新高一数学下期末试卷(含答案)
四川省泸州市2023-2024学年高一下学期期末考试数学试卷(含解析)
四川省泸州市2023-2024学年高一下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若集合,,则( )A. B. C. D.2.设复数z 满足( )A. B. C. D.3.设,,A. B. C. D.4.已知( )5.平面与平面平行的充分条件可以是( )A.内有无穷多条直线都与平行B.直线,,且,C.直线,直线,且,D.内的任何一条直线都与平行6.如图,为直角三角形,,,C 为斜边的中点,P 为线段的中点,则( )7.若圆台侧面展开图扇环的圆心角为,其母线长为2,下底面圆的半径是上底面圆的半径的2倍,则该圆台的高为( ){}25A x x =∈-<<Z {}24B x x x =<A B = (0,4){1,2,3}{}1-(2,4)-(1i)3i z -=-=2i+2i-12i -12i+0.48a = 1.312b -⎛⎫= ⎪⎝⎭c =a c b <<a b c<<c b a <<c a b<<tan α=α=αβαβm ⊄m β⊄//m α//m βm α⊂n β⊂//m β//n ααβAOB △1OA =2OB =AB OC AP OP ⋅=12180︒A.8.已知函数,若方程有4个不同的根,,,,且,则的值为( )A.3B.0C.2D.6二、多项选择题9.下列说法正确的是( )A.任意向量,与同向,则B.若向量,且,则A,B,C 三点共线C.若,则与的夹角是锐角,,则在上的投影向量为10.已知函数,满足,且,则( )A.的图象关于C.在上单调递减D.的图象关于点对称11.正方体的棱长为2,已知平面,则关于平面截正方体所得截面的判断正确的是( )A.截面形状可能为正三角形B.平面与平面ABCD 所成二面角的正弦值为C.截面形状可能为正六边形D.截面面积的最大值为三、填空题12.已知函数是定义在R 上的周期为2的奇函数,当时,,则的值为____________.__________.41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩()f x k =1x 2x 3x 4x 1234x x x x <<<3412x x x x --a b ba b> PA PB PC λμ=+ 1(01)λμλ+=<<0a b ⋅>a b 6b 3,π4b = a b -()sin(2)f x x ϕ=+ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭()ππ2f f ⎛⎫> ⎪⎝⎭()f x x 1φ2=-()f x π,π2⎛⎫⎪⎝⎭()f x 13π,012⎛⎫⎪⎝⎭1111ABCD A B C D -1AC α⊥αα()f x 01x <<()2xf x =72f ⎛⎫ ⎪⎝⎭=14.已知三棱锥底面是边长为3的等边三角形,且,当该三棱锥的体积取得最大值时,其外接球的表面积为____________.四、解答题15.已知向量,且.(1)求向量与的夹角.(2)若向量与互相垂直,求k 的值.16.已知函数的部分图象如下图所示.(1)求函数的解析式.(2)若将函数的图象,求不等式的解集.17.在中,角A,B,C 所对的边分别为a,b,c ,已知.(1)求B ;(2)若.18.如图,在四棱锥中,底面是正方形,E ,F 分别为,的中点,G 为线段上一动点,平面.(1)证明:平面平面;(2)当时,证明:平面;(3)若,四面体的体积等于四棱锥的S ABC -SA AB SB ==(1,1a =-()3a b b +⋅= a bka b + a kb -π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><()f x (f x ()g x ()1g x >ABC △2cos 2b C a c =+b =sin A C =c +P ABCD -ABCD PB PC AC PD ⊥ABCD ⊥BDF A E G 3CG AG =//EG BDF 2AD PD =BGEF P ABCD -.19.对于三个实数a,b,k ,若(1)写出一个数a 使之与2具有“性质1”,并说明理由;(2)若,具有“性质k ”,求实数k 的最大值.()()()(22111a b k a b --≥--22x --x ≤≤x cos x参考答案1.答案:B解析:,,所以.故选:B.2.答案:C,.故选:C.3.答案:D解析:因为函数在R 上单调递增,所以,又因为函数在上单调递增,所以,所以.故选:D.4.答案:B解析:依题意,故选:B.5.答案:D解析:对于A,若内有无穷多条直线都与平行,则,平行或相交,故充分性不成立,故A 错误;对于B,如图,在正方体中,平面,平面,{}{}251,0,1,2,3,4A x x =∈-<<=-Z {}{}2404B x x x x x =<=<<{1,2,3}A B = ()()()()323i 1i 3i 3i 33i i+i 24i12i 1i 1i 1i 1i 22z ++-++++======+---+2x y =. 1..130.31422220182b a -⎛⎫== ⎪=>=>⎝>⎭lg y x =(0,)+∞1lg lg103c =<=c a b <<2222222211cos sin 1tan 2cos2cos sin 1cos sin 1tan 12ααααααααα---=-=====+++αβαβ1111ABCD A B C D -11//C D ABCD 11//C D 11ABB A而平面平面,故充分性不成立,故B 错误;对于C,如图,在正方体中,平面,平面,而平面平面,故充分性不成立,故C 错误;对于D,由面面平行的定义知能推出平面与平面平行,故充分性成立,故D 正确.故选:D.6.答案:B解析:因为,取中点Q ,连接,故选:B.7.答案:C解析:设圆台的上底面的圆心为H ,下底面的圆心为O ,设圆台的母线交于点S ,11ABB A ABCD AB =1111ABCD A B C D -11//A B ABCD //CD 11ABB A 11ABB A ABCD AB =αβ()()1111111122222224PQ PO PA CO PA CO AO AC CA BA ⎛⎫⎡⎤=+=+=-+== ⎪⎢⎥⎝⎭⎣⎦14BA ==AO PQ 144AP OP PA PO PA PO⋅=⋅=⋅⋅()()22221514164PA PO PA PO PQ AQ ⎡⎤=+--=-=-=⎢⎥⎣⎦为圆台的母线,且,下底面圆的半径是上底面圆的半径的2倍,,所以,由圆台侧面展开图扇环的圆心角为,所以下底面圆的周长为,所以,所以,,在直角梯形中,易求得故选:C.8.答案:A解析:作出函数的图象如下由对称性可知,由图可知,所以,则,,,故选:A.9.答案:BD解析:对于A,向量不能比较大小,故A 错误,对于B,向量且时,由向量共线定理的推论,知A,B,C 三AB 2AB =HA OB ==2=4SB =180︒4π2π4πOB ⋅=2OB =1HA =HABO OH ==41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩12x x +=-434log x =3401x x <<<43log 0x <444344log 0log log x x x ⇒-=>434log 0x x =341x x ∴=34121(2)3x x x x ---=-=PA PB PC λμ=+1(01)λμλ+=<<点共线,故B 正确,对于C,当,同向共线时,,此时夹角不是锐角,故C 错误,,故D 正确.故选:BD 10.答案:BD解析:因为函数函数,满足,所以的图象关于所以,所以,,因为,,即,所以,,所以则,由,可得,所以在上不单调,故C 错误;由,所以的图象关于点对称,故D 正确.故选:BD .11.答案:ACD解析:如图,在正方体中,连接,,,,a b 0a b a b ⋅=⋅>3π4=-()sin(2)f x x ϕ=+ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭()sin(2)f x x ϕ=+x =πsin(2)3ϕ⨯+=±πk ϕ+=+∈Z ππ6k ϕ=-k ∈Z ()ππ2f f ⎛⎫> ⎪⎝⎭()()sin πsin 2πϕϕ+>+sin 0ϕ<2k n =n ∈Z sin ϕ=π()sin(26f x x =-π,π2x ⎛⎫∈ ⎪⎝⎭π5π11π(,)2666x ∈-()f x π,π2⎛⎫⎪⎝⎭1313ππππ0i 1212()sin(2)s n 26f =⨯==-()f x 13π,012⎛⎫ ⎪⎝⎭1111ABCD A B C D -1A B 1A D BD AC因为平面,平面,则,因为四边形为正方形,则,又因为,,平面,所以,平面,因为平面,则,同理可证,因为,,平面,则平面,所以平面与平面平行或重合,所以平面与正方体的截面形状可以是正三角形,故A 正确;平面与平面所成二面角正弦值为即为平面与平面所成的角,设与交于O ,连接,因为四边形是正方形,所以,又平面,又平面,所以,又,,平面,又平面,所以,所以是平面平面与平面所成二面角的平面角,由题意可得,进而可得所以所以平面与平面的1AA ⊥ABCD BD ⊂ABCD 1AA BD ⊥ABCD BD AC ⊥1AA AC A = 1AA AC ⊂11AA C C BD ⊥11AA C C 1AC ⊂11AA C C 1BD AC ⊥11A B AC ⊥1A B BD B = 1A B BD ⊂1A BD 1AC ⊥1A BD α1A BD 1A BD αABCD 1A BD ABCD AC BD 1OA ABCD AC BD ⊥1AA ⊥ABCD BD ⊂ABCD 1AA BD ⊥1AA AC A = 1AA AC ⊂1AA O 1AO ⊂1AA O 1BD AA ⊥1AOA ∠1A BD ABCD 12A A =12AO AC ==1AO ==111sin AA AOA A O ∠===α当E,F,N,,M,G,H 分别为对应棱的中点时,截面为正六边形,因为E ,H 分别为,的中点,则,因为平面,平面,则平面,同理可得平面,又因为,,平面,则平面平面,所以,平面,此时截面为正六边形,故C 正确;如图设截面为多边形,设,则,则,所以多边形的面积为两个等腰梯形的面积和,所以,因为EFNMGH 1BB 11A B 1//EH A B EH ⊄1A BD 1A B ⊂1A BD //EH 1A BD //EF 1A BD EH EF E =I EH EF ⊂EFNMGH //EFNMGH 1A BD 1AC ⊥EFNMGH GMEFNH 1A G x =02x ≤≤,)GH ME NF MG HN EF x ======-MN =GMEFNH 1211()()22S GH MN h MN EF h =+⋅++⋅1h ==所以=时,故选:ACD.12.答案:解析:根据题意,是定义在R上周期为2的奇函数,所以故答案为:13.答案:414.答案:解析:依题意,三棱锥的底面面积是个定值,侧面是等边三角形,顶点S到边的距离也是一个定值,所以当该三棱锥的体积取得最大值时,平面平面,取的中点,连接,,N,M分别为正三角形,的中心,所以,,所以为二面角平面角,可得,过N,M分别作平面,平面的垂线,,两垂线交于O,的2h==11)22S x=+-11)22S x=+++-221)x=++=-+1x=maxS=()f x127111422222f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()2sin301041sin202︒-︒==︒15πS ABC-ABC△SAB ABSAB⊥ABCAB SH CH SAB ABCSH AB⊥CH AB⊥SHC∠S AB C--SH CH⊥SAB ABC NO MO则O 为外接球的球心,由正三角形的性质可求得进而可得易得四边形是正方形,所以由勾股定理可得其外接球的表面积为.故答案为:.(2)或解析:(1)由,得设向量与的夹角为,由,,所以,所以,解得所以向量与(2)由向量向量与互相垂直,得,所以,即,解得或.16.答案:(1)(2),解析:(1)由图象知,即,又,,所以SH CH ==NH HM ==CM ==OMHN OM =OC ==24π15π=15π1k =1k =-()1,1a =-||a == a b[0,π]θ∈()3a b b +⋅= 2a b b ⋅+= 1a b ⋅= ||||cos 1a b θ⋅= cos θ=a b ka b + a kb -()()·0ka b a kb +-= 2220ka k a b a b kb -⋅+⋅-= 22120k k k -+-=1k =1k =-1π()2sin()26f x x =+ππ(π,π)66k k -+k ∈ZA =8π2π2π33=-=4πT =0ω>4π=ω=1()2sin()2f x x ϕ=+又函数过点,所以,所以,,解得,.又.(2)将函数可得函数,的图象,所以,由,可得,所以所以,,所以,所以不等式的解集为,.(2)2解析:(1)因为余弦定理可得,所以,因为,所以,,2π(,2)32π12π(2sin()2323f ϕ=⨯+=πsin()3ϕ+=π2π2k ϕ+=+k ∈Z 2ππ6k ϕ=+k ∈Z ||ϕ=1π()2sin(26f x x =+(f x ()1ππ42sin(4)2sin(2)266f x x x =⨯+=+()g x ()ππ2sin[2()]2cos 266g x x x =++=()1g x >2cos 21x >cos 2x >ππ2π22π33k x k -<<+k ∈Z πππ6k x k -<<+∈Z ()1g x >ππ(π,π66k k -+k ∈Z 222222a b c b a c ab+-⨯=+222a b c ac -+=-2221cos ,(0,π)22a cb B B ac +-==-∈B =2sin sin b c B C====sin =sin C =又,由余弦定理得,即,因为,所以.18.答案:(1)证明见解析(2)证明见解析解析:(1)设与交于O ,连接,因为四边形是正方形,所以,且O 为的中点,又平面,又平面,所以,因为E 是的中点,所以,所以,又,,平面,所以平面,又平面,所以平面平面;(2)连接交于点M ,连接,连接,则O 为的中点,因为,的中点,所以M 为所以,又平面,平面,所以平面;(3)由平面,可得,因为E,F 分别为,的中点,sin sin A C =2c =1=2222cos b a c ac B =+-221322a c ac ⎛⎫=+-⨯- ⎪⎝⎭222233()4()a c ac ac a c a c =++⇒+=+⇒=+,0a c >2a c +=AC BD OE ABCD AC BD ⊥BD PD ⊥ABCD BD ⊂ABCD PD BD ⊥PB //PD OE OE BD ⊥OE AC O = OE AC ⊂A E G BD ⊥A E G BD ⊂BDF ⊥BDF A E G CE BF EF OM AC 3CG ==PB PC PBC △==//OM GE OM ⊂BDF EG ⊄BDF //EG BDF PD ⊥ABCD 22P ABCD P ABC A PBC V V V ---==PB PC所以,所以,所以又四面体的体积等于四棱锥,所以点G ,A平面.19.答案:(1)(答案不唯一),理由见解析.(2)(3)0解析:(1)与2具有“性质1”.当时,即,则2与2具有“性质1”(2)若所以,即,令,,所以,所以,解得即所以因此x 的取值范围,具有“性质k ”,14BEF PEF PBC S S S ==△△△4A PBC A BEF V V --=228P ABCD P ABC A PBC A BEF V V V V ----===BGEF P ABCD -A BEF G BEF V --=BEF 34=2a =4{|log x x ≤4log x ≥2a =2a =()()()(22212112212--≥⨯--⨯90>22x x --()()2222110x x -⎡⎤---≥⎢⎥⎣⎦()22210442104430xxx x x x -----≥⇒+--≥⇒+-≥4xt =0t >2131300t t t t t-++-≥⇒≥2310t t -+≥0t <≤≥04x <≤x ≥4log x ≤4log x ≥4{|log x x ≤4log x ≥x ≤≤x cos x所以,,化简得令,,两边平方得令求导得令,求导得令,解得,当,,在上单调递减;当,,在上单调递增;又因为,所以,因此,即y 在单调递减,当时,y 取最小值为0,进而得到,实数k 的最大值为0.()()()(22sin 1cos 1sin cos 1sin cos x x k x x x --≥--x ≤≤x >cos x cos 0,1cos 0sin sin x x x x ->->()()22cos sin sin cos 1sin cos x x k x x xx k ≥--⇒≤sin cos t x x =-[]0,1t ∈sin cos x x =2224321()12222112t t t k t t t t --+≤=+⎛⎫-- ⎪⎝⎭43212,22t t y t t++-=()()()()()33242234422122622t t t t t t t y t t -++--++='=+462551()h t t t t =+--534220102(3105)()6h t t t t t t t '=+-=+-()0h t '=0,1t t ==<t =()0h t '<()h t t =()0h t '>()h t (0)1h =-(1)0h =()0h t <0'<y []0,11t =0k ≤。
高一下期末数学试卷含答案解析
故选B.
3.在正项等比数列{an}中,若a2=2,a4﹣a3=4,则公比为( )
A.2B.1C. D.
【考点】等比数列的通项公式.
【分析】利用等比数列的通项公式及其性质即可得出,
【解答】解:设正项等比数列{an}的公比为q>0,
∵a2=2,a4﹣a3=4,∴ =2q2﹣2q=4,
22.已知A(﹣1,0),B(1,0),圆C:x2﹣2kx+y2+2y﹣3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k= 时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.
-学年河北省沧州市高一(下)期末数学试卷
参考答案与试题解析
化为q2﹣q﹣2=0,解得q=2.
故选;A.
4.若a>b,则下列不等式成立的是( )
A.a2>b2B. C.lga>lgbD.
【考点】不等关系与不等式.
【分析】利用不等式的性质和指数函数的单调性就看得出.
【解答】解:∵a>b,∴2a>2b>0,∴ ,
故D正确.
故选D.
5.若直线l∥平面α,直线m⊂α,则l与m的位置关系是( )
A. B. C. D.3
【考点】由三视图求面积、体积.
【分析】由三视图知该几何体是一个长方体截去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.
【解答】解:由三视图知几何体是一个长方体截去一个三棱锥所得的组合体,
且长方体长、宽、高分别是1、1、3,
三棱锥的底面是等腰直角三角形、直角边是1,三棱锥的高是1,
A.2B.1C. D.
2023-2024学年安徽省六安一中高一(下)期末数学试卷+答案解析
2023-2024学年安徽省六安一中高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数为纯虚数,则复数z的共轭复数为()A. B.2024i C. D.2025i2.已知向量,若,则()A. B. C.1 D.23.已知,,是不共面的三个向量,则能构成空间的一个基底的一组向量是()A.,,B.,,C.,,D.,,4.某不透明的袋中有3个红球,2个白球,它们除颜色不同,质地和大小都完全相同.甲、乙两同学先后从中各取一个球,先取的球不放回,则他们取到不同颜色球的概率为()A. B. C. D.5.已知样本数据,,,…,的平均数为x,方差为,若样本数据,,,…,的平均数为,方差为,则平均数()A.1B.C.2D.6.已知,,,则M到直线AB的距离为()A. B. C.1 D.7.PA,PB,PC是从点P出发的三条射线,每两条射线的夹角均为,那么直线PC与平面PAB所成角的正弦值是()A. B. C. D.8.中国古代数学瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体扇环是指圆环被扇形截得的部分现有一个如图所示的曲池,其中底面ABCD,底面扇环所对的圆心角为,扇环对应的两个圆的半径之比为1:2,,,E是的中点,则异面直线BE与所成角的余弦值为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.2021年11月10日,中国和美国在联合国气候变化格拉斯哥大会期间发布《中美关于在21世纪20年代强化气候行动的格拉斯哥联合宣言》以下简称《宣言》承诺继续共同努力,并与各方一道,加强《巴黎协定》的实施,双方同意建立“21世纪20年代强化气候行动工作组”,推动两国气候变化合作和多边进程.为响应《宣言》要求,某地区统计了2020年该地区一次能源消费结构比例,并规划了2030年一次能源消费结构比例,如图所示:经测算,预估该地区2030年一次能源消费量将增长为2020年的倍,预计该地区()A.2030年煤的消费量相对2020年减少了B.2030年天然气的消费量是2020年的5倍C.2030年石油的消费量相对2020年不变D.2030年水、核、风能的消费量是2020年的倍10.下列对各事件发生的概率判断正确的是()A.某学生在上学的路,上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为C.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是11.如图,已知正方体的棱长为1,P为底面ABCD内包括边界的动点,则下列结论正确的是()A.不存在点P,使平面B.三棱锥的体积为定值C.若,则P点在正方形底面ABCD内的运动轨迹长为D.若点P是AD的中点,点Q是的中点,过P,Q作平面平面,则平面截正方体的截面面积为三、填空题:本题共3小题,每小题5分,共15分。
四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)
雅安市2023-2024学年下期期末教学质量检测高中一年级数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数所表示的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.从小到大排列的数据1,2,3,7,8,9,10,11的第三四分位数为()A .B .9C .D .103.复数满足,则( )A .B .C .D .4.如图,在梯形ABCD 中,,E 在BC 上,且,设,,则( )A .B .C .D .5.已知m ,n 表示两条不同直线,表示平面,则( )A .若,,则B .若,,则C .若,,则D .若,,则()3i 1i -172192z 1i 22i z z +-=+z =31i 515--31i 515-+11i 155-11i 155+2AB DC =12CE EB =AB a = AD b = DE = 1233a b + 1233a b - 2133a b + 2133a b - αm α⊥n α∥m n⊥m α∥n α∥m n ∥m α⊥m n ⊥n α∥m α∥m n ⊥n α⊥6.一艘船向正北航行,在A 处看灯塔S 在船的北偏东方向上,航行后到B 处,看到灯塔S 在船的北偏东的方向上,此时船距灯塔S 的距离(即BS 的长)为( )AB .C .D .7.在复平面内,满足的复数对应的点为Z ,复数对应的点为,则的值不可能为()A .3B .4C .5D .68.已知下面给出的四个图都是正方体,A ,B 为顶点,E ,F 分别是所在棱的中点,① ②③ ④则满足直线的图形的个数为()A .1个B .2个C .3个D .4个二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.为普及居民的消防安全知识,某社区开展了消防安全专题讲座.为了解讲座效果,随机抽取14位社区居民,让他们在讲座前和讲座后各回答一份消防安全知识问卷,这14位社区居民在讲座前和讲座后问卷答题的得分如图所示,下列说法正确的是( )30︒10nmile 75︒5i 11iz --=-z 1i --0Z 0Z Z AB EF ⊥A .讲座前问卷答题得分的中位数小于70B .讲座后问卷答题得分的众数为90C .讲座前问卷答题得分的方差大于讲座后得分的方差D .讲座前问卷答题得分的极差大于讲座后得分的极差10.若平面向量,满足,则( )A .B .向量与的夹角为C .D .在上的投影向量为11.如图,在棱长为1的正方体中,M 是的中点,点P 是侧面上的动点,且平面,则( )A .P 在侧面B .异面直线AB 与MP 所成角的最大值为C .三棱锥的体积为定值D .直线MP 与平面所成角的正切值的取值范围是第II 卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分.a b 2a b a b ==+= 2a b ⋅=- a a b - π3a b -= a b - a 32a 1111ABCD A B C D -11A B 11CDD C MP ∥1AB C 11CDD C π21A PB C -12411ABB A ⎡⎣12.某学校高中二年级有男生600人,女生400人,为了解学生的身高情况,现按性别分层,采用比例分配的分层随机抽样方法抽取一个容量为50的样本,则所抽取的男生人数为________.13.已知的内角A ,B ,C 的对边分别为a ,b ,c ,且,,BC 边上,则________.14.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体.如图是以一个正方体的各条棱的中点为顶点的多面体,这是一个有8个面为正三角形,6个面为正方形的“阿基米德多面体”,包括A ,B ,C 在内的各个顶点都在球O 的球面上.若P 为球O 上的动点,记三棱锥体积的最大值为,球O 的体积为V ,则________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数,(其中).(1)若为实数,求m 的值;(2)当时,复数是方程的一个根,求实数p ,q 的值.16.(15分)已知向量,.(1)若与垂直,求实数k 的值;(2)已知O ,A ,B ,C 为平面内四点,且,,.若A ,B ,C 三点共线,求实数m 的值.17.(15分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间ABC △()πsin π2A A ⎛⎫-=- ⎪⎝⎭6b =c =P ABC -1V 1V V=12i z m =-2i z m =-m ∈R 12z z 1m =12z z ⋅220x px q ++=()1,2a =- ()3,2b =2ka b - 2a b + 2OA a b =+ 3OB a b =+ ()3,2OC m m =-,,…,分成5组,得到下图所示的频率分布直方图.(1)求图中a 的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?18.(17分)从①;②;③.这三个条件中任选一个补充在下面问题中,并解答该题.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知________.(1)求角C 的大小;(2)若点D 在AB 上,CD 平分,,,求CD 的长;(3a 的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.19.(17分)我国古代数学名著《九章算术》在“商功”一章中,将“底面为矩形,一侧棱垂直于底面的四棱锥”称为“阳马”.现有如图所示一个“阳马”形状的几何体,底面ABCD 是正方形,底面ABCD ,,E 为线段PB 的中点,F 为线段BC 上的动点[)50,60[)60,70[]90,10085%()in cos s a C C a B +=+πsin 62a b c B +⎛⎫+= ⎪⎝⎭()s sin s in in C A B A -=-ABC △ACB ∠2a =c =PA ⊥PA AB =(1)平面AEF 与平面PBC 是否垂直?若垂直,请证明,若不垂直,请说明理由;(2)求二面角的大小;(3)若直线平面AEF ,求直线AB 与平面AEF 所成角的正弦值.B PCD --PC ∥数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.1.C 2.C 3.B 4.D 5.A 6.B 7.A 8.D二、选择题:本题共3小题,每小题6分,共18分.9.11题选对1个得2分,选对2个得4分,全部选对的得6分,有选错的得0分;10题选对1个得3分,全部选对的得6分,有选错的得0分.9.ACD10.AD11.ABD三、填空题:本题共3小题,每小题5分,共15分.12.3013.314四、解答题:本题共5小题,共77分.15.(13分)【解析】(1),因为为实数,所以,解得.故为实数时,m 的值为.(2)当时,,,则复数,因为是方程的一个根,所以,化简得,由解得()()()2122232i 2i i 2i i 11m m m m z m m m m z +--+-===-++12z z 220m -=m =12z z 1m =12i z =-21i z =-()()1221i =1-3i z i z =--⋅13i -220x px q ++=()()2213i 13i 0p q -+-+=()16123i 0p q p +--+=()160,1230,p q p ⎩+-=-+⎧⎨=4,20.p q ⎧⎨⎩=-=16.(15分)【解析】(1),则,因为与垂直,所以,解得.(2),,,,因为A ,B ,C 三点共线,所以.所以,解得.17.(15分)【解析】(1)由直方图可得,样本落在,,…,的频率分别为,,0.2,0.4,0.3,由,解得.则样本落在,,…,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.方法1:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,设为,则,解得.所以,每天应该进苹果.()()()21,223,26,42ka b k k k -=--=--- ()()()221,23,25,2a b +=-+=- 2ka b - 2a b +()()562420k k ----=229k =()()()21,223,27,2OA a b =+=-+= ()()()331,23,26,4OB a b =+=-+=- ()()()6,47,21,6AB OB OA =-=--=-- ()()()3,27,237,22AC OC OA m m m m =-=--=--- AB AC∥()()22637m m ---=-⨯-2m =[)50,60[)60,70[]90,10010a 10a 10100.20.40.31a a ++++=0.005a =[)50,60[)60,70[]90,100()506060707080809090100005005020403835kg 22..222....+++++⨯+⨯+⨯+⨯+⨯=85%85%90kg 10031007..-⨯=85%[]90,100()kg x ()0.031000.15x ⨯-=()95kg x =95kg方法2:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进苹果.18.(17分)【解析】(1)若选条件①,依题意,得,根据正弦定理得,因为,所以,则,,所以.又,则,所以.若选条件②.由正弦定理得,所以,,,即.因为,所以,所以.若选条件③在中,因为,,所以,90kg 10.03100.7-⨯=85%[]90,10085%()g .0.8507901095k 10.7-+⨯=-95kg cos sin a A C a +=sin sin cos si n A A C C A +=π02A <<sin 0A >i 1cos n C C +=1c os C C -=1122cos C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭0πC <<ππ=66C -π3C =2sin sin s n πsin i 6A B C B +⎛⎫+= ⎪⎝⎭()sin sin sin 2s sin 1in c 2os 2B A B C B B B C ⎫++++==⎪⎪⎭sin cos cos 2sin sin B C B C B ++=i sin sin cos s n cos cos sin sin C B C B B C B C B +=++i sin s n cos sin C B B C B =+1c os C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭()0,πC ∈ππ=66C -π3C =ABC △()s sin s in in C A B A -=-πA B C ++=()()n s s s n i i in C A C A A +-=-即,化简得.又,则,故.因为,所以.(2)依题意,,即,则,在中,根据余弦定理,有,即,解得或(舍去),所以.(3)依题意,的面积,所以.又为锐角三角形,且,则,所以.又,则,所以.由正弦定理,得,所以,所以所以a 的取值范围为.19.(17分)【解析】(1)平面平面PBC.理由如下:因为平面ABCD ,平面ABCD ,sin cos cos sin sin sin cos cos sin C A C A A C A C A +-=-sin co 2s sin A C A =()0,πA ∈sin 0A ≠cos 12C =0πC <<π3C =1π1π1πsin sin sin 262623D a b a CD b C ⋅+⋅=⋅⋅⋅()b CD a b ⋅+=CD =ABC △22222π2cos3c a b ab a b ab =+-=+-2742b b =+-3b =1a =-CD ==ABC △sin 1122ABC S C ab ab ===△4ab =ABC △π3C =2ππ0,32A B ⎛⎫=-∈ ⎪⎝⎭π2π63B <<π02B <<ππ62B <<tan B >sin sin B a b A =sin sin A Bb a =221s sin sin s 2in π4sin 223B a B ab B BB ⎫⎛⎫+⎪- ⎪⎝⎭⎝⎭===228a <<a <<AEF ⊥PA ⊥BC ⊂所以,因为,又.所以平面PAB ,故.在中,,E 为PB 的中点,所以.因为平面PBC ,平面PBC ,,所以平面PBC .又平面AEF ,所以平面平面PBC .(2)不妨设,计算可得,,又,,,所以,则,作于G ,连结DG ,又,,可知,所以,所以是二面角的平面角.在中,由,,则,,连结BD ,知中,根据余弦定理,得,所以.(3)因为直线平面AEF ,平面PBC ,平面平面,所以直线直线EF .又E 为线段PB 的中点,所以F 为线段BC 上的中点.由(2)知,所以.设BG 与EF 交点为H ,连结AH ,由(1)知,平面平面PBC ,平面平面,PA BC ⊥BC AB ⊥PA A AB = BC ⊥BC AE ⊥PAB △PA AB =AE PB ⊥PB ⊂BC ⊂PB BC B = AE ⊥AE ⊂AEF ⊥1AB =PB PD ==PC ==PB PD =BC DC =PC PC =PBC PDC △≌△PCB PCD =∠∠BG PC ⊥BC DC =CG CG =GBC GDC △≌△90DGC BGC ∠=∠=︒BGD ∠B PC D --Rt PBC △C P P BG C B B =⋅⋅1=BG =DG =BD =GBD △2221cos 22BG D D BGD DG G B BG +-=∠⋅==-120BGD ∠=︒PC ∥PC ⊂PBC AEF EF =PC ∥BG PC ⊥BG EF ⊥AEF ⊥AEF PBC EF =所以平面AEF .所以直线AB 与平面AEF 所成角为.又由EF ,F 为BC 上的中点,可得H 为BG 的中点,可知,,又,所以.直线AB 与平面AEFBH ⊥BAH ∠PC ∥12BH BG ===1AB =sin A BA BH H B =∠=。
上海市松江二中2023-2024学年高一下学期期末考试 数学试卷【含答案】
松江二中2023学年第二学期期末考试高一数学考生注意:1.试卷满分150分,考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括三部分,第一部分为填空题,第二部分为选择题,第三部分为解答题.3.答题前,务必在答题纸上填写考号、姓名、班级.作答必须涂或写在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有12题,第1-6题每题4分,第7-12题每题5分,共54分)考生应在答题纸的相应位置直接填写结果.1.已知两条相交直线a ,b ,且a//平面α,则b 与α的位置关系是.2.复数z 满足()3i 5i z -=(i 为虚数单位),则z =.3.设平面向量()sin ,1a θ= ,(cos b θ= ,若a ,b不能组成平面上的一个基底,则tan θ=.4.如图,O A B '''△是水平放置的OAB 的斜二测直观图,若3O A ''=,4OB '=,则OAB 的面积为.5.若正数x ,y 满足24xy y +=,则x y的最大值为.6.已知10π,sin cos 2ααα<<+=,则cos sin αα-的值为.7.如图,某体育公园广场放置着一块高为3米的大屏幕滚动播放各项体育赛事,大屏幕下端离地面高度3.5米,若小明同学的眼睛离地面高度1.5米,则为了获得最佳视野(最佳视野指看到大屏幕的上下夹角最大),小明应在距离大屏幕所在的平面米处观看?(精确到0.1米).8.空间给定不共面的A 、B 、C 、D 四个点,如果这四个点到平面α的距离都相等,那么这样的平面α的个数是.9.已知二面角l αβ--的大小为60°,点P ,Q 分别在α,β上且PQ l ⊥,若点P 到β的距3Q 到α3PQ 两点之间的距离为.10.设定义在R 上的函数()f x 满足()()21f x f x =+,且当[)1,0x ∈-时,()()1f x x x =-+.若对任意[),x λ∈+∞,不等式()34f x ≤恒成立,则实数λ的最小值是.11.关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是.12.已知单位向量,a b 夹角为锐角,对t R ∈,a t b -⋅ 的取值范围是3[)2+∞,若向量c 满足(2)()0c a c b -⋅-=,则c r 的最小值为.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,共18分)每题有且只有一个正确答案,考生应在答题纸的相应位置上,将所选答案的代号涂黑.13.在下列判断两个平面α与β平行的四个命题中,其中假命题的是()A .α,β都垂直于直线l ,那么αβ∥B .α,β都平行于平面γ,那么αβ∥C .α,β都垂直于平面γ,那么αβ∥D .如果l ,m 是两条异面直线,且l α∥,m α ,l β ,m β ,那么αβ∥14.已知a ,b 是平面内两个非零向量,那么“a ∥b”是“存在0λ≠,使得a b a b λλ+=+ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件15.如图所示,在正方体1111ABCD A B C D -中,M 是棱1AA 上一点,若平面1MBD 与棱1CC 交于点N ,则下列说法中正确的是()A .存在平面1MBND 与直线1BB 垂直B .四边形1MBND 可能是正方形C .不存在平面1MBND 与直线11A C 平行D .任意平面1MBND 与平面1ACB 垂直16.已知函数()()5sin 2θf x x =-,πθ0,2⎛⎤∈ ⎥⎝⎦,[]0,5πx ∈,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且1231n n x x x x x -<<<⋅⋅⋅<<,*n ∈N 若12321832222π2n n n x x x x x x --+++⋅⋅⋅+++=,则θ=()A .π9B .π6C .π4D .π12三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在正方体1111ABCD A B C D -中,E 是11B C 的中点.(1)求异面直线AE 与1BC 所成的角的大小;(2)求直线AC 与平面11ABC D 所成的角的大小.18.已知向量()()()()()3,1,1,1,,4,,,,OA OB OC m OD x y m x y =-=-==∈R.(1)若,,A B C 三点共线,求m 的值;(2)若四边形ABCD 为矩形,求2x y +的值.19.在ABC 中,内角,,A B C 的对边分别为,,,tan tana b c b A b B +=(1)求角B ;(2)茬D 是边AC 上的点,且33,AD DC A ABD ∠∠θ====,求sin θ的值.20.如图,已知四面体ABCD 中,AB ⊥平面BCD ,BC CD ⊥.(1)求证:AC CD ⊥;(2)若在此四面体中任取两条棱作为一组((),a b 和(),b a 视为同一组),则它们互相垂直的组数记为1a ;任取两个面作为一组((),αβ和(),βα视为同一组),则它们互相垂直的组数记为2a ;任取一个面和不在此面上的一条棱作为一组((),a α和(),a α视为同一组),则它们互相垂直的组数记为3a ,试求123a a a ++的值;(3)《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”.若此“鳖臑”中,1CD =,1AB BC ==,有一根彩带经过平面ABC 与平面ACD ,且彩带的两个端点分别固定在点B和点D 处,求彩带的最小长度.21.对于分别定义在1D ,2D 上的函数()f x ,()g x 以及实数k ,若存在11x D ∈,22x D ∈使得()()12f x g x k -=,则称函数()f x 与()g x 具有关系()M k .(1)若()cos f x x =,[]0,πx ∈;()sin g x x =,[]0,πx ∈,判断()f x 与()g x 是否具有关系()2M -,并说明理由;(2)若()2sin f x x =与()22cos sin 1g x x x =+-具有关系()M k ,求k 的取值范围;(3)已知0a >,()h x 为定义在R 上的奇函数,且满足:①在[]0,2a 上,当且仅当2ax =时,()h x 取得最大值1;②对任意x ∈R ,有()()h a x h a x +=--.判断()()sin 2πf x x h x =+与()()cos 2πg x h x x =-是否具有关系()4M ,并说明理由.1.b//平面α或b 与平面α相交【分析】画出图形不难看出直线b 与平面α的位置关系,平行或相交.【详解】由题意画出图形,当,a b 所在平面与平面α平行时,b 与平面α平行,当,a b 所在平面与平面α相交时,b 与平面α相交.故答案为:b//平面a 或b 与平面α相交.【点睛】本题考查空间中直线与平面之间的位置关系,考查空间想象能力,是基础题.2.102【分析】直接利用复数代数形式的乘除运算化简,然后利用复数模的公式计算即可.【详解】因为复数z 满足()3i 5i z -=,所以()()()5i 3i 5i 515i 13i 3i 3i 3i 1022z +-+====-+--+,所以2z =,故答案为:1023.3【分析】利用基底的定义可得//a b,再利用共线向量的坐标表示求解即得.【详解】由a ,b不能组成平面上的一个基底,得//a b ,而()sin ,1a θ= ,(cos b θ= ,cos θθ=,所以sin tan cos 3θθθ==.4.12【分析】根据斜二测画法,将直观图还原可知原三角形为直角三角形,求出两直角边的长度,即可得出答案.【详解】如图,根据斜二测画法,将直观图还原后,得到的AOB 为直角三角形,且两条直角边4OB O B ''==,26OA O A ''==,所以,OAB 的面积为1S 46122=⨯⨯=.故答案为:12.5.2【分析】根据24xy y +=得出240x y =->,得出102y <<,242x y y y -=,根据y 的范围求出x y的范围即可.【详解】24xy y +=,24x y ∴+=,240x y =->,所以12y >,即102y <<,222421212211x y y y y y y ⎡⎤⎛⎫⎛⎫-==--=---⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据二次函数的性质可知1y =时,上式取得最大值2.故答案为:2.6.72【分析】根据同角关系中的平方关系进行解答,注意2sin cos 0αα<涉及的函数值正负与角终边所在象限联系,结合0πα<<,进一步缩小角的范围,进而在开方运算时得出正确的符号.【详解】由已知得()21sin cos 4αα+=,即32sin cos 4αα=-,∴()2cos sin 12sin cos αααα-=-74=,由2sin cos 0αα<,且0πα<<,∴π2απ<<,∴cos sin 0αα-<,∴7cos sin αα-=故答案为:77.3.2【分析】作CD AB ⊥于D ,设CD t =,根据两角差的正切公式,结合不等式求tan ACB ∠的最大值,并确定对应的t 即可.【详解】如图:作CD AB ⊥于D ,设()0CD t t =>,则5tan ACD t∠=,2tan BCD t ∠=.所以()tan tan ACB ACD BCD ∠=∠-∠tan tan 1tan tan ACD BCD ACD BCD ∠-∠=+∠⋅∠52521t t t t -=+⋅2310t t =+310t t=+≤=t “=”)3.16≈,故 3.2t ≈(米),故答案为:3.28.7【分析】分平面α的两边分别有1个点,3个点和两边各有2个点讨论即可.【详解】因为,,,A B C D 四点不共面,所以,,,A B C D 可以看作是四面体的顶点,取四面体ABCD 各棱的中点为,,,,,E F G H M N .如图:当,,,A B C D 四个点在平面α的一侧有1个点,另一侧有3个点,且它们到平面α的距离相等,这样的平面有平面EFN ,平面EMH ,平面FMG ,平面NGH ,共4个;当,,,A B C D 四个点分别在平面α的两侧各有两个点,且它们到平面α的距离相等,这样的平面有平面EMGN ,平面EHGF ,平面MFNH ,共3个.所以满足条件的平面α共7个.故答案为:79【分析】作PD l ⊥于D ,连接QD ,则l ⊥平面PQD ,所以PDQ ∠即为二面角l αβ--的平面角,作PM β⊥于M ,则M 在QD 上,作QN α⊥于N ,则N 在PD 上,在PQD △内求PQ 即可.【详解】如图:作PD l ⊥于D ,连接QD ,又因为PQ l ⊥,,PQ PD ⊂平面PQD ,PQ PD P ⋂=,所以l ⊥平面PQD .所以PDQ ∠即为二面角l αβ--的平面角,故60PDQ ∠=︒.作PM β⊥于M ,则M 在QD 上,作QN α⊥于N ,则N 在PD 上.在R t PMD 中,PM =PM QD ⊥,60PDQ ∠=︒,所以2PD =;在R t QND 中,2QN =,QN PD ⊥,60PDQ ∠=︒,所以1QD =.由余弦定理:2222cos 60PQ DQ DP DP DQ =+-⋅⋅︒11421232=+-⨯⨯⨯=,所以PQ =.10.94-## 2.25-【分析】由题意,根据给定的函数解析式,结合等式关系,拓展其他区间的函数解析式,利用二次函数的性质,可得答案.【详解】()()21f x f x =+ ,且当[)1,0x ∈-时,()()2111324144f x x x x ⎛⎫=-++≤≤ ⎪⎝⎭=-+恒成立,∴()()()1112f x f x f x =-≤-,易知当0x >时,则()1324f x f ⎛⎫<-≤ ⎪⎝⎭恒成立,当[)2,1x ∈--,即[)11,0x +∈-时,()()()()2311321*********f x f x x x x ⎛⎫=+=-+++=-++≤≤⎡⎤ ⎪⎣⎦⎝⎭恒成立,当[)3,2x ∈--,即[)21,0x +∈-时,()()()()()25214242214112f x f x f x x x x ⎛⎫=+=+=-+++=-++≤⎡⎤ ⎪⎣⎦⎝⎭,不满足()34f x ≤恒成立,解不等式2534124x ⎛⎫-++≤ ⎪⎝⎭,251216x ⎛⎫+≥ ⎪⎝⎭,在[)3,2x ∈--上的解集为1193,,244⎡⎤⎡⎫----⎪⎢⎥⎢⎣⎦⎣⎭ ,综上所述,当9,4x ⎡⎫∈-+∞⎪⎢⎣⎭时,()34f x ≤恒成立,∴实数λ的最小值为94-.故答案为:94-.11.(01){1}⋃-,【分析】解出方程2450x x -+=,可得其对应的点,A B ,对于方程220x mx m ++=,讨论其∆,进一步分析计算即可.【详解】因为2450x x -+=的解为2i x ==±,设所对应的两点分别为,A B ,则(2),1A ,(21,)B -,设220x mx m ++=的解所对应的两点分别为C ,D ,记为(1C x ,12)(y D x ,,2)y ,当Δ0<,即01m <<时,因为,A B 关于x 轴对称,且C ,D ,关于x 轴对称,显然四点共圆;当0∆>,即1m >或0m <时,此时(1C x ,20),(D x ,0),且122x x m +=-,故此圆的圆心为(,0)m -,半径12||2x x r -==又圆心1O 到A 的距离1O A r ==,解得1m =-,综上:()0,1{1}m ∈⋃-,故答案为:()0,1{1}⋃-.12.2【分析】根据a t b -⋅ 的最小值可求出,a b 的夹角为60θ=︒,然后根据已知设(1,0)a = ,1(2b = ,(,)c x y = ,条件(2)()0c a c b -⋅-= 可转化为点(,)C x y 在一个圆上,而结论就是求这个圆的点到原点距离的最小值.【详解】向量,a b 夹角为θ,由题意2a tb - 的取值范围是3[,)4+∞,因为a t b -⋅≥ 222324a ta b t b -⋅+≥ ,即2312cos 4t t θ+-≥,得212cos 04t t θ-+≥,因为212cos 4t t θ-+的最小值为0,所以24cos 10θ∆=-=,解得1cos 2θ=±,因为θ为锐角,所以1cos 2θ=,所以60θ=︒,不妨设(1,0)a = ,13(,)22b = ,(,)c x y = ,1313(2)()(2,)(,)(2)()()02222c a c b x y x y x x y y -⋅-=-⋅--=--+-= ,整理得2253()()444x y -+=,因此点(,)C x y 在以5(4M它到原点距离的最小值为OM .即c r的最小值为732.故答案为:2【点睛】关键点点睛:本题考查平面向量数量积的应用,它把向量的数量积与平面上点与圆的位置关系联系在一起,是一道难题.解题的关键是首先对已知条件进行转化,如条件对t R ∈,a t b -⋅ 的取值范围是[,)2+∞,可转化为1cos 2θ=,这样向量,a b 的关系就确定了,下面为了已知(2)()0c a c b -⋅-=的明确化,设出向量坐标,从而由已知条件可得c 的坐标的关系,进而可求得答案,考查数学转化思想13.C【分析】根据线面垂直的性质判断A ;根据面面平行的概念判断B ;根据特例判断C ;根据线面平行,判断面面平行判断D.【详解】根据垂直于同一条直线的两个平面互相平行,可知A 正确;根据平行于同一个平面的两个平面互相平行,可知B 正确;根据墙角模型可知,垂直于同一个平面的两个平面未必平行,故C 错误;作l l '∥,且,l m '相交,则,l m '可确定平面γ,因为l l αα⇒' ,m α ,所以γα∥,同理γβ∥,故αβ∥,故D 正确.故选:C 14.C【分析】根据向量的模长关系以及共线,即可结合必要不充分条件进行判断.【详解】若a ∥b ,则则存在唯一的实数μ≠0,使得a b μ=,故a b b b b λμλμλ+=+=+,而()a b b b b λμλλμ+=+=+ ,存在λ使得λμλμ+=+成立,所以“a ∥b”是“存在0λ≠,使得a b a b λλ+=+ ”的充分条件,若0λ≠且a b a b λλ+=+ ,则a 与b λ 方向相同,故此时a ∥b,所以“a ∥b”是“存在0λ≠,使得”a b a b λλ+=+ 的必要条件,故a ∥b”是“存在0λ≠,使得|”a b a b λλ+=+ 的充分必要条件,故选:C 15.D【分析】根据正方体的性质判断A ,根据面面平行的性质得到四边形1MBND 是平行四边形,再由11A D BM ⊥,即可判断B ,当M 为1AA 的中点时N 为1CC 的中点,即可判断C ,建立空间直角坐标系,利用向量法说明D.【详解】对于A :在正方体1111ABCD A B C D -中1BB ⊥平面1111D C B A ,显然平面1MBND 与平面1111D C B A 不平行,故直线1BB 不可能垂直平面1MBND ,故A 错误;对于B :在正方体1111ABCD A B C D -中,M 是棱1AA 上一点,平面1MBD 与棱1CC 交于点N ,由平面11//BCC B 平面11ADD A ,并且1,,,B M N D 四点共面,平面11BCC B 平面1BND M BN =,平面11ADD A 平面11BND M MD =,∴1//MD BN ,同理可证1//ND MB ,故四边形1MBND 是平行四边形,在正方体1111ABCD A B C D -中,由几何知识得,11A D ⊥平面11ABB A ,∵BM ⊂平面11ABB A ,∴11A D BM ⊥,若1MBND 是正方形,有1MD BM ⊥,此时M 与1A 重合时,但显然四边形11A BCD 不是正方形,故B 错误;对于C :当M 为1AA 的中点时,N 为1CC 的中点,所以11//A M C N 且11=A M C N ,所以11A MNC 为平行四边形,所以11//A C NM ,11A C ⊄平面1MBND ,MN ⊂平面1MBND ,所以11//A C 平面1MBND ,故C 错误;对于D :设正方体边长为2,建立空间直角坐标系如下图所示,由几何知识得,()()()()()112,0,0,2,2,0,0,2,0,2,2,2,0,0,2A B C B D ,∴()()()112,2,2,2,2,0,0,2,2D B AC AB =-=-=,∵1110D B AC D B AB ⋅=⋅=,∴111,D B AC D B AB ⊥⊥,∵1AC AB A ⋂=,AC ⊂平面1ACB ,1AB ⊂平面1ACB ,∴1D B ⊥平面1ACB ,∵1D B ⊂平面1MBND ,∴任意平面1MBND 与平面1ACB 垂直,故D 正确.故选:D 16.A【分析】先明确函数在[]0,5π上对称轴的条数,再根据1239,,,,x x x x L 的对称性,和1238983π2222x x x x x +++++=,可求θ的值.【详解】由π2θπ2x k -=+⇒ππθ,Z 422k x k =++∈,为函数()f x 的对称轴.又函数()f x 的最小正周期为2ππ2T ==,且πθ0,2⎛⎤∈ ⎥⎝⎦,[]0,5πx ∈,所以当0k =时,可得函数()f x 的第一条对称轴为πθ42x =+,当9k =时,π9πθ19πθ5π42242x =++=+≤.所以函数()f x 在[]0,5π有9条对称轴.根据正弦函数的图象和性质可知,函数()()5sin 2θf x x =-与3y =的交点有9个,其横坐标分别为:1239,,,,x x x x L ,且1239x x x x <<<< ,且12,x x 关于πθ42x =+对称,所以12x x +=πθ242⎛⎫+ ⎪⎝⎭;23,x x 关于3πθ42x =+对称,所以23+=x x 3πθ242⎛⎫+ ⎪⎝⎭;……89,x x 关于17πθ42x =+对称,所以89x x +=17πθ242⎛⎫+⎪⎝⎭.所以12389222x x x x x +++++ 81π9θ2=+83π2=⇒πθ9=.故选:A【点睛】关键点点睛:本题的关键点就是方程()3f x =的根与对称轴的对称关系,利用对称关系和对称轴方程,表示出12389222x x x x x +++++ 即可求解.17.(1)4π(2)6π【分析】(1)由11//AD BC 得出1,AE BC 所成的角为1D AE ∠,利用余弦定理得出异面直线AE 与1BC 所成的角;(2)先证明1B C ⊥平面11ABC D ,从而得出CAO ∠为直线AC 与平面11ABC D 所成的角,再由直角三角形边角关系得出所求角.【详解】(1)11//AD BC ,1,AE BC ∴所成的角为1D AE∠连接1D E ,设2AB =,则2212222AD =+=,2221223AE =++=221215D E =+=,18952cos 22223D AE +-∠==⨯⨯ 异面直线夹角的范围为0,2π⎛⎤⎥⎝⎦,14D AE π∴∠=即异面直线AE 与1BC 所成的角为4π(2)连接1B C 交1BC 于点O ,连接AO四边形11BCC B 为正方形,11BC B C∴⊥又AB ⊥平面11BCC B ,1B C ⊂平面11BCC B 1BC AB ∴⊥1AB BC B =Q I 1B C ∴⊥平面11ABC D 即CAO ∠为直线AC 与平面11ABC D 所成的角设2AB =,则222222222,1216AC AO =+==++=63cos 222CAO ∴∠==又直线与平面所成角的范围为0,2π⎡⎤⎢⎥⎣⎦,6CAO π∴∠=即直线AC 与平面11ABC D 所成的角为6π18.(1)9m =-(2)25x y +=【分析】(1)由()()()3,1,1,1,,4OA OB OC m =-=-=,由,,A B C 三点共线,可得9m =-.(2)由()()()()4,2,,41,11,5,AB BC OC OB m m =-=-=--=-,()()(),,4,4CD OD OC x y m x m y =-=-=-- ,若四边形ABCD 为矩形,求解1,62x y =-=.即可得到结果.【详解】(1)因为()()()3,1,1,1,,4OA OB OC m =-=-=,所以()()()1,13,14,2AB OB OA =-=---=- ,()()(),43,13,3AC OC OA m m =-=--=+.又,,A B C 三点共线,所以ABAC ,所以()()43230m ⨯--+=,解得9m =-.(2)由()()()()4,2,,41,11,5,AB BC OC OB m m =-=-=--=-()()(),,4,4CD OD OC x y m x m y =-=-=--,若四边形ABCD 为矩形,则AB BC ⊥.即()41100AB BC m ⋅=--= ,解得72m =.由AB CD =- ,得74,242,x m x y ⎧-=-=-⎪⎨⎪-=⎩解得1,62x y =-=.所以25x y +=.19.(1)π6B =;【分析】(1)把给定等式切化弦,利用正弦定理边化角,再利用三角恒等变换求解作答.(2)根据给定条件,求出BD ,在ABC 和BDC 中分别利用正弦定理、余弦定理列式,求解作答.【详解】(1)在ABC中,由tan tan b A b B +=sin sin cos cos A B A B +=,由正弦定理得:sin()cos cos A B A B +=,而sin()sin(π)sin A B C C +=-=,即有sin cos cos C A B =,又()0,πC ∈,即sin 0C ≠,cos B B =,有tan B =,又(0,π)B ∈,所以π6B =.(2)因为D 是AC 边上的点,且33,AD DC A ABD ∠∠θ====,于是2,3,1,4BDC AD BD DC AC ∠θ=====,如图,在ABC 中,由正弦定理得:sin sin BC ACABCθ∠=,即4sin 8sin πsin 6BC θθ==,在BDC 中,由余弦定理得:2222cos2106cos2BC BD CD BD CD θθ=+-⋅=-,则有2264sin 106(12sin )θθ=--,整理得252sin 4θ=,解得:21sin 13θ=,而π(0,)2θ∈,所以13sin 13θ=.20.(1)证明见解析(2)1022+【分析】(1)由线面垂直得到AB CD ⊥,结合BC CD ⊥得到线面垂直,进而证明出线线垂直;(2)根据线线垂直、线面垂直以及面面垂直分析求解即可;(3)将平面ABC 与平面ACD 沿AC 展开成平面图形,则BD 即为所求,从而利用余弦定理求出答案即可.【详解】(1)因为AB ⊥平面BCD ,,,BC BD CD ⊂平面BCD ,则,,AB BC AB BD AB CD ⊥⊥⊥,又BC CD ⊥,AB BC B ⋂=,,AB BC ⊂平面ABC ,所以CD ⊥平面ABC ,因为AC ⊂平面ABC ,所以AC CD ⊥.(2)由(1)可知:,,AB BC AB BD AB CD ⊥⊥⊥,AC CD ⊥,且CD ⊥平面ABC ,BC ⊂平面ABC ,则CD BC ⊥,且其余各棱均不垂直,可得15a =;由AB ⊥平面BCD ,且AB ⊂平面ABC ,AB ⊂平面ABD ,可得平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD ,同理:由CD ⊥平面ABC 可得:平面ACD ⊥平面ABC ,且其余各面均不垂直,可得23a =;由AB ⊥平面BCD ,CD ⊥平面ABC ,且其余各线面均不垂直,可得32a =;综上所述:12310a a a ++=.(3)将平面ABC 与平面ACD 沿AC 展开成如图2所示的平面图形,连接BD ,所以彩带的最小长度为图2平面图中BD 的长,.由(1)知=90ACD ∠︒,在图1中,因为AB ⊥平面BCD ,BC ⊂平面BCD ,所以AB BC ⊥,又因为1AB BC CD ===,所以45ACB ∠=︒,故在图2中,135BCD ∠=︒,所以在图2中,在BCD △中,由余弦定理得BD ===21.(1)()f x 与()g x 具有关系()2M -,理由见解析(2)25,48k ⎡⎤∈-⎢⎥⎣⎦;(3)不具有关系()4M ,理由见解析【分析】(1)根据三角函数的性质可得()ππ22f g ⎛⎫-=- ⎪⎝⎭,结合新定义即可下结论;(2)根据三角函数与二次函数的性质可得()[]2,2f x ∈-、()92,8g x ⎡⎤∈-⎢⎥⎣⎦,则()()1225,48f x g x ⎡⎤-∈-⎡⎤⎣⎦⎢⎥⎣⎦,结合新定义即可求解;(3)根据函数的对称性和周期性求出()h x 、sin 2πx 、cos 2πx 的值域.当()11h x =、1sin 2π1x =时,有()()111sin 2π2f x x h x =+=;当()21h x =-、2cos 2π1x =时,有()()222cos 2π2g x h x x =-=-,进而()()1122sin 2πcos 2π4x h x x h x ++-<,结合新定义即可下结论.【详解】(1)()f x 与()g x 具有关系()2M -,理由如下:当[]0,πx ∈时,()[]cos 1,1f x x =∈-,()[]sin 0,1g x x =∈,当1πx =,()()π1f x f ==-,当2π2x =时,()π12g x g ⎛⎫== ⎪⎝⎭,此时()ππ22f g ⎛⎫-=- ⎪⎝⎭,则()f x 与()g x 具有关系()2M -;(2)()[]2sin 2,2f x x =∈-,()222192cos sin 1cos 2sin 12sin sin 2sin 48g x x x x x x x x ⎛⎫=+-=+=-+=--+ ⎪⎝⎭,因为[]sin 1,1x ∈-,则当sin 1x =-时,21921248⎛⎫---+=- ⎪⎝⎭,则()92,8g x ⎡⎤∈-⎢⎣⎦,所以()()1225,48f x g x ⎡⎤-∈-⎡⎤⎣⎦⎢⎥⎣⎦,则25,48k ⎡⎤∈-⎢⎥⎣⎦;(3)不具有()4M 关系,理由如下:因为在[]0,2a 上,当且仅当2ax =时,()h x 取得最大值1;又()f x 为定义在R 上的奇函数,故在[]2,0a -上,当且仅当2ax =-时,()f x 取得最小值-1,由对任意x ∈R ,有()()0h a x h a x ++-=,所以()y f x =关于点(),0a 对称,又()()()h a x h a x h x a +-==--,所以()h x 的周期为2a ,故()h x 的值域为[]1,1-,[]sin 2π1,1x ∈-,[]cos 2π1,1x ∈-,当()11h x =时,122a x n =+,Z n ∈;1sin 2π1x =时,114x k =+,Z k ∈,若1224a na k +=+,则4182k a n +=+,,Z k n ∈,此时有()()111sin 2π2f x x h x =+=;当()21h x =-时,222a x ma =-+,m ∈Z ;2cos 2π1x =时,2x t =,Z t ∈,若22a ma t -+=,则241t a m =-,,Z t m ∈时,有()()222cos 2π2g x h x x =-=-;由于4128241k t a n m +=≠+-,所以()()1122sin 2πcos 2π4x h x x h x ++-<,故不存在1R x ∈,2R x ∈,使得()()1222sin 2πcos 2π4x f x x f x ++-=,所以()()sin 2πf x x h x =+与()()cos 2πg x h x x =-不具有关系()4M .【点睛】方法点睛:学生在理解相关新概念、新法则(公式)之后,运用学过的知识,结合已掌握的技能,通过推理、运算等解决问题.在新环境下研究“旧”性质.主要是将新性质应用在“旧”性质上,创造性地证明更新的性质,落脚点仍然是三角函数的图象与性质.。
湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
上海市华东师范大学第二附属中学2023-2024学年高一下学期期末考试数学试卷(含答案)
华东师范大学第二附属中学2023-2024学年高一下学期期末考试数学试卷一、填空题(第1—6题每题4分,第7—12题每题5分,满分54分)1. 是第_____________象限角,2. 复数_____.3. 函数的最大值是______.4. 已知,且,则______.5. 已知是实系数方程一个虚根,则______.6. 已知等比数列满足,,则______.7. 已知,则在上的数量投影是______.8. 在中,,则______.9. 已知复数z 满足,则的最大值为___________.10. 等差数列前项和分别是,若,则______.11. 若函数在上严格减,则正实数的取值范围是______.12. 已知平面向量,,,,满足,,,则最大值为______.二、选择题(本大题共4题,满分20分)13. “”是“是纯虚数”( )条件A. 充分不必要B. 必要不充分C. 既不充分也不必要D. 充要14. 若不平行,则下列向量中不能作为平面的一个基底是( )A. 与B. 与C. 与D. 与的的的的20242(1i)+=3sin 4cos y x x =+()()1,3,2,a b k == a b ⊥k =12024i +20x px q ++=p ={}n a 134a a +=246a a +=35a a +=()()3,4,2,1a b == a bABC V 36,5,cos 5b c bc A +====a 34i 2z ++≤z {}{},n n a b n ,n n S T 542n n S n T n +=+44a b =()sin 0y x ωω>=3π,π4⎡⎤⎢⎥⎣⎦ω1e 2e 3e p 1231e e e ===u r u r u r 120e e ⋅= 1p ≤r ()()12p e p e -⋅-+u r u r r r ()()()()2331p e p e p e p e -⋅-+-⋅-u r u r u r u r r r r r 1m =()()2322i z m m m =-++-12,e e 12e e + 12e e - 122e e + 122e e + 123e e - 2126e e - 2e 12e e +15. 在中,,则( )A. B. C. 或 D. 以上答案均不正确16. 已知是定义在复数集上的次实系数多项式(是正整数),给出下列两个命题:①如果虚数是的根,即,那么也是的根,即;②可以因式分解成若干一次或二次实系数多项式的乘积;则下列说法正确的是( )A. 命题①②都是真命题B. 命题①②都是假命题C. 命题①是真命题,命题②是假命题D. 命题①是假命题,命题②是真命题三、解答题(本大题共有5题,满分76分)17. 已知函数.(1)求的最小正周期和单调递增区间.(2)当时,求的最值.18. 在数列中,已知.(1)求的通项公式;(2)计算:.19. 在复数范围解方程.(1)关于的实系数一元二次方程的两根满足的值;(2)关于的实系数一元二次方程的两根,请根据实数的不同取值范围讨论的值.20. 在中,,平面上点满足,,动点在线段上(不含端点).(1)设,用含有的式子表示;的ABC V 53sin ,cos 135A B ==cos C =56651665-56651665-()()11100,R,0,1,,n n n n n i P z a z a z a z a a a i n --=++++≠∈= n n z ()P z ()0P z =z ()P z ()0P z =()P z 22()cos sin cos =-+f x x x x x ()f x 0,4x π⎡⎤∈⎢⎥⎣⎦()f x {}n a 11,11n n n a a a a +==+1n a ⎧⎫⎨⎬⎩⎭122320242025a a a a a a +++ x 220x x k ++=12,x x 12x x -=k x 220x x k ++=12,x x k 12x x +ABC V 3,4,60AB AC BAC ∠=== ,D E 23AD AB = 34A A E C = P DE ()01DP k DE k =<< ,,k AD AE AP(2)设,求的最小值;(3)求的最小值.21. 一个如果定义在上的函数使得,则称是一个元置换,可以用一个的数表来简单表示,例如表示一个4元置换,对于一个元置换和,按照的递推关系定义的数列称为关于生成的数列.(1)对于3元置换,直接写出2关于的生成数列的前四项;(2)给出两条新定义:①对于一个数列,如果存在正整数,使得对于任意正整数,都有,则称是一个周期数列,并称是的一个周期;②对于一个元置换,如果存在正整数,使得对任意,都是关于的生成数列的一个周期,则称是元置换的一个周期.对于5元置换,求的一个周期;(3)王老师有一个特制机关盒和一把特制钥匙,锁孔内部有10个互不相同的可移动的凹槽,钥匙上有10个对应的固定的齿,必须所有的齿与对应的凹槽同时匹配后,再按下开关,才能打开机关盒,钥匙每顺时针转动一圈,就会按照某个10元置换运作,将在第个位置的凹槽转移到第个位置上.机关盒原本处于打开状态,但一位贪玩的同学将机关盒关上后,又把钥匙顺时针转动了一圈,且操作不当弄坏了零件,导致钥匙只能继续顺时针转动,而且只有一次按下开关的机会,如果按下开关时所有的齿与凹槽没有匹配上,机关盒就会彻底报废.问:王老师还有办法打开机关盒吗?他要至少继续顺时针转动钥匙多少次,才能保证能打开机关盒?AP xAB y AC =+ 12xy +PB PC ⋅{}1,2,,m f ()()(){}{}1,2,,1,2,,f f f m m = f m 2m ⨯()()()1212m f f f f m ⎛⎫= ⎪⎝⎭12344213f ⎛⎫= ⎪⎝⎭()()()()14,22,31,43f f f f f ====:m f {}1,2,,a m ∈ ()11,1n n a f a n a a+⎧=≥⎨=⎩{}n a a f 123231f ⎛⎫= ⎪⎝⎭f {}n a {}n b T n n T n b b +={}n b T {}n b m f T {}1,2,,a m ∈ T a f {}n a T m f 1234525431f ⎛⎫= ⎪⎝⎭f f k ()f k ()110k ≤≤华东师范大学第二附属中学2023-2024学年高一下学期期末考试数学试卷 答案一、填空题(第1—6题每题4分,第7—12题每题5分,满分54分)【1题答案】【答案】三【2题答案】【答案】【3题答案】【答案】【4题答案】【答案】【5题答案】【答案】-2【6题答案】【答案】【7题答案】【答案】【8题答案】【答案】【9题答案】【答案】7【10题答案】【答案】##0.4【11题答案】【答案】【12题答案】【答案】2i523-92523107,,3232⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦5+二、选择题(本大题共4题,满分20分)【13题答案】【答案】D【14题答案】【答案】C【15题答案】【答案】B【16题答案】【答案】A三、解答题(本大题共有5题,满分76分)【17题答案】【答案】(1)最小正周期为,单调递增区间为,;(2)最小值1,最大值为2.【18题答案】【答案】(1);(2)【19题答案】【答案】(1)—1或3;(2)【20题答案】【答案】(1); (2); (3)【21题答案】【答案】(1)(2)(3)有办法,π,36k k ππππ⎡⎤-+⎢⎥⎣⎦Z k ∈n 202420251202,011k x x k k ⎧≤⎪+=<≤⎨⎪>⎩()1AP k AD k AE =-+ 496289112-2,3,1,262519。
福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)
福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。
最新人教版高一下册数学期末考试含答案
2022年人教版高一下册期末考试数学试卷一、选择题1. 已知复数z =1−2i ,则z (z +2i )=( ) A.1−2i B.9+2i C.7−4i D.1+2i2. 将圆锥的高缩短到原来的12,底面半径扩大到原来的2倍,则圆锥的体积( ) A.缩小到原来的一半 B.缩小到原来的16 C.不变 D.扩大到原来的2倍3. 若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[−2,−1]即为“同族函数”.下面函数解析式中也能够被用来构造“同族函数”的是( ) A.y =sinx B.y =x 3 C.y =e x −e −xD.y =lnx4. 甲、乙、丙三人独立地去译一个密码,分别译出的概率为12,14,18,则密码能被译出的概率是( ) A.120 B.2132C.2164D.43645. 数据x 1,x 2,…,x 9的平均数为4,标准差为2,则数据3x 1+2,3x 2+2,…,3x 9+2的方差和平均数分别为( ) A.36,14 B.14,36 C.12,19 D.4,126. 设λ为实数,已知向量m →=(2,1−λ),n →=(2,1).若m →⊥n →,则向量m →−n →与n →的夹角的余弦值为( ) A.−√55B.−√1010C.−12D.√557. 若P (AB )=16,P(A)=13,P (B )=14,则事件A 与B 的关系是( ) A.互斥 B.相互独立C.互为对立D.无法判断8. 下图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象,则()A.函数y=f(x)的最小正周期为π2B.直线x=5π12是函数y=f(x)图象的一条对称轴C.点(−π6,0)是函数y=f(x)图象的一个对称中心D.函数y=f(x−π3)为奇函数9. 若定义在R上的奇函数f(x)在(0,+∞)上单调递减,且f(−π2)=0,则下列取值范围中的每个x都能使不等式f(x+π2)⋅cosx≥0成立的是()A.[−2π,−π]B.[−π,0]C.[0,π]D.{x|x=kπ2,k∈Z}10. 如图,在直三棱柱ABC−A1B1C1中,AC=BC,AB=AA1,D是A1B1的中点,点F 在BB1上,记B1F=λBF,若AB1⊥平面C1DF,则实数λ的值为()A.13B.12C.23D.111. 如图所示,在正方体ABCD −A 1B 1C 1D 1 中,点E ,F ,M ,N 分别为棱AB ,BC ,DD 1,D 1C 1上的中点,下列判断正确的是( )A.直线AD//平面MNEB.直线FC 1//平面MNEC.平面A 1BC//平面MNED.平面AB 1D 1//平面MNE12. 矩形ABCD 中,AB =√2,AD =1,M 是矩形ABCD 内(不含边框)的动点,|MA →|=1,则MC →⋅MD →的最小值为( ) A.−√6 B.−√6+1 C.−√6+2 D.3+√62二、填空题1.已知函数f (x )={sin (π4x),x ≤1,lnx,x >1,则f(f (e ))=________.2. 已知在△ABC 中,点D 满足BD →=34BC →,点E 在线段AD (不含端点A ,D )上移动,若AE →=λAB →+μAC →,则μλ=________.3.一组数据共有7个整数,m ,2,2,2,10,5,4,且2<m <10,若这组数据的平均数、中位数、众数中最大与最小数之和是该三数中间数字的两倍,则第三四分位数是________.4. 如图,在正三棱锥A −BCD 中,底面边长为√6,侧面均为等腰直角三角形,现该三棱锥的表面上有一动点O ,且OB =2,则动点O 在三棱锥表面所形成的轨迹曲线的长度为________.三、解答题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知√3bcosC =csinB . (1)求角C ;(2)若b =2,△ABC 的面积为2√3,求c .2.某药厂测试一种新药的疗效,随机选择1200名志愿者服用此药,结果如下:(1)若另一个人服用此药,请估计该病人病情恶化的概率;(2)现拟采用分层抽样的方法从服用此药的1200名志愿者中抽取6人组成样本,并从这抽出的6人中任意选取3人参加药品发布会,求抽取的3人病情都未恶化的概率.3. 已知向量a →=(sinx,1),b →=(1,sin (π3−x)),f (x )=a →⋅b →.(1)求函数f (x )的单调递增区间和最小正周期;(2)若当x ∈[0,π4]时,关于x 的不等式2f (x )−1≤m 有解,求实数m 的取值范围.4.如图,在四棱锥P −ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60∘,PA =AB =BC ,E 是PC 的中点.(1)求二面角P −CD −A 的大小;(2)求证:AE ⊥PD .5.雪豹处于高原生态食物链的顶端,亦被人们称为“高海拔生态系统健康与否的气压计”.而由于非法捕猎等多种人为因素,雪豹的数量正急剧减少,现已成为濒危物种.在中国,雪豹的数量甚至少于大熊猫.某动物研究机构使用红外线触发相机拍摄雪豹的照片,已知红外线触发相机在它控制的区域内拍摄到雪豹的概率为0.2. (1)假定有5个红外线触发相机控制某个区域,求雪豹进入这个区域后未被拍摄到的概率;(2)要使雪豹一旦进入这个区域后有0.9以上的概率被拍摄到,需至少布置几个红外线触发相机(lg2≈0.301).6.如图,已知四棱锥P−ABCD,△ABD为等边三角形,直线PC,DC,BC两两垂直,且PC=CD=BC=2,M为线段PA上的一点.(1)若平面BDM⊥平面ABCD,求AM2;(2)若三棱锥P−MBD的体积为四棱锥P−ABCD体积的1,求点M到平面ABCD的距离.2参考答案与试题解析一、选择题1.【答案】B【解析】无2.【答案】D【解析】无3.【答案】A【解析】无4.【答案】D【解析】无5.【答案】A【解析】无6.【答案】A【解析】无7.【答案】B【解析】无8.【答案】C【解析】无9.【答案】B【解析】无10.【答案】D【解析】无11.【答案】D【解析】无12.【答案】C【解析】无二、填空题【答案】√22【解析】无【答案】3【解析】无【答案】5【解析】此题暂无解析【答案】3π2【解析】无三、解答题【答案】解:(1)由正弦定理可得√3sinBcosC=sinCsinB. 因为sinB≠0,所以√3cosC=sinC,所以tanC =√3.因为C ∈(0,π),所以C =π3.(2)由(1)得C =π3. 因为S △ABC =12absinC =√34ab =2√3,所以ab =8.因为b =2,所以a =4.由余弦定理得,c 2=a 2+b 2−2abcosC =16+4−8=12, 所以c =2√3. 【解析】 此题暂无解析 【答案】解:(1)由统计表可知在1200名志愿者中,服用药出现病情恶化的频率为2001200=16,所以估计另一个人服用此药病情恶化的概率为16.(2)采用分层抽样的方法,从病情好转的志愿者中抽4人,从疗效不明显及病情恶化的志愿者中各抽取1人组成6个人的样本.将6人中病情恶化的1人用符号A 代替,其余5人分别用1,2,3,4,5代替, 则从6人中任意抽取3人的基本事件表示如下: (A,1,2),(A,1,3),(A,1,4),(A,1,5),(A,2,3), (A,2,4),(A,2,5),(A,3,4),(A,3,5),(A,4,5), (2,3,4),(2,3,5),(2,4,5),(3,4,5),(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),共20个基本事件. 其中没有抽到病情恶化的志愿者的基本事件为: (2,3,4),(2,3,5),(2,4,5),(3,4,5),(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),共10个基本事件, 因此,抽取的3人中没有病情恶化的志愿者的概率为1020=12.【解析】 无 无 【答案】解:(1)因为f (x )=a →⋅b →=sinx +sin (π3−x)=12sinx +√32cosx =sin (x +π3),所以函数f (x )的最小正周期T =2π.因为函数y =sinx 的单调增区间为[−π2+2kπ,π2+2kπ],k ∈Z , 所以−π2+2kπ≤x +π3≤π2+2kπ,k ∈Z ,解得−5π6+2kπ≤x ≤π6+2kπ,k ∈Z ,所以函数f (x )的单调增区间为[−5π6+2kπ,π6+2kπ],k ∈Z .(2)不等式2f (x )−1≤m 有解,即m+12≥f (x )min .因为x ∈[0,π4],所以π3≤x +π3≤7π12.又sin 7π12=sin 5π12>sin π3,故当x +π3=π3,即x =0时,f (x )取得最小值,且最小值为f (0)=√32, 所以m ≥√3−1. 【解析】 此题暂无解析 【答案】(1)解:因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以CD ⊥PA .因为CD ⊥AC,PA ∩AC =A , 所以CD ⊥平面PAC , 所以CD ⊥PC . 又AC ⊥CD ,故∠PCA 为二面角P −CD −A 的平面角. 又PA =AB =BC =AC ,故二面角P −CD −A 的大小为45∘. (2)证明:由于AE ⊂平面PAC , 所以AE ⊥CD .因为E 是PC 的中点,所以AE ⊥PC . 又PC ∩CD =C ,所以AE ⊥平面PCD . 又PD ⊂平面PCD ,所以AE ⊥PD . 【解析】 此题暂无解析 【答案】解:(1)雪豹被拍摄到的概率,即至少有1个红外线触发相机拍摄到雪豹的概率. 设雪豹被第k 个红外线触发相机拍摄到的事件为A k (k =1,2,3,4,5), 那么5个红外线触发相机都未拍摄到雪豹的事件为A 1⋅A 2⋅A 3⋅A 4⋅A 5. ∵ 事件A 1,A 2,A 3,A 4,A 5相互独立, ∴ 雪豹未被拍摄到的概率为 P(A 1⋅A 2⋅A 3⋅A 4⋅A 5)=P(A 1)⋅P(A 2)⋅P(A 3)⋅P(A 4)⋅P(A 5) =(1−0.2)5=(45)5,∴ 雪豹未被拍摄到的概率为(45)2.(2)设至少需要布置n 个红外线触发相机才能有0.9以上的概率拍摄到雪豹, 由(1)可知,雪豹被拍摄到的概率为1−(45)n.令1−(45)n≥0.9, ∴ (45)n≤110,两边取常用对数,得n ≥11−3lg2≈10.3.∵ n ∈N ∗, ∴ n =11,∴ 至少需要布置11个红外线触发相机才能有0.9以上的概率拍摄到雪豹. 【解析】 无 无 【答案】解:(1)连接AC 交BD 于点O .易知AC 为线段BD 的垂直平分线,且AC 为AP 在平面ABCD 上的投影, 所以MD =MB .连接MO ,则MO ⊥BD .又因为平面BDM ⊥平面ABCD ,平面BDM ∩平面ABCD =BD ,MO ⊂平面MBD , 所以MO ⊥平面ABCD .又因为AO ⊂平面ABCD ,所以MO ⊥AO .因为CO =√2,AO =√6,AP 2=AC 2+PC 2=12+4√3. 又因为AOAC =AM AP,即AM 2=18−6√3.(2)过点M 作平面ABCD 的垂线,垂足为O ′, V M−ABD =13×12×√6×2√2×MO ′=2√33⋅MO ′,V P−BCD =43,V P−ABCD =13×12×2√2×(√2+√6)×2=4(√3+1)3, 故V P−BCD +V M−ABDV P−ABCD=1−12,解得MO ′=1−√33, 故点M 到平面ABCD 的距离为1−√33. 【解析】 此题暂无解析。
高一(下学期)期末考试数学试卷
高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。
高一下学期数学期末试卷含答案(共5套)
高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。
北京市通州区2023-2024学年高一下学期期末数学试卷含答案
2024北京通州高一(下)期末数学(答案在最后)2024年7月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复平面内点(1,2)A -所对应复数的虚部为()A.1 B.2- C.iD.2i-【答案】B 【解析】【分析】根据题意,由复数的几何意义即可得到点A 对应的复数,从而得到结果.【详解】复平面内点(1,2)A -所对应复数为12i -,其虚部为2-.故选:B2.样本数据3,5,7,2,10,2的中位数是()A.7 B.6C.4D.2【答案】C 【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:先对这组数据按从小到大的顺序重新排序:2,2,3,5,7,10.位于最中间的数是3,5,所以这组数的中位数是3542+=.故选:C .3.已知向量(1,2)a =- ,a b ⊥ ,那么向量b可以是()A.(2,1)B.(2,1)- C.(2,1)- D.()1,2-【答案】A 【解析】【分析】由a b ⊥ 可得0a b ⋅=,逐个验证即可.【详解】因为a b ⊥ ,所以0a b ⋅=,对于A ,若(2,1)b = ,则220a b ⋅=-+=r r,所以A 正确,对于B ,若(2,1)b =-,则220a b ⋅=--≠r r,所以B 错误,对于C ,若(2,1)b =- ,则220a b ⋅=+≠r r,所以C 错误,对于D ,若(1,2)b =-,则140a b ⋅=--≠r r,所以D 错误.故选:A4.在三角形ABC 中,角,,A B C 所对的边分别为,,a b c,已知π,1,6A a b ===B =()A.π3B.π4C.π4或3π4D.π3或2π3【答案】C 【解析】【分析】由b a >得B A >,再由正弦定理计算即可.【详解】由题意,π,1,6A a b ===,因为b a >,所以B A >,由正弦定理得sin sin a bA B=,即1sin 2sin 12b A B a ===,因为()0,πB ∈,所以π4B =或3π4.故选:C.5.已知圆锥的底面半径是1,则圆锥的侧面积是()A.πB.C.4πD.2π【答案】D 【解析】【分析】根据题意求出圆锥的母线长,再利用圆锥的侧面积公式可求得答案.【详解】因为圆锥的底面半径是1,2=,所以圆锥的侧面积为ππ221⨯⨯=.故选:D6.如图,在正方体1111ABCD A B C D -中,则11AC 与1B C 所成角为()A.π6B.π4C.π3D.π2【答案】C 【解析】【分析】连接1,AC AB ,根据定义,得到1ACB ∠即为11A C 与1B C 所成角,即可求解.【详解】如图所示:连接1,AC AB ,由正方体的性质可得,11//AC AC ,则1ACB ∠即为11A C 与1B C 所成角,又11AC B C AB ==,所以1π3ACB ∠=.故选:C.7.在下列关于直线l m 、与平面αβ、的命题中,真命题是()A.若l β⊂,且αβ⊥,则l α⊥B.若l β⊥,且//αβ,则l α⊥C.若//αβ,l ⊂α,m β⊂,则//l mD.若l β⊥,且αβ⊥,则//l α【答案】B 【解析】【分析】利用线面垂直的判定条件说明、推理判断AB ;利用面面平行的判定说明判断C ,利用线面平行的判定说明判断D.【详解】对于A ,αβ⊥,当平面,αβ的交线为l 时,满足l β⊂,此时l ⊂α,A 错误;对于B ,由l β⊥,得存在过直线l 的平面,γδ,,a b γβδβ== ,由于//αβ,则平面,γδ与平面α必相交,令,a b γαδα''== ,于是//,//a a b b '',显然,l a l b ⊥⊥,而,,l a a γ'⊂,则l a ⊥',同理l b ⊥',又,a b ''是平面α内的两条相交直线,因此l α⊥,B 正确;对于C ,//αβ,l ⊂α,m β⊂,//l m 或,l m 异面,C 错误;对于D ,αβ⊥,令⋂=c αβ,当直线l 在平面α内,且l c ⊥时,满足l β⊥,此时//l α不成立,D 错误.故选:B8.一个口袋内装有大小、形状相同的红色、黄色和绿色小球各2个,不放回地逐个取出2个小球,则与事件“2个小球都为红色”互斥而不对立的事件有()A.2个小球恰有一个红球B.2个小球至多有1个红球C.2个小球中没有绿球D.2个小球至少有1个红球【答案】A 【解析】【分析】根据题意,由互斥事件的定义依次分析选项,即可得到结果.【详解】2个小球恰有一个红球包括2个小球1个红球1个黄球和2个小球1个红球1个绿球,与事件“2个小球都为红色”互斥而不对立,符合题意,故A 正确;2个小球至多有1个红球包括2个小球都不是红球和2个小球恰有1个红球,则2个小球至多有1个红球与事件“2个小球都为红色”是对立事件,故B 错误;2个小球中没有绿球包括2个小球都为红色,2个小球都为黄色和2个小球1个红球1个黄球,则事件“2个小球都为红色”是2个小球中没有绿球的子事件,故C 错误;2个小球至少有1个红球包括2个小球都是红球和2个小球1个红球1个不是红球,则事件“2个小球都为红色”是2个小球至少有1个红球的子事件,故D 错误;故选:A9.一个长为,宽为2的长方形,取这个长方形的四条边的中点依次为A ,B ,C ,D ,依次沿AB ,BC ,CD ,DA ,DB 折叠,使得这个长方形的四个顶点都重合而得到的四面体,称为“萨默维尔四面体”,如下图,则这个四面体的体积为()A.12B.23C.1D.2【答案】B 【解析】【分析】根据题意,由线面垂直的判定定理可得⊥AE 平面BCD ,再由锥体的体积公式代入计算,即可得到结果.【详解】由题意可得,BC CD AD AB ====2==AC BD ,取BD 中点E ,连接,AE CE ,又AB AD =,所以AE BD ⊥,且AE ===CE ===则222AE CE AC +=,所以AE CE ⊥,且CE BD E = ,,CE BD ⊂平面BCD ,所以⊥AE 平面BCD ,则111223323A BCD BCD V S AE -=⋅=⨯⨯ .故选:B10.达⋅芬奇方砖是在正六边形上画了具有视觉效果的正方体图案,把六片这样的达·芬奇方砖拼成下图的组合,这个组合再转换成几何体,则需要10个正方体叠落而成,若一个小球从图中阴影小正方体出发,等概率向相邻小正方体(具有接触面)移动一步,则经过两步移动后小球又回到阴影小正方体的概率为()A.14B.13C.512D.712【答案】D 【解析】【分析】,根据题意,由全概率公式代入计算,即可得到结果.【详解】由题意可得,一个小球从图中阴影小正方体出发,可以向上,向下或水平移动,设小球向上移动为事件A ,小球水平移动为事件B ,小球向下移动为事件C ,小球回到阴影为事件D ,则()()()()()()11111,,,1,,42423P A P B P C P D A P D B P D C ======,则()()()()()()()P D P A P D A P B P D B P C P D C=++1111174224312=+⨯+⨯=.故选:D第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.设复数z 满足()1i 2i z -=(i 为虚数单位),则z 的模为________.【答案】2【解析】【分析】由复数的除法、乘法运算以及模的计算公式即可得解.【详解】()()()()222i 1i 1i,1121i 1i z z +==-+=-+-+2.12.从写有数字1,2,3,4,5的5张卡片中有放回的抽取两次,两次抽取的卡片数字和为5的概率是________.【答案】425【解析】【分析】根据条件,求出样本空间及事件B 包含的样本点,再利用古典概率公式,即可求出结果..【详解】用(,)x y 中的x 表示第一次取到的卡片数字,y 表示第一次取到的卡片数字,由题知,样本空间为{Ω(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),=}(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个,记事件B :两次抽取的卡片数字和为5,事件B 包含的样本点为(1,4),(2,3),(3,2),(4,1),共4个,所以两次抽取的卡片数字和为5的概率是425,故答案为:425.13.已知,,a b c 分别是ABC 的角,,A B C 的对边,若5b =,4c =,10⋅=-AB AC ,则A =______,ABC 的面积为______.【答案】①.2π3②.【解析】【分析】根据给定条件,利用向量夹角公式计算即得A ,再利用三角形面积公式求出面积.【详解】依题意,10101cos 202||||AB AC A bcAB AC ⋅-===-=-,在ABC 中,0πA <<,所以2π3A =;ABC 的面积11sin 20222S bc A ==⨯⨯=.故答案为:2π3;14.在正方形ABCD 中,E 是DC 边上一点,且2DE EC =,点F 为AE 的延长线上一点,写出可以使得AF AB AD λμ=+成立的λ,μ的一组数据(),λμ为________.【答案】()2,3(答案不唯一)【解析】【分析】根据向量的线性运算表示出AE,再结合向量的共线即可求得答案.【详解】由题意知DC AC AD =-,而2DE EC =,故2()3DE AC AD =- ,则()212122()333333AE AD DE AD AC AD AD AC AD AB AD AB AD =+=+-=+=++=+,又点F 为AE 的延长线上一点,故,(1)A t AE t F =>,可取3t =,则(23)233AB F A AB A D AD +=+=,故使得AF AB AD λμ=+成立的,λμ的一组数据(),λμ为(2,3),故答案为:()2,3.15.如图,正方体1111ABCD A B C D -的棱长为1,E 为BC 的中点,F 为线段1CC 上的动点,过点A ,E ,F 的平面截该正方体所得截面记为S ,则下列命题正确的是________.①直线1D D 与直线AF相交;②当102CF <<时,S 为四边形;③当F 为1CC 的中点时,平面AEF 截正方体所得的截面面积为98;④当34CF =时,截面S 与11A D ,11C D 分别交于,M N ,则MN .【答案】②③④【解析】【分析】①,由1//D D 平面11ACC A ,可知直线1D D 与直线AF不可能相交,即可判断;②,由102CF <<可得截面S 与正方体的另一个交点落在线段1DD 上,即可判断;③,由E 为BC 的中点,F 为1CC 的中点,可得截面为等腰梯形,求出等腰梯形的上、下底和高,即可求得截面面积,即可判断;④,当34CF =时,延长1DD 至R ,使112D R =,连接AR 交11A D 于M ,连接RF 交11C D 于N 连接MN ,取AD 的中点S ,1DD 上一点Q ,使34DQ =,连接SE SQ QF 、、,可求得11,D N D M ,再利用勾股定理求出MN ,即可判断.【详解】①,因为F 为线段1CC 上的动点,所以AF ⊂平面11ACC A ,由正方体可知1//D D 平面11ACC A ,所以直线1D D 与直线AF 不可能相交,故①错误;②,当102CF <<时,截面S 与正方体的另一个交点落在线段1DD 上,如图所示:所以截面为四边形;又1A G ⊂面1A MG ,故1A G //面AEF ,故②正确;③,连接111,,,AD D F AE BC ,如下所示:因为E 为BC 的中点,F 为1CC 的中点,则11////EF BC AD ,故面1AEFD 即为平面AEF 截正方体所得截面;在11Rt D C F 和Rt ABE △中,又12D F AE ===,故该截面为等腰梯形,又1122EF BC ===,1A D ==,故截面面积()111922248S EF AD ⎛=+⨯⨯+⨯ ⎝,故③正确;④,当34CF =时,延长1DD 至R ,使112D R =,连接AR 交11A D 于M ,连接RF 交11C D 于N 连接MN ,取AD 的中点S ,1DD 上一点Q ,使34DQ =,连接SE SQ QF 、、,如图所示:因为//SE DC 且SE DC =,//QF DC 且QF DC =,所以//SE QF 且SE QF =,所以四边形SEFQ 是平行四边形,则//SQ EF ,由112D R =,34DQ =,所以111134QR QD D R DD DQ D R =+=-+=,则Q 为DR 中点,则//SQ AR ,所以//EF AR ,又1111,RD N FC N RD M AA M ,可得11111111111222,31214D N D R D M D R C N C F A M A A ======-,所以1111112211,3333D N D C D M D A ====,则在1Rt MD N中3MN ===,故④正确;故答案为:②③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知向量(1,0)a =-,(2,1)b =- .(1)求|2|+a b ;(2)若AB a b =+ ,2BC a b =- ,CD a =-,求证:A ,C ,D 三点共线.【答案】(1(2)证明见解析【解析】【分析】(1)结合向量的坐标运算,以及向量模公式,即可求解;(2)结合向量共线的性质,即可求解.【小问1详解】解:(1,0)a =-,(2,1)b =-,则()()()21,04,23,2a b +=-+-=-,故|2|a b +==【小问2详解】证明:AB a b =+,2BC a b =-,则23AC AB BC a b a b a =+=++-= ;13CD a AC =-=-,所以CD AC ∥ ,所以A ,C ,D 三点共线.17.在中小学生体质健康测试中,甲、乙两人各自测试通过的概率分别是0.6和0.8,且测试结果相互独立,求:(1)两人都通过体质健康测试的概率;(2)恰有一人通过体质健康测试的概率;(3)至少有一人通过体质健康测试的概率.【答案】(1)0.48(2)0.44(3)0.92【解析】【分析】根据题意,由相互独立事件的概率乘法公式,代入计算,即可得到结果.【小问1详解】根据题意,记甲通过体能测试为事件A ,乙通过体能测试为事件B ,且事件A 与事件B 相互独立,则两人都通过体能测试的概率()()()10.60.80.48P P AB P A P B ===⨯=.由事件A 与事件B 相互独立,则恰有一人通过体能测试的概率为()()()()()20.40.80.60.20.44P P AB AB P A P B P A P B =+=+=⨯+⨯=.【小问3详解】由事件A 与事件B 相互独立,则至少有一人通过体能测试的概率为()()()30.480.440.92P P AB AB AB P AB P AB AB =++=++=+=.18.如图,在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11,BB DD 的中点.求证:(1)BD ∥平面1C EF ;(2)EF ⊥平面11ACC A ;(3)求三棱锥11B C EF -的体积.【答案】(1)证明见解析(2)证明见解析(3)23【解析】【分析】(1)先证明四边形BDFE 为平行四边形,得出BD EF ∥,再根据线面平行的判定定理即可得证;(2)根据线面垂直的判定与性质定理即可得证;(3)利用F 到平面11BCC B 距离为三棱锥的高2h CD ==,结合等体积法求解即可.【小问1详解】证明:E ,F 分别为1BB ,1DD 的中点,11BB DD =,11BB DD ∥,BE DF ∴∥且BE DF =,∴四边形BDFE 为平行四边形,BD EF ∴∥,又EF ⊂平面1C EF ,BD 不在平面1C EF ,BD ∴∥平面1C EF ;证明: 四边形ABCD 为正方形,BD AC ∴⊥,BD EF ∥ ,AC EF ∴⊥,1AA ⊥ 平面ABCD ,BD ⊂平面ABCD ,1AA BD ∴⊥,BD EF ∥ ,1AA EF ⊥,又1AC AA A = ,AC ,1AA ⊂平面11ACC A ,EF ∴⊥平面11ACC A ;【小问3详解】F 到平面11BCC B 距离为三棱锥的高2h CD ==,1111121122BC E S B C B E =⋅=⨯⨯= ,故三棱锥11B C EF -的体积11111111212333B C EF F B C E B C E V V S h --==⋅=⨯⨯= .19.某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还要从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.为了解某校学生选科情况,现从高一、高二、高三学生中各随机选取了100名学生作为样本进行调查,调查数据如下表,用频率估计概率.选考情况第1门第2门第3门第4门第5门第6门物理化学生物历史地理政治高一选科人数807035203560高二选科人数604555404060高三选科人数504060404070(1)已知该校高一年级有400人,估计该学校高一年级学生中选考历史的人数;(2)现采用分层抽样的方式从样本中随机抽取三个年级中选择历史学科的5名学生组成兴趣小组,再从这5人中随机抽取2名同学参加知识问答比赛,求这2名参赛同学来自不同年级的概率;(3)假设三个年级选择选考科目是相互独立的.为了解不同年级学生对各科目的选择倾向,现从高一、高二、高三样本中各随机选取1名学生进行调查,设这3名学生均选择了第k 门科目的概率为(12345,6)k P k =,,,,,当k P 取得最大值时,写出k 的值.(结论不要求证明)【答案】(1)80人(2)45(3)6【解析】【分析】(1)样本中高一学生共有100人,其中选择历史学科的学生有20人,由此能估计高一年级选历史学科的学生人数.(2)应从样本中三个年级选历史的学生中分别抽取人数为1,2,2,编号为1A ,2A ,3A ,4A ,5A ,从这5名运动员中随机抽取2名参加比赛,利用列举法能求出事件“这2名参赛同学来自相同年级”的概率.(3)利用相互独立事件概率乘法公式求解.【小问1详解】解:由题意知,样本中高一学生共有100人,其中选择历史学科的学生有20人,故估计高一年级选历史学科的学生有20400=80100⨯人.【小问2详解】解:应从样本中三个年级选历史的学生中分别抽取人数为1,2,2,编号为1A ,2A ,3A ,4A ,5A ,从这5名运动员中随机抽取2名参加比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}34,A A ,{}35,A A ,{}45,A A ,共10种,设A 为事件“这2名参赛同学来自不同年级”,则A 为事件“这2名参赛同学来自相同年级”有2{A ,3}A ,4{A ,5}A 共2种,所以事件A 发生的概率24()1()1105P A P A =-=-=.【小问3详解】解:10.80.60.50.24P =⨯⨯=,20.70.450.40.126P =⨯⨯=,30.350.550.60.1155P =⨯⨯=,40.20.40.40.032P =⨯⨯=,50.350.40.40.056P =⨯⨯=,60.60.60.70.252P =⨯⨯=,∴当k P 取得最大值时,6k =.20.在△ABC 中,角,,A B C 所对的边为,,a b c ,△ABC 的面积为S ,且2224a b c S +-=.(1)求角C ;(2)若2cos c b b A -=,试判断△ABC 的形状,并说明理由.【答案】(1)π4C =(2)等腰直角三角形,理由见解析【解析】【分析】(1)应用面积公式及余弦定理得出正切进而得出角;(2)先应用正弦定理及两角和差的正弦公式化简得出2A B =,结合π4C =判断三角形形状即可.【小问1详解】在ABC 中,因为2224a b c S +-=,则12cos sin 24ab C ab C =,整理得tan 1C =,且π0,2C ⎛⎫∈ ⎪⎝⎭,所以π4C =.【小问2详解】由正弦定理得sin sin 2sin cos C B B A -=,()sin sin sin cos cos sin C A B A B A B =+=+ ,sin cos cos sin sin 2sin cos A B A B B B A ∴+-=,sin cos cos sin sin A B A B B ∴-=,于是()sin sin A B B -=,又(),0,πA B ∈,故ππA B -<-<,所以()πB A B =--或B A B =-,因此πA =(舍去)或2A B =,所以2A B =.πππ,,,424C A B =∴==ABC 是等腰直角三角形.21.如图,七面体ABCDEF 中,菱形ABCD 所在平面与矩形ACEF 交于AC ,平面CDF 与平面ABF 交于直线l .(1)求证://AB l ;(2)再从条件①、条件②这两个条件中选择一个作为已知条件,试求当BDAF为何值时,平面DEF ⊥平面BEF 并证明你的结论.条件①:ABCD ACEF ⊥平面平面;条件②:CE AB ⊥.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)由于//AB 平面CDF ,由线面平行的性质定理可证//AB l ;(2)若选①,设AC BD O = ,取EF 的中点M ,连结,,OM BM DM 如图所示,由平面ABCD ⊥平面ACEF ,可得AF ⊥平面ABCD ,从而AF AD ⊥,进一步由CDE ADF ≅△△,得DM EF ⊥,假设平面DEF ⊥平面BEF ,可得DM EF ⊥,DM BM ⊥,从而2BDAF=;若选②,可得CE ⊥平面ABCD ,可得,CE AF ⊥平面ABCD ,从而AF AD ⊥,进一步由CDE ADF ≅△△,得DM EF ⊥,假设平面DEF ⊥平面BEF ,可得DM EF ⊥,DM BM ⊥,从而2BDAF=.【小问1详解】菱形ABCD 中,//AB CD ,又CD ⊂平面CDF ,AB ⊄平面CDF ,//AB ∴平面CDF ,又AB ⊂平面ABF ,平面ABF 平面CDF l =.AB//l ∴;【小问2详解】若选①当2BDAF=时,平面DEF ⊥平面BEF ,设AC BD O = ,取EF 的中点M ,连结,,OM BM DM 如图所示,平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEFAC =,矩形ACEF 中AF AC ⊥,AF ∴⊥平面ABCD ,AD ⊂ 平面ABCD ,AF AD ∴⊥,同理可得:CE CD ⊥,90DCE DAF ∴∠=∠= ,因为菱形ABCD 中CD AD =,矩形ACEF 中CE AF =,CDE ADF ∴≅ ,DE DF ∴=,M 是EF 的中点,DM EF \^,假设平面DEF ⊥平面BEF 成立,平面DEF ⋂平面BEF EF =,且DM EF ⊥,DM ∴⊥平面BEF ,BM ⊂ 平面BEF ,DM BM ∴⊥,矩形ACEF 中M 是EF 的中点,菱形ABCD 中O 是AC 的中点,//,OM AF OM AF ∴=,OM ∴⊥平面ABCD ,BD ⊂平面ABCD ,OM BD ∴⊥,又DMBM ⊥ ,O 是BD 的中点,可知△BDM 为等腰直角三角形,,22OM OB OD BD OB OD OM AF ∴==∴=+==,2BD AF ∴=,故当2BDAF =时,平面DEF ⊥平面BEF ;若选②当2BDAF=时,CE AB ⊥ ,矩形ABEF 中,⊥ CE AC AC AB A ⋂=,,AC AB ⊂平面ABCD ,CE ∴⊥平面ABCD ,矩形ACEF 中//CE AF ,AF ∴⊥平面ABCD ,AD ⊂ 平面ABCD ,AF AD ∴⊥,同理可得:CE CD ⊥,90DCE DAF ∴∠=∠= ,因为菱形ABCD 中CD AD =,矩形ACEF 中CE AF =,CDE ADF ∴≅ ,DE DF ∴=,M 是EF 的中点,DM EF \^,假设平面DEF ⊥平面BEF 成立,平面DEF ⋂平面BEF EF =,且DM EF ⊥,DM ∴⊥平面BEF ,BM ⊂ 平面BEF ,DM BM ∴⊥,矩形ACEF 中M 是EF 的中点,菱形ABCD 中O 是AC 的中点,//,OM AF OM AF ∴=,OM ∴⊥平面ABCD ,BD ⊂平面ABCD ,OM BD ∴⊥,又DMBM ⊥ ,O 是BD 的中点,可知△BDM 为等腰直角三角形,,22OM OB OD BD OB OD OM AF ∴==∴=+==,2BD AF ∴=,故当2BDAF=时,平面DEF ⊥平面BEF .【点睛】关键点点睛:第(2)问求当BDAF为何值时,平面DEF ⊥平面BEF ,在解析时先假设平面DEF ⊥平面BEF 成立,从而利用面面垂直的性质定理进一步推理.。
2022-2023学年河南省平顶山市高一(下)期末数学试卷【答案版】
2022-2023学年河南省平顶山市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =5i 31−2i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.数据71,73,79,83,89,90,96,98的25%分位数为( ) A .73B .75C .76D .793.某地气象部门统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:则可以估计该地区今年6月份的某天最高气温小于30°C 的概率为( ) A .0.8B .0.6C .0.4D .0.24.已知向量a →=(−2,4),b →=(−1,1),则a →在b →上的投影向量为( ) A .(35,−65)B .(−35,65)C .(3,﹣3)D .(﹣3,3)5.已知圆锥的底面半径是2,体积为8√33π,则它的侧面展开图的圆心角为( ) A .π2B .πC .4π3D .3π26.在梯形ABCD 中,AB →=2DC →,AM →=2MD →,则CD →=( ) A .12CM →+14BM →B .14CM →+12BM →C .13CM →+13BM →D .13CM →−13BM →7.已知在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点M ,N 分别是BC ,BB 1的中点,则异面直线D 1M ,DN 所成角的余弦值为( ) A .17B .√3514C .914D .678.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A +sin (A +C )=2sin C ,则( ) A .sin C 的最小值为12B .sinC 的最大值为√32 C .cos C 的最小值为0 D .cos C 的最大值为12二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数z 的共轭复数为z ,则( ) A .|z|=|z| B .z −z 一定是虚数 C .z +z 一定是实数D .z 2≥010.从1~9这9个整数中随机取1个数,记M ,N 是此试验中的两个事件,且满足P (M )=13,P (N )=23,则下列说法正确的是( ) A .M 与N 是对立事件B .若M ⊆N ,则P (MN )=13C .若P(MN)=19,则M 与N 相互独立D .若P (M ∪N )=1,则M 与N 互斥11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且b =3,A =2B ,则下列说法正确的是( ) A .若c <b ,则△ABC 是钝角三角形 B .△ABC 可能是顶角为钝角的等腰三角形C .若a =3√3,则C =π2D .若c =1,则a =2√312.如图所示,扇形OAB 的半径OA =4,∠AOB =2π3,C 是弧AB 的中点,点D ,E 是线段OB ,OA 上的动点且满足|OD →|=|AE →|,则CD →⋅CE →的值可以是( )A .6B .8C .2√10D .3√10三、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量a →=(1,2),b →=(−2,1),c →=(2,t),若(a →+2b →)⊥c →,则t = . 14.设一组样本数据1,2,2,a ,b ,5,6,8的方差为5,则数据4,7,7,3a +1,3b +1,16,19,25的方差是 .15.小王逛书店,他买甲书和买乙书相互独立,若小王买甲书不买乙书的概率为16,甲和乙两本书都买的概率为12,则小王买乙书的概率为 .16.在三棱锥P ﹣ABC 中,平面ABC ⊥平面P AB ,AC ⊥BC ,点D 是AB 的中点,PD ⊥PB ,PB =PD =2,则三棱锥P ﹣ABC 的外接球的表面积为 .四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知复数z1=t+(t2﹣1)i,z2=sinθ+(2cosθ+1)i,其中t∈R,θ∈[0,π].(1)若z1,z2∈R且z1>z2,求t的值;(2)若z1=z2,求θ.18.(12分)某型号新能源汽车近期升级一项新技术,现随机抽取了100名该技术的体验用户对该技术进行评分(满分100分),所有评分数据按照[84,88),[88,92),[92,96),[96,100]进行分组得到了如图所示的频率分布直方图.(1)求a的值,并根据频率分布直方图,估计对该技术的评分的中位数;(2)现从评分在[84,88),[96,100]内的体验用户中按人数比例用分层随机抽样的方法抽取6人,再从这6人中随机抽取2人作进一步的问卷调查,求这2人中至少有一人评分在[84,88)内的概率.19.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M分别是A1B1,AB,AD的中点.(1)求平面AEC截正方体所得截面面积;(2)证明:平面AEC⊥平面MEF.20.(12分)如图所示,四边形ABCD的外接圆为圆O,BC=2,AC=3,tan B=﹣2√2.(1)求sin∠ACB;(2)若∠COD=∠AOD,求AD的长.21.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是矩形,PD=AB=3AD=3.(1)求点A到平面PBC的距离.(2)若E是P A的中点,F是PB上靠近点P的三等分点,棱PB上是否存在一点G使CG∥平面DEF?证明你的结论并求BG的长.22.(12分)某商场为鼓励大家消费,举行摸奖活动,规则如下:凭购物小票一张,每满58元摸奖一次,从装有除颜色外完全相同的1个红球和4个白球的箱子中一次性随机摸出两个小球,若两球中含有红球,则为中奖,否则为不中奖.每次摸奖完毕后,把小球放回箱子中.甲、乙共有购物小票一张,购物金额为m元,两人商量,先由一人摸奖,若中奖,则继续摸奖,若不中奖,就由对方接着摸奖,并通过掷一枚质地均匀的硬币决定第一次由谁摸奖.(1)若m=60,求这两人中奖的概率;(2)若m=240,求第一次由甲摸奖,最后一次也是甲摸奖的概率.2022-2023学年河南省平顶山市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =5i 31−2i在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解:z =5i 31−2i =−5i(1+2i)(1−2i)(1+2i)=2−i ,则z 在复平面内所对应的点(2,﹣1)位于第四象限. 故选:D .2.数据71,73,79,83,89,90,96,98的25%分位数为( ) A .73B .75C .76D .79解:8×25%=2,该组数据的25%分位数为从小到大第2个数据和第3个数据的平均数 73+792=76.故选:C .3.某地气象部门统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:则可以估计该地区今年6月份的某天最高气温小于30°C 的概率为( ) A .0.8B .0.6C .0.4D .0.2解:前三年6月份最高气温小于30°C 的天数为5+7+24=36,所以概率为3690=0.4,所以可以估计该地区今年6月份的某天最高气温小于30°C 的概率0.4. 故选:C .4.已知向量a →=(−2,4),b →=(−1,1),则a →在b →上的投影向量为( ) A .(35,−65)B .(−35,65)C .(3,﹣3)D .(﹣3,3)解:∵a →⋅b →=2+4=6,b →2=2,∴a →在b →上的投影向量为:a →⋅b →|b →|⋅b→|b →|=62(−1,1)=(−3,3).5.已知圆锥的底面半径是2,体积为8√33π,则它的侧面展开图的圆心角为( ) A .π2B .πC .4π3D .3π2解:根据题意,设圆锥的高为h ,它的侧面展开图的圆心角θ, 圆锥的底面半径是2,体积为8√33π,则V =π×4×ℎ3=8√33π, 则h =2√3,故该圆锥的母线长l =√12+4=4, 则4θ=2π×2,解可得θ=π. 故选:B .6.在梯形ABCD 中,AB →=2DC →,AM →=2MD →,则CD →=( ) A .12CM →+14BM →B .14CM →+12BM →C .13CM →+13BM →D .13CM →−13BM →解:如图,在梯形ABCD 中,AB →=2DC →,AM →=2MD →, 则CD →=CM →+MD →⋯⋯①, BA →=BM →+MA →⋯⋯②,①×2+②可得:4CD →=2CM →+BM →,即CD →=12CM →+14BM →.故选:A .7.已知在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点M ,N 分别是BC ,BB 1的中点,则异面直线D 1M ,DN 所成角的余弦值为( ) A .17B .√3514C .914D .67解:延长BB 1至G ,使得B 1G =1,连接D 1G ,GM , 易知D 1G ∥DN ,则∠MD 1G 为异面直线D 1M ,DN 所成角,因为D 1G =√32+22+12=√14,MG =√12+32=√10,D 1M =√12+32+22=√14,故△MD 1G 中,cos ∠MD 1G =D 1M 2+D 1G 2−MG 22D 1M⋅D 1G =14+14−102×14×14=914.8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A +sin (A +C )=2sin C ,则( ) A .sin C 的最小值为12B .sinC 的最大值为√32 C .cos C 的最小值为0 D .cos C 的最大值为12解:由已知得sin A +sin B =2sin C ,根据正弦定理可得a +b =2c , 根据余弦定理可得cosC =a 2+b 2−c 22ab =(a+b)2−2ab−c 22ab =3c 22ab −1≥3c 22(a+b 2)2−1=32−1=12,当且仅当a =b 时等号成立, 所以cos C 的最小值为12,sin 2C +cos 2C =1,从而sin C 的最大值为√32. 故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数z 的共轭复数为z ,则( ) A .|z|=|z| B .z −z 一定是虚数 C .z +z 一定是实数D .z 2≥0解:对于ABC ,不妨设z =a +bi (a ,b ∈R ), 则z =a −bi ,对于A ,|z|=|z|=√a 2+b 2,故A 正确; 对于B ,z −z =(a +bi)−(a −bi)=2bi , 当b =0时,z −z =0,故B 错误;对于C ,z +z =a +bi +a −bi =2a ∈R ,故C 正确; 对于D ,设z =i , z 2=﹣1<0,故D 错误. 故选:AC .10.从1~9这9个整数中随机取1个数,记M,N是此试验中的两个事件,且满足P(M)=13,P(N)=23,则下列说法正确的是()A.M与N是对立事件B.若M⊆N,则P(MN)=13C.若P(MN)=19,则M与N相互独立D.若P(M∪N)=1,则M与N互斥解:对于A,M与N不一定为对立事件,也有可能由交集,比如M为“抽出的数大于等于7”,N为“抽出的数大于等于8或小于等于4”,A错误;对于B,当M⊆N,则P(MN)=P(M)=13,B正确;对于C,由P(M)=13,P(N)=23,可得P(N)=1−23=13,则P(M N)=P(M)P(N),可得M,N互相独立,即有M与N相互独立,C正确;对于D,由P(M)=13,P(N)=23,可得P(M)+P(N)=P(M∪N)=1,即有P(MN)=0,M与N也可能由交集,比如M为“抽出的数小于等于3”,N为“抽出的数大于等于3且小于等于8”显然P(M∪N)=49+49+19=1,二者的交集是“抽出的数字为3”,互斥,D正确.故选:BCD.11.在△ABC中,a,b,c分别是角A,B,C所对的边,且b=3,A=2B,则下列说法正确的是()A.若c<b,则△ABC是钝角三角形B.△ABC可能是顶角为钝角的等腰三角形C.若a=3√3,则C=π2D.若c=1,则a=2√3解:对于A,若c<b,则C<B,由π=A+B+C<4B,得B>π4,所以A>π2,故A正确;对于C,由正弦定理得asinA =bsinB,即asin2B=bsinB,所以a2sinBcosB=bsinB,结合b=3得a=6cos B,若a=3√3,则\cos B=√32,所以B=π6,A=π3,则C=π2,故C正确;对于B,若△ABC是等腰三角形,当A=C时,A+B+C=5B,则顶角B=π5为锐角,当B=C时,A+B+C=2A,则顶角A=π2为直角,即顶角不可能为钝角,故B错误;对于D ,由选项C 的分析可知a =6cos B ,再由余弦定理可得cos B =a 2+c 2−b 22ac =a 2+1−92a , 所以a =6×a 2+1−92a,整理得a 2=12,所以a =2√3,故D 正确.故选:ACD .12.如图所示,扇形OAB 的半径OA =4,∠AOB =2π3,C 是弧AB 的中点,点D ,E 是线段OB ,OA 上的动点且满足|OD →|=|AE →|,则CD →⋅CE →的值可以是( )A .6B .8C .2√10D .3√10解:∵∠AOB =2π3,C 是弧AB 的中点, ∴∠BOC =∠AOC =π3,设|AE |=x ,(0≤x ≤4),则|OD |=x ,|OE |=4﹣x , ∴CD →=OD →−OC →,CE →=OE →−OC →, ∴CD →⋅CE →=(OD →−OC →)⋅(OE →−OC →) =OD →⋅OE →−OD →⋅OC →−OC →⋅OE →+OC →2 =x ⋅(4−x)⋅(−12)−4x ⋅12−4(4−x)⋅12+16 =12x 2−2x +8=12(x −2)2+6,0≤x ≤4, ∴6≤CD →⋅CE →≤8,故AB 正确;又6=2√9<2√10<2√16=8,故C 正确; (3√10)2=90>64=82,故D 错误. 故选:ABC .三、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量a →=(1,2),b →=(−2,1),c →=(2,t),若(a →+2b →)⊥c →,则t = 32.解:a →=(1,2),b →=(−2,1),c →=(2,t), 则a →+2b →=(1,2)+(﹣4,2)=(﹣3,4), ∵(a →+2b →)⊥c →,∴2×(﹣3)+4t =0,解得t =32. 故答案为:32.14.设一组样本数据1,2,2,a ,b ,5,6,8的方差为5,则数据4,7,7,3a +1,3b +1,16,19,25的方差是 45 .解:已知4=1×3+1,7=2×3+1,3a +1=3×a +1, 3b +1=3×b +1,16=5×3+1,19=6×3+1,25=8×3+1,所以数据4,7,7,3a +1,3b +1,16,19,25是数据1,2,2,a ,b ,5,6,8的3倍再加1, 则数据4,7,7,3a +1,3b +1,16,19,25的方差为32×5=45. 故答案为:45.15.小王逛书店,他买甲书和买乙书相互独立,若小王买甲书不买乙书的概率为16,甲和乙两本书都买的概率为12,则小王买乙书的概率为34.解:设事件A 表示“小王买甲书”,事件B 表示“小王买乙书”, 由题意可知,事件A 与事件B 相互独立, 所以事件A 与事件B 也相互独立,所以P (A B )=P (A )P (B )=P (A )(1﹣P (B ))=16,即P (A )﹣P (A )P (B )=16, 又因为P (AB )=P (A )P (B )=12,所以P (A )=12+16=23,P (B )=1223=34,即小王买乙书的概率为34.故答案为:34.16.在三棱锥P ﹣ABC 中,平面ABC ⊥平面P AB ,AC ⊥BC ,点D 是AB 的中点,PD ⊥PB ,PB =PD =2,则三棱锥P ﹣ABC 的外接球的表面积为 40π .解:因为AC ⊥BC ,所以△ABC 的外接圆圆心即点D ,三棱锥外接球球心在过点D 与平面ABC 垂直的直线上,即在平面P AB 内,所以球心即为△P AB 的外接圆圆心,球的半径即为△P AB 的外接圆半径R ,因为PD ⊥PB ,PB =PD =2,所以BD =2√2,从而AD =2√2,设P A =x ,在△P AD 中,根据余弦定理有PA 2=22+(2√2)2−2×2×2√2cos3π4=20,所以PA =2√5, 由正弦定理得2R =2√5sin∠PBA =2√10,所以R =√10,所以三棱锥P ﹣ABC 的外接球的表面积为4πR 2=40π.故答案为:40π.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知复数z 1=t +(t 2﹣1)i ,z 2=sin θ+(2cos θ+1)i ,其中t ∈R ,θ∈[0,π].(1)若z 1,z 2∈R 且z 1>z 2,求t 的值;(2)若z 1=z 2,求θ.解:(1)由z 1,z 2∈R 且z 1>z 2,可得{t 2−1=2cosθ+1=0t >sinθ,且θ∈[0,π],解得t =1; (2)因为z 1=z 2,所以{t =sinθt 2−1=2cosθ+1θ∈[0,π],解得cos θ=﹣1,所以θ=π.18.(12分)某型号新能源汽车近期升级一项新技术,现随机抽取了100名该技术的体验用户对该技术进行评分(满分100分),所有评分数据按照[84,88),[88,92),[92,96),[96,100]进行分组得到了如图所示的频率分布直方图.(1)求a 的值,并根据频率分布直方图,估计对该技术的评分的中位数;(2)现从评分在[84,88),[96,100]内的体验用户中按人数比例用分层随机抽样的方法抽取6人,再从这6人中随机抽取2人作进一步的问卷调查,求这2人中至少有一人评分在[84,88)内的概率.解:(1)因为4(0.025+0.075+0.1+a )=1,解得a =0.05,易得评分在[84,92)内的频率为4(0.025+0.075)=0.4<0.5,评分在[84,96)内的频率为4(0.025+0.075+0.1)=0.8>0.5,所以中位数在区间[92,96)内,则中位数为92+0.5−0.40.8−0.4×4=93;(2)易知这6人中评分在[84,88)内的有2人,记为x 、y ,评分在[96,100]内的有4人,记为a ,b ,c ,d ,则从这6人中随机抽取2人有:xy 、xa 、xb 、xc 、xd 、ya 、yb 、yc 、yd 、ab 、ac 、ad 、bc 、bd 、cd 共15种情况,其中至少有一人评分在[84,88)内的有:xy 、xa 、xb 、xc 、xd 、ya 、yb 、yc 、yd 共9种情况,则这2人中至少有一人评分在[84,88)内的概率P =915=35. 19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M 分别是A 1B 1,AB ,AD 的中点.(1)求平面AEC 截正方体所得截面面积;(2)证明:平面AEC ⊥平面MEF .解:(1)平面AEC 截正方体所得截面为梯形ACQE ,其中Q 为B 1C 1的中点,由题易知AC =2√2,EQ =√2,OC =AE =√5,∴梯形的高h =√5−12=√92=3√22,所以截面面积为√2+2√22×3√22=92. 证明:(2)连接BD ,∵M ,F 为AD ,AB 的中点,∴MF ∥BD ,在正方形ABCD 中,AC ⊥BD ,∴AC ⊥MF ,∵E ,F 分别是A 1B 1,AB 的中点,∴EF ∥AA 1,∵AA1⊥平面ABCD,∴EF⊥平面ABCD,∴EF⊥AC,又∵EF∩MF=F,∴AC⊥平面MEF,又∵AC⊂平面AEC,∴平面AEC⊥平面MEF.20.(12分)如图所示,四边形ABCD的外接圆为圆O,BC=2,AC=3,tan B=﹣2√2.(1)求sin∠ACB;(2)若∠COD=∠AOD,求AD的长.解:(1)由tanB=−2√2,可得sinB=2√23,cosB=−13,设AB=c(c>0),在△ABC中,由余弦定理得9=4+c2−4c×(−13),即c2+43c−5=0,解得c=﹣3(舍去)或c=5 3,由正弦定理得sin∠ACB=c⋅sinB3=53×2√233=10√227.(2)∵∠COD=∠AOD,∴AD=CD,由已知得∠B+∠ADC=π,∴cos∠ADC=1 3,设AD=CD=m(m>0),在△ACD中,由余弦定理得9=m2+m2−2m2×13=43m2,所以m2=27 4,所以m=3√32,即AD=3√32.21.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是矩形,PD=AB=3AD=3.(1)求点A到平面PBC的距离.(2)若E是P A的中点,F是PB上靠近点P的三等分点,棱PB上是否存在一点G使CG∥平面DEF?证明你的结论并求BG的长.解:(1)因为AD∥BC,AD∉平面PBC,所以AD∥平面PBC,所以点A到平面PBC的距离即点D到平面PBC的距离,作DM⊥PC,垂足为M,如下图所示:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC,又BC⊥CD,CD∩PD=D,CD,PD⊂平面PCD,所以BC⊥平面PCD,所以平面PBC⊥平面PCD,且交线为PC,又DM⊂平面PCD,所以DM⊥平面PBC,点D到平面PBC的距离即DM,在等腰直角△PCD中,PD=CD=3,所以DM=3×332=3√22,即点A到平面PBC的距离为3√2 2.证明:(2)存在满足条件的点G,且点G为线段PB上靠近点B的三等分点,证明如下:连接AC,BD交于点O,连接OG,AG,因为点F,G是PB的三等分点,所以F为PG的中点,G为BF的中点,在矩形ABCD中,O为BD的中点,所以OG∥DF,OG∉平面DEF,所以OG∥平面DEF,因为点E为P A的中点,所以EF∥AG,AG∉平面DEF,所以AG∥平面DEF,又因为OG∩AG=G,OG,AG⊂平面ACG,所以平面ACG∥平面DEF,又因为CG⊂平面ACG,所以CG∥平面DEF,因为PB=√12+32+32=√19,所以BG=√193.22.(12分)某商场为鼓励大家消费,举行摸奖活动,规则如下:凭购物小票一张,每满58元摸奖一次,从装有除颜色外完全相同的1个红球和4个白球的箱子中一次性随机摸出两个小球,若两球中含有红球,则为中奖,否则为不中奖.每次摸奖完毕后,把小球放回箱子中.甲、乙共有购物小票一张,购物金额为m 元,两人商量,先由一人摸奖,若中奖,则继续摸奖,若不中奖,就由对方接着摸奖,并通过掷一枚质地均匀的硬币决定第一次由谁摸奖.(1)若m =60,求这两人中奖的概率;(2)若m =240,求第一次由甲摸奖,最后一次也是甲摸奖的概率.解:(1)记1个红球为a ,4个白球分别为b ,c ,d ,e .则从箱子中随机摸出两球,样本点有:ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10个样本点 其中含有红球的为:ab ,ac ,ad ,ae ,共4个样本点,所以在一次摸奖中,中奖概率为410=25. 当m =60时,甲、乙两人只能摸奖一次,所以他们中奖的概率为25.(2)当m =240时,他们可以摸奖4次.记事件第i 次由甲摸奖为A i (i =1,2,3,4),记第一次由甲摸奖,最后一次也是甲摸奖为事件B , 则B =A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4,所以P(B)=P(A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4),=P(A 1A 2A 3A 4)+P(A 1A 2A 3A 4)+P(A 1A 2A 3A 4)+P(A 1A 2A 3A 4),=12×(25)3+12×25×35×35+12×35×35×25+12×35×25×35 =31125.。
2023年高一下学期期末数学试卷(附答案)
高一下学期数学期末试卷(试卷总分:100分,考试时间:100分钟)考生注意:请将正确答案填写在答题卷上规定的位置 ,在本试卷上作答一律无效! 一、 选择题(本大题共18小题,每小题3分,共54分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
在答题卷上的相应题目的答题区域内作答。
1.下列命题为真命题的是( ).A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C.垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行 2.已知数列{}n a 的通项公式是n a=1(2)2n n +,则220是这个数列的( ). A .第20项 B .第19项 C .第21项 D .第22项3.右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ). A. 300 B.450 C. 600 D. 9004.右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( ). A. 300 B.450 C. 600 D. 905. 在△ABC 中,若a = 2 ,23b =,030A = , 则B 等于( ).A .60B .60或 120C .30D .30或1506.已知一个算法,其流程图如右图所示,则输出的结果是( ). A. 3 B. 9 C.27 D.81 7.直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5C.a=-2,b=5;D.a=-2,b=-58.直线2x-y=7与直线3x+2y-7=0的交点是( ).A (3,-1)B (-1,3)C (-3,-1)D (3,1) 9. 在△ABC 中,已知ab c b a 2222+=+,则C=( ).A .300 B. 1500 C. 450 D. 135A BD A ’ B ’ D ’C ’ C图1乙甲751873624795436853432110.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制10 1 2 3 4 5 6 7 8 9 A B C D E F 10进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 那么十六进制下的 1AF 转化为十进制为 ( ). A. 431 B.321 C.248 D. 250 11. 等差数列{}n a 中,73,10,d a =-=,则1a 等于( ). A .-39 B .28 C .39 D .3212.圆x 2+y 2-4x-2y-5=0的圆心坐标是:( ).A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).13.直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ). A. 相离; B. 相交; C. 相切; D. 无法判定14.已知等差数列{}n a 中,22a =,46a =,则前4项的和4S 等于( ). A.12 B.10 C.8 D.1415.当输入a 的值为2,b 的值为3-时,右边程序运行的结果是( )..2A - .1B - .1C .2D16.10名工人某天生产同一个零件的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .c b a >>B .a c b >>C .b a c >>D .a b c >>17.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ).A .9991 B .10001C .1000999D .2118.如图是某赛甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 ( ). A .62 B. 63 C .64 D .65二、填空题:本大题共4小题,每小题4分,共16分。
广西桂林市2023-2024学年高一下学期期末考试 数学含答案
桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。
河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案
2024学年郑州市高一年级(下)期末考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :0x ∃>,0y >,使得不等式(5x y λ+>++成立,则命题p 成立的一个充分不必要条件可以是()A.52λλ⎧⎪≥⎨⎪⎪⎩⎭B.53λλ⎧⎪≥⎨⎪⎪⎩⎭C.54λλ⎧⎪>⎨⎪⎪⎩⎭D.55λλ⎧⎪>⎨⎪⎪⎩⎭2.已知 1.30.920.9, 1.3,log 3a b c ===,则()A.a c b <<B.c a b <<C .a b c<< D.c b a<<3.将函数()πcos 23f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,得到函数()g x 的图象,则函数()()242h x g x x x =-+-的零点个数为()A.1B.2C.3D.44.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17245.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A.sin ()2xf x = B.cos ()2xf x = C.()sin 12xf x ⎛⎫= ⎪⎝⎭D.()cos 12xf x ⎛⎫= ⎪⎝⎭6.在ABC 中,D 为BC 上一点,且3BD DC =,ABC CAD ∠=∠,2π3BAD ∠=,则tan ABC ∠=()A.3913B.133C.33D.357.已知π02α<<,()2ππ1sin 2sin 2cos cos 2714αα+=,则α=()A.3π14B.5π28C.π7D.π148.已知z 是复数,z 是其共轭复数,则下列命题中正确的是()A.22z z= B.若1z =,则1i z --1+C.若()212i z =-,则复平面内z 对应的点位于第一象限D.若13i -是关于x 的方程20(R)x px q p q ++=∈,的一个根,则8q =-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()()()sin 0,0,π2πf x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫-⎪⎝⎭,则()A.11π6ϕ=B.3ω=C.()f x 在π2π,23⎡⎤⎢⎥⎣⎦上单调递减D.方程()()21f x a a =-<<-在0,π][内恰有4个互不相等的实根10.已知a ,b ,c是平面上三个非零向量,下列说法正确的是()A.一定存在实数x ,y 使得a xb yc =+成立B.若a b a c ⋅=⋅,那么一定有()a b c⊥- C.若()()a c b c -⊥-,那么2a b a b c-=+- D .若()()a b c a b c ⋅⋅=⋅⋅ ,那么a ,b ,c 一定相互平行11.已知函数2()2sin cos 23cos f x x x x =-,则下列结论中正确的有()A.函数()f x 的最小正周期为πB.()f x 的对称轴为ππ32k x =+,k ∈Z C.()f x 的对称中心为ππ(0)3,2k +,k ∈ZD.()f x 的单调递增区间为π5π[π,π]1212k k -++,k ∈Z 三、填空题:本大题共3个小题,每小题5分,共15分.12.已知142x y >->-,,且21x y +=,则19214x y +++的最小值为_________.13.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为R ,球冠的高是h ,球冠的表面积公式是2πS Rh =,如图2,已知,C D 是以AB 为直径的圆上的两点,π,6π3COD AOC BOD S ∠=∠==扇形,则扇形COD 绕直线AB 旋转一周形成的几何体的表面积为__________.14.已知点O 是ABC 的外心,60BAC ∠=︒,设AO mAB nAC =+,且实数m ,n 满足42m n +=,则mn 的值是___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,a b R ∈且0a >,函数4()4x xbf x a+=-是奇函数.(1)求a ,b 的值;(2)对任意(0,)x ∈+∞,不等式()02x mf x f ⎛⎫-> ⎪⎝⎭恒成立,求实数m 的取值范围.16.本学期初,某校对全校高二学生进行数学测试(满分100),并从中随机抽取了100名学生的成绩,以此为样本,分成[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示频率分布直方图.(1)估计该校高二学生数学成绩的平均数和85%分位数;(2)为进一步了解学困生的学习情况,从数学成绩低于70分的学生中,分层抽样6人,再从6人中任取2人,求此2人分数都在[)60,70的概率.17.已知ABC 的面积为9,点D 在BC 边上,2CD DB =.(1)若4cos 5BAC ∠=,AD DC =,①证明:sin 2sin ABD BAD ∠=∠;②求AC ;(2)若AB BC =,求AD 的最小值.18.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r,2AFFB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.19.已知),cos2a x x =,()2cos ,1b x =- ,记()()R f x a b x =⋅∈(1)求函数()y f x =的值域;(2)求函数()y f x =,[]0,πx ∈的单调减区间;(3)若()π24F x f x m ⎛⎫=+- ⎪⎝⎭,π0,3x ⎛⎤∈ ⎥⎝⎦恰有2个零点12,x x ,求实数m 的取值范围和12x x +的值.2024学年郑州市高一年级(下)期末考试数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析
2023-2024学年广东省部分学校高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数,则()A. B. C. D.12.已知圆锥的表面积为,它的侧面展开图是个半圆,则此圆锥的体积为()A.3B.C.9D.3.已知正方体的棱长为2,E,F分别是BC和CD的中点.则两条平行线EF和间的距离为()A. B. C. D.4.端午节吃粽子是我国的一个民俗,记事件“甲端午节吃甜粽子”,记事件“乙端午节吃咸粽子”,且,事件A与事件B相互独立,则()A. B. C. D.5.菏泽市博物馆里,有一条深埋600多年的元代沉船,对于研究元代的发展提供了不可多得的实物资料.沉船出土了丰富的元代瓷器,其中的白地褐彩龙风纹罐如图的高约为36cm,把该瓷器看作两个相同的圆台拼接而成如图,圆台的上底直径约为20cm,下底直径约为40cm,忽略其壁厚,则该瓷器的容积约为()A. B. C. D.6.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点,,O为坐标原点,定义余弦相似度为,余弦距离为已知,,若P,Q的余弦距离为则()A. B. C. D.7.在棱长为1的正方体中,,E是线段含端点上的一动点,则①;②面;③三棱锥的体积为定值;④OE与所成的最大角为上述命题中正确的个数是()A.1B.2C.3D.48.已知正方体的棱长为2,M 是棱的中点,空间中的动点P 满足,且,则动点P 的轨迹长度为()A.B.3C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列有关复数的说法正确的是()A.若,则B.C.D.若,则的取值范围为10.已知点,,则下列结论正确的是()A.与向量垂直的向量坐标可以是B.与向量平行的向量坐标可以是C.向量在方向上的投影向量坐标为D.对,向量与向量所成角均为锐角11.在正方体中,,E 是棱的中点,则下列结论正确的是()A.若F 是线段的中点,则异面直线EF 与AB 所成角的余弦值是B.若F 为线段上的动点,则的最小值为C.若F 为线段上的动点,则平面ABF 与平面CDF 夹角的余弦值的取值范围为D.若F 为线段上的动点,且与平面ABCD 交于点G ,则三棱锥的体积为三、填空题:本题共3小题,每小题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。
4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。
5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。
6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。
7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。
8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。
9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。
10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。
分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。
因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。
顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。
而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。
因此,当 $x\in(-\infty,-1]\cup[1,+\infty)$ 时,$f(x)\geqg(x)$。
当 $x\in[-1,\frac{-1}{2}]\cup[\frac{1}{2},1]$ 时,$f(x)\leq g(x)$。
综上所述,$f(x)\geq g(x)$ 的解集为 $(-\infty,-1]\cup[1,+\infty)$。
2) 当 $f(x)\geq g(x)$ 的解集包含 $[-1,1]$ 时,$f(-1)\geq g(-1)$ 且 $f(1)\geq g(1)$。
代入 $f(x)$ 和 $g(x)$ 的表达式,得到如下两个不等式:begin{cases} -1+a+4\geq 0 \\ 1-a+4\geq 0 \end{cases}$$解得 $a\in[-2,0]\cup[2,+\infty)$。
因此,$a$ 的取值范围为$[-2,0]\cup[2,+\infty)$。
故选:C。
5.B解析:B解析】设 $a_n$ 为等差数列 $\{a_n\}$ 的公差,由题意得到以下方程组:begin{cases} a_1=-7 \\ a_1+a_2+a_3=-15 \\a_1+(a_1+a_n)+(a_1+2a_n)+\cdots+(a_1+(n-1)a_n)=\frac{n}{2}(2a_1+(n-1)a_n) \end{cases}$$解得 $a_n=-3$,$S_n=\frac{n}{2}(-14-n)$。
因为 $n\geq3$,所以 $S_n$ 在 $n=3$ 时取得最小值 $-24$。
故选:B。
6.C解析:C解析】1) 函数 $f(x)$ 的周期为$\frac{2\pi}{\frac{2}{3}\pi}=\frac{3}{2}\pi$。
2) $f(x)$ 的单调递减区间为$[\frac{7\pi}{6},\frac{11\pi}{6}]$。
3) 根据余弦定理,得到 $a=2\sqrt{6}$,$b=5$,$c=2\sqrt{6}$,从而$A=C=\frac{\pi}{3}$,$B=\frac{\pi}{3}$。
代入函数 $f(x)$ 的表达式,得到$f(x)=\frac{1}{2}\cos^2x+\frac{5}{3}$。
因为 $f(x)$ 的最小值为 $\frac{5}{3}$,所以 $\frac{1}{2}\cos^2x+\frac{5}{3}\geq\frac{5}{3}$,解得 $\cos x=0$,即 $x=\frac{\pi}{2}+k\pi$,其中 $k\in Z$。
因此,$\sin A=\sin C=1$。
故选:C。
7.B解析:B解析】1) 分数在 $[50,60)$ 的频数为 $5$,全班人数为 $20$。
2) 分数在 $[80,90)$ 的频数为 $3$,矩形的高为$\frac{3}{20\cdot 2}=0.075$。
3) 计算至少有一份试卷分数在 $[90,100)$ 之间的概率,等价于计算两份试卷都不在 $[90,100)$ 之间的概率,即 $P=[1-P(\text{第一份在}[90,100))]\cdot [1-P(\text{第二份在}[90,100)))=(1-\frac{1}{5})\cdot(1-\frac{1}{5})=\frac{16}{25}$。
故选:B。
首先,我们需要整理出题目中给出的代数式,将其展开后利用基本不等式求出最小值。
具体来说,我们有:frac{x+y}{xy}+\frac{1}{a}+1=\frac{x}{y}+\frac{y}{x}+\fra c{1}{a}+1$根据基本不等式,当且仅当$x=y$时,$\frac{x}{y}+\frac{y}{x}$取得最小值$2$。
因此,我们有:frac{x+y}{xy}+\frac{1}{a}+1\geq2+\frac{1}{a}+1=\frac{a+2}{a}=\frac{a}{a}+\frac{2}{a}+1$为了使上式成立,需要满足$a\geq 4$。
因此,实数$a$的最小值为$4$。
接下来是第五题。
题目要求我们求向量$\overrightarrow{BQ}$和$\overrightarrow{CP}$的数量积,可以利用向量的加法和减法表示这两个向量,然后再利用数量积的分配律和结合律得到结果。
具体来说,我们有:overrightarrow{BQ}=\overrightarrow{BA}+\overrightarrow{ AQ}$overrightarrow{CP}=\overrightarrow{CA}+\overrightarrow{ AP}$因此。
overrightarrow{BQ}\cdot\overrightarrow{CP}=(\overrightarr ow{BA}+\overrightarrow{AQ})\cdot(\overrightarrow{CA}+\over rightarrow{AP})$overrightarrow{BA}\cdot\overrightarrow{CA}+\overrightarr ow{BA}\cdot\overrightarrow{AP}-\overrightarrow{CA}\cdot\overrightarrow{AQ}+\overrightarrow{ AQ}\cdot\overrightarrow{AP}$AB\cdot AC-\lambda AB-(1-\lambda)AC+\lambda(1-\lambda)AB\cdot AC$2\lambda^2+2\lambda-2$解这个二次方程可以得到$\lambda=1$或$\lambda=\frac{1}{2}$,因此$\overrightarrow{BQ}\cdot\overrightarrow{CP}=-1$或$-\frac{1}{2}$。
由于选项中只有$-1$和$-\frac{1}{2}$两个选项,因此选项A是正确的。
最后是第六题。
题目要求我们求函数$f(x)=\frac{2}{\pi}\sin(\omega x+\phi)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的单调性。
首先,我们需要将函数的解析式整理一下,得到:f(x)=\frac{2}{\pi}\sin(4x-\frac{\pi}{4})$由于$\sin(-x)=-\sin(x)$,因此可以得到$\phi=-\frac{\pi}{4}$。
另外,由于最小正周期公式,可以得到$\omega=4$。
因此,函数可以表示为:f(x)=2\sin(4x)$由于$\sin(x)$在$[-\frac{\pi}{2},\frac{\pi}{2}]$上是单调递增的,因此$\sin(4x)$在$[-\frac{\pi}{8},\frac{\pi}{8}]$上也是单调递增的。
因此,函数$f(x)$在$[-\frac{\pi}{4},\frac{\pi}{4}]$上是单调递增的。
因此,选项A是正确的。
1,1),半径为2,所以它的标准方程为(x+1)2+(y-1)2=4.将y=2x代入得到(x+1)2+(2x-1)2=4,化简得到5x2-4x-2=0,解得x=1或x=-0.4.当x=1时,y=2,当x=-0.4时,y=0.2,所以点A的坐标为(1,2),点B的坐标为(-0.4,0.2)。
根据两点间距离公式,AB的长度为√[(1-(-0.4))2+(2-0.2)2]=√18≈4.24.故选D选项。
点睛】本题主要考查圆的方程和两点间距离公式的应用,属于基础题。
注意要将圆的方程转化为标准方程,然后代入直线方程求解交点。
根据三角形面积公式,设三角形ABC的底边为AC,高为h,则S=1/2×AC×h。
又由正弦定理得XXX,即AB=sinB/sinC×AC。
再由余弦定理得AB²=AC²-BC²,代入AB=sinB/sinC×AC化简得AC=h/sinB。
所以S=1/2×AC×h=1/2×h²/sinB。
代入数据得S=7.故答案为7.点评】本题考查了三角形面积公式、正弦定理和余弦定理的应用,属于中档题。
需要注意计算过程中的代入和化简。
在三角形ABC中,已知B=120°,BC=1,且三角形ABC的面积为133/222×1×AB,解得AB=2.再由余弦定理得到AC的长度。
因为三角形ABC是个直角三角形,所以可以利用勾股定理求出AC的长度。
根据余弦定理,可得AC^2=AB^2+BC^2-2×AB×BC×cos120°=7,故得到AC=√7.因此,答案为7.点睛】本题主要考查余弦定理的应用以及三角形面积公式。