高中数学必修5公开课教案 等比数列前n项和公式的推导与应用

合集下载

最新人教版高中数学必修5第二章《等比数列的前n项和》教案(1)

最新人教版高中数学必修5第二章《等比数列的前n项和》教案(1)

《等比数列的前n项和》教案(1)
教学目标
1.掌握等比数列的前n项和公式及公式证明思路;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.
2.经历等比数列前n项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题情境中发现等比关系建立数学模型、解决求和问题.
3.在应用数列知识解决问题的过程中,要勇于探索,积极进取,激发学习数学的热情和刻苦求是的精神.
教学重点难点
重点:使学生掌握等比数列的前n项和公式,用等比数列的前n项和公式解决实际问题.难点:由研究等比数列的结构特点推导出等比数列的前n项和公式.
教法与学法
教学方法:采用多媒体技术,体现直观性,激发学习兴趣、激活学生思维,在解决重、难点等方面起到辅助作用.
学习方法:指导学生学会“探究式发现法”的学习方法,从类比猜想中探索
研究从而找到问题的思路和方法.
教学过程
(一)创设情境导入新课
3
++
a q
n
-
a a q
二、作法总结,变式演练
三、思维拓展,课堂交流
2n a +.
数列的前
四、归纳小结,课堂延展
教学设计说明
1.教材地位分析
等比数列的前n项和为后面学习数列求和打下基础.本节课既是本章的重点,同时也是教材的重点.本节课的教学任务主要是学生掌握求前n项和的方法,并理解其中蕴含的数学思想.
2.学生现实分析
(1)学生已经掌握了函数和数列的一些基础知识.比如等比数列的定义,通项公式及性质,并能够独立的解决一些简单的问题.了解等差数列的前n项和公式的推导方式.(2)学生在前面的学习当中已经具备了一些抽象思维能力,其学习模式知识结构,类比等差数列的情况学习等比数列有关知识.。

高中数学必修五等比数列前n项和公式的推导和应用

高中数学必修五等比数列前n项和公式的推导和应用

1 1 27 q 8 ( 2) 由 a1 27 , a 9 , 可得 : 243 243
又由 q 0, 可得:
q
Sn
于是当 n 8时
8 1 27 1 3 1640 1 81 1 ( ) 3
1 3
例 2、在等比数列 a n 中,求满足下列条件的 量 :
由于每个格子里的麦粒数都是前一个格子 里的麦粒数的2倍,且共有64个格子,各个 格子里的麦粒数依次是
1,2,2 , 2, 2
1 2 22 23
2
3
63
因此,发明者要求的麦粒总数就是
263,
如果把各格所放的麦粒数看成一个数列, 我们可以得到一个首项为1,公比为2的等比 数列,而发明者要求的麦粒总数就可以看成 这个等比数列的前64项的和。
1 n
n· a1
1-q
例1、求下列等比数列前8项的和
(1) 1 1 1 , , , 2 4 8
(2)a1 27, a9
1 ,q 0 243
1 1 ,q (1) 因为 a1 解: 2 2
Sn 1 2
所以当 n 8时
8 1 1 2 255 1 256 1 2
由公式得: 30000
整理得 1.1n 1.6
5000 (11.1n ) 11.1
两边取对数,得 n lg1.1 lg1.6,
用计算器算得n
lg1.1 lg1.6

0.2 0.041
5
答:从今年起,大约 5年可使总销售量达到 30000 台。
1、 求 等 比 数 列 1, x , x , x , 的 前n 项 和s n .

人教版高中必修5(B版)2.3.2等比数列的前n项和教学设计 (2)

人教版高中必修5(B版)2.3.2等比数列的前n项和教学设计 (2)

人教版高中必修5(B版)2.3.2等比数列的前n项和教学设计一、教学目标1.掌握等比数列的概念和性质,能够判断一个数列是否为等比数列;2.掌握等比数列的通项公式和求和公式;3.能够应用等比数列的公式解决实际问题。

二、教学重点和难点1.等比数列的通项公式和求和公式的推导;2.解决实际问题时对问题的转化和数据的分析。

三、教学过程设计1. 导入环节通过引入一些实际应用问题,比如生态链问题、财务问题等,介绍等比数列的应用场景,引发学生对等比数列的兴趣,并激发学生的求知欲望。

2. 概念讲解1.定义等比数列,列举等比数列的性质;2.推导等比数列的通项公式和求和公式,并简单讲解推导过程,引导学生理解公式;3.通过实例讲解公式的应用方法,强化学生的运用能力。

3. 练习与巩固1.利用课堂时间进行一些基础题型的演示和讲解,使学生对基础概念和公式更加熟悉;2.在课后布置一些练习,提高学生对等比数列的掌握程度;3.在下次课时进行讲解和答疑,帮助学生发现和纠正错误。

4. 实际应用通过一些实际问题的讲解和分析,如金融投资、人口增长等,让学生发现等比数列在实际问题中的应用,丰富学生的实际运用能力。

四、教学方法1.讲授法:通过讲述概念和公式,并通过例题让学生掌握解题方法;2.互动式教学:通过提问、讨论、闯关等方式,增强学生的参与性,让学生主动探究;3.多媒体教学:通过使用电子教具或多媒体课件辅助教学,让学生更加生动和直观地了解概念和公式。

五、教学反思1.整体教学效果良好,学生对等比数列的掌握程度得到了很大提高;2.需要针对性更强的练习来巩固学生的理论知识和应用技巧;3.可以结合实际应用更多的案例,让学生更加深入理解等比数列的实际应用。

等比数列的前n项和新课程高中数学必修5省优质课比赛教案 精品

等比数列的前n项和新课程高中数学必修5省优质课比赛教案 精品

等比数列的前n项和一、教学目标1.知识与技能:掌握等比数列的前n项和公式,能运用基本概念和公式解决简单问题,发展学生的思维能力.2.过程与方法:经历等比数列的前n项和公式的探究与推导过程,掌握类比和错位相减的数学方法,体会从特殊到一般及分类讨论的数学思想.3.情感、态度和价值观:通过引例的求解及等比数列的前n项和公式的推导过程,激发学生学习数学的积极性,养成自主探索,合作交流的习惯,培养遇到困难不气馁的坚强意志和勇于创新的精神.二、重点与难点1.重点:等比数列的前n项和公式的推导、掌握与运用.2.难点:等比数列的前n项和公式的推导.三、教学准备1.教师:课件.2.学生:计算器.四、教学程序1.创设情境,由具体实例引入新课;2.结合引例,探究推导公式的方法;3.自主或合作探究等比数列的前n项和公式;4.应用相关概念和公式,解决简单问题.五、教学过程1.谁赚的钱多.在一个月(30天)中,甲乙两位老板赚钱情况如下:甲第一天赚1万元,第二天赚2万元……以后每天比前一天多赚一万元.而乙第一天赚1分钱,第二天赚2分钱,第三天赚4分钱……以后每天赚的钱数是前一天的两倍.问:在这一个月内,甲乙两位老板谁赚的钱多?设计意图:通过学生身边实际生活事例的引入,以激起学生的好奇心理,从而调动学生学习本节课的积极性.师生活动:【教师】提出问题:在一个月(30天)中,甲老板赚的钱数用数学式子怎么表示?乙老板呢?最后的计算结果呢?【学生】阅读课件内容,自主或合作探究解决问题的办法.【教师】有同学计算出:在一个月(30天)中,甲老板赚的钱数是1+2+3+…+30=30(1+30)/2=465,即总共赚钱465万元,而乙老板赚的钱数是1+2+4+8+…=?——算不出来了!让我来告诉你吧:乙老板赚的钱数是230-1,请同学们用计算器计算一下这个数是多少?(1073741823!即乙老板总共赚钱1073741823分=10737418.23元)【学生】思考,运算,比较,出人意外,颇感惊奇!【师生】体会指数函数爆炸性增长的巨大威力!【教师】你们知道我是怎么算出乙老板赚的钱数是230-1的吗?让我们来观察乙老板在一个月(30天)中赚的钱数:1,2,4,8,…,229构成一个什么数列?此数列的首项,公比,项数分别是多少?【学生】等比数列!首项是1,公比是2,项数是30.2.S=1+2+22+23+…+229=?30设计意图:通过观察此等比数列的特点,启发学生自主(或合作)探究,大胆猜想,找到解决此问题的一个切实可行的办法,为推导一般等比数列的前n项和公式作铺垫.师生活动:【教师】请同学们注意观察等式S=1+2+22+23+…+229的右边,因2的次数依30=2+22+23+…+229+230.比次递增,若把这个等式的两边都乘以2,即得到等式2S30较所得等式和原等式的右边,你会发现什么?为了求S,怎么办?30,可将两个等式的两【师生】两个等式的右边的项大部分相同!为了求S30端相减,使大部分项抵消掉,从而求出S来.30=1+2+22+23+…+229的两边都乘以2的目的是什么?2【教师】我们把等式S30在这个数列中扮演什么角色?【学生】2是这个数列的公比,乘以2可使数列的各项变为原数列相应项的2倍.【师生】两端同乘以公比2,使原数列的各项的公比2的次数都增加 1.这样,所得等式的右边和原等式的右边就有很多相同的项.如果把这两个等式相减,等式的右边就有许多项可以互相抵消.我们把这种求数列前n项和的方法叫做错位相减法.3.推导等比数列的前n项和公式设计意图:学生自主或合作推导等比数列的前n项和公式,让学生经历由特殊到一般的思维过程,养成自主探索与合作交流的习惯,进一步熟练“错位相减法”,领会分类讨论的思想.师生活动:【教师】错位相减法求S n=a1+a1q+ a1q2+…+ a1q n-1.【学生】自主(或同桌合作)推导,也可两同学上台板演,教师巡视作个别辅导.【教师】得到等比数列的前n项和公式以后,你能用数列的首项a1,第n项a n和项数n来表示S n吗?如何表示?【学生】自主探究或同桌、邻桌合作交流.【师生】讨论,修正,得到正确答案.4.等比数列的前n项和公式的应用范围及注意事项设计意图:加深对等比数列的前n项和公式的理解,明晰运用公式应注意的问题.师生活动:【教师】对于等比数列的相关量a1,a n,q,n, S n,已知几个量,就可以求出其他几个量?根据q的大小,为了计算方便,使用等比数列的前n项和公式应注意些什么?【学生】讨论交流,形成共识.【师生】对于前者,“知三求二”!对于后者,当q<1时,使用原求和公式S n=a1(1-q n)/(1-q)即可;当q>1时,把原求和公式的分子与分母同乘以-1,得到S n= a1(q n -1)/(q-1),再使用,就比较简便了.5.等比数列的前n项和公式的应用练习:(1)已知在等比数列{n a }中,a 1=2,5a =1/8,q <0,求5S ;(2)求和:)212(...)212()212()212(201020103322++++++++. 设计意图:继续加深对等比数列的前n 项和公式及通项公式的记忆,理解和运用,体会数列与方程之间的联系,初步掌握分组求和的方法,发展学生的思维能力.师生活动:【教师】点拨:第(1)小题,先求出公比q ;第(2)小题,去掉括号,有发现吗?【学生】自主求解,也可和同桌或邻桌讨论交流.【师生】校对结果,并归纳解题思路,方法及注意点,探讨一题多解与一题多变.例题:远望巍巍塔七层,红光点点倍加增.其灯三百八十一,请问尖头几盏灯?设计意图:进一步深化对等比数列的前n 项和公式的理解与运用,体会数列与方程之间的联系,培养学生运用相关知识解实际问题的能力,领会转化与方程的思想.师生活动:【教师】点拨:这首古诗向我们展示了一幅美丽的夜景,同时,也向我们提出了一个智慧的问题!把它转化为等比数列问题是怎样的?根据条件,应选择哪一个求和公式求和?如何求解?【学生】自主思考,也可和同桌或邻桌交流.还可以让两同学上台合作求解!【师生】讨论,订正,校对结果,归纳解题思路、方法、思想和应注意的问题.6.小结这节课,你探究发现了哪几个公式?尝试了哪几种方法?实践了哪几种数学思想?你最大的收获是什么?设计意图:丰富和充实学生的认知结构,使学生对本节课的所学有一个比较清晰的梳理和反思,进一步深化所学知识的理解与记忆,从而养成反思的习惯,培养反思能力.师生活动:【学生】讨论,归纳,总结.【师生】订正,补充,得出结果.7.作业(1) 必做题:教科书第61页习题A 组第1,2,3,4(1)(2)题.(2) 选做题:①用其他方法推导等比数列的前n 项和公式(提示:可利用等比数列的定义和比例的性质推导);②求和:(x +y 1)+(x 2+21y )+(x 3+31y )+ … +(x n +n y1).(x ,y ≠0) 设计意图:对不同基础的学生,作业也有不同的要求,符合因材施教的原则.8.板书设计设计意图:便于学生梳理与反思本节课所学内容,优化知识链条,充实认知结构.。

高中数学必修五第二章:5等比数列的前n项和(1)教案

高中数学必修五第二章:5等比数列的前n项和(1)教案
课题:2.5等比数列的前n项和(1)第课时总序第个教案
课型:新授课编写时时间:年月日执行时间:年月日
教学目标:
知识与技能:掌握等比数列的前n项和公式及公式证明思路;会用等比数列的前n项和公式解决有关等比数列的一些简单问题。
过程与方法:经历等比数列前n 项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题情境中发现等比关系建立数学模型、解决求和问题。
公式的推导方法三:

= =
(结论同上)
[解决问题]
有了等比数列的前n项和公式,就可以解决刚才的问题。
由 可得
= = 。
这个数很大,超过了 。国王不能实现他的诺言。
教学后记:
情感态度与价值观:在应用数列知识解决问题的过程中,要勇于探索,积极进取,激发学习数学的热情和刻苦求是的精神。
批注
教学重点:等比数列的前n项和公式推导
教学难点:灵活应用公式解决有关问题
教学用具:投影仪
教学方法:经历等比数列前n 项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题情境中发现等比关系建立数学模型、解决求和问题。
教学过程:
Ⅰ.课题导入
[创设情境]
[提出问题]课本P55“国王对国际象棋的发明者的奖励”
Ⅱ.讲授新课
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
1、等比数列的前n项和公式:
当 时, ① 或 ②
当q=1时,
当已知 , q, n时用公式①;当已知 , q, 时,用公式②.
公式的推导方法一:

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。

心理体验,产生热爱数学的情感。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教具:现代教育多媒体技术。

教学过程一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。

提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。

(教师观察学生的表情反映,然后将此问题缩小十倍)。

我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

人教版高中数学必修五 2.5《等比数列前n项和》教学设计

人教版高中数学必修五 2.5《等比数列前n项和》教学设计

2.5等比数列前n项和(第一课时)案例设计和实施教学目标(一)知识与技能目标:理解等比数列的前n项和公式及公式证明思路;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

(二).过程与方法目标:经历学生自主探究等比数列比数列的前n项和的推导过程以及等比数列前n项和公式的灵活应用,总结出数列的求和的一种方法——错位相减法。

(三)情感与态度目标:通过“国王赏麦”故事激发学生对苏学的好奇心,引导学生从数学的角度发现和提出问题,正确使用方法解决问题,让学生在自主学习,合作交流中获得新知识,在应用数列知识解决问题过程中要勇于探索、积极进取,激发学习数学的热情和实事求是的精神。

教学重点:等比数列的前项和公式的推导及其简单应用。

教学难点:等比数列前n项和公式的推导以及灵活应用公式解决有关问题教法学法:(一)教学方法:引导探索、发现法(二)学习方法:自主探究,合作交流(三)教学手段:多媒体辅助教学授课类型:新授课课时安排:1课时教学过程S=a+a+a++a+an123n-1n2n-2n-1S=a+a q+a q++a q+a qn11111qS=a q+a q+a q++a q+a q()2-n +-板书设计教学案例评析:本节课的教学设计充分体现了以学生发展为中心的课改理念,落实了课程目标,达到了课程标准,培养了学生的数学素养,塑造了学生人格。

在教学设计上充分考虑到学生心理发展需求,运用自主学习、合作学习、探究学习等学习方式提高了学生对数学学习的兴趣。

在教学手段上重视运用现代教育手段和学生自主动手的能力,把抽象的知识变得简单化。

本节课以一个故事“国王赏麦”来引入新课,激发学生解决问题的好奇心,激励引导学生一步步解决问题。

从课堂的引入,公式的推导,例题精讲,习题的设计都是循序渐进,层层深入,有利于学生对新知识的理解和接受。

在教育方式上,让学生参与,自己获取知识,促进学生自主发展;在教学氛围上,努力营造了民主的教学气氛,重视对学生能力的培养;在教学难点的处理上,能运用多种手段,深入浅出予以解决。

等比数列的前n项和教学设计

等比数列的前n项和教学设计

等比数列的前n项和教学设计等比数列的前n项和教学设计篇1一、教材分析:等比数列的前n项和是高中数学必修五其次章第3.3节的内容。

它是“等差数列的前n项和”与“等比数列”内容的连续。

这局部内容授课时间2课时,本节课作为第一课时,重在讨论等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分提醒公式的构造特征和内在联系。

意在培育学生类比分析、分类争论、归纳推理、演绎推理等数学思想。

在高考中占有重要地位。

二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1.学问与技能:理解等比数列的前n项和公式的推导方法;把握等比数列的前n项和公式并能运用公式解决一些简洁问题。

2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的力量,培育学生从特别到一般的思维方法,渗透方程思想、分类争论思想及转化思想,优化思维品质。

3.情感与态度:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、构造的对称美、形式的简洁美、数学的严谨美。

三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。

难点:等比数列的前项和公式的推导。

重难点确定的依据:从教材体系来看,它为后继学习供应了学问根底,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进展,它需要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究力量和用数学语言沟通的力量还有待提高。

四、教法学法分析通过创设问题情境,组织学生争论,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。

强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传奇,波斯国王下令要奖赏国际象棋的创造者,创造者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。

等比数列前n项和_(公开课教案)

等比数列前n项和_(公开课教案)

§6.3.3 等比数列的前n 项和(一)教学目的:1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题教学重点:等比数列的前n 项和公式推导教学难点:灵活应用公式解决有关问题授课类型:新授课课时安排:1课时教材分析:本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件.也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法教学过程:一、复习:首先回忆一下前两节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比。

公比通常用字母q 表示(q ≠0),即:{n a }成等比数列 ⇔nn a a 1+=q (+∈N n ,q ≠0) “n a ≠0”是数列{n a }成等比数列的必要非充分条件(前提条件)。

2. 等比数列的通项公式:)0(111≠⋅⋅=-q a q a a n n , )0(11≠⋅⋅=-q a q a a m m n3.既是等差又是等比数列的数列:非零常数列.4.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).5.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅6.判断等比数列的方法:定义法,中项法,通项公式法如: 有一个数列满足135-⋅=n n a ,与公式)0(111≠⋅⋅=-q a q a a n n 比较我们可以判断出这个数列为等比数列且3,51==q a 。

二、讲解新课:*创设情境 兴趣导入【趣味数学问题】传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.*动脑思考 探索新知如何求数列1,2,4,…262,263的各项和以1为首项,2为公比的等比数列的前64项的和,可表示为:636264228421+++++= S ①26463642216842+++++= S ②由②—①可得:126464-=S这种求和方法称为“错位相减法” “错位相减法”,是研究数列求和的一个重要方法公式的推导方法一:一般地,设等比数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321由⎩⎨⎧=+++=-11321n nn n q a a a a a a S 得⎪⎩⎪⎨⎧++++=++++=---n n n n n n qa q a q a q a q a qS q a q a q a q a a S 1113121111212111n n q a a S q 11)1(-=-∴∴当1≠q 时,q q a S n n --=1)1(1 ① 或qq a a S n n --=11 ② 当q=1时,1na S n =公式的推导方法二:=n S n a a a a +++321=)(13211-++++n a a a a q a=11-+n qS a =)(1n n a S q a -+⇒q a a S q n n -=-1)1((结论同上)“方程”在代数课程里占有重要的地位,方程思想是应用十分广泛的一种数学思想,利用方程思想,在已知量和未知量之间搭起桥梁,使问题得到解决现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺? 国王承诺奖赏的麦粒数为646419641(12)21 1.841012S -==-≈⨯-, 据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36×1710g ,约合7360多亿吨.我国2000年小麦的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!*巩固知识 典型例题例5 写出等比数列,27,9,3,1--的前n 项和公式并求出数列的前8项的和.解 因为313,11-=-==q a ,所以等比数列的前n 项和公式为 1[1(3)]1(3)1(3)4n nn S ⨯----==--, 故 881(3)16404S --==-. 例 6 求等比数列1,2,4,…从第5项到第10项的和.解 由2 2,121===q a a 得1521)21(144=--⨯=∴S , 102321)21(11010=--⨯=S从第5项到第10项的和为10S -4S =1008例7 一条信息,若一人得知后用一小时将信息传给两个人,这两个人又用一小时各传给未知此信息的另外两人,如此继续下去,一天时间可传遍多少人?最快几小时全球(67.6亿)人都知道这个消息?解 根据题意可知,获知此信息的人数成首项2,11==q a 的等比数列 则:一天内获知此信息的人数为:(人)16777215122121242424=-=--=S ∵(人)4294967295122121323232=-=--=S (人)8589934591122121333333=-=--=S ∴最快33个小时全球人都知道这个消息。

高中数学必修五《等比数列前n项和》教案

高中数学必修五《等比数列前n项和》教案

等比数列的前n项和教案一、教学目的1、理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题.2、通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.3、通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.二、教学重点、难点、关键教学重点:等比数列的前n项和公式的推导及其简单应用.教学难点:等比数列的前n项和公式的推导。

教学关键:推导等比数列的前n项和公式的关键是通过情境的创设,发现错位相减求和法。

应用公式的关键是如何从实际问题中抽象出数量关系,建立等比数列模型,运用公式解决问题。

三、教具、学具准备多媒体课件。

运用多媒体教学手段,增大教学容量和直观性,提高教学效率和质量。

四、教学方法数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进和启发式教学原则,我进行这样的教学设计:在教师的引导下,创设情景,通过开放式问题的设置来启发学生进行思考,在思考中体会数学概念形成过程中蕴涵的数学方法和思想,使之获得内心感受。

本节课将采用“多媒体优化组合—激励—发现”式教学模式进行教学。

该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围。

主要包括启发式讲解、互动式讨论、研究式探索、反馈式评价。

五、学法指导“授人以鱼,不如授人以渔”。

教是为了不教,教给学生好的学习方法,让他们会学习,并善于用数学思维去分析问题和解决问题,受益终身。

根据二期课改的精神,转变学生的学习方式也是本次课改的重要内容,数学作为基础教育的核心学科之一,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变。

高中数学必修5《等比数列的前n项和》教学设计(第一课时)

高中数学必修5《等比数列的前n项和》教学设计(第一课时)

《等比数列的前n项和(第一课时)》教学设计
10a +,但是不知道如何下手;)知道利用等比数列的前n 项和公式求10a +,但是把项数弄错了教师点拨:
解法一:把5610a a a ++看做首项为的等比数列的前6项和;
解法二:1010a a a S +++=
《等比数列的前n项和(第一课时)》教学点评
《等比数列的前n项和》是普通高中课程标准实验教科书人教A版数学5(必修)中的第2章的2.5节内容,教学课时为2课时,本节课为第1课时,教学对象是高二年级的学生,这个阶段的学生已经具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,思维特点是活跃、敏捷,但缺乏冷静、深刻,不够严谨.
这节课授课教师采用了研究学习和问题解决策略,即“以境激情——研探论证——反馈矫正——应用评价”四个阶段设计教学.其中,以境激情是浅层次要求,使学生对本节课的主题有概括印象;研探论证为中层次要求,由浅入深通过层层设问引导学生推导等比数列的前n项和公式,突破难点,同时在推导公式的过程中,培养了学生严谨的思维品质;重点在反馈矫正阶段通过三道训练题从不同角度培养学生的知识应用能力,使学生领悟类比、分类讨论和方程等数学思想;课后开放式作业,促进了学生思维创新.
该教师在这四步教学中,以学生的分组讨论和自主探究为主辅之以启发性强的问题诱导点拨,运用完整直观的板书和计算机等教辅用具,充分体现学生是主体,教师教学服务于学生的思路.
总之,这节课真实自然,体现了学生探索、练习、掌握和反思的过程.教师设计教学活动的思路清晰,例题和练习具有典型性,点评学生课堂练习时能够充分发现学生问题,具有很强的驾驭课堂的能力,与学生一起完成了教学目标.。

高中数学必修5《等比数列的前n项和》教案

高中数学必修5《等比数列的前n项和》教案

高中数学必修5《等比数列的前n项和》教案一、教学目标:1.了解等比数列的概念及特点;2.能够应用等比数列的通项公式和前n项和公式求解实际问题。

二、教学重点:1.掌握等比数列的基本概念、公式和特点;2.能够灵活应用等比数列的通项公式和前n项和公式求解实际问题。

三、教学难点:1.掌握等比数列的通项公式和前n项和公式,并能够准确运用;2.解决实际问题时,要能正确地建立等比数列模型。

四、教学方法:1.讲授法:通过讲解,让学生掌握等比数列的基本概念、公式和特点;2.练习法:通过多种类型的例题让学生掌握等比数列的解题方法;3.探究法:通过引导学生探究等比数列的通项公式和前n项和公式的推导过程,提高学生的自主学习和创新思维能力。

五、教学过程:1.引入新知识(1)老师出示一组数据:1,2,4,8,16,……让学生观察、思考。

(2)引导学生从数据中找出规律,并提问:这组数据有什么特点?如何表示这组数据?(3)引入等比数列的概念,并结合学生前面学习的等差数列,让学生比较两者的区别和联系。

2.掌握等比数列的基本概念、公式和特点(1)教师讲解等比数列的基本概念、公式和特点,并通过例题来加深学生的理解。

(2)让学生通过练习掌握等比数列的解题方法及技巧。

3.探究等比数列的通项公式和前n项和公式(1)教师引导学生进行探究,推导出等比数列的通项公式和前n项和公式。

(2)通过多种实例讲解如何应用通项公式和前n项和公式来解决实际问题。

4.巩固与拓展(1)让学生自学本节课所学内容,总结一下等比数列的相关知识点;(2)通过课堂练习、考试等方式进行巩固和拓展。

高中数学数学必修5《等比数列的前n项和公式》教学设计

高中数学数学必修5《等比数列的前n项和公式》教学设计

《等比数列的前n项和》教学设计(第一课时)普通高中课程标准实验教科书数学必修5一、教学目标1.知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。

这一目标体现了基础知识的落实、基本技能的形成,这是数学教学的首要环节,也正符合课程标准的要求.2.能力目标:培养学生观察问题、思考问题能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力,提高学生运算求解、数据处理的能力。

3.情感目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美和数学的严谨美。

.二、教学重点、难点分析教学重点:等比数列前n项和公式的推导及其简单应用。

从知识体系看,为后继学习提供了知识基础,具有承上启下的作用;就知识特点而言,蕴涵丰富的思想方法;就能力培养来说,通过公式推导教学可培养学生的运用数学语言交流表达的能力。

教学难点:等比数列前n项和公式推导方法的理解。

从学生认知发展水平看,探究能力和用数学语言交流的能力有待提高。

从知识特点看,等比数列前n项和公式的推导与等差数列的前n项和公式的推导的可比性低,无法进行类比推导,需要充分理解等比数列的概念和性质,并能整合知识,做到融会贯通,而这对学生却是比较困难的,何况错位相减法是初次接触,对学生来说是很新鲜的,因此,教师在发挥学生主体性前提下要给予适当的提示和指导。

三、教学方法数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现学生的主动地位,遵循学生的认知规律,教学过程分为问题呈现阶段、探索与发现阶段、公式应用阶段。

探索与发现公式推导的方法是本节课的教学难点。

如果直接介绍“错位相减法”求和,对于学生无疑就魔术师手中的魔术一般神奇。

所以在教学中采用“启发――探究”的教学模式以问题驱动、层层铺垫,从特殊到一般启发学生获得推导公式的方法。

高中数学——示范教案-等比数列前n项和公式的推导与应用

高中数学——示范教案-等比数列前n项和公式的推导与应用

2.5 等比数列的前n 项和2.5.1 等比数列前n 项和公式的推导与应用从容说课师生将共同分析探究等比数列的前n 项和公式.公式的推导以教材中的“错位相减法”为最基本的方法,“错位相减法”也是一种算法,其设计的思路是“消除差别”,从而达到化简的目的等比数列前n 项和公式的推导还有许多方法,可启发、引导学生进行探索.例如,根据等比数列的定义可得qa a a a a a a a n n n n =====---1223211...再由分式性质,得q a S a S nn n =--1,整理得)1(11≠--=q qq a a S n n教学中应充分利用信息和多媒体技术,还应给予学生充分的探索空间教学重点 1.等比数列前n 项和公式的推导 2.等比数列前n 项和公式的应用教学难点 等比数列前n 项和公式的推导教具准备 多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着大量的等比数列求和的计算问题;2.探索并掌握等比数列前n 项和公式;3.用方程的思想认识等比数列前n 项和公式,利用公式知三求一;4.体会公式推导过程中的分类讨论和转化化归的思想 二、过程与方法1.采用观察、思考、类比、归纳、探究得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动三、情感态度与价值观1.通过生活中有趣的实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.在探究活动中学会思考,学会解决问题的方法;3.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师 国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗? 生 知道一些,踊跃发言师 “请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求师 假定千粒麦子的质量为40 g ,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求?生 各持己见.动笔,列式,计算生 能列出式子:麦粒的总数为 1+2+22+…+263师 这是一个什么样的问题?你们计算出结果了吗?让我们一起来分析一下. 课件展示: 1+2+22+…+2 63=?师 我们将各格所放的麦粒数看成是一个数列,那么我们得到的就是一个等比数列.它的首项是1,公比是2,求第1个格子到第64个格子所放的麦粒数总和,就是求这个等比数列的前64项的和现在我们来思考一下这个式子的计算方法:记S=1+2+22+23+…+2 63,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消. 课件展示:S=1+2+22+23+…+2 63,① 2S=2+22+23+…+263+264,②②-①得 2S-S=2 64-264-1这个数很大,超过了1.84×10 19,假定千粒麦子的质量为40 g ,那么麦粒的总质量超过了7 000亿吨.而目前世界年度小麦产量约60亿吨,因此,国王不能实现他的诺言.师 国王不假思索地给国际象棋发明者一个承诺,导致了一个很不幸的后果的发生,这都是他不具备基本的数学知识所造成的.而避免这个不幸的后果发生的知识,正是我们这节课所要探究的知识 推进新课[合作探究]师 在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q 2+…+q n =? 师 这个式子更突出表现了等比数列的特征,请同学们注意观察 生 观察、独立思考、合作交流、自主探究师 若将上式左边的每一项乘以公比q ,就出现了什么样的结果呢? 生 q+q 2+…+q n +q n +1生 每一项就成了它后面相邻的一项师 对上面的问题的解决有什么帮助吗? 师 生共同探索:如果记S n =1+q+q 2+…+q n 那么qS n =q+q 2+…+q n +q n +1要想得到S n ,只要将两式相减,就立即有(1-q)S n =1-q n 师 提问学生如何处理,适时提醒学生注意q 的取值生 如果q≠1,则有qqS n--=11师 当然,我们还要考虑一下如果q =1问题是什么样的结果生 如果q =1,那么S n =n师 上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考? 课件展示:a 1+a 2+a 3+…+a n =? [教师精讲]师 在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法师 在解决等比数列的一般情形时,我们还可以使用“错位相减法如果记S n =a 1+a 2+a 3+…+a n 那么qS n =a 1q+a 2q+a 3q+…+a n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a n师 再次提醒学生注意q 的取值如果q≠1,则有qq a a S n n --=11师 上述过程如果我们略加变化一下,还可以得到如下的过程:如果记S n =a 1+a 1q+a 1q 2+…+a 1q n -1 那么qS n =a 1q+a 1q 2+…+a 1q n -1+a 1q n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a 1q n 如果q≠1,则有qq a S nn --=1)1(1师 上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上,前一个出现的是等比数列的五个基本量:a 1,q,a n ,S n ,n 中a 1,q,a n ,S n 四个;后者出现的是a 1,q,S n ,n 四个,这将为我们今后运用公式求等比数列的前n 项的和提供了选择的余地. 值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式师 现在请同学们想一想,对于等比数列的一般情形,如果q =1问题是什么样的结果呢? 生 独立思考、合作交流 生 如果q =1,S n =na 1 师 完全正确如果q =1,那么S n =na n .正确吗?怎么解释?生 正确.q =1时,等比数列的各项相等,它的前n 项的和等于它的任一项的n 倍 师 对了,这就是认清了问题的本质师 等比数列的前n 项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:qa a a a a a a a n n =====-1342312...再由合比定理,则得qa a a a a a a a n n =++++++++-1321432......即qa S a S nn n =--1从而就有(1-q)S n =a 1-a n(以下从略思路二:由S n =a 1+a 2+a 3+…+a n 得S n =a 1+a 1q+a 2q+…+a n -1q=a 1+q(a 1+a 2+…+a n -1)=a 1+q(S n -a n从而得(1-q)S n =a 1-a n (以下从略师 探究中我们们应该发现,S n -S n -=a n 是一个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n的取值应该满足什么条件? 生 n>师 对的,请同学们今后多多关注这个关系式:S n -S n -1=a n ,n > 师 综合上面的探究过程,我们得出:⎪⎩⎪⎨⎧≠--==1,1)1(,1,11q q q a q na S n n或者1,1,1,11≠⎪⎩⎪⎨⎧--=q qq a a q na n [例题剖析]【例题1】 求下列等比数列的前8项的和: (1)21,41,81,…;(2)a 1=27,a 9=2431,q<[合作探究] 师生共同分析: 由(1)所给条件,可得211=a ,21=q ,求n =8时的和,直接用公式即可由(2)所给条件,需要从24319=a 中获取求和的条件,才能进一步求n =8时的和.而a 9=a 1q 8,所以由条件可得q 8=19a a =272431⨯,再由q <0,可得31-=q ,将所得的值代入公式就可以了 生 写出解答:(1)因为211=a ,21=q ,所以当n =8时,256255211)21(1[2188=--=S(2)由a 1=27,24319=a ,可得272431198⨯==a a q,又由q <0,可得31-=q于是当n =8时,811640)31(1)2724311(2718=--⨯-=S【例题2】 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台(结果保留到个位)?师 根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知S n =30 000求n 的问题生 理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{a n },其中a 1=5 000,q=1+10%=1.1,S n于是得到300001.11)1.11(5000=--n整理得1.1n两边取对数,得n用计算器算得1.1lg 6.1lg =n ≈041.02.0≈5(年答:大约5年可以使总销售量达到30 000台 练习:教材第66页,练习第1、2、3题课堂小结本节学习了如下内容:1.等比数列前n 项和公式的推导;特别是在推导过程中,学到了“错位相减法2.等比数列前n 项和公式的应用.因为公式涉及到等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,适当选择运用哪一个公式 在使用等比数列求和公式时,注意q 的取值是至关重要的一个环节,需要放在第一位来思考.布置作业课本第69页习题2.5 A 组第1、2、3题等比数列前n 项和公式的推导与应用等比数列的前n 项和公式情境问题的推导 一般情形的推导例1练习:(学生板演) 例2练习:(学生板演)。

高中数学必修五《等比数列的前n项和》优秀教学设计

高中数学必修五《等比数列的前n项和》优秀教学设计

§2.5等比数列的前n 项和(第一课时)一、教学目标1、知识与技能掌握等比数列的前n 项和公式及公式证明思路;会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.2、过程与方法经历等比数列前n 项和的推导与灵活应用,总结数列的求和方法,并能在具体的问题情境中发现等比关系建立数学模型、解决求和问题.3、情感态度与价值观在应用数列知识解决问题的过程中,要勇于探索,积极进取,激发学习数学的热情和刻苦求是的精神.二、教学重、难点重点:等比数列的前n 项和公式推导.难点:灵活应用公式解决有关问题.三、教学过程(一)课题导入[创设情境][提出问题]课本P62“国王对国际象棋的发明者的奖励”.(二)讲授新课[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。

下面我们先来推导等比数列的前n 项和公式.等比数列的前n 项和公式:当1≠q 时,q q a S n n --=1)1(1 ① 或q q a a S n n --=11 ② 当q=1时,1na S n =当已知1a , q, n 时用公式①;当已知1a , q,n a 时,用公式②.公式的推导方法一:一般地,设等比数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321由⎩⎨⎧=+++=-11321n n nn q a a a a a a S得⎪⎩⎪⎨⎧++++=++++=---nn n n n n q a q a q a q a q a qS qa q a q a q a a S 1113121111212111 .nn q a a S q 11)1(-=-∴论同上)∴当1≠q 时,q q a S n n --=1)1(1 ① 或q qa a S n n--=11 ②当q=1时,1na S n =公式的推导方法二: 有等比数列的定义,qa a a a a a n n ====-12312根据等比的性质,有qa S a Sa a a a a a n n n n n =--=++++++-112132即 qa S a S n n n =--1⇒q a a S q n n -=-1)1(.围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式.公式的推导方法三:=n S n a a a a +++321=)(13211-++++n a a a a q a=11-+n qS a =)(1n n a S q a -+⇒q a a S q n n -=-1)1((结论同上)[解决问题]有了等比数列的前n 项和公式,就可以解决刚才的问题.由11,2,64a q n ===可得1(1)1n n a q S q -=-=641(12)12⨯--=6421-.6421-这个数很大,超过了191.8410⨯.国王不能实现他的诺言.(三)例题讲解例1.求下列等比数列的各项的和: (1)11111,,,,24816; (2)127,9,3,,.243-.选题目的:直接应用公式,选择公式,熟练公式.答案:(1)3116;(2)4921.243.例2.已知公比为12的等比数列的前5项和为318,求这个数列的1a 及5.a选题目的:逆向应用公式.答案:12a =,51.8a =. 例3.已知等比数列11,,1,93,求使得n S 大于100的最小的n 的值. 选题目的:综合应用公式.答案:使得n S 大于100的最小的n 的值为7.例4.设数列{}n a 的前n 项和为3n n S a =+.当常数a 满足什么条件时,{}n a 才是等比数列? 选题目的:沟通n a 与n S 的关系,灵活应用公式.答案:1a =-.(四)反思总结,当堂检测:课本66页练习.教师组织学生反思总结本节课的主要内容,并进行当堂检测.(五)课后小结等比数列求和公式:当q=1时,1na S n = 当1≠q 时,q qa a S n n --=11 或q q a S n n --=1)1(1.四、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。

高中数学 等比数列的前n项和(第3课时)教案 新人教版必修5

高中数学 等比数列的前n项和(第3课时)教案 新人教版必修5

江苏省常州市西夏墅中学高中数学 等比数列的前n 项和(第3课时)教案 新人教版必修5一、教学目标知识目标:理解等比数列的前n 项和公式及简单应用,掌握等比数列前n 项和公式的推导方法。

能力目标:培养学生观察、思考和解决问题的能力;加强特殊到一般、类比与转化、分类讨论等数学思想的培养。

情感目标:培养学生合作交流、独立思考等良好的个性品质;以及勇于批判、敢于创新的科学精神。

教学重点、难点教学重点:公式的推导和公式的运用.教学难点:公式的推导方法和公式的灵活运用.公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二:教学过程学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题设计意图:设计这个情境目的是国际象棋的起源引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.此时我问:同学们,你们知道需要的是多少粒小麦吗?引导学生写出麦粒总数 .带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?一般的这就是一个等比数列前n 项求和的问题,那么一个等比数列类似等差数列前n 项和的表示,等比数列前n 项和能否用n a n q a ,,,1来表示呢?此时要引导学生发现需要构造一个新的等式包含n S ,并且与第一个等式有许多相同的项,从而引导学生发现并利用错位相减法求出n S 。

对不对?这里的q 能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时s n =?(这里引导学生对q 进行分类讨论,得出公式,同时为后面的例题教学打下基础.)再次追问:结合等比数列的通项公式a n =a 1q n-1,如何把s n 用a 1、a n 、q 表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.3.公式运用,加深认识首先,学生独立思考,自主解题,然后师生共同进行总结.设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识.4.例题讲解,形成技能设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想.5.总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结.设计意图:以此培养学生的口头表达能力,归纳概括能力.7.课后作业,分层练习必做: P129练习1、2、3、4选作:2)若数列{an}是等比数列,Sn 是前n 项的和,那么69363,,S S S S S --成等比数列吗?设k ∈N*那么k k k k k S S S S S 232,,--成等比数列吗?中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

人教版高中必修52.5等比数列的前n项和课程设计

人教版高中必修52.5等比数列的前n项和课程设计

人教版高中必修5-2.5 等比数列的前 n 项和课程设计课程背景本课程是人教版高中数学必修课程第五章的第二节内容——等比数列的前 n 项和。

在高中数学中,等比数列是一个重要的数学概念,涉及到等比数列的性质、公式及其应用等方面。

其中,等比数列的前 n 项和是其应用中比较常见的问题之一。

教学目标1.熟练掌握等比数列的概念、性质、公式及其应用;2.理解等比数列的前 n 项和的含义,并掌握其求解方法;3.能够应用等比数列的前 n 项和解决实际问题。

教学重点1.等比数列的前 n 项和的概念;2.等比数列的前 n 项和的公式推导;3.等比数列前 n 项和的求解方法;4.等比数列的应用。

教学难点1.等比数列前 n 项和的公式推导;2.等比数列前 n 项和的求解方法。

教学步骤第一步介绍介绍本节内容的主要内容,包括等比数列的概念、性质及其应用;并引入本节重点内容——等比数列的前 n 项和。

第二步概念及性质1.对等比数列的概念进行介绍;2.设a1为等比数列的第一项,q为等比数列的公比,得到等比数列的通项公式:a n=a1q n−1;3.推导等比数列的性质,如对于任意正整数m,n有 $a_m \\cdot a_n= a_{m+n-1}$。

第三步等比数列前 n 项和的推导1.推导计算等比数列前 n 项和的公式:$S_n=\\frac{a_1(1-q^n)}{1-q}$;2.利用等比数列的性质,对上述公式进行变形。

第四步求解等比数列前 n 项和1.按照上述公式和变形方法,求解具体例子;2.引导学生自己尝试使用这些公式与方法解决其他问题。

第五步实际应用1.应用等比数列前 n 项和解决实际问题,如计算定投基金收益等;2.引导学生发现等比数列前 n 项和在实际生活中的应用。

教学评估1.课堂练习:通过课堂练习,测试学生对等比数列的概念、性质及前 n项和的掌握情况;2.课后作业:通过布置课后作业,巩固学生对本节内容的理解和应用;3.期末考试:期末考试将以选择题和应用题的形式,测试学生对等比数列前 n 项和的综合理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5 等比数列的前n 项和2.5.1 等比数列前n 项和公式的推导与应用从容说课师生将共同分析探究等比数列的前n 项和公式.公式的推导以教材中的“错位相减法”为最基本的方法,“错位相减法”也是一种算法,其设计的思路是“消除差别”,从而达到化简的目的等比数列前n 项和公式的推导还有许多方法,可启发、引导学生进行探索.例如,根据等比数列的定义可得q a aa a a a a a n n n n =====---1223211...再由分式性质,得q a S a S n n n =--1,整理得)1(11≠--=q qqa a S n n教学中应充分利用信息和多媒体技术,还应给予学生充分的探索空间教学重点 1.等比数列前n 项和公式的推导 2.等比数列前n 项和公式的应用教学难点 等比数列前n 项和公式的推导教具准备 多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着大量的等比数列求和的计算问题;2.探索并掌握等比数列前n 项和公式;3.用方程的思想认识等比数列前n 项和公式,利用公式知三求一;4.体会公式推导过程中的分类讨论和转化化归的思想 二、过程与方法1.采用观察、思考、类比、归纳、探究得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动三、情感态度与价值观1.通过生活中有趣的实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.在探究活动中学会思考,学会解决问题的方法;3.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师 国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗? 生 知道一些,踊跃发言师 “请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求师 假定千粒麦子的质量为40 g ,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求?生 各持己见.动笔,列式,计算生 能列出式子:麦粒的总数为 1+2+22+…+263师 这是一个什么样的问题?你们计算出结果了吗?让我们一起来分析一下. 课件展示: 1+2+22+…+2 63=?师 我们将各格所放的麦粒数看成是一个数列,那么我们得到的就是一个等比数列.它的首项是1,公比是2,求第1个格子到第64个格子所放的麦粒数总和,就是求这个等比数列的前64项的和现在我们来思考一下这个式子的计算方法:记S=1+2+22+23+…+2 63,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消. 课件展示:S=1+2+22+23+…+2 63,① 2S=2+22+23+…+263+264,②②-①得 2S-S=2 64-264-1这个数很大,超过了1.84×10 19,假定千粒麦子的质量为40 g ,那么麦粒的总质量超过了7 000亿吨.而目前世界年度小麦产量约60亿吨,因此,国王不能实现他的诺言.师 国王不假思索地给国际象棋发明者一个承诺,导致了一个很不幸的后果的发生,这都是他不具备基本的数学知识所造成的.而避免这个不幸的后果发生的知识,正是我们这节课所要探究的知识 推进新课[合作探究]师 在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q 2+…+q n =? 师 这个式子更突出表现了等比数列的特征,请同学们注意观察 生 观察、独立思考、合作交流、自主探究师 若将上式左边的每一项乘以公比q ,就出现了什么样的结果呢? 生 q+q 2+…+q n +q n +1生 每一项就成了它后面相邻的一项师 对上面的问题的解决有什么帮助吗? 师 生共同探索:如果记S n =1+q+q 2+…+q n 那么qS n =q+q 2+…+q n +q n +1要想得到S n ,只要将两式相减,就立即有(1-q)S n =1-q n 师 提问学生如何处理,适时提醒学生注意q 的取值生 如果q≠1,则有qq S n--=11师 当然,我们还要考虑一下如果q =1问题是什么样的结果生 如果q =1,那么S n =n师 上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考? 课件展示:a 1+a 2+a 3+…+a n =? [教师精讲]师 在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法师 在解决等比数列的一般情形时,我们还可以使用“错位相减法如果记S n =a 1+a 2+a 3+…+a n 那么qS n =a 1q+a 2q+a 3q+…+a n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a n师 再次提醒学生注意q 的取值如果q≠1,则有qq a a S n n --=11师 上述过程如果我们略加变化一下,还可以得到如下的过程:如果记S n =a 1+a 1q+a 1q 2+…+a 1q n -1 那么qS n =a 1q+a 1q 2+…+a 1q n -1+a 1q n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a 1q n如果q≠1,则有qq a S n n --=1)1(1师 上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上,前一个出现的是等比数列的五个基本量:a 1,q,a n ,S n ,n 中a 1,q,a n ,S n 四个;后者出现的是a 1,q,S n ,n 四个,这将为我们今后运用公式求等比数列的前n 项的和提供了选择的余地. 值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式师 现在请同学们想一想,对于等比数列的一般情形,如果q =1问题是什么样的结果呢? 生 独立思考、合作交流 生 如果q =1,S n =na 1 师 完全正确如果q =1,那么S n =na n .正确吗?怎么解释?生 正确.q =1时,等比数列的各项相等,它的前n 项的和等于它的任一项的n 倍 师 对了,这就是认清了问题的本质师 等比数列的前n 项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:q a a a a a a a a n n =====-1342312...再由合比定理,则得qa a a a a a a a n n=++++++++-1321432......即qa S a S nn n =--1从而就有(1-q)S n =a 1-a n(以下从略思路二:由S n =a 1+a 2+a 3+…+a n 得S n =a 1+a 1q+a 2q+…+a n -1q=a 1+q(a 1+a 2+…+a n -1)=a 1+q(S n -a n从而得(1-q)S n =a 1-a n (以下从略师 探究中我们们应该发现,S n -S n -=a n 是一个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n的取值应该满足什么条件? 生 n>师 对的,请同学们今后多多关注这个关系式:S n -S n -1=a n ,n > 师 综合上面的探究过程,我们得出:⎪⎩⎪⎨⎧≠--==1,1)1(,1,11q q q a q na S n n 或者1,1,1,11≠⎪⎩⎪⎨⎧--=q q q a a q na n[例题剖析]【例题1】 求下列等比数列的前8项的和:(1)21,41,81,…; (2)a 1=27,a 9=2431,q<[合作探究] 师生共同分析:由(1)所给条件,可得211=a ,21=q ,求n =8时的和,直接用公式即可 由(2)所给条件,需要从24319=a 中获取求和的条件,才能进一步求n =8时的和.而a 9=a 1q 8,所以由条件可得q 8=19a a =272431⨯,再由q <0,可得31-=q ,将所得的值代入公式就可以了 生 写出解答:(1)因为211=a ,21=q ,所以当n =8时,256255211)21(1[2188=--=S(2)由a 1=27,24319=a ,可得272431198⨯==a a q,又由q <0,可得31-=q 于是当n =8时,811640)31(1)2724311(2718=--⨯-=S【例题2】 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台(结果保留到个位)?师 根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知S n =30 000求n 的问题生 理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{a n },其中a 1=5 000,q=1+10%=1.1,S n于是得到300001.11)1.11(5000=--n整理得1.1n两边取对数,得n用计算器算得1.1lg 6.1lg =n ≈041.02.0≈5(年答:大约5年可以使总销售量达到30 000台 练习:教材第66页,练习第1、2、3题课堂小结本节学习了如下内容:1.等比数列前n 项和公式的推导;特别是在推导过程中,学到了“错位相减法2.等比数列前n 项和公式的应用.因为公式涉及到等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,适当选择运用哪一个公式 在使用等比数列求和公式时,注意q 的取值是至关重要的一个环节,需要放在第一位来思考.布置作业课本第69页习题2.5 A 组第1、2、3题板书设计 等比数列前n 项和公式的推导与应用等比数列的前n 项和公式情境问题的推导 一般情形的推导例1练习:(学生板演) 例2练习:(学生板演)。

相关文档
最新文档