九年级下册数学二次函数实践与探索(2)导学案及练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册数学二次函数实践与探索(2)导学案及练习
[本课知识重点]
让学生进一步体验把实际问题转化为有关二次函数知识的过程.
[创新思维]
二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决.
[实践与探索]
例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。

设销售单价为x 元,日均获利为y 元。

(1)求y 关于x 的二次函数关系式,并注明x 的取值范围;
(2)将(1)中所求出的二次函数配方成a
b a
c a b x a y 44)2(2
2-++=的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少? 分析 若销售单价为x 元,则每千克降低(70-x )元,日均多售出2(70-x )千克,日均销售量为[60+2(70-x )]千克,每千克获利为(x-30)元,从而可列出函数关系式。

解 (1)根据题意,得
500)]70(260)[30(--+-=x x y
650026022-+-=x x (30≤x ≤70)。

(2)y 650026022-+-=x x 1950)65(22
+--=x 。

顶点坐标为(65,1950)。

二次函数草图略。

经观察可知,当单价定为65元时,日均获利最多,是1950元。

例2。

某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (十它们的关系如下表:
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;
(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
解 (1)设二次函数关系式为c bx ax y ++=2。

由表中数据,得⎪⎩
⎪⎨⎧=++=++=8.1245.11c b a c b a c 。

解得⎪⎪⎪⎩
⎪⎪⎪⎨⎧==-=153101c b a 。

所以所求二次函数关系式为15
31012++-=x x y 。

(2)根据题意,得105)23(102++-=--=x x x y S 。

(3)4
65)25
(10522+--=++-=x x x S 。

由于1≤x ≤3,所以当1≤x ≤2。

5时,S 随x 的增大而增大。


[当堂课内练习]
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价 ( )
A 、5元
B 、10元
C 、15元
D 、20元
2.某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万元)
时,产品的年销售量将是原销售量的y 倍,且10
7107102++-=x x y ,如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是是多少万元?
[本课课外作业]
A 组
1.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t (件), 与每件的销售价x (元/件)可看成是一次函数关系:t=-3x+204。

(1)写出商场卖这种服装每天的销售利润y 与每件的销售价x 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);
(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?
2.某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元?
3.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg ;销售单价每涨1元,月销售量就减少10kg .针对这种水产品的销售情
况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
B组
4.行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能﹙车速不超过140千米/时﹚,对这种汽车进行测试,数据如下表:
﹙1﹚以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;
﹙2﹚观察图象,估计函数的类型,并确定一个满足这些数据的函数关系式;
﹙3﹚该型号汽车在国道上发生一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的车速是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?。

相关文档
最新文档