上海民办文绮中学数学旋转几何综合单元测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海民办文绮中学数学旋转几何综合单元测试与练习(word解析
版)
一、初三数学旋转易错题压轴题(难)
1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;
(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.
(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.
【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析
【解析】
【分析】
(1)利用直角三角形斜边的中线等于斜边的一半,即可;
(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;
(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;
【详解】
解:(1)证明:如图:
∵∠ACB=∠AEF=90°,
∴△FCB和△BEF都为直角三角形.
∵点P是BF的中点,
∴CP=1
2BF,EP=
1
2
BF,
∴PC=PE.
(2)PC=PE理由如下:
如图2,延长CP,EF交于点H,
∵∠ACB=∠AEF=90°,
∴EH//CB,
∴∠CBP=∠PFH,∠H=∠BCP,
∵点P是BF的中点,
∴PF=PB,
∴△CBP≌△HFP(AAS),
∴PC=PH,
∵∠AEF=90°,
∴在Rt△CEH中,EP=1
2
CH,
∴PC=PE.
(3)(2)中的结论,仍然成立,即PC=PE,理由如下:
如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,
∵∠DAF=∠EAF,∠FDA=∠FEA=90°,
在△DAF和△EAF中,
DAF,
,
,
EAF
FDA FEA
AF AF
∠=∠


∠=∠

⎪=

∴△DAF≌△EAF(AAS),
∴AD=AE,
在△DAP≌△EAP中,
,
,
,
AD AE
DAP EAP
AP AP
=


∠=∠

⎪=

∴△DAP≌△EAP (SAS),
∴PD=PF,
∵FD⊥AC,BC⊥AC,PM⊥AC,
∴FD//BC//PM,
∴DM FP
MC PB
=,
∵点P是BF的中点,
∴DM=MC,
又∵PM⊥AC,
∴PC=PD,
又∵PD=PE,
∴PC=PE.
【点睛】
此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.
2.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;
②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想
∠AEB=θ是否成立?请说明理由.
【答案】(1)证明见解析;
(2)成立,理由见解析
【解析】
试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出
OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;
②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出
∠BEA=90°,即可得出结论;
(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相
等和三角形内角和定理即可得出∠AEB=θ.
试题解析:(1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,,
∴△AOC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2)解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴,
∴,
∴,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.
考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.
3.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,
△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(4)应用推广,如图3,
在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,
∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,
∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为
△AEF的中位线,∴MN min=EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
4.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)点C的坐标为(,);
(2)若二次函数的图象经过点C.
①求二次函数的关系式;
②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]
③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理
由.
【答案】(1) ∴点C的坐标为(-3,1) .
(2)①∵二次函数的图象经过点C(-3,1),
∴.解得
∴二次函数的关系式为
②当-1≤x≤4时,≤y≤8;
③过点C作CD⊥x轴,垂足为D,
i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直
角三角形,过点作⊥轴,
∵=,∠=∠,∠=∠=90°,
∴△≌△,∴AE=AD=2,=CD=1,
∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;
ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证
△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上
综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△
是以AB为直角边的等腰直角三角形.
【解析】
(1)根据旋转的性质得出C点坐标;
(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;
③分二种情况进行讨论.
5.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.
【解析】
试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知
△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出
CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出
EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;
(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到
△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.
试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);
(2)设正方形ABCD的边长为a.
将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
则△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均为等腰直角三角形,
∴CE=CF,BE=BM,NF=DF,
∴a﹣BE=a﹣DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)EF2=2BE2+2DF2.
如图所示,延长EF交AB延长线于M点,交AD延长线于N点,
将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.
由(1)知△AEH≌△AEF,
则由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,
即2(DF2+BE2)=EF2
考点:四边形综合题
6.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.
(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;
(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;
(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.
【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.
【解析】
试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而
BE=2CF;
(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;
(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.
解:(1)∵△ABC是等腰直角三角形,
∴AC=BC,
∵△CDE是等腰直角三角形,
∴CD=CE,
在△ACD和△BCE中,,
∴△ACD≌△BCE,
∴AD=BE,在Rt△ACD中,点F是AD中点,
∴AD=2CF,
∴BE=2CF,
故答案为BE=2CF;
(2)(1)中的关系是仍然成立,
理由:∵点F是AD中点,
∴AD=2DF,
∴AC=AD+CD=2DF+CD,
∵△ABC和△CDE是等腰直角三角形,
∴AC=BC,CD=CE,
∴BC=2DF+CE,
∴BE=BC+CE=2DF+CE+CE=2(DF+CE),
∵CF=DF+CD=DF+CD,
∴BE=2CF;
(3)(1)中的关系是仍然成立,理由:如图3,
延长CF至G使FG=CF,即:CG=2CF,
∵点F是AD中点,
∴AF=DF,
在△CDF和△GAF中,,
∴△CDF≌△GAF,
∴AG=CD=CE,∠CDF=∠GAF,
∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,
∵∠ACB=∠DCE=90°,
∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,
∴∠CAG=∠BCE,
连接BE,
在△BCE和△ACG中,,
∴△BCE≌△ACG,
∴BE=CG=2CF,
即:BE=2CF.
点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.
7.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
【答案】(1)△FGH是等边三角形;(2)61
2
;(3)△FGH的周长最大值为
3
2
(a+b),最小值为3
2
(a﹣b).
【解析】
试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、
(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;
(3)首先证明△GFH的周长=3GF=3
2
BD,求出BD的最大值和最小值即可解决问题;
试题解析:解:(1)结论:△FGH是等边三角形.理由如下:
如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=
∠AEC,∵EG=GB,EF=FD,∴FG=1
2
BD,GF∥BD,∵DF=EF,DH=HC,∴FH=
1
2
EC,FH∥EC
,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°
∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.
(2)如图2中,连接AF、EC.
易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF=22
21
-=3,在Rt△ABF中,
BF=22
AB AF
- =6,∴BD=CE=BF﹣DF=61-,∴FH=1
2
EC=
61
2
-.
(3)存在.理由如下.
由(1)可知,△GFH是等边三角形,GF=1
2
BD,∴△GFH的周长=3GF=
3
2
BD,在△ABD
中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为
3 2(a+b),最小值为3
2
(a﹣b).
点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
8.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
【答案】(1)见解析;(2)①见解析;②t=2或14.
【解析】
【分析】
(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到
C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;
②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.
【详解】
(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)①存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD=,
∴△BDE的最小周长=CD+4=;
②存在,∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意;
当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2;
当6<t<10时,由∠DBE=120°>90°,
∴此时不存在;
当t>10时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD=14,
∴t=14,
综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.
【点睛】
本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.
9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是
FH=FG,FH⊥FG.
【解析】
试题分析:(1)证AD=BE,根据三角形的中位线推出FH=1
2
AD,FH∥AD,FG=
1
2
BE,
FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:
(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,

FH=12AD ,FH ∥AD ,FG=12
BE ,FG ∥BE , ∴FH=FG ,
∵AD ⊥BE ,
∴FH ⊥FG , 故答案为相等,垂直.
(2)答:成立,
证明:∵CE=CD ,∠ECD=∠ACD=90°,AC=BC ,
∴△ACD ≌△BCE
∴AD=BE ,
由(1)知:FH=
12AD ,FH ∥AD ,FG=12
BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG , ∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG ,FH ⊥FG .
连接AD ,BE ,两线交于Z ,AD 交BC 于X ,
同(1)可证
∴FH=12AD ,FH ∥AD ,FG=12
BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形,
∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°,
∴∠ACD=∠BCE ,
在△ACD 和△BCE 中
AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩
=== , ∴△ACD ≌△BCE ,
∴AD=BE ,∠EBC=∠DAC ,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB ,
∴∠DXB+∠EBC=90°,
∴∠EZA=180°﹣90°=90°,
即AD ⊥BE ,
∵FH ∥AD ,FG ∥BE ,
∴FH ⊥FG ,
即FH=FG ,FH ⊥FG ,
结论是FH=FG ,FH ⊥FG.
【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.
10.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .
(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)
(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;
(3).①当BD=___________时,30DEC ∠=;(直接写出结果)
②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.
【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+
【解析】
【分析】
(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.
【详解】
解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,
ADE ∴∆是等边三角形,
故答案为等边三角形;
(2)AC CD CE +=,
证明:由旋转的性质可知,60,DAE AD AE ∠==,
ABC ∆是等边三角形
60AB AC BC BAC ∴∠︒==,=,
60BAC DAE ∴∠∠︒==,
BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,
在ABD ∆和ACE ∆中,
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
, ABD ACE SAS ∴∆∆≌()
BD CE ∴=,
CE BD CB CD CA CD ∴++===;
(3)①BD 为2或8时,30DEC ∠=,
当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,
90AEC ∴∠︒=,
ABD ACE ∆∆≌,
9060ADB AEC B ∴∠∠︒∠︒==,又=,
30BAD ∴∠︒=,
122
BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,
30AEC ∴∠︒=,
ABD ACE ∆∆≌,
3060ADB AEC B ∴∠∠︒∠︒==,又=,
90BAD ∴∠︒=,
28BD AB ∴==,
BD ∴为2或8时,30DEC ∠︒=;
②点D 在运动过程中,DEC ∆
的周长存在最小值,最小值为4+
理由如下:
ABD ACE ∆∆≌,
CE BD ∴=,
则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,
当CE 最小时,DEC ∆的周长最小,
ADE ∆为等边三角形,
DE AD ∴=, AD
的最小值为
DEC ∴∆
的周长的最小值为4+
【点睛】
本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

相关文档
最新文档