八年级上册数学 全等三角形单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学全等三角形单元测试卷附答案
一、八年级数学轴对称三角形填空题(难)
1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将
△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.
【答案】363
【解析】
【分析】
分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;
【详解】
解:①若AE=AM 则∠AME=∠AEM=45°
∵∠C=45°
∴∠AME=∠C
又∵∠AME>∠C
∴这种情况不成立;
②若AE=EM
∵∠B=∠AEM=45°
∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°
∴∠BAE=∠MEC
在△ABE和△ECM中,
B
BAE CEN
AE EII
C
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ABE≌△ECM(AAS),
∴CE=AB6,
∵AC=BC2AB=3
∴BE =23﹣6;
③若MA =ME 则∠MAE =∠AEM =45°
∵∠BAC =90°,
∴∠BAE =45°
∴AE 平分∠BAC
∵AB =AC ,
∴BE =12
BC =3. 故答案为23﹣6或3.
【点睛】
本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.
2.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.
【答案】16
【解析】
【分析】
利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.
【详解】
解:由作法得MN 垂直平分BC ,则DC=DB ,
10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=
故答案为:16.
【点睛】
本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.
3.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.
【答案】10︒
【解析】
【分析】
延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.
【详解】
如图,延长AD 到F ,使DF AD =,连接BF :
∵D 是BC 的中点
∴BD CD =
又∵ADC FDB ∠=∠,AD DF =
∴ACD FDB ≅
∴AC BF =, CAD F ∠=∠,C DBF ∠=∠
∵AC BE =, 70C ︒∠=, 50CAD ︒∠=
∴BE BF =, 70DBF ︒∠=
∴50BEF F ︒∠=∠=
∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=
∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=
故答案为:10︒
【点睛】
本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.
4.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________
【答案】4
【解析】
如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=
12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12
=4(cm 2).
故答案是:4.
5.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,
,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.
【答案】30°
【解析】
【分析】
先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.
【详解】
解:∵AB AC =,82BAC ∠=︒,∴180492
BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,
作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,
∴∠EBC=11°+11°+38°=60°,
∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,
又∵AB=AC ,EA=EA ,
∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =
1302
BEC ∠=︒, ∴∠ADB =30°.
【点睛】
本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作
点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.
6.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;
②点O 到ABC ∆各边的距离相等;③1902
BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2
AD AB AC BC =+-.其中正确的结论是.__________.
【答案】①②③⑤
【解析】
【分析】
由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12
∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得
④设OD =m ,AE +AF =n ,则S △AEF =
12
mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.
【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =
12
∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12
∠A ;故③正确; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF . ∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠FOC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;
过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA .
∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,
∴S △AEF =S △AOE +S △AOF =12AE •OM +12AF •OD =12OD •(AE +AF )=12
mn ;故④错误; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O 到△ABC 各边的距离相等,故②正确;
∵AO =AO ,MO =DO ,∴△AMO ≌△ADO (HL ),∴AM =AD ;
同理可证:BM =BN ,CD =CN .
∵AM +BM =AB ,AD +CD =AC ,BN +CN =BC ,∴AD =
12
(AB +AC ﹣BC )故⑤正确. 故答案为:①②③⑤.
【点睛】
本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
7.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.
【答案】3
【解析】
【分析】
由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.
【详解】
以BD 为边作等边三角形BDG ,连接GE ,如图所示:
∵等边三角形BDG,等边三角形DEF
∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF
∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE
∴△BDF≌△GDE(SAS)
∴BF=GE
当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′
∴BF=GE=CD+1
2
DG=2+1=3
故答案为:3.
【点睛】
此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.
8.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°
【解析】
【分析】
根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,
当△BFE 都是等腰三角形,分三种情况讨论,即可求解.
【详解】
∵∠ACB=90º,△CFD是等腰三角形,
∴∠CDF=∠CFD=45°,
设∠BAC的度数为x,
∴∠B=90°-x,
∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,
∴∠DFE=∠BAC=x,
∴∠EFB=180°-45°-x=135°-x,
∵∠ADE=∠FDE,
∴∠ADE=(180°-45°)÷2=67.5°,
∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,
∴∠DEF=∠AED=112.5°-x,
∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,
∵△BFE 都是等腰三角形,分三种情况讨论:
①当FE=FB时,如图1,
则∠BEF=∠B,
∴90-x=2x-45,解得:x=45;
②当BF=BE时,
则∠EFB=∠BEF,
∴135-x=2x-45,
解得:x=60,
③当EB=EF时,如图2,
则∠B=∠EFB,
∴135-x=90-x,无解,
∴这种情况不存在.
综上所述:∠BAC 的度数为:45°或60°.
故答案是:45°或60°.
图1 图2
【点睛】
本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.
9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.
【答案】7或34
【解析】
【分析】
分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.
【详解】
如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=4,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=4,
∴Rt△ABM中,AM22
-3
AB BM
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=4,
又∵∠AOC=60°,
∴△AOM是等边三角形,
∴AM=AO=4;
如图3,当∠ABM=90°时,
∵∠BOM=∠AOC=60°,
∴∠BMO=30°,
∴MO=2BO=2×4=8,
∴Rt△BOM中,BM22
-=43
MO OB
∴Rt△ABM中,AM22
AB BM
+47
综上所述,当△ABM为直角三角形时,AM的长为3474.故答案为43 7或4.
10.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.
【答案】10
【解析】
【分析】
作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值
【详解】 解:
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,
则OP=OP′,OP=OP″,RP=RP′,QP=QP″,
∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,
∴此时△PQR周长最小,最小值为P′P″的长,
∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,
∴∠1=∠2,∠3=∠4,
∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,
∴△P′OP″为等边三角形,
∴P′P″=OP′=OP=10,
故答案是:10.
【点睛】
本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.
二、八年级数学轴对称三角形选择题(难)
11.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.
A.5 B.6 C.7 D.8
【答案】D
【解析】
【分析】
要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.
【详解】
①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;
②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);
③若CA=CB,则点C在AB的垂直平分线上.
∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.
综上所述:符合条件的点C 的个数有8个. 故选D . 【点睛】
本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.
12.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )
A .3
B .33
C .32
D .不能确定
【答案】B
【解析】
已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12
AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12
×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332
.故选B.
点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.
13.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,
按此规律作下去,若11A B O α∠=,则1010A B O ∠=
( )
A .102a
B .92a
C .20a
D .18
a 【答案】B
【解析】
【分析】
根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.
【详解】
解:1212B A B B =,11A B O α∠=,
2212A B O α∴∠=, 同理332111222
A B O αα∠=⨯=, 443
12A B O α∠=, 1
12n n n A B O α-∴∠=, 101092A B O α
∴∠=,
故选:B .
【点睛】
本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
14.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【分析】
根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.
【详解】
根据题意,BPC 36060290150∠=-⨯-= , BP PC =,
()
PBC 180150215∠∴=-÷=,①正确;
根据题意可得四边形ABCD 是轴对称图形,④正确;
∵∠DAB+∠ABC=45°+60°+60°+15°=180°,
∴AD//BC ,②正确;
∵∠ABC+∠BCP=60°+15°+15°=90°,
∴PC ⊥AB ,③正确,
所以四个命题都正确,
故选D .
【点睛】
本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.
15.在一个33⨯的正方形网格中,A ,B 是如图所示的两个格点,如果C 也是格点,且ABC 是等腰三角形,则符合条件的C 点的个数是( )
A .6
B .7
C .8
D .9
【答案】C
【解析】
【分析】 根据题意、结合图形,画出图形即可确定答案.
【详解】
解:根据题意,画出图形如图:共8个.
故答案为C.
【点睛】
本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.
16.如图,△ABC 、△CDE 都是等腰三角形,且CA =CB , CD =CE ,∠ACB =∠DCE =α,AD ,BE 相
交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()
A.①②③B.①②④C.①③④D.①②③④
【答案】B
【解析】
【分析】
①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;
②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到
∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;
③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;
④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.
【详解】
解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中
AC BC
ACD BCE
CD CE
⎪
∠
⎪
⎩
∠
⎧
⎨
=
=
=
∴△ACD≌△BCE(SAS),
∴AD=BE;故①正确;
②设CD与BE交于F,
∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵∠CFE=∠DFO,
∴∠DOE=∠DCE=α,
∴∠BOD=180°-∠DOE=180°-α,故②正确;
③∵△ACD≌△BCE,
∴∠CAD=∠CBE,AD=BE,AC=BC
又∵点M、N分别是线段AD、BE的中点,
∴AM=
1
2
AD,BN=
1
2
BE,
∴AM=BN,
在△ACM和△BCN中
AC BC
CAM CBN
AM BN
⎪
∠
⎪
⎩
∠
⎧
⎨
=
=
=
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
又∠ACB=α,
∴∠ACM+∠MCB=α,
∴∠BCN+∠MCB=α,
∴∠MCN=α,
∴△MNC不一定是等边三角形,故③不符合题意;
④过C作CG⊥BE于G,CH⊥AD于H,
∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,
∴△CGE≌△CHD(AAS),
∴CH=CG,
∴OC平分∠AOE,故④正确,
故选:B.
【点睛】
本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.
17.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;
③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由
∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;
④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;
⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是
∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;
【详解】
①∵△ABC和△CDE为等边三角形
∴AC=BC,CD=CE,∠BCA=∠DCB=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴AD=BE,故①正确;
由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°
∴△CQB≌△CPA(ASA),
∴AP=BQ,故②正确;
∵△CQB≌△CPA,
∴PC=PQ,且∠PCQ=60°
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,故③正确,
∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,
∴PD≠CD,
∴DE≠DP,故④DE=DP错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,故⑤正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.
18.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()
A.35°B.40°C.45°D.50°
【答案】A
【解析】
【分析】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.
【详解】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,
∵PP1关于OA对称,∠MPN=110°
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,
同理可得:∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M,
∴∠P1OP2=180°-110°=70°,
∴∠AOB=35°,
故选A.
【点睛】
考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.
19.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接
ED,EC,延长CE交AD于F点,下列结论:
①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()
A.①③B.①②④C.①②③④D.①③④
【答案】C
【解析】
【分析】
①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;
②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;
③证明△AEF≌△BED即可;
④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知
S△BDE=S△ACE,所以S△BDE=S△ACE.
【详解】
①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°.
∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE.在△DAE和△CBE中,∵
AE BE
DAE CBE
AD BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADE≌△BCE(SAS);故①正确;
②∵△ADE≌△BCE,∴∠EDA=∠ECB.
∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.
∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.
在△AEF和△BED中,∵
BDE AFE
BED AEF
AE BE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△AEF≌△BED(AAS),∴BD=AF;故③正
确;
④∵AD=BC,BD=AF,∴CD=DF.
∵AD⊥BC,∴△FDC是等腰直角三角形.
∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.
∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故④正确.
故选C .
【点睛】
本题考查了全等三角形的判定与性质,本题中求证△BFE ≌△CDE 是解题的关键.
20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒, ∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠,
∴
11
()12060
22
EBC ECB ABC ACB
∠+∠=∠+∠=⨯︒=︒,∴180()18060120 BEC EBC ECB
∠=︒-∠+∠=︒-︒=︒,故①正确.
如图,过点D作DF AB
⊥于F,DG AC
⊥的延长线于G,∵BE、CE分别为ABC
∠、ACB
∠的平分线,
∴AD为BAC
∠的平分线,
∴DF DG
=,
∴36090260120
FDG
∠=︒-︒⨯-︒=︒,
又∵120
BDC
∠=︒,
∴120
BDF CDF
∠+∠=︒,120
CDG CDF
∠+∠=︒.
∴BDF CDG
∠=∠,
∵在BDF和CDG
△中,
90
BFD CGD
DF DG
BDF CDG
∠=∠=︒
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴BDF≌()
CDG ASA,
∴DB CD
=,
∴
1
(180120)30
2
DBC
∠=︒-︒=︒,
∴30
DBC DBC CBE CBE
∠=∠+∠=︒+∠,
∵BE平分ABC
∠,AE平分BAC
∠,
∴ABE CBE
∠=∠,
1
30
2
BAE BAC
∠=∠=︒,
根据三角形的外角性质,
30
DEB ABE BAE ABE
∠=∠+∠=∠+︒,
∴DEB DBE
∠=∠,
∴DB DE
=,故②正确.
∵DB DE DC
==,
∴B、C、E三点在以D为圆心,以BD为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。