x的方程x2−3√kx−1=0有实数根,则k的取值范围为____.12.已知y与x+1成正比例,且x=1时,y=2,则当x=−1时,y的值是_______.13.经过定点A且半径为2cm的圆的圆心的轨迹是______.14.若点A(x,0)与B(2,0)的距离为5,则x=___________.15.若直角三角形斜边上的高和中线长分别是4cm,5cm,则它的面积是cm2.16.如图,△ABC中,AB=AC,BC=15,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=______.17.把两个同样大小的含45∘角的三角尺如图所示放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B、C、D在同一直线上.若AB=√2,则CD的长为.(x>0)的图像交18.如图,在平面直角坐标系中,反比例函数y=kx矩形OABC的边AB于点D,交边BC于点E,且BE=EC。

2021-2022学年上海市浦东新区多校联考八年级(上)期末数学试卷(解析版)

2021-2022学年上海市浦东新区多校联考八年级(上)期末数学试卷(解析版)

2021-2022学年上海市浦东新区多校联考八年级第一学期期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.下列三个数为边长的三角形不是直角三角形的是()A.3,3,3B.4,8,4C.6,8,10D.5,5,53.已知正比例函数y=kx(k≠0),y的值随x的值的增大而减小,那么它和反比例函数y =﹣(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.4.下列命题中,逆命题不正确的是()A.两直线平行,同旁内角互补B.对顶角相等C.直角三角形的两个锐角互余D.直角三角形两条直角边的平方和等于斜边的平方5.如图,在等腰Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC,交AC于点D,DE ⊥BC,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm6.在反比例函数y=的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),已知x1<x2<0<x3,则下列各式中,正确的是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2二、填空题(本大题共12小题,每小题3分,共36分)7.已知函数f(x)=,那么f(2)=.8.计算:=.9.函数:的定义域是.10.已知关于x的方程mx2﹣3x﹣1=0有两个不相等的实数根,那么m的取值范围是.11.随着网络购物的兴起,增加了快递公司的业务量.一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长率是x,由题意列出关于x的方程:.12.在实数范围内因式分解:2x2﹣4x﹣1=.13.到点A的距离等于6cm的点的轨迹是.14.已知:点A坐标为(3,4),点B坐标为(﹣1,1),那么点A和点B两点间的距离是.15.已知:如图,在△ABC中,AB=AC,线段AB的垂直平分线分别交AB、AC于点D、E,如果∠EBC=42°,那么∠A=.16.如图,在△ABC中,∠ABC=52°,三角形的两个外角∠DAC和∠ACF的平分线交于点E,则∠ABE=.17.如图,P是正方形ABCD内的一点,将△ABP绕点B顺时针方向旋转到与△CBQ重合,若PB=5cm,则PQ=cm.18.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为.三、简答题(本大题共5小题,每小题5分,满分25分)19.计算:.20.解方程:2y(y﹣2)=y2﹣2.21.已知y=y1+y2,并且y1与x成正比例,y2与x﹣2成反比例.当x=3时,y=7;当x=1时,y=1,求:y关于x的函数解析式.22.某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB⊥BC,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度.23.初二年级小王同学坚持环保理念,每天骑自行车上学,学校离家3000米.某天,小王上学途中因自行车发生故障,修车耽误了一段时间后继续骑行,还是按时赶到了学校、如图描述的是他离家的距离和离家的时间t之间的函数图象,根据图象解决下列问题:(1)修车时间为分钟;(2)到达学校时共用时间分钟;(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为,定义域为;(4)自行车故障排除后他的平均速度是每分钟米.四、解答题(本大题共4小题,第24、25、26每小题6分,第27题9分,共27分)24.如图,已知△ABC,(1)根据要求作图,在边BC上求作一点D,使得点D到点AB、AC的距离相等,在边AB上求作一点E,使得点E到A、D的距离相等;(不要求写作法,但需要保留作图痕迹和结论)(2)在第(1)小题所作的图中,求证:DE∥AC.25.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB,联结AE交CD与点F,点M是AE的中点,联结CM并延长与AB交于点H.(1)点F是CD中点时,求证:AE⊥CD;(2)求证:MH2+HD2=AM2.26.如图,在平面直角坐标系内,双曲线y=(k≠0)上有A,B两点,且与直线y=ax (a>0)交于第一象限内的点A,点A的坐标为(4,2),点B的坐标为(n,1),过点B作y轴的平行线,交x轴与点C,交直线y=ax(a>0)与点D,(1)求:点D的坐标;(2)求:△AOB的面积;(3)在x轴正半轴上是否存在点P,使△OAP是以OA为腰的等腰三角形?若不存在,请说明理由;若存在,请直接写出P的坐标.27.如图,△ABC中,AC=2,BC=4,AB=6.点P是射线CB上的一点(不与点B 重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设EF=x,△APE的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)如果EF=1,请直接写出△APE的面积.参考答案一、选择题(本大题共6小题,每小题2分,共12分)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】把各个选项化简,判断是否与是同类二次根式即可.解:A、==,故选项错误;B、是最简二次根式,故选项错误;C、=,故正确;D、=,故选项错误.故选:C.2.下列三个数为边长的三角形不是直角三角形的是()A.3,3,3B.4,8,4C.6,8,10D.5,5,5【分析】根据勾股定理的逆定理判断即可.解:A.∵32+32=18,()2=18,∴32+32=()2,∴以3,3,三个数为边长的三角形是直角三角形,故A不符合题意;B.∵42+()2=64,82=64,∴42+()2=82,∴以4,8,三个数为边长的三角形是直角三角形,故B不符合题意;C.∵62+82=100,102=100,∴62+82=102,∴以6,8,10三个数为边长的三角形是直角三角形,故B不符合题意;D.∵52+52=50,()2=75,∴52+52≠()2,∴以5,5,三个数为边长的三角形不是直角三角形,故D符合题意;故选:D.3.已知正比例函数y=kx(k≠0),y的值随x的值的增大而减小,那么它和反比例函数y =﹣(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.【分析】首先由“y=kx(k≠0)中y随x的增大而减小”判定k<0,然后根据k的符号来判断函数y=﹣所在的象限.解:∵函数y=kx(k≠0)中y随x的增大而减小,∴k<0,该函数图象经过第二,四象限;∴函数y=﹣的图象经过第一、三象限;故选:C.4.下列命题中,逆命题不正确的是()A.两直线平行,同旁内角互补B.对顶角相等C.直角三角形的两个锐角互余D.直角三角形两条直角边的平方和等于斜边的平方【分析】首先写出各个命题的逆命题,然后进行判断即可.解:A、逆命题是:同旁内角互补,两直线平行,正确,故本选项错误;B、逆命题是相等的角是对顶角,为假命题,故本选项正确;C、逆命题是:若一个三角形两锐角互余,则为直角三角形,正确,故本选项错误;D、逆命题是:若一个三角形两条直角边的平方和等于斜边的平方则为直角三角形,正确,故本选项错误.故选:B.5.如图,在等腰Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC,交AC于点D,DE ⊥BC,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明Rt△ABD和Rt△EBD全等,根据全等三角形对应边相等可得AB=AE,然后求出△DEC的周长=BC,再根据BC=10cm,即可得出答案.解:∵BD是∠ABC的平分线,DE⊥BC,∠A=90°,∴DE=AD,在Rt△ABD和Rt△EBD中,∵,∴Rt△ABD≌Rt△EBD(HL),∴AB=AE,∴△DEC的周长=DE+CD+CE=AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,∵BC=10cm,∴△DEC的周长是10cm.故选:B.6.在反比例函数y=的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),已知x1<x2<0<x3,则下列各式中,正确的是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】根据反比例函数解析式画出草图,再找出符合条件的点,可以直观的得到答案.解:如图所示:根据函数图象可得y2<y1<y3,故选:C.二、填空题(本大题共12小题,每小题3分,共36分)7.已知函数f(x)=,那么f(2)=﹣1.【分析】把x=2代入函数关系式即可解答.解:当x=2时,f(2)===﹣1,故答案为:﹣1.8.计算:=3﹣.【分析】直接利用二次根式的性质化简得出答案.解:=3﹣.故答案为:3﹣.9.函数:的定义域是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,可知:x﹣2≥0,解得x的范围.解:根据题意得:x﹣2≥0,解得:x≥2.10.已知关于x的方程mx2﹣3x﹣1=0有两个不相等的实数根,那么m的取值范围是m>﹣且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得Δ=9+4m>0且m≠0,求出m的取值范围即可.解:∵关于x的方程mx2﹣3x﹣1=0有两个不相等的实数根,∴Δ>0且m≠0,∴9+4m>0且m≠0,∴m>﹣且m≠0,故答案为:m>﹣且m≠0.11.随着网络购物的兴起,增加了快递公司的业务量.一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长率是x,由题意列出关于x的方程:20(1+x)2=24.2.【分析】利用11月份完成投送的快递件数=9月份完成投送的快递件数×(1+平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:依题意得:20(1+x)2=24.2.故答案为:20(1+x)2=24.2.12.在实数范围内因式分解:2x2﹣4x﹣1=2(x﹣)(x﹣).【分析】令原式为0求出x的值,即可确定出因式分解的结果.解:令2x2﹣4x﹣1=0,这里a=2,b=﹣4,c=﹣1,∵△=16+8=24,∴x==,则原式=2(x﹣)(x﹣),故答案为:2(x﹣)(x﹣)13.到点A的距离等于6cm的点的轨迹是以点A为圆心,6cm为半径的圆.【分析】根据圆的定义直接得出答案即可.解:由题知,到点A的距离等于6cm的点的轨迹是以点A为圆心,6cm为半径的圆,故答案为:以点A为圆心,6cm为半径的圆.14.已知:点A坐标为(3,4),点B坐标为(﹣1,1),那么点A和点B两点间的距离是5.【分析】根据勾股定理、两点间的距离公式计算即可.解:由勾股定理得:AB==5,则点A和点B两点间的距离是5,故答案为:5.15.已知:如图,在△ABC中,AB=AC,线段AB的垂直平分线分别交AB、AC于点D、E,如果∠EBC=42°,那么∠A=32°.【分析】由线段垂直平分线的性质可得AE=BE,可得∠A=∠EBA,且可得∠ABC=∠C,在△ABC中利用三角形内角和可求得∠A.解:∵DE为AB的垂直平分线,∴EA=EB,∴∠A=∠EBA,∵AB=AC,∴∠ABC=∠C,又∵∠EBC=42°,∴∠C=42°+∠EBA=42°+∠A,又∵∠A+∠C+∠ABC=180°,∴∠A+2(42°+∠A)=180°,∴∠A=32°.故答案为:32°.16.如图,在△ABC中,∠ABC=52°,三角形的两个外角∠DAC和∠ACF的平分线交于点E,则∠ABE=26°.【分析】过点E作EM⊥AB于M、EN⊥BC于N、EO⊥AC于O,根据角平分线的性质即可得出EM=EO=EN,结合EM⊥AB于M、EN⊥BC于N,即可得出BE平分∠ABC,再根据角平分线的定义即可得出结论.解:过点E作EM⊥AB于M、EN⊥BC于N、EO⊥AC于O,如图所示.∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴EM=EO,EN=EO,∴EM=EN,∵EM⊥AB于M,EN⊥BC于N,∴BE平分∠ABC,∴∠ABE=∠ABC=26°.故答案为:26°.17.如图,P是正方形ABCD内的一点,将△ABP绕点B顺时针方向旋转到与△CBQ重合,若PB=5cm,则PQ=5cm.【分析】依题意得,旋转中心为点B,旋转角∠PBQ=∠ABC=90°,对应点P、Q到旋转中心的距离相等,即PB=BQ=5,可证△BPQ为等腰直角三角形,由勾股定理求PQ.解:根据旋转的性质可知,∠PBQ=∠ABC=90°,PB=BQ=5,∴△BPQ为等腰直角三角形,由勾股定理,得PQ==5.故答案为:5.18.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为﹣.【分析】先过点C作CD⊥x轴于D,作CE⊥y轴于E,构造矩形CDOE,再根据折叠的性质求得AC=2,∠ACD=30°,根据直角三角形的性质以及勾股定理,求得AD与CD 的长,得出点C的坐标,最后计算反比例函数解析式即可.解:过点C作CD⊥x轴于D,作CE⊥y轴于E,则CE=DO,CD=EO,∵A(﹣2,0),∴AO=2,由折叠得,AC=AO=2,∠CAO=2∠BAO=60°,∴Rt△ACD中,∠ACD=30°,∴AD=AC=1,CD==,∴DO=AO﹣AD=2﹣1=1,OE=,又∵点C在第二象限,∴C(﹣1,),∵点C在双曲线y=(k≠0)上,∴k=﹣1×=﹣,故答案为:﹣三、简答题(本大题共5小题,每小题5分,满分25分)19.计算:.【分析】化简二次根式,然后先算乘除,再算加减.解:原式=+9×﹣+=3+﹣()+=3+﹣﹣+=2+.20.解方程:2y(y﹣2)=y2﹣2.【分析】先整理为一般式,再利用公式法求解即可.解:∵2y(y﹣2)=y2﹣2,∴y2﹣4y+2=0,∵a=1,b=﹣4,c=2,∴△=(﹣4)2﹣4×1×2=8>0,则y==2±,∴y1=2+,y2=2﹣.21.已知y=y1+y2,并且y1与x成正比例,y2与x﹣2成反比例.当x=3时,y=7;当x=1时,y=1,求:y关于x的函数解析式.【分析】设所求的函数解析式为y=k1x+(k1≠0,k2≠0),再将所给的点代入可求得,即可求函数解析式.解:设所求的函数解析式为y=k1x+(k1≠0,k2≠0),当x=3时,y=7;当x=1时,y=1,代入y=k1x+,∴,解得,∴函数解析式是y=2x+.22.某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB⊥BC,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度.【分析】设AC=x尺,则AB=(x﹣3)尺,由勾股定理得出方程(x﹣3)2+82=x2,解方程即可.解:设AC=x尺,则AB=(x﹣3)尺,∵AB⊥BC,∴△ABC是直角三角形,由勾股定理得:AB2+BC2=AC2,即(x﹣3)2+82=x2,解得:x=12(尺),答:绳索AC的长度是12尺.23.初二年级小王同学坚持环保理念,每天骑自行车上学,学校离家3000米.某天,小王上学途中因自行车发生故障,修车耽误了一段时间后继续骑行,还是按时赶到了学校、如图描述的是他离家的距离和离家的时间t之间的函数图象,根据图象解决下列问题:(1)修车时间为5分钟;(2)到达学校时共用时间20分钟;(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为S=150t,定义域为0≤t≤10;(4)自行车故障排除后他的平均速度是每分钟300米.【分析】(1)观察图象,线段AB对应的这段时间为修车时间;(2)根据C点横坐标为20,得出到达学校时共用时间;(3)利用待定系数法解答即可;(4)根据线段BC表示修车后行使情况:5分钟行使了1500米,即可求出行驶速度.解:(1)由图知,线段AB对应的这段时间为修车时间,故修车时间为:15﹣10=5(分钟);故答案为:5;(2)利用C点横坐标为20,得出从家到学校用时20分钟,故答案为:20;(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为为S=kt,则10t=1500,解得:k=150,∴S=150t(0≤t≤10),故答案为:S=150t;0≤t≤10;(4)线段BC表示修车后行使情况:5分钟行使了1500米,故速度为1500÷5=300(米/秒);故答案为:300.四、解答题(本大题共4小题,第24、25、26每小题6分,第27题9分,共27分)24.如图,已知△ABC,(1)根据要求作图,在边BC上求作一点D,使得点D到点AB、AC的距离相等,在边AB上求作一点E,使得点E到A、D的距离相等;(不要求写作法,但需要保留作图痕迹和结论)(2)在第(1)小题所作的图中,求证:DE∥AC.【分析】(1)由题意可知,D是∠BAC的角平分线与BC的交点,点E是AD的中垂线与AB的交点;(2)根据角平分线的性质和线段垂直平分线的性质可得∠CAD=∠ADE,再根据平行线的判定即可求解.【解答】(1)解:如图所示:(2)证明:∵AD是∠BAC的角平分线,∴∠CAD=∠BAD,∵EF是AD的中垂线,∴ED=EA,∴∠ADE=∠BAD,∴∠CAD=∠ADE,∴DE∥AC.25.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB,联结AE交CD与点F,点M是AE的中点,联结CM并延长与AB交于点H.(1)点F是CD中点时,求证:AE⊥CD;(2)求证:MH2+HD2=AM2.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,得出MD=MC,再利用点F是CD中点,即可得出结论;(2)根据直角三角形斜边上中线的性质可以得到C,M在线段AD的垂直平分线上,从而得到CH⊥AD,再利用勾股定理得出结论.【解答】证明:(1)连接MD,∵DE⊥AB,∴∠EDA=90°,∵M是AE的中点,∴MD=AE,同理可证:CM=AE,∴CM=MD,∵点F是CD中点,AE⊥CD;(2)∵DE⊥AB,∴∠EDA=90°,∵点M是AE的中点,∴MD=MA=AE,∵CD=CA,∴点M,点C在线段AD的垂直平分线上,∴CM是线段AD的垂直平分线,∴CH⊥AD,HA=HD,∴∠MHA=90°,在Rt△MAH中,MH2+HA2=AM2,∴MH2+HD2=AM2.26.如图,在平面直角坐标系内,双曲线y=(k≠0)上有A,B两点,且与直线y=ax (a>0)交于第一象限内的点A,点A的坐标为(4,2),点B的坐标为(n,1),过点B作y轴的平行线,交x轴与点C,交直线y=ax(a>0)与点D,(1)求:点D的坐标;(2)求:△AOB的面积;(3)在x轴正半轴上是否存在点P,使△OAP是以OA为腰的等腰三角形?若不存在,请说明理由;若存在,请直接写出P的坐标.【分析】(1)求出直线OA解析式,根据反比例函数确定B点坐标,再根据B点和D 点横坐标相同求出D点坐标即可;(2)连接AB、OB,过A点作AH⊥BD于H,根据S△AOB=S△OCD﹣S△COB﹣S△ADB计算即可;(3)分OA=OP和OA=AP两种情况分别求出P点坐标即可.解:(1)∵直线y=ax(a>0)与双曲线y=交于第一象限内的点A(4,2),∴a=,∴直线OA的解析式为y=x,∵点B(n,1)在双曲线y=上,∴n=8,即B(8,1),由题知D点与B点横坐标相同都为8,当x=8时,y=,∴D(8,4);(2)连接AB、OB,过A点作AH⊥BD于H,由(1)知C(8,0),B(8,1),D(8,4),A(4,2),∴OC=8,CD=4,BD=3,BC=1,AH=4,∴S△AOB=S△OCD﹣S△COB﹣S△ADB=OC•CD﹣OC•BC﹣BD•AH=×8×4﹣﹣=16﹣4﹣6=6,即△AOB的面积为6;(3)存在点P,使△OAP是以OA为腰的等腰三角形,分以下两种情况:①当OA=OP时,∵A(4,2),∴OA==2,∴OP=2,即P(2,0);②当OA=AP时,OP=2x A=2×4=8,即P(8,0),综上,符合条件的B点坐标为(2,0)或(8,0).27.如图,△ABC中,AC=2,BC=4,AB=6.点P是射线CB上的一点(不与点B 重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设EF=x,△APE的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)如果EF=1,请直接写出△APE的面积.【分析】(1)先根据勾股定理逆定理判断出△ABC是直角三角形,再由AC=BC即可得出答案;(2)作AD⊥BC,垂足为点D.由直角三角形30°角所对边等于斜边一半知AD=AB =3,BE=2EF=2x,根据勾股定理知BF=x,继而由S△APE=S△APB﹣S△EPB可得出答案.(3)①当点P在线段BC上时,②当点P在线段CB的延长线上时,由三角形的面积公式可得出答案.解:(1)在△ABC中,∵AC=2,BC=4,AB=6,∴AC2+AB2=48,BC2=48,∴AC2+AB2=BC2.∴∠BAC=90°.又∵AC=2,BC=4,∴AC=BC,∴∠B=30°.(2)过点A作AD⊥BC,垂足为点D.在△ADB中,∵∠ADB=90°,∠B=30°,∴AD=AB=3,同理,BE=2EF=2x.在Rt△EFB中,EF2+FB2=EB2,∴BF=x,∴BP=2FB=2x,∴S△EPB=,S△APB=x,∴S△APE=S△APB﹣S△EPB=3x﹣,所求的函数解析式为y=﹣x2+3x,函数的定义域为0≤x<.(3)①当点P在线段BC上时,由(2)可知,S△APE=S△APB﹣S△EPB =3x﹣=3﹣=2.②当点P在线段CB的延长线上时,S△APE=S△APB+S△EPB=3x+=3+=4.综合以上可得,△APE的面积为2或4.。

2023-2024学年上海市浦东新区部分学校联考八年级(上)期末数学试卷及答案解析

2023-2024学年上海市浦东新区部分学校联考八年级(上)期末数学试卷及答案解析

2023-2024学年上海市浦东新区部分学校联考八年级(上)期末数学试卷一、选择题:(本大题共6题,每题3分,共18分)1.(3分)下列二次根式中最简二次根式为()A.B.C.D.2.(3分)在下列各组二次根式中,是同类二次根式的是()A.和B.和C.和D.和3.(3分)下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.D.4.(3分)某厂今年十月份的总产量为500吨,十二月份的总产量达到720吨.若平均每月增长率是x,则可以列出方程()A.500(1+2x)=720B.500(1+x)2=720C.500(1+x2)=720D.720(1﹣x)2=5005.(3分)下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内,平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.56.(3分)如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为()A.2B.3C.4D.5二、填空题:(本大题共12题,每题3分,满分36分)7.(3分)计算:=.8.(3分)化简:=.9.(3分)已知x=3是方程x2﹣2x+m=0的一个根,那么m=.10.(3分)在实数范围内分解因式:x2﹣3x﹣2=.11.(3分)函数的定义域为.12.(3分)已知反比例函数的图象有一分支在第二象限,那么常数m的取值范围是.13.(3分)已知直角坐标平面上点P(3,2)和Q(﹣1,5),那么PQ=.14.(3分)“有两角及其中一角的平分线对应相等的两个三角形全等”是命题(填“真”或“假”).15.(3分)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,AD=4,CD=2,那么∠A=度.16.(3分)如图,DE垂直平分AB,FG垂直平分AC,若∠BAC=110°,则∠DAF=度.17.(3分)在△ABC中,AD是BC边上的中线,AD⊥AB,如果AC=5,AD=2,那么AB 的长是.18.(3分)在Rt△ABC中,∠C=90°,AC=6,点D为边BC上一点,将△ACD沿直线AD翻折得到△AED,点C的对应点为点E,联结BE,如果△BDE是以BD为直角边的等腰直角三角形,那么BC的长等于.三、简答题:(本大题共4题,每题6分,共24分)19.(6分)计算:+(﹣)+.20.(6分)解方程:+=x21.(6分)关于x的一元二次方程x2+(2m﹣1)x+m2=0,其根的判别式的值为9,求m 的值及这个方程的根.22.(6分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y =5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.四、解答题:(本大题共3题,第23题6分,第24题8分,第25题8分,共22分)23.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AB中点,ED∥BC,且与∠ABC的平分线BD交于点D,联结AD.(1)求证:AD⊥BD;(2)记BD与AC的交点为F,求证:BF=2AD.24.(8分)如图,在平面直角坐标系中,O为坐标原点,正比例函数y=x的图象与反比例函数y=(x>0)的图象都经过点A(2,m).(1)求反比例函数的解析式;(2)点B在x轴上,且OA=BA,反比例函数图象上有一点C,且∠ABC=90°,求点C坐标.25.(8分)如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.2023-2024学年上海市浦东新区部分学校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,共18分)1.(3分)下列二次根式中最简二次根式为()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A、原式=,不符合题意;B、原式=,不符合题意;C、原式=|x|,不符合题意;D、原式为最简二次根式,符合题意,故选:D.【点评】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.2.(3分)在下列各组二次根式中,是同类二次根式的是()A.和B.和C.和D.和【分析】根据最简二次根式与同类二次根式的定义作答.【解答】解:A、=2,被开方数是3,与的被开方数2不同,不是同类二次根式,故本选项不符合题意.B、=,被开方数是2,与的被开方数2相同,是同类二次根式,故本选项符合题意.C、=|b|,被开方数是ab,与的被开方数2ab不同,不是同类二次根式,故本选项不符合题意.D、和的被开方数分别是a﹣1、a+1,不是同类二次根式,故本选项不符合题意.故选:B.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.3.(3分)下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.D.【分析】分别利用正比例函数以及反比例函数的性质分析得出答案.【解答】解:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、y=,每个象限内,y随着x的增大而减小,故此选项错误;D、y=﹣,每个象限内,y随着x的增大而增大,故此选项错误;故选:B.【点评】此题主要考查了正比例函数以及反比例函数的性质,正确把握相关性质是解题关键.4.(3分)某厂今年十月份的总产量为500吨,十二月份的总产量达到720吨.若平均每月增长率是x,则可以列出方程()A.500(1+2x)=720B.500(1+x)2=720C.500(1+x2)=720D.720(1﹣x)2=500【分析】设平均每月增长率是x,根据该厂今年十月份及十二月份的总产量,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均每月增长率是x,依题意,得:500(1+x)2=720.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(3分)下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内,平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.5【分析】根据平行线的性质和判定、三角形内角和、对顶角和线段的性质判断即可.【解答】解:①两条平行线被第三条直线所截,内错角相等,原命题是假命题.②三角形的内角和是180°,是真命题.③在同一平面内,平行于同一条直线的两条直线平行,是真命题.④相等的角不一定是对顶角,原命题是假命题.⑤两点之间,线段最短,是真命题;故选:B.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(3分)如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为()A.2B.3C.4D.5【分析】由正方形1性质和勾股定理得a2+b2=18,再由a2+b2=ab+10,得ab+10=18,则ab=8,即可解决问题.【解答】解:设大正方形的边长为c,∵大正方形的面积是18,∴c2=18,∴a2+b2=c2=18,∵a2+b2=ab+10,∴ab+10=18,∴ab=8,∴小正方形的面积=(b﹣a)2=a2+b2﹣2ab=18﹣2×8=2,故选:A.【点评】本题考查了勾股定理、正方形的性质以及完全平方公式等知识,求出ab=8是解题的关键.二、填空题:(本大题共12题,每题3分,满分36分)7.(3分)计算:=2.【分析】本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.【解答】解:,=2×,=2.故答案为:2.【点评】本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.8.(3分)化简:=﹣2.【分析】根据二次根式的性质解答即可.【解答】解:∵4<5,∴2<,∴原式=﹣2.故答案为:﹣2.【点评】本题考查的是二次根式的性质,熟知二次根式具有非负性是解题的关键.9.(3分)已知x=3是方程x2﹣2x+m=0的一个根,那么m=﹣3.【分析】将x=3代入原方程即可求出m的值.【解答】解:将x=3代入x2﹣2x+m=0,∴9﹣6+m=0,∴m=﹣3,故答案为:﹣3.【点评】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.10.(3分)在实数范围内分解因式:x2﹣3x﹣2=.【分析】首先令x2﹣3x﹣2=0,利用公式法即可求得此一元二次方程的解,继而可将此多项式分解.【解答】解:令x2﹣3x﹣2=0,则a=1,b=﹣3,c=﹣2,∴x==,∴x2﹣3x﹣2=.故答案为:.【点评】本题考查实数范围内的因式分解.注意掌握公式法解一元二次方程的知识.11.(3分)函数的定义域为x>5.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得x﹣5>0,解得x>5.故答案为:x>5.【点评】考查了函数自变量的取值范围,本题用到的知识点:分式的分母不等于0,被开方数大于等于0.12.(3分)已知反比例函数的图象有一分支在第二象限,那么常数m的取值范围是m<.【分析】由反比例函数的性质列出不等式3m﹣1<0,解出m的范围.【解答】解:∵反比例函数的图象有一分支在第二象限,∴3m﹣1<0,解得m<,故答案为:m<.【点评】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.13.(3分)已知直角坐标平面上点P(3,2)和Q(﹣1,5),那么PQ=5.【分析】根据平面直角坐标系中两点的距离公式直接计算即可.【解答】解:∵P(3,2)和Q(﹣1,5),∴PQ=,故答案为:5【点评】本题考查了平面直角坐标系中两点的距离公式:若两点的坐标分别为(x1,y1),(x2,y2),则这两点的距离=.14.(3分)“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题(填“真”或“假”).【分析】将原命题写出已知和求证,然后进行证明后即可得到该命题为真命题.【解答】已知:△ABC和△A′B′C′中,∠A=∠A',∠B=∠B′,∠B、∠B′的角平分线,BD=B′D′,求证:△ABC≌△A′B′C′.证明:∵∠B=∠B'且∠B、∠B′的角平分线分别为BD和B′D′,∴∠ABD=∠A′B′D′=∠B,∵BD=B'D',∠A=∠A′,∴△ABD≌△A′B′D′,∴AB=A′B′,∵∠A=∠A′,∠B=∠B′,∴△ABC≌△A′B′C′.∴“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题,故答案为:真.【点评】考查了命题与定理的知识,解题的关键是能够写出原命题的已知和求证并正确的证明,难度不大.15.(3分)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,AD=4,CD=2,那么∠A=30度.【分析】作DE⊥BA于E,利用角平分线的性质可得DE=CD=2,再利用AD=2DE,可得答案.【解答】解:作DE⊥BA于E,∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴DE=CD=2,∵AD=4,∴AD=2DE,∴∠A=30°,故答案为:30.【点评】本题主要考查了角平分线的性质,直角三角形的性质等知识,熟练掌握角平分线的性质是解题的关键.16.(3分)如图,DE垂直平分AB,FG垂直平分AC,若∠BAC=110°,则∠DAF=40度.【分析】根据三角形内角和定理得到∠B+∠C=70°,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B,进而求出∠DAB+∠PAC,结合图形计算即可.【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=180°﹣110°=70°,∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B,同理可得:∠PAC=∠C,∴∠DAB+∠PAC=∠B+∠C=70°,∴∠DAF=110°﹣70°=40°,故答案为:40.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(3分)在△ABC中,AD是BC边上的中线,AD⊥AB,如果AC=5,AD=2,那么AB 的长是3.【分析】过点C作CE∥AB交AD的延长线于E,利用AAS证明△ABD≌△ECD,得AB =EC,AD=ED=2,再利用勾股定理即可得出答案.【解答】解:如图,过点C作CE∥AB交AD的延长线于E,∵AD是BC边上的中线,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD与△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,CE===3,∴AB=CE=3,故答案为:3.【点评】本题主要考查了平行线的性质,全等三角形的判定与性质,勾股定理等知识,作辅助线构造全等三角形是解题的关键.18.(3分)在Rt△ABC中,∠C=90°,AC=6,点D为边BC上一点,将△ACD沿直线AD翻折得到△AED,点C的对应点为点E,联结BE,如果△BDE是以BD为直角边的等腰直角三角形,那么BC的长等于12或3.【分析】根据题意可知,需要分两种情况,∠BDE=90°,∠DBE=90°,画出对应的图形,再根据折叠的性质及等腰直角三角形的性质可求解.【解答】解:①当∠BDE=90°时,如图,此时,四边形ACDE是正方形,则CD=DE=AC=6,又△BDE是等腰直角三角形,所以BD=DE=6,所以BC=CD+BD=12;②当∠DBE=90°时,如图,设BD=x,则BE=x,DE=x,由折叠可知,CD=DE=x,由题意可知,∠BDE=∠DEB=45°,∴∠CDE=135°,∴∠CAE=45°,即△ACF是等腰直角三角形,∴AC=CF=6,∠F=45°,∴BE=BF=x,∴x+x+x=6,解得x=6﹣3,∴BC=+x=3.故答案为:12或3.【点评】本题考查了翻折变换、勾股定理、解直角三角形、等腰直角三角形的性质与判定等知识,解题的关键是学会用分类讨论的思想解决问题.三、简答题:(本大题共4题,每题6分,共24分)19.(6分)计算:+(﹣)+.【分析】先分母有理化,再根据二次根式乘除法进行计算即可.【解答】解:原式==4.【点评】本题考查了二次根式的混合运算,是基础知识要熟练掌握.20.(6分)解方程:+=x【分析】先整理为一般式,再利用因式分解法求解可得.【解答】解:将方程整理为一般式为2x2﹣3x﹣2=0,∵(x﹣2)(2x+1)=0,∴x﹣2=0或2x+1=0,解得x=2或x=﹣0.5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(6分)关于x的一元二次方程x2+(2m﹣1)x+m2=0,其根的判别式的值为9,求m 的值及这个方程的根.【分析】根据判别式以及一元二次方程的解法即可求出答案.【解答】解:由题意可知:Δ=(2m﹣1)2﹣4m2=9,∴m=﹣2,∴该方程为:x2﹣5x+4=0,∴x=1或x=4【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.22.(6分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y =5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.【分析】(1)首先设y1=k1(x﹣1),y2=,再根据y=y1+y2可得y=k1(x﹣1)+,然后把x=2时,y=5;当x=﹣2时,y=﹣9代入可得关于k1、k2的方程组,解出k1、k2的值,可得函数解析式;(2)把x=8代入函数解析式可得答案.【解答】解:(1)∵y1与(x﹣1)成正比例,y2与x成反比例,∴设y1=k1(x﹣1),y2=,∵y=y1+y2,∴y=k1(x﹣1)+,∵当x=2时,y=5;当x=﹣2时,y=﹣9.∴,解得:,∴y关于x的函数解析式为y=2(x﹣1)+(2)当x=8时,原式=2×7+=14.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握正比例函数和反比例函数解析式的形式.四、解答题:(本大题共3题,第23题6分,第24题8分,第25题8分,共22分)23.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AB中点,ED∥BC,且与∠ABC的平分线BD交于点D,联结AD.(1)求证:AD⊥BD;(2)记BD与AC的交点为F,求证:BF=2AD.【分析】(1)由平行线的性质和角平分线的性质可得BE=AE=DE,由等腰三角形的性质和三角形内角和定理可得∠ADB=90°,可证AD⊥BD;(2)由“ASA”可证△ABD≌△NBD,可得AD=DN,由“AAS”可证△ACN≌△BCF,可得BF=AN=2AD.【解答】证明:(1)∵E为AB中点,∴BE=AE,∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠ABD=∠BDE,∴BE=DE,∴DE=AE,∴∠EAD=∠EDA,∵∠EAD+∠EDA+∠ABD+∠BDE=180°,∴∠ADE+∠BDE=90°,∴∠ADB=90°,∴AD⊥BD;(2)延长AD,BC交于点N,在△ADB和△NDB中,,∴△ABD≌△NBD(ASA),∴AD=DN,∴AN=2AD,∵∠ADB=90°=∠ACB,∴∠N+∠DBN=90°=∠DBN+∠BFC,∴∠N=∠BFC,在△ACN和△BCF中,,∴△ACN≌△BCF(AAS),∴BF=AN,∴BF=2AD.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.24.(8分)如图,在平面直角坐标系中,O为坐标原点,正比例函数y=x的图象与反比例函数y=(x>0)的图象都经过点A(2,m).(1)求反比例函数的解析式;(2)点B在x轴上,且OA=BA,反比例函数图象上有一点C,且∠ABC=90°,求点C坐标.【分析】(1)根据正比例函数图象上点的坐标特征求出m,利用待定系数法求出反比例函数的解析式;(2)根据等腰三角形的性质分别求出OD、BD、AD,证明△ADB∽△BEC,根据相似三角形的性质列式计算求出x,得到答案.【解答】解:∵正比例函数y=x的图象经过点A(2,m),∴m=2,∴点A的坐标为(2,2),∴k=4,∴反比例函数的解析式为y=;(2)作AD⊥x轴于D,CE⊥x轴于E,设点C的坐标为(x,),∵AO=AB,AD⊥x轴,∴OD=DB=2,AD=2,∴AB==4,∴∠DAB=30°,∴∠ABD=60°,∵∠ABC=90°,∴∠CBE=30°,∴CE=BC,由勾股定理得,BE=CE,∴×=x﹣4,解得,x1=﹣2(舍去),x2=6,则点C的坐标为(6,).【点评】本题考查的是反比例函数的性质、相似三角形的判定和性质,掌握待定系数法求反比例函数解析式的一般步骤、相似三角形的判定定理和性质定理是解题的关键.25.(8分)如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.【分析】(1)由勾股定理的逆定理可得出∠ACB=90°,由直角三角形的性质可得出答案;(2)求出∠BCQ=30°,由直角三角形的性质得出BQ=BC=3.由勾股定理可得出答案;(3)过点Q作QH⊥BC于点H,证明△BPQ为等边三角形,由勾定理得出+,则可得出答案.【解答】解:(1)∵AC=2,AB=4,BC=6,∴AC2+BC2=48,AB2=48,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC=AB,∴∠B=30°;(2)∵点P关于直线AB的对称点为点Q,∴BD垂直平分PA,∴PB=BQ,∴∠QBD=∠PBD=30°,∴∠PBQ=60°,∵∠BQC=90°,∴∠BCQ+∠PBQ=90°,∴∠BCQ=30°,∴BQ=BC=3.∴CQ==3;(3)过点Q作QH⊥BC于点H,∵BP=BQ,∠PBQ=60°,∴△BPQ为等边三角形,∵QH⊥BP,BP=x,∴BH=x,∴CH=6﹣x,∴QH==x,∵∠CHQ=90°,CQ=y,∴+,∴y关于x的函数解析式为y=(0<x<6).【点评】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,熟练掌握勾股定理是解题的关键。

沪教版-上海市浦东新区第一学期初二(上)数学期末考试试卷及答案

沪教版-上海市浦东新区第一学期初二(上)数学期末考试试卷及答案

沪教版-上海市浦东新区第一学期初二(上)数学期末考试试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1浦东新区第一学期初二数学期末考试试卷一、填空题:(本大题共16题,每题2分,满分32分) 1.计算:28-= . 2.方程x x =2的根是 .3.函数12+=x y 的定义域是 . 4.化简二次根式2)3(π-= .5.在实数范围内分解因式:12-+x x = . 6.如果函数21)(-=x x f ,那么)3(f = .7.已知关于x 的方程0)12(22=+--k x k x 有两个相等的实数根,则k = . 8.某工厂七月份产值是100万元,计划九月份的产值要达到169万元,如果每月的产值的增长率相同,则增长率为 .9.已知y 是x 的反比例函数,且当2=x 时,4=y ,则当1=x 时,=y _______. 10.命题“全等三角形的面积相等”的逆命题是 . 11.经过线段AB 两个端点的圆的圆心的轨迹是 .12.已知在Rt △ABC 中,∠C =90°,AB =10cm ,AC =6cm ,那么B C = cm . 13.在直角坐标平面中,如果线段AB 的两个端点坐标分别为(4,−1)和(1,3),那么线段AB 的长为 .14.如图,已知AD AB =,∠B=∠D ,在求证BC=DC 的过程中,正确添加一条辅助线的方法是:联结 .15.如图,已知在等腰△ABC 中,如果AB =AC ,∠A =40°,DE 是AB 的垂直平分线,那么∠DBC = 度.16.如图,Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,AC 比BC 长3cm ,如果△ADC 的周长为12cm,那么△BDC 的周长为 cm .(第14题) (第15题) (第16题) 二、选择题:(本大题共4题,每题2分,满分8分)17.下列关于x 的方程一定有实数解的是……………………………………(). (A )022=+-x x (B )02=-+m x x (C )01222=+-x x (D )012=--mx x18.下列结论中正确的个数有……………………………………………………( ). (1))(622b a m +不是最简二次根式; (2)a 8与a21是同类二次根式; (3)a 与a 互为有理化因式; (4)2)2)(1(x x x =+-是一元二次方程;(A )0个 (B )1个 (C )2个 (D )3个 19.已知函数)0(≠=k kx y 中y 随x 的增大而增大,那么它和函数(0)k ≠ky=x在同一直角坐标平面内的大致图像可能是……………………………………………( ).DCBACBACBDAE(A) (B) (C) (D)20.已知a 、b 、c 分别是△ABC 的三边,根据下列条件能判定△ABC 为直角三角形的是……( ).(A )11,13,8===c b a (B )12,10,6===c b a (C )9,41,40===c b a (D )25,9,24===c b a三、(本大题共6题,每题7分,满分42分)21.计算:xx x x 1246932-+. 解:22.解方程:3)2(22-=-x x x .解:23.已知:如图,在△ABC 中,CD ⊥AB 垂足为D ,BE ⊥AC 垂足为E ,联结DE ,点G 、F 分别是BC 、DE 的中点.求证:GF ⊥DE . 证明:24.已知:如图,在Rt △ABC 中,∠A =90°,CD 平分∠ACB 交边AB 于点D ,DE ⊥BC 垂足为E ,AD=21BD .A DFG A CDEB (第23题)求证:BE=CE . 证明:25.已知:如图,在四边形ABCD 中, AD ∥BC ,AB=BC+AD ,AE 平分∠BAD 交CD 于点E .求证:BE ⊥AE .证明:26.某建筑工程队在工地一边靠墙处用64米长的铁栅栏围成一个长方形的临时仓库,可利用的墙长是32米,铁栅栏只围三边,围成的长方形形面积是510平方米,求按以上要求所围成长方形的两条邻边的长.解:四、(本大题共2题,第27题9分,第28题9分,满分18分)27.为了预防“流感”,某学校对教室采用“药熏”消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示).现测得药物4分钟燃毕,此时室内空气中每立方米含药量为8毫克.请根据题中所提供的信息,解答下列问题:(1)求药物燃烧时,y 关于x 的函数解析式及定义域; (2)求药物燃烧完后,y 关于x 的函数解析式及定义域;D CA EB(第25题)(第26题)(3)研究表明,当空气中每立方米的含药量不低于2毫克时,才能有效地杀灭空气中的病菌,那么此次消毒有效时间有多长?解:(1)28.已知:如图,等边△ABC 的边长是4,D 是边BC 上的一个动点(与点B 、C不重合),联结AD ,作AD 的垂直平分线分别与边AB 、AC 交于点E 、F . (1)求△BDE 和△DCF 的周长和;(2)设CD 长为x ,△BDE 的周长为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当△BDE 是直角三角形时,求CD 的长. 解:(1)FEDCBA(第28题)(第27题)第一学期期末质量抽测初二数学参考答案及评分说明一、填空题:1.2; 2.1,021==x x ; 3.21-≥x ; 4.3-π;5.)251)(251(-+++x x ; 6.23--; 7.41; 8.30%; 9.8; 10.如果两个三角形的面积相等,那么这两个三角形是全等三角形; 11.线段AB 的垂直平分线; 12.8; 13.5; 14.BD ; 15.30; 16.9.二、选择题:17.D ; 18.C ; 19.D ; 20.C . 三、21.解:原式=x x x 232-+…………………………………………(2分,2分, 2分)=x 3. ……………………………………………………………………(1分)22.解:34222-=-x x x ………………………………………………………………(1分)0342=+-x x …………………………………………………………………(2分) 0)3)(1(=--x x ………………………………………………………………(2分) 3,121==x x .……………………………………………………………………(2分)23.证明:联结DG 、EG .∵CD ⊥AB ,点G 是BC 的中点,∴DG =21BC .………………………………(2分)同理,E G =21BC .………………………………………………………………(2分) ∴DG=EG .………………………………………………………………………(1分) ∵F 是DE 的中点,∴GF ⊥DE .………………………………………………(2分)24.证明:∵∠A =90°,DE ⊥B C , CD 平分∠A CB ,∴A D =DE ……………………(1分)∵A D =21BD ,∴DE =21BD .……………………………………………………(1分) 在Rt △BDE 中,∵DE =21BD ,∴∠B =30°.…………………………………(1分)在Rt △ABC 中,∵∠A =90°,∠B =30°,∴∠ACB =60°.………………(1分)∵CD 平分∠A CB ,∴∠BCD =21∠ACB =30°.………………………………(1分) ∴∠BCD =∠B ,∴BD =CD .……………………………………………………(1分) ∵DE ⊥BC ,∴BE =CE .…………………………………………………………(1分)25.解:延长AE 、BC 交于点F .∵AD ∥BC ,∴∠DAE=∠F .……………………………………………………(1分) ∵AE 平分∠BAD ,∴∠DAE=∠BAF …………………………………………(1分) ∴∠BAF=∠F ,∴AB=BF .……………………………………………………(1分) ∵AB=BC+AD ,BF=BC+CF ,∴AD=CF .……………………………………(1分) 易证△ADE ≌△FCE ,∴AE=FE .………………………………………………(2分) ∴B E ⊥AE .………………………………………………………………………(1分)26.解:设垂直于墙的一边为x 米,则平行于墙的一边为)264(x -米.……………(1分)根据题意得 510)264(=-x x .………………………………………………(2分) 解得151=x ,172=x …………………………………………………………(1分) 当15=x 时,3234264>=-x (不符合题意,舍去)……………………(1分)当17=x 时,30264=-x ……………………………………………………(1分) 答:按要求所围成长方形的两条邻边的长分别为17米和30米.…………………(1分)27.解:(1)∵正比例函数的图像经过点P (4,8),∴正比例函数的解析式为x y 2=.……………………………………………(2分) 定义域为0≤x ≤4.………………………………………………………………(1分) (2)∵反比例函数的图像经过点P (4,8), ∴反比例函数的解析式为xy 32=.……………………………………………(2分)定义域为x ≥4.…………………………………………………………………(1分) (3)把2=y 代入x y 2=中得1=x ,…………………………………………(1分) 把2=y 代入xy 32=中得1=x 6,……………………………………………(1分) 16-1=15,∴此次消毒的有效时间为15分钟.…………………………………(1分)28.解:(1)∵EF 垂直平分AD ,∴AE=DE ,AF=DF .………………………………(1分)∴C △BDE + C △CDF =BE+BD+DE+CD+DF+CF=BC+AC+AB .……………………(1分) ∵BC=AC=AB=4,∴C △BDE + C △CDF =12.………………………………………(1分) (2)∵CD= x ,BC =4,∴BD=x -4.…………………………………………(1分) ∵DE=AE ,∴ C △BDE =AB+BD ,即x y -=8.………………………………(1分) 定义域为40<<x .……………………………………………………………(1分) (3)∵△ABC 是等边三角形,∴∠B=60°. ①当∠BED=90°时,∠BDE=30°∴ BE=21BD=)4(21x -,DE=)4(23x -, ∵BE+DE=4,∴)4(21x -+)4(23x -=4,解得348-=x .……………(1分)②当∠EDB=90°时,∠BED=30°∴ BE=2BD=)4(2x -,DE=)4(3x -, ∵BE+DE=4,∴)4(2x -+)4(3x -=4,解得434-=x .……………(1分)综上所述,当△BDE 是直角三角形时,CD 的长为348-或434-.…(1分)。

┃精选3套试卷┃2021届上海市浦东新区八年级上学期期末联考数学试题

┃精选3套试卷┃2021届上海市浦东新区八年级上学期期末联考数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.7【答案】C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.3.菱形的一个内角是60°,边长是5cm,则这个菱形的较短的对角线长是()A.52cm B.5cm C.3cm D.3cm【答案】B【分析】根据菱形的性质以及已知条件可得,较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线等于其边长.【详解】菱形的一个内角是60°,根据菱形的性质可知,60°角所对的对角线与菱形的两边构成的三角形是一个等边三角形,故这个菱形较短的对角线长5cm.选B.【点睛】本题考查了菱形的性质以及等边三角形的性质,从而确定较短的对角线来求解.4.在一组数﹣4,0.5,0,π,﹣227,0.1010010001…(相邻两个1之间依次增加1个0)中,无理数有()个.A.1个B.2个C.3个D.4个【答案】B【分析】根据无理数的概念直接进行排除即可.【详解】由无理数是无限不循环小数,可得:在一组数﹣4,0.5,0,π,﹣227,0.1010010001…(相邻两个1之间依次增加1个0)中,无理数有:π,0.1010010001…(相邻两个1之间依次增加1个0)两个;故选B.【点睛】本题主要考查无理数的概念,熟练掌握无理数的概念是解题的关键.5.下列线段长能构成三角形的是()A.3、4、7 B.2、3、6 C.5、6、11 D.4、7、10【答案】D【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【详解】解:A、3+4=7,不能构成三角形;B、2+3<6,不能构成三角形;C、5+6=11,不能构成三角形;D、4+7>10,能构成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.6.下列语句正确的是()A的立方根是2 B.-3是27的立方根C.125216的立方根是56±D.2(1)-的立方根是-1【答案】A【详解】解:A.648,= 8的立方根是2,选项A 符合题意. B. 3是27的立方根,选项B 不符合题意.C. 125216的立方根是56,选项C 不符合题意. D. 2(1)1-=,1的立方根是1,选项D 不符合题意.故选A.7.检验x=-2是下列哪个方程的解( )A .2134x x -+=B .1142x =+C .152x x -=-D .52x x x=+ 【答案】B【分析】把x =−2代入各选项中的方程进行一一验证即可.【详解】解:A 、当x =−2时,左边=43-,右边=14-,左边≠右边,所以x =−2不是该方程的解.故本选项错误; B 、当x =−2时,左边=12=右边,所以x =−2是该方程的解.故本选项正确; C 、当x =−2时,左边=32≠右边,所以x =−2不是该方程的解.故本选项错误; D 、当x =−2时,方程的左边的分母等于零,故本选项错误;故选:B .【点睛】本题考查了分式方程的解,注意分式的分母不能等于零.8.下列图案不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A 、是轴对称图形,不合题意;B 、是轴对称图形,不合题意;C 、不是轴对称图形,符合题意;D 、是轴对称图形,不合题意;故选C .【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合. 9.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是( )A .1、2B .2、1C .2、2D .2、3【答案】D 【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴需要正方形2块,正三角形3块.故选D .【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角. 10.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C .二、填空题11.计算:21054ab a c c ÷=__________. 【答案】8b c【分析】先把除法转化为乘法,然后约分化简. 【详解】解:原式=21045ab c c a ⨯=8b c . 故答案为:8b c . 【点睛】本题考查了分式的除法,分式的除法通常转化为分式的乘法来计算,分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘,可简单理解为:除以一个数(或式)等于乘以这个数(或式)的倒数. 12.如图,在ABC ∆中,90C ∠=︒,AD 是BAC ∠的平分线,DE ⊥AB 于点E ,点F 在AC 上,BD DF =,若3AF =,1BE =,则DE 的长为_______.【答案】43【分析】由AD 为角平分线,利用角平分线定理得到DE=DC ,再由BD=DF ,利用HL 得到三角形FCD 与三角形BDF 全等,利用全等三角形对应边相等得出CD=BE ,利用AAS 得到三角形ACD 与三角形AED 全等,利用全等三角形对应边相等得到AC=AE ,由AB=AE+EB ,得出AB=AF+2BE .再利用直角三角形的面积公式解答即可.【详解】解:AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,DE DC ∴=,在Rt CFD ∆和Rt EBD ∆中,DF BD CD ED =⎧⎨=⎩, Rt CFD Rt EBD(HL)∴∆≅∆,1CF EB ∴==,314AC AF CF ∴=+=+=;在ACD ∆和AED ∆中,90CAD EAD ACD AED AD AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ACD AED AAS ∴∆≅∆,AC AE ∴=,2325AB AE EB AC EB AF FC EB AF EB ∴=+=+=++=+=+=,223BC AB AC ∴=-=, ∴111222AC CD AB DE AC BC +=, 即1114543222DE DE ⨯⨯+⨯⨯=⨯⨯, 解得:43DE =. 故答案:43. 【点睛】此题考查了全等三角形的判定与性质,以及角平分线性质,熟练掌握全等三角形的判定与性质是解本题的关键.13.如图,在ABC ∆若中,AD 是BC 边上的高,AE 是BAC ∠平分线.若38,70,B C ∠=︒∠=︒则DAE ∠=_____【答案】16︒【分析】根据直角三角形内角和定理求出∠BAC ,根据角平分线的定义求出∠BAE ,结合图形计算即可.【详解】∵38,70,B C ∠=︒∠=︒∴72BAC =︒∠∵AE 是BAC ∠平分线∴36BAE ∠=︒∵AD 是BC 边上的高,38B ∠=︒∴52BAD =︒∠∴523616DAE =︒-︒=︒∠故答案为:16︒.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键. 14.小明用S 2=110 [(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. 【答案】30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.15.如图所示,在ABC ∆中,60B ∠=︒,2ACB A ∠=∠,将其折叠,使点B 落在AC 上的E 点处,折痕为CD ,则EDA ∠=__________度.【答案】1【分析】根据已知条件得出∠A=40°,∠ACB=80°,再由折叠的性质可得∠CED=∠B ,最后根据三角形的外角的性质即可求出∠EDA 的度数.【详解】解∵60B ∠=︒,2ACB A ∠=∠由∠B+∠ACB +∠A=180°可得:60°+2∠A +∠A=180°∴∠A=40°,∠ACB=80°,由折叠可知:∠CED=∠B=60°,又∵∠CED 是△AED 的外角,∴∠CED=∠A+∠EDA ,即6040EDA ︒=︒+∠解得:20EDA ∠=︒故答案为:1.【点睛】本题考查了三角形中的折叠问题,三角形的内角和、外角的性质,解题的关键是根据题意对角进行运算求解.16.如图,∠MON =30°,点A 1、A 2、A 3、……在射线ON 上,点B 1、B 2、B 3、……在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4,……均为等边三角形,若OA 1=1,则△A 2019B 2019A 2020的边长为__________【答案】2【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…则△A n-1B n A n+1的边长为 2n-1,即可得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n-1B n A n+1的边长为2n-1.则△A2019B2019A2020的边长为2.故答案是2.【点睛】本题考查等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.17.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的65继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的43返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.【答案】620【分析】设慢车的速度为a 千米/时,快车的速度为b 千米/时,根据题意可得5(a+b )=800,5512146435a a ab -=-,联立求出a 、b 的值即可解答.【详解】解:设慢车的速度为a 千米/时,快车的速度为b 千米/时,由图可知两车5个小时后相遇,且总路程为800千米,则5a+5b=800,即a+b=160,再根据题意快车休息2个小时后,以原速的65继续向甲行驶,则快车到达甲地的时间为: 565a b ÷,同理慢车回到甲地的时间为:53a 4a ÷,而快车比慢车早到2.25小时,但是由题意知快车为休息2小时出发而慢车是休息3小时,即实际慢车比快车晚出发1小时,即实际快车到甲地所花时间比慢车快2.25-1=1.25小时, 即:5512146435a a ab -=-,化简得5a=3b ,联立得16053a b a b +=⎧⎨=⎩,解得60100a b =⎧⎨=⎩, 所以两车相遇的时候距离乙地为5b =500千米, 快车到位甲地的时间为565a b ÷=2.5小时, 而慢车比快车多休息一个小时则此时慢车应该往甲地行驶了1.5小时,此时慢车往甲地行驶了41.5603⨯⨯=120千米,所以此时慢车距离乙地为500+120=620千米, 即快车到达甲地时,慢车距乙地620千米.故答案为620.【点睛】本题主要考查的是一次函数的应用,根据图象得出相应的信息是解题的关键.三、解答题18.如图,求出ABC ∆的面积,并画出ABC ∆关于y 轴对称的111A B C ∆,写出ABC ∆关于x 轴对称的222A B C ∆的各点坐标.【答案】132;111A B C ∆图像见解析;A 2(-3,-2),B 2(-4,3),C 2(-1,1) 【分析】求出△ABC 三边长,判定为直角三角形,再用面积公式求出面积;从△ABC 的各点向y 轴引垂线并延长相同单位得到各点的对应点,顺次连接即可得到111A B C ∆;再利用关于x 轴对称的点的坐标特征可得222A B C ∆各点坐标.【详解】解:如图,AC 2=13,CB 2=13,AB 2=26,满足AC 2+ CB 2= AB 2,∴△ABC 是直角三角形,∴△ABC 的面积=113131322⨯⨯=; 所画111A B C ∆如下图:ABC ∆关于x 轴对称的222A B C ∆的各点坐标分别为:A 2(-3,-2),B 2(-4,3),C 2(-1,1).【点睛】本题考查了轴对称变换作图,属于基础题,做轴对称图形的关键是找出各点的对应点,然后顺次连接. 19.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?【答案】75.【解析】试题分析:设原计划平均每天生产x 个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.试题解析:设原计划平均每天生产x 个零件,现在平均每天生产(x+25)个零件, 根据题意得:, 解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.考点:分式方程的应用.20.如图,ABC ∆是边长为9的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE AB ⊥于E ,连接PQ 交AB 于D(1)若30BQD ∠=︒时,求AP 的长(2)当点P ,Q 运动时,线段PD 与线段QD 是否相等?请说明理由(3)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果发生变化,请说明理由【答案】(1)当∠BQD=30° 时,AP=3;(2)相等,见解析;(3)DE 的长不变,92DE = 【分析】(1)先判断出∠QPC 是直角,再利用含30°的直角三角形的性质得出QC =2PC ,建立方程求解决即可;(2)先作出PF ∥BC 得出∠PFA =∠FPA =∠A =60°,进而判断出△DBQ ≌△DFP 得出DQ =DP 即可得出结论;(3)利用等边三角形的性质得出EF =12AF ,借助DF =DB ,即可得出DF =12BF ,最后用等量代换即可. 【详解】(1)解:∵△ABC 是边长为9的等边三角形∴∠ACB=60°,且∠BQD=30°∴∠QPC=90°设AP=x ,则PC=9x -,QB=x∴QC=9x +∵在Rt △QCP 中,∠BQD=30°∴PC=12QC 即()1992x x -=+ 解得3x =∴ 当∠BQD=30° 时,AP=3(2)相等,证明:过P 作PF ∥QC ,则△AFP 是等边三角形∴AP=PF,∠DQB=∠DPF∵P 、Q 同时出发,速度相同,即BQ=AP ,∴BQ=PF ,在△DBQ 和△DFP 中,DQB DPF ODB PDF BQ PF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBQ ≌△DFP(AAS)∴QD=PD(3)解:不变,由(2)知△DBQ ≌△DFP∴BD=DF∵△AFP 是等边三角形,PE ⊥AB ,∴AE=EF ,∴DE=DF+EF=12BF+12FA=12AB=92为定值,即DE 的长不变. 【点睛】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB ≌△DPF 是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.21.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)点A 的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC 和BD 的函数关系式;(4)求学校和博物馆之间的距离.【答案】(1)点A 的意义是甲用0.75小时追上了乙,此时到学校的距离为60千米;(2)甲、乙的速度分别是80千米/小时,40千米/小时; (3)OC 的关系式为80y x =,BD 的函数关系式为4030y x =+;(4)学校和博物馆之间的距离是140千米.【分析】(1)观察函数图象,利用x 轴和y 轴的意义即可得出结论;(2)甲行走了60km 用了0.75小时,乙行走了60km 用了()0.750.75+小时,根据路程与时间的关系即可求解;(3)用待定系数法,根据B 点和A 点坐标即可求出BD 的解析式,根据A 点坐标即可求出直线OC 的解析式;(4)设甲用时x 小时,则乙为(x+1.75)小时,根据路程相等列方程解答即可.【详解】(1)点A 的意义是甲用0.75小时追上了乙,此时到学校的距离为60千米;(2)甲的速度为:60800.75=(千米/时) 乙的速度为:60400.750.75=+(千米/时) 答:甲、乙的速度分别是:80千米/小时,40千米/小时;(3)根据题意得:A 点坐标()0.75,60,当乙运动了45分钟后,距离学校:45403060⨯=(千米) ∴B 点坐标()0,30设直线OC 的关系式:1y k x =,代入A ()0.75,60得到1600.75k =,解得180k =故直线OC 的解析式为80y x =设BD 的关系式为:2y k x b =+把A ()0.75,60和B ()0,30代入上式得:20.756030k b b +=⎧⎨=⎩,解得:24030k b =⎧⎨=⎩ ∴直线BD 的解析式为4030y x =+; (4)设甲的时间x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),所以:80x=40(x+1.75),解得:x=74 ∴ 80×74=140 答:学校和博物馆之间的距离是140千米.【点睛】本题考查的知识点是一次函数的实际应用,从一次函数图象中找出相关数据是解此题的关键. 22.已知3既是x-1的平方根,又是x-2y+1的立方根,求x 2-y 2的平方根.【答案】±1【分析】根据题意得x-1=9,x-2y+1=27,再解方程组求得x ,y 的值,代入即可得出答案.【详解】解:根据题意得192127x x y -⎧⎨-+⎩=①=②, 由①得:x=10,把x=10代入②得:y=-8,∴108x y ⎧⎨-⎩==, ∴x 2-y 2=102-(-8)2=31,∵31的平方根是±1,∴x 2-y 2的平方根是±1.【点睛】本题考查了平方根和立方根,是基础知识比较简单.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.23.如图,BD 平分∠ABC 交AC 于点D ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,若S △ABD =12,求DF 的长.【答案】DF=1.【分析】根据角平分线性质得出DE=DF ,根据三角形的面积公式求出DE 的长,即可得出DF 的长度.【详解】解:∵BD 平分∠ABC 交AC 于点D ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∵S △ABD =12,AB=6, 16122DE ∴⨯⨯=, ∴DE=1.∴DF=1.【点睛】本题考查了角平分线定义的应用,能根据角平分线性质得出DE=DF 是解此题的关键.24.如图,等腰Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 、E 分别在边AB 、AC 的延长线上,CD DE =,过点E 作EF DC ⊥于点F ,交AB 于点G .(1)若40CDE ∠=︒,求CDB ∠的度数;(2)若90CED CDB ∠+∠=︒.求证:CF GF =.【答案】(1)25︒;(2)见解析【分析】(1)在△CDE 中根据等腰三角形的性质和三角形内角和定理得到∠ECD 的度数.在△ACD 中,根据三角形外角的性质即可得出结论;(2)在△CDE 中,根据等腰三角形的性质得到∠ECD=∠CED ,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC .由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF ⊥DC 于点F ,得到∠DEF=∠EDC=45°,即有EF=DF ,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED ,等量代换得到EG=DC ,即可得到结论.【详解】∵等腰Rt ABC ∆中,90ACB ∠=︒,AC BC =,∴45A ABC ∠=∠=︒.又∵CD=DE ,40CDE ∠=︒,∴(18040)270ECD ∠=-÷=︒,∴704525CDB ECD A ∠=∠-∠=︒-︒=︒;(2)∵CD=DE ,∴ECD CED ∠=∠.又∵90CED CDB ∠+∠=︒,∴90ECD CDB ∠+∠=︒.∵90ECD DCB ∠+∠=︒,∴DCB BDC ∠=∠.∵45DCB BDC ABC ∠+∠=∠=︒,∴22.5DCB BDC ∠=∠=︒,∴67.5ECD CED ∠=∠=︒,∴45EDC ∠=︒.∵EF DC ⊥于点F ,∴45DEF EDC ∠=∠=︒,∴EF DF =,67.5EDG EGD ∠=∠=︒,∴EG ED =,∴EG DC =,∴EG EF DC DF -=-,∴CF GF =.【点睛】本题考查了等腰三角形的判定与性质.灵活运用等腰三角形的性质及三角形外角的性质是解答本题的关键.25.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知ABC ∆的外角125ACD ∠=︒中,若70B ∠=︒,则A ∠等于( )A .50°B .55°C .60°D .65°【答案】B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【详解】解:∵∠ACD 是△ABC 的一个外角,∴∠ACD=∠B+∠A ,∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,故选:B .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2.如图,ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,90EPF ∠=︒,给出四个结论:①B BAP ∠=∠;②AE CF =;③PE PF =;④12ABC AEPF S S ∆=四边形,其中成立的有( )A .4个B .3个C .2个D .1个【答案】A 【分析】根据等腰直角三角形的性质,得∠B=45°,∠BAP=45°,即可判断①;由∠BAP=∠C=45°,AP=CP ,∠EPA=∠FPC ,得∆EPA ≅∆FPC ,即可判断②;根据∆EPA ≅∆FPC ,即可判断③;由12EPA FPA FPC FPA CPA ABC AEPF S S S S S S S ∆=+=+==四边形,即可判断④. 【详解】∵ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,∴∠B=45°,∠BAP=12∠BAC=12×90°=45°,即:B BAP ∠=∠, ∴①成立;∵AB AC =,=90BAC ∠︒, P 为BC 中点,∴∠BAP=∠C=45°,AP=CP=12BC ,AP ⊥BC , 又∵90EPF ∠=︒, ∴∠EPA+∠APF=∠FPC+∠APF=90°,∴∠EPA=∠FPC ,∴∆EPA ≅∆FPC (ASA ),∴AE CF =,②成立;∵∆EPA ≅∆FPC ,∴PE PF =∴③成立,∵∆EPA ≅∆FPC , ∴12EPA FPA FPC FPA CPA ABC AEPF S SS S S S S ∆=+=+==四边形, ∴④成立.故选A .【点睛】本题主要考查等腰直角三角形的性质以及三角形全等的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键.3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( ) A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 【答案】D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b 的值,即可得答案.【详解】设直线AB 的解析式为y=kx+b ,∵将直线y=-2x 向上平移后得到直线AB ,∴k=-2,∵直线AB 经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变.4.如图,在平面直角坐标系中,点A坐标为(2,23),作AB⊥x轴于点B,连接AO,绕原点B将△AOB 逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,3)B.(﹣2,3)C.(﹣3,1)D.(﹣3,2)【答案】A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,3,∴OB=2,AB=3∴Rt△ABO中,tan∠AOB233,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=3∠CBE=30°,∴CE=12BC3BE3=3,∴OE=1,∴点C的坐标为(﹣13,故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.5.实数a 、b 、c 、d 在数轴上的位置如图所示,下列关系式不正确的是( )A .a b >B .b d b d -=+C .a c c a -=-D .1d c a ->-【答案】D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A .∵OA >OB ,∴|a|>|b|,故A 正确;B .b d OB OD b d -=+=+,故B 正确;C..|a-c|=|a+(-c )|=-a+c=c-a ,故C 正确;D .|d-1|=OD-OE=DE ,|c-a|=|c+(-a )|=OC+OA ,故D 不正确.故答案为:D .【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.6.如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且16ABC S ∆=,则BEF ∆的面积是( )A .3B .4C .5D .6【答案】B 【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E 、分别是BC 、AD 的中点,可得△EBC 的面积是△ABC 面积的一半;利用三角形的等积变换可解答.【详解】 点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=12EC,而高相等, E 是AD 的中点, 12BEF BEC S S ∴=△△, E 是AD 的中点,12BDE S S ∴=△△ABD , 12DE CD S S =△C △A 12C S S ∴=△EBC △AB 14BFE C S S ∴=△△AB ,且ABC S =16 S ∴△BEF =4故选B.【点睛】本题主要考察三角形的面积,解题关键是证明得出14BFE C S S =△△AB . 7.分式23y x -有意义的条件是( ) A .x ≠0B .y ≠0C .x ≠3D .x ≠﹣3 【答案】C【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案.【详解】解:要使分式23y x -有意义,则30x -≠,解得:x≠1. 故选:C .【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键. 8.下列图形中,∠1与∠2不是同位角的是( ) A . B . C . D .【答案】B【分析】同位角是“F ”形状的,利用这个判断即可.【详解】解:观察A 、B 、C 、D ,四个答案,A 、C 、D 都是“F”形状的,而B 不是.故选:B【点睛】本题考查基本知识,同位角的判断,关键在于理解同位角的定义.9.王老师乘公共汽车从A 地到相距50千米的B 地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时所花的时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( )A .50350204x x =⨯+B .50350420x x =⨯+C .50150204x x +=+D .50501204x x =-+ 【答案】A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是50x 小时, 回来时的时间是5020x +, ∵回来时所花的时间比去时节省了14, ∴50350204x x=⨯+, 故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.10.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13【答案】A 【分析】利用基本作图得到MN 垂直平分AB ,利用线段垂直平分线的定义得到DA=DB ,然后利用等线段代换得到△BDC 的周长=AC+BC .【详解】由作法得MN 垂直平分AB ,∴DA=DB ,∴△BDC 的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=1.故选A .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.二、填空题11.已知一个角的补角是它余角的3倍,则这个角的度数为_____.【答案】45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.12.如图,点 P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是________(只写一个即可,不添加辅助线).【答案】∠APO=∠BPO (答案不唯一)【解析】OA=OB 结合已知条件可得△AOP=≌△BOP (ASA ),当∠OAP=∠OBP 或∠APO=∠BPO 时,利用全等三角形的判定(AAS )可得△AOP ≌△BOP .解:已知点P 在∠AOB 的平分线上∴∠AOP=∠BOP∵OP=OP ,OA=OB∴△AOP=≌△BOP .故填OA=OB .13.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作__________;【答案】(3,5 ).【分析】根据有序数对确定点的位置,可得答案.【详解】解:在电影院中,若将电影票上“7排4号”记作(7,4),,那么”3排5号”应记作(3,5), 故答案为:(3,5 ).【点睛】本题考查了坐标确定位置,利用有序数对确定位置注意排在前,号在后.14.如图,ABC ∆中,90BAC ∠=︒,AB AC =,把ABC ∆沿DE 翻折,使点A 落在BC 边上的点F 处,且15EFC ∠=︒,那么ADE ∠的度数为________.【答案】60︒【解析】根据等腰三角形的性质,求得∠C ,然后利用三角形内角和求得∠FEC ,再根据邻补角的定义求得∠AEF ,根据折叠的性质可得∠AED=∠FED=12∠AEF ,在△ADE 中利用三角形内角和定理即可求解. 【详解】解:∵ABC ∆中,90BAC ∠=︒,AB AC =,∴∠B=∠C=45°又∵15EFC ∠=︒∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC =60°又∵∠AED=∠FED=12∠AEF=30°,∠A=90°, ∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.15.已知等腰△ABC 中,底边BC =20,D 为AB 上一点,且CD =16,BD =12,则△ABC 的周长为____.【答案】1603【分析】由BC=20,CD=16,BD=12,计算得出BD 2+DC 2=BC 2,根据勾股定理的逆定理即可证明CD ⊥AB ,设AD=x ,则AC=x+12,在Rt △ACD 中,利用勾股定理求出x ,得出AC ,继而可得出△ABC 的周长.【详解】解:在△BCD 中,BC=20,CD=16,BD=12,∵BD 2+DC 2=BC 2,∴△BCD 是直角三角形,∠BDC=90°,∴CD ⊥AB ,设AD=x ,则AC=x+12,在Rt △ADC 中,∵AC 2=AD 2+DC 2,∴x 2+162=(x+12)2,解得:x=143. ∴△ABC 的周长为:(143+12)×2+20=1603. 故答案为:1603. 【点睛】 本题考查勾股定理及其逆定理的知识,解题的关键是利用勾股定理求出AD 的长度,得出腰的长度. 16.若数据的2, 3, 5, 8a ,方差是0.7,则数据12,13,15,10,18a 的方差是__________.【答案】0.7【分析】根据方差的意义与求法将第一组数据中的a 的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.17.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO=60°,在坐标轴上找一点P ,使得△PAB 是等腰三角形,则符合条件的点P 共有_____个.【答案】6【解析】如下图,符合条件的点P 共有6个.。

∥3套精选试卷∥2021年上海市浦东新区八年级上学期期末考前模拟数学试题

∥3套精选试卷∥2021年上海市浦东新区八年级上学期期末考前模拟数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列从左边到右边的变形,是正确的因式分解的是( )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(2)1x x x x -+=-+D .2269(3)x x x -+=-【答案】D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A 、右边不是积的形式,该选项错误;B 、224(2)(2)x y x y x y -=+-,该选项错误;C 、右边不是积的形式,该选项错误;D 、2269(3)x x x -+=-,是因式分解,正确.故选:D .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的定义.2.下列图形中对称轴条数最多的是( )A .等边三角形B .正方形C .等腰三角形D .线段 【答案】B【分析】根据对称轴的定义逐一判断出每种图形的对称轴条数,然后即可得出结论.【详解】解:A . 等边三角形有3条对称轴;B . 正方形有4条对称轴;C . 等腰三角形有1条对称轴;D . 线段有2条对称轴.∵4>3>2>1∴正方形的对称轴条数最多故选B .【点睛】此题考查的是轴对称图形对称轴条数的判断,掌握轴对称图形的定义是解决此题的关键.3.下列运算中,结果正确的是( )A .x 3·x 3=x 6B .3x 2+2x 2=5x 4C .(x 2)3=x 5D .(x +y)2=x 2+y 2 【答案】A【分析】依据完全平方公式、幂的乘方、同底数幂的乘法、合并同类项的法则即可解答.【详解】A.x 3·x 3=x 6 ,正确; B.3x 2+2x 2=5x 2,故本选项错误;C.(x 2)3=x 6,故本选项错误;D.(x+y )2=x 2+2xy+y 2,故本选项错误;故选A .【点睛】本题考查了完全平方公式、合并同类项法则、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚.4.下列长度的三条线段能组成三角形的是( )A .3,4,8cm cm cm .B .5,6,11cm cm cm .C .5,9,6cm cm cm .D .6,3,2cm cm cm . 【答案】C【解析】根据三角形三边之间的关系即在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边判断即可.【详解】解:A 选项3478+=<,不能组成三角形,A 错误;B 选项5611+=,不能组成三角形,B 错误;C 选项56119,9546+=>-=<,经计算满足任意两边之和大于第三边,任意两边之差小于第三边,C 正确;D 选项3256+=<,不能组成三角形,D 选项错误.【点睛】本题考查了三角形三边之间的关系,灵活利用三角形三边的关系是判断能否构成三角形的关键. 5.已知225y my ++是完全平方式,则m 的值是( )A .5B .5±C .10D .10±【答案】D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项确定m 的值.【详解】解:∵222255y my y my ++=++∴my =±2•y•5,∴m =±10,故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.计算2的结果是( )A .3B .±3C .9D .±9 【答案】A 【解析】根据公式()()20a a a =≥进一步计算即可.【详解】∵2(3)=3,故选:A.【点睛】本题主要考查了二次根式的计算,熟练掌握相关公式是解题关键.7.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95 人数/人 1 2 5 2则这组数据的中位数和平均数分别为( )A .90,90B .90,89C .85,89D .85,90【答案】B【解析】∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.8.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?( )A .93B .95C .94D .96 【答案】A【解析】解:设数学成绩为x 分,则(88+95+x )÷3=92,解得x=1.故选A .9.一次函数14y x =+的图象如图所示,则一次函数2y x b =--的图象与14y x =+的图象的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据一次函数y 1=x+4的图象经过的象限进行判定即可.【详解】解:由图可知,一次函数y1=x+4的图象经过第一、二、三象限,根据交点一定在函数图象上,两函数的图象的交点不可能在第四象限.故选:D.【点睛】本题考查了两直线的交点问题,确定出一次函数y1=x+4的图象经过的象限是解题的关键.10.点P是直线y=﹣x+2上一动点,O为原点,则OP的最小值为()A.2 B.2C.1 D.2 2【答案】C【分析】首先判定当OP⊥AB的时候,OP最小,然后根据函数解析式求得OA、OB,再根据勾股定理求得AB,进而即可得出OP.【详解】设直线y=﹣x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小,如图所示:当x=0时,2∴点A(02,∴2;当y=0时,求得2,∴点B2,0),∴2,∴22OA OB+=2.∴OP=OAOBAB⋅=2.故选:C.【点睛】此题主要考查一次函数以及勾股定理的运用,熟练掌握,即可解题.二、填空题11.当x 为______时,分式2361x x -+的值为1. 【答案】2. 【分析】先根据分式的值为零的条件确定分子为零分母不为零,再求解方程和不等式即得.【详解】解:∵分式2361x x -+的值为1 ∴236010x x -=⎧⎨+≠⎩∴2x =.故答案为:2.【点睛】本题考查分式的定义,正确抓住分式值为零的条件是解题关键.12.已知关于x ,y 的二元一次方程组224x y m x y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____ 【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①② , ②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 13.已知点A (x ,3)和B (4,y )关于y 轴对称,则(x+y )2019的值为_____.【答案】-1【解析】直接利用关于y 轴对称点的性质,纵坐标相同,横坐标互为相反数得出x ,y 的值,进而得出答案.【详解】解:∵点A (x ,3)和B (4,y )关于y 轴对称,∴x =﹣4,y =3,∴(x+y )2019的值为:﹣1.故答案为:﹣1.【点睛】本题考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.中国高铁再创新高,2019年全国高铁总里程将突破35000公里,约占世界高铁总里程的23,稳居世界第一,将35000用科学计数法表示为__________.【答案】3.5×1.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】35000=3.5×1.故答案为:3.5×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.如图,已知BE 平分ABC ∠,且BE DC ∥,若50ABC ∠=︒,则C ∠的度数是__________.【答案】25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C 的度数.【详解】∵BE 平分ABC ∠,且50ABC ∠=︒,∴∠CBE=12∠ABC=25°, ∵ BE DC ∥∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.16.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .【答案】12°.【解析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.17.用四舍五入法将2.056精确到十分位的近似值为________.【答案】2.1【分析】把百分位上的数字5进行四舍五入即可.【详解】解:2.056精确到十分位的近似值为2.1;故答案为:2.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.三、解答题18.已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.【答案】7或1.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以知道第三边的长度.【详解】解:根据三角形的三边关系,得8-3<BC<3+8,即5<BC<2.又BC长是奇数,则BC=7或1.故答案为7或1.19.如图,在△ABC中,AC=21,BC=13,D是AC边上一点,BD=12,AD=1.(1)求证:BD⊥AC.(2)若E是边AB上的动点,求线段DE的最小值.【答案】(1)证明见解析;(2)线段DE使得最小值为9.2.【分析】(1)利用勾股定理的逆定理解决问题即可.(2)根据垂线段最短可得出当DE⊥AB时,DE长度最小,再利用面积法可求出线段DE的最小值.【详解】解:(1)∵AC=21,AD=1,∴CD=AC﹣AD=5,在△BCD中,BD2+CD2=122+52=19=BC2,∴∠BDC=90°,∴BD⊥AC.(2)当DE⊥AB时,DE最短,在Rt△ABD中,AB=22221612AD BD+=+=20,∵12•AD•DB=12•AB•DE,∴DE=161220⨯=9.2,∴线段DE使得最小值为9.2.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识.20.在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.【答案】(1)2元;2元;(2)1.【分析】(1)根据众数的定义即出现次数最多的数据进而得出即可,再利用中位数的定义得出即可;(2)利用样本估计总体的思想,用总数乘以捐款平均数即可得到捐款总数.【详解】(1)数据2元出现了20次,出现次数最多,所以众数是2元;数据总数为50,所以中位数是第25、26位数的平均数,即(2+2)÷2=2(元).故答案为:2,2.(2)根据题意得:600×(5×8+10×16+2×20+20×4+25×2)÷50=1(元);答:该校学生的捐款总数是1元.【点睛】此题考查条形统计图,中位数,众数的定义,利用样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题关键.21.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【答案】证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D考点:三角形全等的证明22.如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.【答案】(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.23.某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.(1)文学书和科普书的单价分别是多少元?(2)该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?【答案】(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.因式分解:(1)()()222x x x -+-.(2)()24343m n m n --.【答案】 (1)()()()112x x x +--;(2)()223m n - 【分析】(1)先提公因式,再运用平方差公式;(2)先去括号,再运用完全平方公式.【详解】(1)()()222xx x -+- =()()222x x x ---=()()212x x --=()()()112x x x +--(2)()24343m n m n -- =224129m mn n -+=()223m n -【点睛】考核知识点:因式分解.掌握各种因式分解基本方法是关键.25.先化简,再求值:1193()332x x x x -+-+,其中-3.【答案】【分析】先根据分式的混合运算法则化简,然后代入化简即可.【详解】原式=3333x x x x ++-+-()()•332x x -() =﹣33x +当3时,原式=【点睛】本题考查了分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.二次三项式212x mx --(m 是整数),在整数范围内可分为两个一次因式的积,则m 的所有可能值有( )个A .4B .5C .6D .8【答案】C【分析】根据十字相乘法的分解方法和特点可知:m -的值应该是12-的两个因数的和,即11,11,4,4,1,1,---即得m 的所有可能值的个数.【详解】121122634-=-⨯=-⨯=-⨯,m ∴- 的可能值为:112,26,34,112,26,34,-+-+-+---故m 的可能值为:11,11,4,4,1,1,--- 共6个,故选:C .【点睛】考查了十字相乘法分解因式,对常数项的不同分解是解本题的关键,注意所求结果是值的个数. 2.已知:如图,下列三角形中,AB AC =,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】顶角为:36°,90°,108°的等腰三角形都可以用一条直线把等腰三角形分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【详解】由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C .【点睛】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.3.在322,2,8,7--π,1.01001…这些实数中,无理数有( )个. A .1B .2C .3D .4 【答案】C【分析】根据无理数的定义即可求解.【详解】在322,2,8,7--π,1.01001…这些实数中,无理数有2-,π,1.01001… 故选C.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.4.函数 y =ax ﹣a 的大致图象是( ) A . B . C . D .【答案】C【解析】将y=ax-a 化为y= a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A 、B 、 D 中的图象都不过点(1,0), 所以C 项图象正确.故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.5.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用()1,0-表示,左下角方子的位置用()2,1--表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是( )A .()2,0-B .()1,1-C .()1,2-D .()1,2--【答案】B 【解析】首先确定x 轴、y 轴的位置,然后根据轴对称图形的定义确定放的位置.【详解】解:棋盘中心方子的位置用()1,0-表示,则这点所在的横线是x 轴,左下角方子的位置用()2,1--,则这点向右两个单位所在的纵线是y 轴,则小莹将第4枚圆子放的位置是()1,1-时构成轴对称图形.故选:B .【点睛】本题考查了轴对称图形和坐标位置的确定,正确确定x 轴、y 轴的位置是关键.6.下列各式中,计算正确的是( )A .2(3)3-=-B .255=±C .33(3)3-=-D .2(2)2-=-【答案】C【解析】根据平方根、立方根的运算及性质逐个判断即可.【详解】解:A 、2(3)3-=,故A 错误;B 、255=,故B 错误;C 、33(3)3-=-,故C 正确;D 、2(2)2-=,故D 错误,故答案为:C .【点睛】本题考查了平方根、立方根的运算及性质,解题的关键是熟记运算性质.7.如图, DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A .EC FA =B .DC BA = C .D B ∠=∠D .DCE BAF ∠=∠【答案】B 【解析】本题要判定DEC BFA ∆≅∆,已知DE=BF ,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA 后可根据HL 判定DEC BFA ∆≅∆.【详解】在△ABF 与△CDE 中,DE=BF ,由DE⊥AC,BF⊥AC,可得∠BFA=∠DEC=90°.∴添加DC=AB后,满足HL.故选B.【点睛】本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.8.下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形的概念结合所给图形即可得出答案.【详解】第一个图形是轴对称图形;第二是中心对称图形;第三、四个不是轴对称图形小也不是中心对称图形.故选A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.分式23yx-有意义的条件是()A.x≠0 B.y≠0 C.x≠3 D.x≠﹣3 【答案】C【分析】根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【详解】解:要使分式23yx-有意义,则30x-≠,解得:x≠1.故选:C.【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.10.下面四个图形中,属于轴对称图形的是()A.B.C.D.【答案】C【分析】由定义可知,如果将一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形是轴对称图形;接下来,根据上述定义对各选项中的图形进行分析,即可做出判断.【详解】根据轴对称图形的定义可知:选项A、B、D所给的图形均不是轴对称图形,只有选项C的图形是轴对称图形.故选C.【点睛】此题考查轴对称图形的判断,解题关键在于握判断一个图形是否为轴对称图形的方法.二、填空题11. “内错角相等,两直线平行”的逆命题是_____.【答案】两直线平行,内错角相等【解析】试题分析:把一个命题的条件和结论互换就得到它的逆命题.考点:命题与定理12.化简:12=______. 【答案】23.【分析】按照二次根式的性质化简二次根式即可.【详解】解:12=43=23.故答案为:23.【点睛】本题考查了二次根式的化简,熟悉相关性质是解题的关键.13.如图,在Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BE 平分ABC ∠交AC 于E ,交AD 于F ,//FG BC ,//FH AC ,下列结论:①AE AF =;②AF FH =;③AG CE =;④AB FG BC +=,其中正确的结论有____________. (填序号)【答案】①②③④【分析】只要证明∠AFE =∠AEF ,四边形FGCH 是平行四边形,△FBA ≌△FBH 即可解决问题.【详解】∵∠FBD =∠ABF ,∠FBD +∠BFD =90°,∠ABF +∠AEB =90°∴∠BFD =∠AEB∴∠AFE =∠AEB∴AF =AE,故①正确∵FG ∥BC ,FH ∥AC∴四边形FGCH 是平行四边形∴FH =CG ,FG =CH ,∠FHD =∠C∵∠BAD +∠DAC =90°,∠DAC +∠C =90°∴∠BAF =∠BHF∵BF =BF ,∠FBA =∠FBH∴△FBA ≌△FBH (AAS )∴FA =FH ,AB =BH ,故②正确∵AF =AE ,FH =CG∴AE =CG∴AG =CE ,故③正确∵BC =BH +HC ,BH =BA ,CH =FG∴BC =AB +FG ,故④正确故答案为:①②③④【点睛】本题主要考查全等三角形的判定和性质,关键是选择恰当的判定条件,同时要注意利用公共边、公共角进行全等三角形的判定.14.(填>或<)【答案】>32,即可解答本题. 【详解】解:3>5>2,1∴;故答案为:>.【点睛】本题考查的是实数的大小比较,确定无理数的取值范围是解决此题的关键.15.若点(,)A m n 和点(3,2)B 关于x 轴对称,则m n 的值是____.【答案】8-【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,先求出m 、n 的值,再计算(-n )m 的值【详解】解:∵A (m ,n )与点B (3,2)关于x 轴对称,∴m=3,n=2,∴(-n )m =(-2)3=-1.故答案为:-1【点睛】此题主要考查了关于x 轴、y 轴对称的点的坐标,解决此类题的关键是掌握好对称点的坐标规律: (1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.如图,已知AB ∥CF ,E 为DF 的中点.若AB =13cm ,CF =7cm ,则BD =_____cm .【答案】6【分析】先根据平行线的性质求出∠ADE =∠EFC ,再由ASA 可求出△ADE ≌△CFE ,根据全等三角形的性质即可求出AD 的长,再由AB =13cm 即可求出BD 的长.【详解】解:∵AB ∥CF ,∴∠ADE =∠EFC ,∵E 为DF 的中点,∴DE=FE ,在△ADE 和△CFE 中,ADE CFE DE=FEAED=CEF ∠=∠⎧⎪⎨⎪∠∠⎩∴△ADE ≌△CFE (ASA ),∴AD =CF =9cm ,∵AB =13cm ,∴BD =13﹣7=6cm .故答案为:6.【点睛】本题考查全等三角形的判定和性质,根据条件选择合适的判定定理是解题的关键.17.如图,ABC ∆中,ABC ∠、ACB ∠的平分线交于P 点,126BPC ∠=︒,则BAC ∠=________.【答案】72°【分析】先根据三角形内角和定理求出∠1+∠2的度数,再由角平分线的性质得出∠ABC+∠ACB 的度数,由三角形内角和定理即可得出结论.【详解】解:∵在△BPC 中,∠BPC=126°,∴∠1+∠2=180°-∠BPC=180°-126°=54°,∵BP 、CP 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2∠1+2∠2=2(∠1+∠2)=2×54°=108°,∴在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-108°=72°.故答案为:72°.【点睛】此题考查了三角形的内角和定理,平分线性质.运用整体思想求出∠ABC+∠ACB=2(∠1+∠2)是解题的关键.三、解答题18.在解分式方程33122x x x-=---时,小马虎同学的解法如下: 解:方程两边同乘以()2x -,得331x -=-移项,得313x =-+解得5x =你认为小马虎同学的解题过程对吗?如果不对,请你解这个方程.【答案】不对,1x =【分析】观察解方程过程,找出错误步骤,再写出正确解答即可.【详解】解:方程两边同乘以()2x -,得33(2)x x -=---移项得:323x x +=-++解得:1x =经检验:1x =是原分式方程的解所以小马虎同学的解题不对,正确的解是1x =.【点睛】本题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解方程一定注意要验根.19.如图,△ABC 是等腰三角形,AB =AC ,分别以两腰为边向△ABC 外作等边三角形ADB 和等边三角形ACE . 若∠DAE =∠DBC ,求∠BAC 的度数.【答案】∠BAC 的度数为20°【分析】根据等边三角形各内角为60°,等腰三角形底角相等,三角形内角和为180°、∠DAE=∠DBC 即可120°+∠BAC=60°+∠ABC ,即可解题.【详解】解:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠DBA=∠CAE=60°,∴∠DAE =60°+∠BAC +60°=120°+∠BAC ,∴∠DBC =60°+∠ABC ,又∵∠DAE =∠DBC ,∴120°+∠BAC =60°+∠ABC ,即∠ABC =60°+∠BAC .∵△ABC 是等腰三角形,∴∠ABC =∠ACB =60°+∠BAC .设∠BAC 的度数为x ,则x +2(x +60°)=180°,解得x =20°,∴∠BAC 的度数为20°.【点睛】此题考查等腰三角形底角相等的性质,等边三角形各内角为60°的性质,三角形内角和为180°的性质,本题中求得120°+∠BAC=60°+∠ABC 是解题的关键.20.先化简,再求值:2222211()()b a ab b a a ab a a b-+÷+⋅+-,其中a 、b 互为负倒数. 【答案】1ab-,1 【分析】先根据分式混合运算顺序和运算法则化简分式,再代入a 、b 计算即可.【详解】原式=22)()2()b a b a a ab b a b a a b a ab+-+++÷⋅-( =2()()a b a a b a a b ab-++⋅⋅+ =1ab-, 当a 、b 互为负倒数时1ab =-,∴原式=1.【点睛】本题考查分式的化简求值、倒数定义,熟练掌握分式混合运算顺序和运算法则是解答的关键,注意化简结果要化成最简分式或整式.21.有一块四边形土地 ABCD(如图),∠B = 90°,AB = 4m ,BC =3 m ,CD=12 m ,DA = 13 m ,求该四边形地的面积.【答案】236cm【分析】连接AC .根据勾股定理求得AC 的长,从而根据勾股定理的逆定理发现△ADC 是直角三角形,就可求得该四边形的面积.【详解】连接AC .∵∠B=90°,∴2222435AB BC +=+=(m),∵52+122=132,∴△ADC 是直角三角形,且∠ACD=90︒,∴S 四边形ABCD 11345126303622=⨯⨯+⨯⨯=+=(2cm ) 【点睛】本题考查了勾股定理和勾股定理的逆定理、三角形的面积等知识点,能求出∠ACD=90︒是解此题的关键. 22.计算:3a 2·(-b)-8ab(b -12a) 【答案】228a b ab -【分析】根据单项式乘以单项式和单项式乘以多项式的运算法则进行计算即可得解.【详解】原式=222384a b ab a b --+=228a b ab -.【点睛】本题考查了整式的运算,掌握单项式乘以单项式以及单项式乘以多项式的运算法则是解题的关键.23.如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,4,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,并写出点1A 的坐标.(2)画出111A B C ∆关于y 轴对称的222A B C ∆,并写出点2A 的坐标.【答案】(1)见解析,()12,4A -;(2)见解析,()22,4A -- 【分析】(1)作出各点关于x 轴的对称点,再顺次连接即可;(2)作出各点关于y 轴的对称点,再顺次连接即可.【详解】(1)如图,111A B C ∆即为所求,()12,4A -.(2)如图,222A B C ∆即为所求,点()22,4A --.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.24.在如图所示的方格纸中,每个方格都是边长为1个单位的小正方形,ABC ∆的三个顶点都在格点上(每个小正方形的顶点叫做格点).(1)画出ABC ∆关于直线l 对称的图形111A B C ∆.(2)画出ABC ∆关于点O 中心对称的图形222A B C ∆,并标出M 的对称点M '.(3)求出线段MM '的长度,写出过程.【答案】(1)详见解析;(2)详见解析;(3)210【分析】(1)根据网格结构找出点A 、B 、C 关于直线l 的对称点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 、B 、C 关于点O 中心对称的点A 2、B 2、C 2的位置,然后顺次连接即可; (3)利用勾股定理列式计算即可得解.【详解】(1)如图:(2)如图 :(3)过点M 竖直向下作射线,过点M'水平向左作射线,两条线相交于点N ,可知∠MNM'是直角,在RtΔMNM'中,由勾股定理得MN 2+NM'2=MM'2,因为MN=2,M'N=5,所以222640210+==【点睛】本题考查了利用轴对称变换作图,利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.25.如图所示,在ΔABD 和ΔACE 中,有下列四个等式:①AB =AC ;②AD =AE,③∠1=∠2;④BD =CE .请你以其中三个等式作为题设,余下的一个作为结论,写出一个正确的命题(要求写出已知、要说明的结论及说明过程).【答案】已知:AB = AC ,AD =AE , BD =CE ,求证:∠1 = ∠2,证明见解析【解析】试题分析:有两种情形①②③⇒④或①②④⇒③.根据SAS 或SSS 即可证明.试题解析:在△ABD 和△ACE 中,已知①AB=AC ②AD=AE ③∠1=∠2求证:④BD=CE.理由:∵∠1=∠2,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,BA CA BAD CAE DA EA =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE ,∴BD=CE. (此题答案不唯一)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.一个正方形的面积是20,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】C【解析】试题分析:设正方形的边长等于a ,∵正方形的面积是20,∴a=20=25,∵16<20<25,∴4<20<5,即4<a <5,∴它的边长大小在4与5之间.故选C .考点:估算无理数的大小.2.阿牛不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),他认为只须将其中的第2块带去,就能配一块与原来一样大小的三角形,阿牛这样做的理由是( )A .SASB .ASAC .AASD .SSS【答案】B 【解析】应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第2块有完整的两角及夹边,符合ASA .故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个一般三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 3.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,若1min ,1⎧⎫⎨⎬-⎩⎭x x 1=,则x 的值为( ).A .1,1-,2B .1-,2C .1-D .2 【答案】D【分析】结合题意,根据分式、绝对值的性质,分111x =-、1x =两种情况计算,即可得到答案. 【详解】若111x =-,则11x -=。

〖汇总3套试卷〗上海市浦东新区2021年八年级上学期期末复习能力测试数学试题

〖汇总3套试卷〗上海市浦东新区2021年八年级上学期期末复习能力测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是()A.SSS B.SAS C.AAS D.ASA【答案】D【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:D.【点睛】本题考查了全等三角形的判定,掌握三角形全等的判定是解题的关键.2.一个三角形三个内角的度数的比是2:3:5.则其最大内角的度数为()A.60︒B.90︒C.120︒D.150︒【答案】B【分析】先将每份的角度算出来,再乘以5即可得出最大内角的角度.【详解】180°÷(2+3+5)=180°÷10=18°.5×18°=90°.故选B.【点睛】本题考查三角形内角的计算,关键在于利用内角和算出平分的每份角度.3.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为()A.49 B31C.2D.7【答案】D【分析】根据勾股定理可知:以斜边为边长的正方形的面积等于以两条直角边为边长的正方形的面积和,据此求解即可.【详解】解:∵以直角边为边长的两个正方形的面积为35和14,∴AB1=AC1+BC1=35+14=49,∴AB=7(负值舍去),故选:D.【点睛】本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.4.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.9.6 B.9.8 C.11 D.10.2【答案】B【分析】过点A作AD⊥BC于D,根据题意可得当BP最小时,AP+BP+CP最小,然后根据垂线段最短可得当BP⊥AC时,BP最小,然后根据三线合一和勾股定理即可求出BD和AD,然后根据S△ABC=12BC·AD=12AC·BP即可求出此时的BP,从而求出结论.【详解】解:过点A作AD⊥BC于D∵AP+CP=AC=5∴AP+BP+CP=5+BP,即当BP最小时,AP+BP+CP最小,根据垂线段最短,当BP⊥AC时,BP最小∵AB=AC=5,BC=6,∴BD=12BC=3根据勾股定理22AB BD此时S△ABC=12BC·AD=12AC·BP∴12×6×4=12×5·BP解得:BP=4.8∴AP+BP+CP的最小值为4.8+5=9.8故选B.【点睛】此题考查的是垂线段最短的应用、等腰三角形的性质、勾股定理和三角形的面积公式,掌握垂线段最短、三线合一、勾股定理和三角形的面积公式是解决此题的关键.5.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.25°C.15°D.10°【答案】C【详解】解:,,,,,.,.6.下列命题中,属于假命题的是()A.直角三角形的两个锐角互余B.有一个角是60︒的三角形是等边三角形C.两点之间线段最短D.对顶角相等【答案】B【分析】根据直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等即可逐一判断.【详解】解:A. 直角三角形的两个锐角互余,正确;B. 有一个角是60︒的三角形不一定是等边三角形;故B错误;C. 两点之间线段最短,正确;D. 对顶角相等,正确,故答案为:B.【点睛】本题考查了命题的判断,涉及直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等,解题的关键是掌握上述知识点.7.如图,在△ABC 中,点D 是∠ABC 和∠ACB 的角平分线的交点,∠A =80°,∠ABD =30°,则∠DCB 为( )A .25°B .20°C .15°D .10°【答案】B 【分析】由BD 是∠ABC 的角平分线,可得∠ABC =2∠ABD =60°;再根据三角形的内角和求得∠ACB =40°;再由角平分线的定义确定∠DCB 的大小即可.【详解】解:∵BD 是∠ABC 的角平分线,∴∠ABC =2∠ABD =2×30°=60°,∴∠ACB =180°﹣∠A ﹣∠ABC =180°﹣80°﹣60°=40°,∵CD 平分∠ACB ,∴∠DCB =12∠ACB =12×40°=20°, 故选B .【点睛】本题考查了三角形的内角和和三角形角平分线的相关知识,解答本题的关键在于所学知识的活学活用. 8.点(-2,5)关于x 轴对称的点的坐标为( )A .(2,-5)B .(-5,2)C .(-2,-5)D .(5,-2) 【答案】C【分析】关于x 轴对称点的横坐标相同,纵坐标互为相反数.【详解】解:点(-2,5)关于x 轴对称的点的坐标是(-2,-5).故选:C .【点睛】本题主要考查的是关于坐标轴对称的点的坐标特点,明确关于x 轴对称点的横坐标相同,纵坐标互为相反数;关于y 轴对称点的纵坐标相同,横坐标互为相反数是解题的关键.9.已知实数a 满足20062007a a a --=,那么22006a -的值是( )A .2005B .2006C .2007D .2008 【答案】C【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-1≥0,∴a ≥1, ∴20062007a a a -+-=可化为a 2006a 2007a -+-=,∴20072006a -=,∴a-1=20062,∴22006a -=1.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.10.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作弧,分别交AB 、AC 于E 、F 两点,再分别以,E F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线AG ,交CD 于点H ,若ACD ∠120=︒,则AHD ∠的度数为( )A .150︒B .115︒C .120︒D .160︒【答案】A 【分析】先由平行线的性质得出,180CHA HAB ACD CAB ∠=∠∠+∠=︒,进而可求出CAB ∠的度数,再根据角平分线的定义求出HAB ∠的度数,则CHA ∠的度数可知,最后利用180AHD CHA ∠=︒-∠求解即可.【详解】∵//AB CD∴,180CHA HAB ACD CAB ∠=∠∠+∠=︒120ACD ∠=︒180********CAB ACD ∴∠=︒-∠=︒-︒=︒∵AH 平分CAB ∠1302HAB CAB ∴∠=∠=︒ 30CHA ∴∠=︒180150AHD CHA ∴∠=︒-∠=︒故选:A .【点睛】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.二、填空题11.若(x+m )(x+3)中不含x 的一次项,则m 的值为__.【答案】-1【分析】把式子展开,找到x 的一次项的所有系数,令其为2,可求出m 的值.【详解】解:∵(x+m )(x+1)=x 2+(m+1)x+1m ,又∵结果中不含x 的一次项,∴m+1=2,解得m=-1.【点睛】本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为2.12.若式子1a +在实数范围内有意义,则a 的取值范围是__________. 【答案】a >﹣1【分析】根据二次根式和分式有意义的条件可得a+1>0,再解不等式即可.【详解】由题意得:a+1>0,解得:a >﹣1, 故答案为:a >﹣1.【点睛】此题主要考查了二次根式和分式有意义,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.13.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x= .【答案】1【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC ≌△DEF ,∴EF=BC=1,即x=1.14.已知,在Rt ABC 中,90C ∠=︒,12AB =,D 为AB 中点,则CD =__________.【答案】1【分析】先画出图形,再根据直角三角形的性质求解即可.【详解】依题意,画出图形如图所示:12AB =,点D 是斜边AB 的中点 1112622CD AB ∴==⨯=(直角三角形中,斜边上的中线等于斜边的一半) 故答案为:1.【点睛】本题考查了直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,这是常考知识点,需重点掌握,做这类题时,依据题意正确图形往往是关键.15.如图,△ABC 中,AB=AC=15cm ,AB 的垂直平分线交AB 于D ,交AC 于E ,若BC=8cm ,则△EBC 的周长为___________cm .【答案】1【分析】根据线段垂直平分线的性质得出AE =BE ,求出△EBC 的周长=BC +BE +EC =BC +AC ,代入求出即可.【详解】解:∵DE 是AB 的垂直平分线,∴AE =BE ,∵AB =AC =15cm ,BC =8cm ,∴△EBC 的周长=BC +BE +EC =BC +AE +CE =BC +AC =8+15=1cm .故答案为:1.【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等. 16.若(x-1)x+1=1,则x=______.【答案】2或-1【解析】当x+1=0,即x=-1时,原式=(-2) 0 =1;当x-1=1,x=2时,原式=1 3 =1;当x-1=-1时,x=0,(-1) 1 =-1,舍去.故答案为2或-1.17.无盖圆柱形杯子的展开图如图所示.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm .【答案】1【解析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得: 杯子内的筷子长度为:22129+=11,则木筷露在杯子外面的部分至少有:20−11=1(cm ).故答案为1.【点睛】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.三、解答题18.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作弧,两弧相交于点P ,作射线AP ,交CD 于点M .(1)若124ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,延长CN 交AB 于点O ,连接OM ,求证:OA OM =.【答案】 (1)28︒;(2)详见解析【分析】(1)先根据“两直线平行,同旁内角互补”求出∠CAB 的度数,再由作法可知AM 平分∠CAB ,根据角平分线的定义求解即可;(2)由角平分线的定义及平行线的性质等量代换可得MAC CMA ∠=∠,可知AC=CM ,根据等腰三角形的“三线合一”可得CO 垂直平分AM ,根据垂直平分线的性质即可证明结论.【详解】(1)//AB CD ,180ACD CAB ∴∠+∠=︒,又124ACD ∠=︒,56CAB ∴∠=︒,由作法知,AM 是CAB ∠的平分线,1282MAB CAB ∴∠=∠=︒ (2)由作法知,AM 是CAB ∠的平分线,MAB MAC ∴∠=∠又//AB CDMAB CMA ∴∠=∠∴MAC CMA ∠=∠AC MC ∴=,又CN AM ⊥OC ∴垂直平分线段AMOA OM ∴=.【点睛】本题考查的是平行线的性质,等腰三角形的性质和判定,垂直平分线的性质,角平分线的尺规作图,解题关键是能从作法中确定AM 平分∠CAB .19.计算:(1)141223(3)(6)a b a b a b -----⋅-÷(2)(2x+y)2+(x-y)(x+y)-5x(x-y).【答案】(1)12b -;(2)9xy【分析】(1)按照同底幂指数的运算规则计算可得;(2)先去括号,然后合并同类项.【详解】(1)141223(3)(6)a b a b a b -----⋅-÷ 1124231-212a b b --+-++==- (2) (2x+y)2+(x-y)(x+y)-5x(x-y).222224455x xy y x y x xy =+++--+9xy =.【点睛】本题考查同底幂的乘除运算和多项式相乘,需要注意,在去括号的过程中,若括号前为“﹣”,则括号内需要变号.20.勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法,画出验证勾股定理的方法,并写出验证过程.【答案】见解析【分析】根据勾股定理的定义及几何图形的面积法进行证明即可得解.【详解】如下图,根据几何图形的面积可知:222211()42422a b ab a b ab ab c +-⨯=++-⨯= 整理得:222a b c +=.【点睛】本题主要考查了勾股定理的推到,熟练掌握面积法推到勾股定理是解决本题的关键.21.计算:[(x 2+y 2)﹣(x ﹣y )2+2y (x ﹣y )]÷4y .【答案】x ﹣12y 【分析】首先利用完全平方公式计算小括号,然后再去括号,合并同类项,最后再计算除法即可.【详解】解:原式=(x 2+y 2﹣x 2+2xy ﹣y 2+2xy ﹣2y 2)÷4y ,=(4xy ﹣2y 2)÷4y ,=x ﹣12y . 【点睛】此题主要考查了整式的混合运算,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.22.尺规作图:校园有两条路OA 、OB ,在交叉路口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P .(不写画图过程,保留作图痕迹)【答案】见解析.【分析】分别作线段CD 的垂直平分线和∠AOB 的角平分线,它们的交点即为点P .【详解】如图,点P 为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键. 23.计算:(11822 (2148123+(3)()131313128---- (4)解方程组235,2715.x y x y +=⎧⎨-=-⎩【答案】(1)2;(2)33;(3)2;(4)122x y ⎧=-⎪⎨⎪=⎩ 【分析】(1)先化简二次根式,然后先做小括号里面的合并同类二次根式,最后做除法;(2)先化简二次根式,然后合并同类二次根式;(3)先求立方根,用平方差公式计算,负整数指数幂的计算,然后进行有理数加减混合运算;(4)用加减消元法解一元二次方程组.【详解】解:(11822 =2222⎭=22=2;(2+=(3)()1112---=113122⎛⎫-+---⎪⎝⎭=1131+22-+-=2(4)2352715x yx y+=⎧⎨-=-⎩①②①-②得:1020y=解得:y=2把y=2代入①,得2325x+⨯=解得:12x=-所以方程组的解为122xy⎧=-⎪⎨⎪=⎩【点睛】本题考查二次根式的混合运算,平方差公式的计算,负整数指数幂及解一元二次方程组,计算综合题,掌握运算法则及运算顺序,正确计算是解题关键.24.分解因式:(1)24m n n-(2)22363ax axy ay-+-【答案】(1)n(m+2)(m﹣2);(2)23()a x y--【分析】(1)通过提公因式及平方差公式进行计算即可;(2)通过提公因式及完全平方公式进行计算即可.【详解】(1)原式=2(4)n m -=n (m+2)(m ﹣2)(2)原式=223(2)a x xy y --+ 23()a x y =--【点睛】本题主要考查了因式分解,熟练掌握提公因式法及公式法进行计算是解决本题的关键.25.如图,直线8y kx =+分别与x 轴,y 轴相交于A ,B 两点,0为坐标原点,A 点的坐标为(4,0) (1)求k 的值;(2)过线段AB 上一点P(不与端点重合)作x 轴,y 轴的垂线,乖足分别为M ,N.当长方形PMON 的周长是10时,求点P 的坐标.【答案】(1)k=﹣2;(2)点P 的坐标为(3,2).【解析】试题分析:(1)因为直线8y kx =+分别与x 轴,y 轴相交于A B ,两点,O 为坐标原点,A 点的坐标为()40,,即直线8y kx =+经过()40A ,,所以048k =+,解之即可; (2)因为四边形PNOM 是矩形,点P 在直线28y x =-+上,设()28P t t -+,, 则,28PN t PM t ==-+, 而()210C PN PM =+=,由此即可得到关于t 的方程,解方程即可求得. 试题解析:(1)∵直线y=kx+8经过A(4,0),∴0=4k+8,∴k=−2.(2)∵点P 在直线y=−2x+8上,设P(t,−2t+8),∴PN=t ,PM=−2t+8,∵四边形PNOM 是矩形,()28210C t t ∴=-+⨯=,解得3,t = ∴点P 的坐标为()32.,八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1B .﹣52C .±1D .±52 【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.2.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是( )A .5,12,13cm cm cmB .1,1cm cmC .1,2cm cmD ,2cm【答案】D【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A 、∵52+122=169=132,∴能构成直角三角形,故本选项错误;B 、∵12+12=2=)2,∴能构成直角三角形,故本选项错误;C 、∵12+22=5=2,∴能够构成直角三角形,故本选项错误;D 2+22=7≠2,∴不能构成直角三角形,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键. 3.若把分式6445x y x y--中的x 、y 都扩大4倍,则该分式的值( ) A .不变B .扩大4倍C .缩小4倍D .扩大16倍【答案】A【分析】把x换成4x,y换成4y,利用分式的基本性质进行计算,判断即可.【详解】644464 445445x y x yx y x y ⨯-⨯-=⨯-⨯-,∴把分式6445x yx y--中的x,y都扩大4倍,则分式的值不变.故选:A.【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.4.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【答案】C【分析】有一个角是直角的三角形是直角三角形.【详解】解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.【点睛】本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.5.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a≥1B.a>1 C.a≤-1 D.a<-1 【答案】A【解析】{122x ax x->->-①②,由①得,x<1,由②得,x>a,∵此不等式组无解,∴a⩾1.故选A.点睛:此题主要考查了已知不等式的解集,求不等式中另一未知数的问题.可以先将另一未知数当做已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.6.下列命题是假命题的是().A.两直线平行,内错角相等B.三角形内角和等于180°C.对顶角相等D.相等的角是对顶角【答案】D【分析】根据平行线的性质、三角形的内角和定理和对顶角的性质逐一判断即可.【详解】解:A.两直线平行,内错角相等,是真命题,故不符合题意;B.三角形内角和等于180°,是真命题,故不符合题意;C.对顶角相等,是真命题,故不符合题意;D.相等的角不一定是对顶角,故符合题意.故选D.【点睛】此题考查的是真假命题的判断,掌握平行线的性质、三角形的内角和定理和对顶角的性质是解决此题的关键.7.对于函数y=﹣2x+1,下列结论正确的是()A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限【答案】C【分析】根据一次函数的图象和性质,以及一次函数图象上点的坐标特征,一次函数解析式系数的几何意义,逐一判断选项,即可.【详解】∵k=﹣2<0,∴y值随x值的增大而减小,结论A不符合题意;∵当y=0时,﹣2x+1=0,解得:x=12,∴函数y=﹣2x+1的图象与x轴交点坐标为(12,0),结论B不符合题意;∵当x=﹣1时,y=﹣2x+1=3,∴函数y=﹣2x+1的图象必经过点(﹣1,3),结论C符合题意;∵k=﹣2<0,b=1>0,∴函数y =﹣2x+1的图象经过第一、二、四象限,结论D 不符合题意.故选:C .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数图象上点的坐标特征,一次函数解析式系数的几何意义,是解题的关键.8.如图,过边长为 1 的等边△ABC 的边 AB 上一点 P ,作 PE ⊥AC 于 E ,Q 为 BC 延长线上一点,当 PA=CQ 时,连PQ 交 AC 边于 D ,则 DE 的长为( )A .0.5B .1C .0.25D .2【答案】A 【分析】过P 作PM ∥BC ,交AC 于M ,则△APM 也是等边三角形,在等边三角形△APM 中,PE 是AM 上的高,根据等边三角形三线合一的性质知AE=EM ;易证得△PMD ≌△QCD ,则DM=CD ;此时发现DE 的长正好是AC 的一半,由此得解.【详解】过P 作PM ∥BC ,交AC 于M ;∵△ABC 是等边三角形,且PM ∥BC ,∴△APM 是等边三角形,又∵PE ⊥AM , ∴12AE EM AM ==;(等边三角形三线合一) ∵PM ∥CQ ,∴∠PMD=∠QCD ,∠MPD=∠Q ;又∵PA=PM=CQ ,在△PMD 和△QCD 中 PDM CDQ PMD DCQ PM CQ ∠∠⎧⎪∠∠⎨⎪⎩===,∴△PMD ≌△QCD (AAS ),∴12CD DM CM ==, ∴()111222DM ME AM MC AC +=+==, 故选A .【点睛】此题考查了平行线的性质、等边三角形的性质、全等三角形的判定和性质;能够正确的构建出等边三角形△APM 是解答此题的关键.9.下列命题是假命题...的是( ) A .直角都相等B .对顶角相等C .同位角相等D .两点之间,线段最短 【答案】C【解析】根据真假命题的概念,可知直角都相等是真命题,对顶角相等是真命题,两点之间,线段最短,是真命题,同位角相等的前提是两直线平行,故是假命题.故选C.10.我们要节约用水,平时要关好水龙头.没有关好水龙头,每滴水约0.05毫升,每分钟滴60滴.如果小明忘记关水龙头,则x 分钟后,小明浪费的水y (毫升)与时间x (分钟)之间的函数关系是( ) A .y =60xB .y =3xC .y =0.05xD .y =0.05x+60 【答案】B【分析】根据题意可得等量关系:水龙头滴出的水量y 毫升=水龙头每分钟滴出60滴水×0.05毫升×滴水时间,根据等量关系列出函数关系式.【详解】解:根据“水龙头滴出的水量y 毫升=水龙头每分钟滴出60滴水×0.05毫升×滴水时间”得:y =60×0.05x =3x ,故选:B .【点睛】此题主要考查了根据实际问题列一次函数关系式,关键是正确理解题意,找出题目中的等量关系.二、填空题11.x+1x=3,则x 2+21x =_____. 【答案】1【解析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x+1x =3, ∴(x+1x)2=9, ∴x 2+21x+2=9, ∴x 2+21x=1.故答案为1.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键. 12.若分式3521x +-有意义,则x __________. 【答案】≠12 【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x ≠12. 故答案为:≠12. 【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.13_____78 【答案】<【分析】由题意先将分数通分,利用无理数的估值比较分子的大小即可.【详解】解:通分有1248=,比较分子大小2257=≈<78. 故答案为:<.【点睛】本题考查无理数的大小比较,熟练掌握无理数与有理数比较大小的方法是解题关键. 14.如果2(2)(3)x x mx m -+-的乘积中不含2x 项,则m 为__________. 【答案】23【分析】把式子展开,找到x 2项的系数和,令其为1,可求出m 的值.【详解】()()223x x mx m -+- =x 3+3mx 2-mx-2x 2-6mx+2m,又∵()()223x x mx m -+-的乘积中不含2x 项, ∴3m-2=1,∴m=23. 【点睛】考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为1.15.因式分解:24x y y -=________;2244x xy y -+-=________.【答案】()()22y x x -+ ()22x y -- 【分析】24x y y -原式提取y ,再利用平方差公式分解即可; 2244x xy y -+-首先提取公因式1-,再利用完全平方公式分解因式得出答案.【详解】解:()()()224422x y y y x y x x -=-=-+ ()()2222224442x xy y x x y y y x ⎡⎤=--+-=--+-⎣⎦故答案为:()()22y x x -+;()22x y --. 【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.16.已知点 P (1﹣a ,a+2)关于 y 轴的对称点在第二象限,则 a 的取值范围是______.【答案】21a -<<.【解析】试题分析:点P (1,2)a a -+关于y 轴的对称点在第二象限,在P 在第一象限,则10{,20a a ->+>2 1.a ∴-<< 考点:关于x 轴、y 轴对称的点的坐标.17.若实数x <则x 可取的最大整数是_______. 【答案】2【分析】根据23=<<= ,得出x 可取的最大整数是2【详解】∵23=<=∴x 可取的最大整数是2【点睛】本题考查了无理数的大小比较,通过比较无理数之间的大小可得出x 的最大整数值三、解答题18.已知y +1与x ﹣1成正比,且当x =3时y =﹣5,请求出y 关于x 的函数表达式,并求出当y =5时x 的值.【答案】y =﹣2x+2,x =﹣2【分析】设方程1(1)y k x +=-,代入当x =3时y =﹣5, 解方程求得.【详解】解:依题意,设y +2=k (x ﹣2)(k ≠3),将x =3,y =﹣5代入,得到:﹣5+2=k (3﹣2),解得:k =﹣2.所以y+2=﹣2(x﹣2),即y=﹣2x+2.令y=5,解得x=﹣2.【点睛】本题考查了待定系数法求得一次函数解析式.求一次函数的解析式时,设y=kx+b,注意k≠3.19.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移4个单位得到△A2B2C2,画出△A2B2C2并写出顶点A2,B2,C2的坐标.【答案】(1)见详解;(2)图见详解,点A2,B2,C2的坐标分别为(﹣4,﹣1),(﹣1,﹣2),(﹣3,﹣4).【分析】(1)利用关于x轴对称的点的坐标特征写出A、B、C点的对应点A1、B1、C1的坐标,然后描点即可;(2)利用点平移的坐标特征写出点A2,B2,C2的坐标,然后描点即可.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点A2,B2,C2的坐标分别为(﹣4,﹣1),(﹣1,﹣2),(﹣3,﹣4).【点睛】本题考查了关坐标与图形−对称:关于x轴对称:横坐标相等,纵坐标互为相反数;关于y轴对称:纵坐标相等,横坐标互为相反数.20.△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△ABC 向左平移4个单位长度,画出平移后的△A 2B 2C 2;(3)若在如图的网格中存在格点P ,使点P 的横、纵坐标之和等于点C 的横、纵坐标之和,请写出所有满足条件的格点P 的坐标(C 除外).【答案】(1)见解析;(2)见解析;(3)P 的坐标为:P 1(1,5),P 2(2,4),P 3(4,2),P 4(5,1).【分析】(1)直接利用关于x 轴对称点的性质得出对应点坐标进而得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案;(3)直接利用C 点坐标,进而得出符合题意的答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)所有满足条件的格点P 的坐标为:P 1(1,5),P 2(2,4),P 3(4,2),P 4(5,1).【点睛】此题考查轴对称变换以及平移变换,正确得出对应点位置是解题关键.21.因式分解:(1)()()222x x x -+-.(2)()24343m n m n --.【答案】 (1)()()()112x x x +--;(2)()223m n - 【分析】(1)先提公因式,再运用平方差公式;(2)先去括号,再运用完全平方公式.【详解】(1)()()222x x x -+-=()()222x x x ---=()()212x x --=()()()112x x x +--(2)()24343m n m n -- =224129m mn n -+=()223m n -【点睛】考核知识点:因式分解.掌握各种因式分解基本方法是关键.22.解方程:(1)51544x x x--=--; (2)212111x x x +-=--. 【答案】(1)无解;(2)0x =【分析】(1)方程两边同乘()4x -化为整式方程求解,再验根即可;(2)方程两边同乘()()11x x +-化为整式方程求解,再验根即可.【详解】(1)51544x x x--=-- 51520-+=-x x416-=-x4x =经检验,4x =是增根,原方程无解.(2)212111x x x +-=-- ()22121+-=-x x0x = 经检验,0x =是原方程的解.【点睛】本题考查解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键,注意分式方程需要验根.23.在正方形ABCD 中,BD 是一条对角线,点P 在CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QM ⊥BD 于M ,连接AM ,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立.请说明理由.【答案】(1)AM=PM,AM⊥PM,证明见解析;(2)成立,理由见解析.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【详解】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中{DM QM MDP MQC DP QC=∠=∠=∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°-∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD 是正方形,QM ⊥BD ,∴∠MDQ=45°,∴△DMQ 是等腰直角三角形.∵DP=CQ ,在△MDP 与△MQC 中{DM QMMDP MQC DP QC=∠=∠=∴△MDP ≌△MQC (SAS ),∴PM=CM ,∠MPC=∠MCP .∵BD 是正方形ABCD 的对称轴,∴AM=CM ,∠DAM=∠MCP ,∴∠DAM=∠MPC ,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM ,AM ⊥PM .【点睛】本题考查等腿直角三角形的判定与性质;正方形的性质.24.如图,在平面直角坐标系中,ABC △的三个顶点分别为()1,2A --,()2,4B --,()4,1C --. ()1把ABC △向上平移3个单位后得到111A B C △,请画出111A B C △; ()2已知点A 与点()22,1A 关于直线l 成轴对称,请画出直线l 及ABC △关于直线l 对称的222A B C .()3在x 轴上存在一点P ,满足点P 到点A 与点C 距离之和最小,请直接写出P 点的坐标.【答案】(1)详见解析;(2)详见解析;(3)()3,0P -【解析】(1) 根据图形平移的性质画出△A 1B 1C 1;(2)连接AA 1,再作AA 1的垂直平分线,即为所求对称轴l,再根据两点关于直线对称的性质得到B 2,C 2,依次连接即可;(3)作点C 关于x 轴对称的点'C ,连接'C A 交x 轴于一点即为点P ,写出点P 的坐标即可.【详解】()1如图,111A B C △即为所求;() 2如图,222A B C 和直线l 即为所求.(3)作点C 关于x 轴对称的点'C ,连接'C A 交x 轴于一点即为点P ,如图所示:点C 的坐标为(-4,-1)关于x 轴对称的点'C (-4,1),设直线AC’的函数的解析式y=kx+b,且点A (-1,-2),'C 在直线A 'C 上,214k b k b-=-+⎧⎨=-+⎩ 解得13k b =-⎧⎨=-⎩, 所以直线AC’的函数的解析式为3y x ,设y=0,则x=-3,即点P 的坐标为(0,-3).【点睛】考查作图-轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.25.先化简,再求2241()2442x x x x x x -+⋅--++的值,其中x=1. 【答案】12x -,2. 【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(2)241(2)2x x x x x -+-⋅-+=2(2)(2)1(2)2x x x x +-⋅-+=12x - 当x=2时,原式=2.考点:分式的化简求值.。

2021-2022上海八年级数学第一学期期末测试卷

2021-2022上海八年级数学第一学期期末测试卷

2021-2022上海八年级数学第一学期期末测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.下列各式中,属于最简二次根式的是( )A B C D 2.关于x 的一元二次方程23220x x --+=的根的情况( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定3.下列函数中,y 是x 的反比例函数的是( )A .x (y ﹣1)=1B .y =15x -C .y =113x --D .y =212x 4.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 5.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =6.如图,一只蚂蚁从О点出发,沿着扇形OAB 的边缘匀速爬行一周,当蚂蚁运动的时间为t 时,蚂蚁与О点的距离为,s 则s 关于t 的函数图像大致是( )A .B .C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.计算.8.代数式12x -,当x _______.9.如果2y =,那么y x =_______________________.10.在实数范围内分解因式:231x x -+=_______________________.11.已知正比例函数()21y m x =+,y 的值随x 的值增大而减小,那么m 的取值范围是______.12.已知反比例函数k y x =的图像在第二、四象限,点(﹣12,y 1),(﹣13,y 2),(14,y 3)是这个函数图像上的点,则将y 1、y 2、y 3按从小到大排列为___.13.经过A 、B 两点的圆的圆心的轨迹是______.14.如图,在ABC 中,已知,AB AC AB =的垂直平分线DE 与AC AB 、分别交于点,D E 、如果30,A ∠=︒那么DBC ∠的度数等于____________________.15.如图,AB 是Rt ABC 和Rt ABD △的公共斜边,AC=BC ,32BAD ∠=,E 是AB 的中点,联结DE 、CE 、CD ,那么ECD ∠=___________________.16.如图,在ABC 中,90,ACB BE ∠=︒平分,ABC DE AB ∠⊥于点D ,如果53AB cm BC cm ==,,那么AE DE +等于_____________cm .17.定义:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形,在Rt ABC 中,90,C ∠=,,AB c AC b BC a ===,且b a >,如果Rt ABC 是奇异三角形,那么::a b c =______________.18.如图,ABC 中,一内角和一外角的平分线交于点,D 连结,24AD BDC ∠=︒,CAD ∠=_______________________.三、解答题19.解不等式:)11x x +-.20.解方程:()54x x x +=-.21.已知关于x 的一元二次方程22210()k x kx k --++=,若该方程有两个不相等的实数根,求k 的取值范围.22.如图,已知四边形ABCD 中,90,B ∠=︒15,20,24,7AB BC AD CD ====,求四边形ABCD 的面积.23.如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸l 的距离分别为AC =1km ,BD =3km ,且CD =3km .(1)牧童从A 处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短请在图中画出饮水的位置(保留作图痕迹),并说明理由.(2)求出(1)中的最短路程.24.如图1,某容器外形可看作由,,A B C 三个长方体组成,其中,,A B C 的底面积分别为22225,10,5,cm cm cm C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:3/cm s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.()1在注水过程中,注满A 所用时间为______________s ,再注满B 又用了______________s ;()2注满整个容器所需时间为_____________s ;()3容器的总高度为____________cm .25.()1已知,如图,在三角形ABC 中,AD 是BC 边上的高.尺规作图:作ABC ∠的平分线l (保留作图痕迹,不写作法,写出结论)﹔()2在已作图形中,若l 与AD 交于点E ,且,BE AC BD AD ==,求证:AB BC =.26.如图,在平面直角坐标系中,点M 为x 正半轴上一点,过点M 的直线//l y 轴,且直线l 分别与反比例函数()80y x x =>和()0ky x x =>的图像交于P Q 、两点,14POQ S =.()1求k 的值;()2当45QOM ∠=︒时,求直线OQ 的解析式;()3在()2的条件下,若x 轴上有一点N ,使得NOQ 为等腰三角形,请直接写出所有满足条件的N 点的坐标.27.如图,在平面直角坐标系中,一次函数12125y x =-+的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF ⊥x 轴于点F ,交BD 于点E ,连接AE .(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.参考答案1.C【分析】根据最简二次根式的定义即可求解.【详解】解:A :原式=B :不是二次根式,不合题意;C 是最简二次根式,符合题意;D :原式 故答案是:C .【点睛】本题考察二次根式和最简二次根式的判断,难度不大.最简二次根式中被开方数不能为小数、分数和开的尽方的数.2.A【分析】判断方程的根的情况,根据一元二次方程根的判别式24Δb ac =-的值的符号即可得到结论.【详解】解:()22Δ4(2)432280b ac =-=--⨯-⨯=>,∴方程总有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24Δb ac =-有如下关系:当Δ0>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.3.C【分析】 根据反比例函数的定义:形如k y x=(k 为常数,0k ≠)的函数称为反比例函数进行分析即可得.【详解】解:A 、()x y 11-=,即11y x=+不是反比例函数,此项不符合题意; B 、15y x =-不是反比例函数,此项不符合题意; C 、11133y x x-=-=-是反比例函数,此项符合题意; D 、212y x =不是反比例函数,此项不符合题意; 故选C .【点睛】本题考查了反比例函数的定义,熟记定义是解题关键.4.B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.5.C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A、由222=-得a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,b a c不符合题意;B、由C A B∠=∠-∠得∠C +∠B=∠A,此时∠A是直角,能够判定△ABC是直角三角形,不符合题意;C、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,故此选项符合题意;D、a:b:c=5:12:13,此时c2=b2+ a2,符合勾股定理的逆定理,△ABC是直角三角形,不符合题意;故选:C.【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.6.B【分析】根据蚂蚁在半径OA、AB和半径OB上运动时,判断随着时间的变化s的变化情况,即可得出结论.【详解】解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到AB这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.【点睛】本题主要考查动点问题的函数图象,根据随着时间的变化,到AB这一段,蚂蚁到O点的距离S不变,得到图象的特点是解决本题的关键.7.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【详解】=故填【点睛】本题考查了二次根式的加减运算,属于基础题,掌握二次根式的化简及同类二次根式的合并是解决本题的关键.8.2##【分析】直接把x 的值代入,利用分母有理化的法则计算即可求解.【详解】解:∵x∴122x ==-.故答案为:2.【点睛】本题考查了代数式的求值,掌握分母有理化的计算法则是解题的关键.9.19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==.故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.10.x x ⎛ ⎝⎭⎝⎭【分析】先解方程231x x -+=0,然后把已知的多项式写成()()12a x x x x --的形式即可.【详解】解:解方程231x x -+=0,得12x x ==,∴231x x x x ⎛-+= ⎝⎭⎝⎭.故答案为:x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.11.12m <- 【分析】根据正比例函数图象性质与系数的关系列出不等式再解不等式即可.【详解】解:∵正比例函数()21y m x =+,y 的值随x 的值增大而减小∴210m +< ∴12m <-. 故答案是:12m <- 【点睛】本题考查了由正比例函数图象性质求参数的取值范围,解答本题需要注意:直线()0y kx k =≠在平面直角坐标系中的位置与增减性和系数k 有直接的关系.12.y3<y1<y2【分析】根据反比例函数的性质,图象在二、四象限,在同一象限内,y随x的增大而增大,则0<y1<y2,而y3<0,则可比较三者的大小.【详解】解:∵反比例函数kyx的图象在二、四象限,∴k<0,在同一象限内,y随x的增大而增大,∵﹣12<﹣13<0,∴0<y1<y2,∵14>0,∴y3<0,∴y3<y1<y2,故答案为:y3<y1<y2.【点睛】本题考查了反比例函数图象上点的坐标特征以及反比例函数图象的性质,是基础知识要熟练掌握.13.线段AB的垂直平分线【分析】根据线段垂直平分线的性质即可得答案.【详解】∵线段垂直平分线上的点到线段两端点的距离相等,∴经过A、B两点的圆的圆心的轨迹是线段AB的垂直平分线,故答案为线段AB的垂直平分线【点睛】本题考查了相等垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等;熟练掌握性质是解题关键.14.45°【分析】由AB=AC,∠A=30°,可求∠ABC,由DE是AB的垂直平分线,有AD=BD,可求∠ABD=30º,∠DBC=∠ABC-∠ABD计算即可.【详解】∵AB=AC,∠A=30°,∴∠ABC=∠ACB=18030752,又∵DE是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=30º,∴∠DBC=∠ABC-∠ABD=75º-30º=45º.故答案为:45º.【点睛】本题考查角度问题,掌握等腰三角形的性质,会用顶角求底角,掌握线段垂直平分线的性质,会用求底角,会计算角的和差是解题关键.15.13【分析】先证明A、C、B、D四点共圆,得到∠DCB与∠BAD的是同弧所对的圆周角的关系,得到∠DCB的度数,再证∠ECB=45°,得出结论.【详解】解:∵AB是Rt△ABC和Rt△ABD的公共斜边,E是AB中点,∴AE=EB=EC=ED,∴A、C、B、D在以E为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC,E是Rt△ABC的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=13°.故答案为:13.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.16.4.【分析】由角平分线的性质可证明CE=DE ,可得AE+DE=AC ,再由勾股定理求出AC 的长即可.【详解】∵90,ACB BE ∠=︒平分,ABC DE AB ∠⊥于点D ,∴DE=CE ,∴AE+DE=AE+EC=AC ,在Rt △ABC 中,53AB cm BC cm ==,,∴4=,∴AE+DE=4,故答案为:4.【点睛】本题主要考查了角平分线的性质以及勾股定理,熟练掌握蜀道难突然发觉解答此题的关键.17.1【分析】由△ABC 为直角三角形,利用勾股定理列出关系式c 2=a 2+b 2,记作①,再由新定义两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,列出关系式2a 2=b 2+c 2,记作②,或2b 2=a 2+c 2,记作③,联立①②或①③,用一个字母表示出其他字母,即可求出所求的比值.【详解】∵Rt △ABC 中,∠ACB =90°,AB =c ,AC =b ,BC =a ,∴根据勾股定理得:c 2=a 2+b 2,记作①,又Rt △ABC 是奇异三角形,∴2a 2=b 2+c 2,②,将①代入②得:a2=2b2,即a b(不合题意,舍去),∴2b2=a2+c2,③,将①代入③得:b2=2a2,即b a,将b a代入①得:c2=3a2,即c,则a:b:c=1故答案为:1【点睛】此题考查了新定义的知识,勾股定理.解题的关键是理解题意,抓住数形结合思想的应用.18.66°【分析】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,由BD平分∠ABC,可得∠ABD=∠CBD,DH=DF,同理CD平分∠ACE,∠ACD=∠DCF=,DG=DF,由∠ACE 是△ABC的外角,可得2∠DCE=∠BAC+2∠DBC①,由∠DCE是△DBC的外角,可得∠DCE=∠CDB+∠DBC②,两者结合,得∠BAC=2∠CDB,则∠HAC=180º-∠BAC,在证AD平分∠HAC,即可求出∠CAD.【详解】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,∵BD平分∠ABC,∴∠ABD=∠CBD=1∠ABC,DH=DF,2∠ACE,DG=DF,∵CD平分∠ACE,∴∠ACD=∠DCF=12∵∠ACE是△ABC的外角,∴∠ACE=∠BAC+∠ABC,∴2∠DCE=∠BAC+2∠DBC①,∵∠DCE是△DBC的外角,∴∠DCE=∠CDB+∠DBC②,由①②得,∠BAC=2∠CDB=2×24º=48º,∴∠HAC=180º-∠BAC=180º-48º=132º,∵DH=DF,DG=DF,∴DH=DG,∵DG ⊥AC ,DH ⊥BA ,AD 平分∠HAC ,∠CAD=∠HAD=12∠HAC=12×132º=66º.故答案为:66.【点睛】本题考查角的求法,关键是掌握点D 为两角平分线交点,可知AD 为角平分线,利用好外角与内角的关系,找到∠BAC=2∠CDB 是解题关键.19.2x <【分析】根据解一元一次不等式的方法求解即可.【详解】解:去括号,得1x +>,移项、合并同类项,得(11x >-系数化为1,得x 2x < 【点睛】本题考查了一元一次不等式的解法和分母有理化,本题的易错点是易忽略10. 20.122x x ==-【分析】利用配方法解方程.【详解】解:254x x x +=-,2440x x ++=,()220x +=,122x x ==-.【点睛】本题考查一元二次方程的解法,熟练掌握直接开平方法、因式分解法、配方法、公式法是关键.21.2k >-【分析】根据题意及一元二次方程根的判别式直接进行求解即可.【详解】解:由关于x 的一元二次方程22210()k x kx k --++=,若该方程有两个不相等的实数根,可得:()()()2242421480b ac k k k k ∆=-=---+=+>,且k-2不等于0;解得:2k >-.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.22.234【分析】连接AC ,如图,先根据勾股定理求出AC ,然后可根据勾股定理的逆定理得出∠D=90°,再利用S 四边形ABCD =S △ABC +S △ACD 求解即可.【详解】解:连接AC ,如图,∵90,B ∠=︒15,20AB BC ==,∴25AC =,∵AD 2+CD 2=242+72=625,AC 2=252=625,∴AD 2+CD 2=AC 2,∴∠D=90°,∴S 四边形ABCD =S △ABC +S △ACD =111520247150+8423422⨯⨯+⨯⨯==.【点睛】本题考查了勾股定理及其逆定理,属于常见题型,熟练掌握勾股定理及其逆定理是解题的关键.23.(1)见解析;(2)5km A B '=【分析】(1)作点A 关于直线l 的对称点A ',连接A B '交CD 于点E ,点E 即为所求;(2)过A '作A F BD '⊥的延长线于F ,根据勾股定理求解即可.【详解】解:(1)作点A 关于直线l 的对称点A ',连接A B '交CD 于点E ,点E 即为所求,如下图, 理由:由题意可得,CD 垂直平分AA '∴AE A E '=,∴AE BE A E BE '+=+,根据两点之间,线段最短,可得A B E '、、共线时AE BE +最短;(2)由作图可得最短路程为A B '的距离,过A '作A F BD '⊥的延长线于F ,则1km DF ACAC ='==,3km A F CD '==,134km BF =+=,根据勾股定理可得,5km A B '.【点睛】本题考查了线路最短的问题,涉及了轴对称变换的性质和勾股定理,确定动点为何位置并综合运用勾股定理的知识是解题的关键.24.(1)10,8;(2)24;(3)24【分析】(1)根据函数图象可直接得出答案;(2)设容器A 的高度为h A cm ,注水速度为vcm 3/s ,根据题意和函数图象可列出一个含有h A 及v 的二元一次方程组,求出v 后即可求出C 的容积,进一步即可求出注满C 的时间,从而可得答案;(3)根据B 、C 的容积可求出B 、C 的高度,进一步即可求出容器的高度.【详解】解:(1)根据函数图象可知,注满A 所用时间为10s ,再注满B 又用了18-10=8(s ); 故答案为:10,8;(2)设容器A 的高度为h A cm ,注水速度为vcm 3/s ,根据题意和函数图象得:102581210A A v h v h ⎧=⎪⎪⎨⎪-=⎪⎩,解得:410A h v =⎧⎨=⎩; 设C 的容积为ycm 3,则有4y =10v +8v +y ,将v =10代入计算得y =60,∴注满C 的时间是:60÷v =60÷10=6(s ),故注满这个容器的时间为:10+8+6=24(s ).故答案为:24;(3)∵B 的注水时间为8s ,底面积为10cm 2,v =10cm 3/s ,∴B 的高度=8×10÷10=8(cm ),∵C 的容积为60cm 3,∴容器C 的高度为:60÷5=12(cm ),故这个容器的高度是:4+8+12=24(cm );故答案为:24.【点睛】本题考查了函数图象和二元一次方程组的应用,读懂图象提供的信息、弄清题目中各量的关系是解题的关键.25.(1)见详解;(2)见详解.【分析】(1)按照题目要求作图即可;(2)过点E作EH⊥AB于H,先证明△BDE≌△BHE,再证明△BOE≌△ADC,然后可得DE= DC,可推出HE= CD,根据AD=BD,∠ADB=90°,HE⊥AB,可得∠BAD = 45°,∠HEA=∠HAE= 45°,可推出HE= AH = CD,即可证明结论.【详解】(1)∠ABC的角平分线如图所示:;(2)如图,过点E作EH⊥AB于H,∵BE平分∠ABC,EH⊥AB,ED⊥ВC,∴EH⊥АВ,ED⊥BC,∴EH = ED,在Rt△BDE和Rt△BHE中ЕНED BE BE==⎧⎨⎩,∴△BDE≌△BHE(HL),∵ВH = BD,在Rt△BDE和Rt△ADC中BD AD BE AC==⎧⎨⎩,∴△BOE≌△ADC(HL),∴DE= DC ,∴HE= CD ,∵AD=BD ,∠ADB=90°,∴∠BAD = 45°,∵HE ⊥AB ,∴∠HEA=∠HAE= 45°,∴HE= AH = CD ,∴BC = BD+CD= BH + AH= AB .【点睛】本题考查了全等三角形的判定和性质及尺规作图,掌握全等三角形的判定定理是解题关键.26.(1)k =﹣20;(2)y =﹣x ;(3)点N 的坐标为(0)或(0)或(﹣0)或(0).【分析】(1)由14POQ POM MOQ S S S +==结合反比例函数k 的几何意义可得12k +4=14,进一步即可求出结果;(2)由题意可得MO =MQ ,于是可设点Q (a ,﹣a ),再利用待定系数法解答即可;(3)先求出点Q 的坐标和OQ 的长,然后分三种情况:①若OQ =ON ,可直接写出点N 的坐标;②若QO =QN ,根据等腰三角形的性质解答;③若NO =NQ ,根据两点间的距离解答.【详解】解:(1)∵14POQ POM MOQ SS S +==,S △POM =1842⨯=,S △QOM =12k , ∴12k +4=14,解得20k ,∵k <0,∴k =﹣20;(2)∵45QOM ∠=︒,//l y 轴,∴45QOM OQM ∠=∠=︒,∴MO =MQ ,设点Q (a ,﹣a ),直线OQ 的解析式为y =mx ,把点Q 的坐标代入得:﹣a =ma ,解得:m =﹣1,∴直线OQ 的解析式为y =﹣x ;(3)∵点Q (a ,﹣a )在20y x=-上,∴220a -=-,解得a =,∴点Q 的坐标为(-,则OQ =若NOQ 为等腰三角形,可分三种情况:①若OQ =ON =N 的坐标是(0)或(﹣0);②若QO =QN ,则NO =2OM =∴点N 的坐标是(0);③若NO =NQ ,设点N 坐标为(n ,0),则((222n n =-+,解得n =∴点N的坐标是(0);综上,满足条件的点N 的坐标为(0)或(0)或(﹣0)或(0).【点睛】本题考查了反比例函数系数k 的几何意义、等腰三角形的性质、勾股定理以及两点间的距离等知识,具有一定的综合性,熟练掌握相关知识是解题的关键.27.(1)AB =13;(2)见解析;(3)△AEF 周长为24.【分析】(1)根据一次函数解析式,令x 、y 分别为0,即可求出A 、B 两点坐标,再利用勾股定理即可算出AB 的长;(2)证明△CDE 和△ADE 中,可得∠DCE =∠DAE ,根据三角形内角和和对顶角的性质可得∠DCM =∠MAF ,等量代换得∠MAF =∠EAM ;(3)过点C 作y 轴垂线交y 轴于点N ,构造三角形全等即可推出点C 的坐标;将AE +EF 转换为CF 即可求出△AEF 的周长.【详解】解:(1)∵一次函数y =﹣125x +12的图象交x 轴、y 轴与A 、B 两点, ∴当x =0,则y =12,故B (0,12),当y =0,则x =5,故A (5,0),即OA =5,OB =12,∴AB=13,故AB =13;(2)∵四边形ABCD 是正方形,∴CD =AD ,∵BD 是正方形的对角线,∴∠CDE =∠ADE ,在△CDE 和△ADE 中,CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△ADE (SAS ),∴∠DCE =∠DAE ,设FC 与AD 交点为M ,∵∠EMD =∠AMF (对顶角相等),∠DCM +∠EMD =∠MAF +∠AMF ,∴∠DCM =∠MAF ,∴∠MAF =∠EAM ,∴AD 平分∠EAF ;(3)过点C 作y 轴垂线交y 轴于点N ,如图所示:∵∠CBN +∠NCB =∠CBN +ABO =90°,∴∠NCB =∠ABO ,在△CNB 和△BOA 中,90NCB OBA CNB BOA CB BA ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CNB ≌△BOA (AAS ),∴BN =AO =5,CN =BO =12,又∵CF ⊥x 轴,∴CF =BO +BN =12+5=17,∴C 的坐标为(12,17);∵△CDE ≌△ADE ,∴AE =CE ,∴AE +EF =CF =17,AF =OF -AO =12-5=7,∴C △AEF =AE +EF +AF =CF +AF =17+7=24.【点睛】本题考查一次函数图象与坐标轴的交点,勾股定理,正方形的性质,全等三角形的判定与性质,对顶角的性质,以及三角形内角和的应用,正确作出辅助线,构造全等三角形是解题关键.。

上海市2022-2023学年八年级上学期数学期末典型试卷3

上海市2022-2023学年八年级上学期数学期末典型试卷3

2022-2023学年上学期上海八年级初中数学期末典型试卷3一.选择题(共10小题)1.(2021秋•浦东新区期末)下列计算正确的是( ) A .a 2+a =a 3B .a 2•a 4=a 6C .(a 3)2=a 5D .(2a )2=2a 22.(2021秋•浦东新区期末)多项式x 2+A +1是个完全平方式,那么代数式A 不可能为( ) A .2xB .xC .﹣2xD .14x 43.(2021秋•静安区期末)计算x ÷2x 2的结果是( ) A .2xB .12xC .x2D .2x4.(2021春•松江区期末)在平面直角坐标系中,点P (2,﹣1)关于x 轴的对称点的坐标是( ) A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(﹣1,2)5.(2021春•浦东新区校级期末)下列说法正确的个数是( ) ①有一个外角为120°的等腰三角形是等边三角形; ②等腰三角形的对称轴是底边上的高;③有两边及其中一边的对角对应相等的两个三角形全等; ④有两边及第三边上的中线对应相等的两个三角形全等; A .1B .2C .3D .46.(2021春•浦东新区校级期末)等腰三角形底边长为17,一腰上的中线把其周长分为两部分的差为9,则腰长为( ) A .8 B .26C .8或26D .以上结论都不正确7.(2020秋•静安区期末)如果x >1,那么x ﹣1,x ,x 2的大小关系是( ) A .x ﹣1<x <x 2B .x <x ﹣1<x 2C .x 2<x <x ﹣1D .x 2<x ﹣1<x8.(2021春•闵行区期末)用换元法解方程x+1x 2+x 2x+1=2时,如果设x+1x 2=y ,那么原方程可化为( )A .y 2+y ﹣2=0B .y 2+2y +1=0C .y 2+y +2=0D .y 2﹣2y +1=09.(2021春•嘉定区期末)用换元法解分式方程x+1x+6x x+1=5时,如果设x+1x=y ,将原方程化为关于y的整式方程,那么这个整式方程是( ) A .y +6y =5B .y 2+5y +6=0C .y 2﹣5y +6=0D .y 2+6y ﹣5=010.(2021春•崇明区期末)下列说法中,正确的是( )A.在同一平面内不相交的两条线段必平行B.点到直线的距离是指直线外一点到这条直线的垂线的长C.三角形的一个外角大于任何一个内角D.三角形的任意两边之和大于第三边二.填空题(共10小题)11.(2021春•浦东新区校级期末)一个多边形的每个内角都为144°,那么该正多边形的边数为.12.(2021春•青浦区期末)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线,如图,在4×2的方格纸中,A、B在格点上,如果C、D在格点上,且AB是邻余线,那么该方格纸中符合条件的邻余四边形ABCD的个数有个.13.(2021春•静安区校级期末)如图,△ABC的面积为√3cm2,∠B的平分线BP与AP垂直,垂足为点P,AB:BC=2:5,那么△APC的面积为cm2.14.(2020秋•静安区期末)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.15.(2021春•静安区校级期末)若等腰三角形两腰上的高线所在的直线相交所得的锐角为50°,则等腰三角形的顶角的度数为.16.(2021春•静安区校级期末)小宋把一张等边三角形的纸片放在如图所示的两条平行线m、n上测得∠AEG=20°,那么∠ADF的度数是.17.(2020秋•黄浦区期末)分解因式:x 2﹣4x = .18.(2020秋•普陀区期末)在实数范围内因式分解:2x 2﹣4x ﹣1= . 19.(2020秋•嘉定区期末)要使分式2x x+1有意义,则x 须满足的条件为 .20.(2021春•浦东新区校级期末)用换元法解分式方程x+1x−2x x+1=1时,如果设xx+1=y ,那么原方程可以化为关于y 的整式方程是 . 三.解答题(共10小题)21.(2021春•浦东新区期末)如图,已知∠BAC =70°,D 为△ABC 的边BC 上的一点,且∠CAD =∠C ,∠ADB =60°.求∠B 的度数.22.(2021春•崇明区期末)如图,已知四边形ABCD 中,AD ∥CB ,BD 平分∠ABC ,∠A :∠DBA =4:1. (1)求∠A 的度数;(2)如果△BDC 是直角三角形,直接写出∠C 的度数.23.(2021春•黄浦区期末)如图在四边形ABCD 中,AD ∥BC ,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在边BC 上,且∠1=∠2. (1)说明△ADE ≌△BFE 的理由;(2)联结EG ,那么EG 与DF 的位置关系是 ,请说明理由.24.(2021春•浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.25.(2021春•静安区校级期末)如图,在平面直角坐标系内,已知点A的位置;点B的坐标为(3,3),点C的坐标为(5,1).(1)写出A的坐标,并画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)联结AA1、BB1,四边形ABB1A1的面积为.26.(2020秋•浦东新区期末)如图,方格纸中每个小正方形的边长是一个单位长度,△ABC的顶点都是某个小正方形的顶点.(1)将△ABC先向右平移3个单位,再向上平移1个单位,请画出平移后的△A1B1C1;(2)将△ABC沿直线l翻折,请画出翻折后的△A2B2C2.27.(2020秋•浦东新区期末)分解因式:2x3+12x2y+18xy2.28.(2021春•静安区期末)已知3﹣2x﹣x2乘以ax+b得到的积中常数项为12,且不含有二次项,求﹣7a2﹣(−14b)3的值.29.(2020秋•黄浦区期末)先化简,再求值:(a−2a2+2a −a−1a2+4a+4)÷a−4a+2,其中a=﹣1.30.(2020秋•普陀区期末)某校为了准备“迎新活动”,用900元购买了甲、乙两种礼品共240个,其中购买甲种礼品比乙种礼品少用了180元.(1)购买甲种礼品一共用去元;(请直接写出答案)(2)如果甲种礼品的单价是乙种礼品单价的2倍,那么乙种礼品的单价是多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022学年上海市浦东新区多校联考八年级(上)期末数学试卷
1.(单选题,2分)下列二次根式中,与√3是同类二次根式的是()
A. √31
3
B. √33
C. √1
27
D. √0.3
2.(单选题,2分)下列三个数为边长的三角形不是直角三角形的是()
A.3,3,3 √2
B.4,8,4 √3
C.6,8,10
D.5,5,5 √3
3.(单选题,2分)已知正比例函数y=kx(k≠0),y的值随x的值的增大而减小,那么它和
(k≠0)在同一直角坐标平面内的大致图象是()
反比例函数y=- k
x
A.
B.
C.
D.
4.(单选题,2分)下列命题中,逆命题不正确的是()
A.两直线平行,同旁内角互补
B.对顶角相等
C.直角三角形的两个锐角互余
D.直角三角形两条直角边的平方和等于斜边的平方
5.(单选题,2分)如图,在等腰Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC,交AC于
点D,DE⊥BC,若BC=10cm,则△DEC的周长为()
A.8cm
B.10cm
C.12cm
D.14cm
的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,6.(单选题,2分)在反比例函数y= 2
x
y3),已知x1<x2<0<x3,则下列各式中,正确的是()
A.y1<y2<y3
B.y3<y2<y1
C.y2<y1<y3
D.y3<y1<y2
,那么f(2)=___ .
7.(填空题,3分)已知函数f(x)= 3
x−5
8.(填空题,3分)计算:√(√5−3)2 =___ .
9.(填空题,3分)函数:y=√x−2的定义域是___ .
10.(填空题,3分)已知关于x的方程mx2-3x-1=0有两个不相等的实数根,那么m的取值
范围是 ___ .
11.(填空题,3分)随着网络购物的兴起,增加了快递公司的业务量.一家今年刚成立的小
型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长率是x,由题意列出关于x的方程:___ .
12.(填空题,3分)在实数范围内因式分解:2x2-4x-1=___ .
13.(填空题,3分)到点A的距离等于6cm的点的轨迹是 ___ .
14.(填空题,3分)已知:点A坐标为(3,4),点B坐标为(-1,1),那么点A和点B
两点间的距离是 ___ .
15.(填空题,3分)已知:如图,在△ABC中,AB=AC,线段AB的垂直平分线分别交AB、AC于点D、E,
如果∠EBC=42°,那么∠A=___ .
16.(填空题,3分)如图,在△ABC中,∠ABC=52°,三角形的两个外角∠DAC和∠ACF的平分线交于点E,则∠ABE=___ .
17.(填空题,3分)如图,P是正方形ABCD内的一点,将△ABP绕点B顺时针方向旋转到与△CBQ重合,若PB=5cm,则PQ=___ cm.
18.(填空题,3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(-2,0),与x 轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y= k
x
(k≠0)上,则k的值为___ .
19.(问答题,5分)计算:√3×√6+9√1
27√3−√2√1
2
÷√2.
20.(问答题,5分)解方程:2y(y-2)=y2-2.
21.(问答题,5分)已知y=y1+y2,并且y1与x成正比例,y2与x-2成反比例.当x=3时,
y=7;当x=1时,y=1,求:y关于x的函数解析式.
22.(问答题,5分)某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生
了学习兴趣.今天,他学到了勾股章第7题:
“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”本题大意是:
如图,木柱AB⊥BC,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度.
23.(问答题,5分)初二年级小王同学坚持环保理念,每天骑自行车上学,学校离家3000米.某天,小王上学途中因自行车发生故障,修车耽误了一段时间后继续骑行,还是按时赶到了学校、如图描述的是他离家的距离和离家的时间t之间的函数图象,根据图象解决下列问题:(1)修车时间为 ___ 分钟;
(2)到达学校时共用时间 ___ 分钟;
(3)小王从离家时到自行车发生故障时,离家的距离S和离家的时间t之间的函数关系式为
___ ,定义域为 ___ ;
(4)自行车故障排除后他的平均速度是每分钟 ___ 米.
24.(问答题,6分)如图,已知△ABC,
(1)根据要求作图,在边BC上求作一点D,使得点D到点AB、AC的距离相等,在边AB
上求作一点E,使得点E到A、D的距离相等;(不要求写作法,但需要保留作图痕迹和结论)(2)在第(1)小题所作的图中,求证:DE || AC.
25.(问答题,6分)Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB,联结AE交CD与点F,点M是AE的中点,联结CM并延长与AB交于点H.
(1)点F是CD中点时,求证:AE⊥CD;
(2)求证:MH2+HD2=AM2.
(k≠0)上有A,B两点,且26.(问答题,6分)如图,在平面直角坐标系内,双曲线y= 8
x
与直线y=ax(a>0)交于第一象限内的点A,点A的坐标为(4,2),点B的坐标为(n,1),过点B作y轴的平行线,交x轴与点C,交直线y=ax(a>0)与点D,
(1)求:点D的坐标;
(2)求:△AOB的面积;
(3)在x轴正半轴上是否存在点P,使△OAP是以OA为腰的等腰三角形?若不存在,请说
明理由;若存在,请直接写出P的坐标.
27.(问答题,9分)如图,△ABC中,AC=2 √3,BC=4 √3,AB=6.点P是射线CB上的一点(不与点B重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.
(1)求∠B的度数;
(2)当点P在线段CB上时,设EF=x,△APE的面积为y,求y关于x的函数解析式,并写出函数的定义域;
(3)如果EF=1,请直接写出△APE的面积.。

相关文档
最新文档