物理万有引力与航天题20套(带答案)及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理万有引力与航天题20套(带答案)及解析
一、高中物理精讲专题测试万有引力与航天
1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:
(1)月球的质量M ;
(2)轨道舱绕月飞行的周期T .
【答案】(1)G
gR M 2
=
(2)2r r
T R g
π= 【解析】 【分析】
月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】
解:(1)设月球表面上质量为m 1的物体,其在月球表面有:11
2Mm G
m g R = 1
12
Mm G m g R = 月球质量:G
gR M 2
=
(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m
由牛顿运动定律得: 2
2Mm 2πG m r r T ⎛⎫= ⎪⎝⎭
222()Mm G m r
r T π= 解得:2r
r T R g
π=
2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】
【解析】
设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)
根据万有引力定律和牛顿定律,有 G ③ (3分) G
④ (3分)
联立以上各式解得
⑤ (2分)
根据解速度与周期的关系知
⑥ (2分)
联立③⑤⑥式解得
(3分)
本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解
3.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .
【答案】(1) 02tan v t θ (2) 202tan v R Gt
θ
【解析】 【分析】
(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】
(1)物体做平抛运动,水平方向:0x v t =,竖直方向:2
12
y gt = 由几何关系可知:0
2y gt tan x v θ== 解得:0
2v g tan t
θ=
(2)星球表面的物体受到的重力等于万有引力,即:2
Mm
G
mg R = 可得:2202v R tan gR M G Gt
θ
==
【点睛】
本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.
4.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。

求: (1)月球的密度; (2)月球的第一宇宙速度。

【答案】(1)0
32v RGt ρπ=(2)v =
【解析】 【详解】
(1)根据竖直上抛运动的特点可知:01
02
v gt -= 所以:g=
2v t
设月球的半径为R,月球的质量为M,则:2
GMm
mg R = 体积与质量的关系:34
·3
M V R ρπρ== 联立得:0
32v RGt
ρπ=
(2)由万有引力提供向心力得
2
2
GMm v m R R
=
解得;v =
综上所述本题答案是:(1)0
32v RGt ρπ=(2)v =
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于v =。

5.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引
力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .
(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;
b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12
p m m E G
r
=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?
【答案】(1)3M 0c 2(2)23
2
4r M GT
π=;22GM R c '= 【解析】 【分析】 【详解】
(1)合并后的质量亏损
000(2639)623m M M M ∆=+-=
根据爱因斯坦质能方程
2E mc ∆=∆
得合并所释放的能量
203E M c ∆=
(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律
2
0202Mm G m r r T π⎛⎫= ⎪⎝⎭
解得
23
02
4r M GT
π= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律
2102Mm mv G R ⎛⎫+-= ⎪⎝
⎭ 解得
22GM R v '
=
因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过
2
2GM R c '
=
6.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6倍,半径约为地球半径的2倍.若某人在地球表面能举起60kg 的物体,试求:
(1)人在这个行星表面能举起的物体的质量为多少? (2)这个行星的第一宇宙速度是地球第一宇宙速度的多少倍?
【答案】(1)40kg (2 【解析】 【详解】
(1)物体在星体表面的重力等于物体受到的万有引力,又有同一个人在两个星体表面能举
起的物体重力相同,故有:
22
GM m GM m
mg m g R R ''行地地行地行===; 所以,22
2
1260406
R M m m kg kg M R '⋅⋅⨯行地行地===; (2)第一宇宙速度即近地卫星的速度,故有:2
2 GMm mv R R =
所以,v =
;所以, v v 行地;
7.“神舟”十号飞船于2013年6月11日17时38分在酒泉卫星发射中心成功发射,我国首位 80后女航大员王亚平将首次在太空为我国中小学生做课,既展示了我国在航天领域的实力,又包含着祖国对我们的殷切希望.火箭点火竖直升空时,处于加速过程,这种状态下宇航员所受支持力F 与在地球表面时重力mg 的比值后F
k mg
=
称为载荷值.已知地球的半径为R =6.4×106m (地球表面的重力加速度为g =9.8m/s 2)
(1)假设宇航员在火箭刚起飞加速过程的载荷值为k =6,求该过程的加速度;(结论用g 表示)
(2)求地球的笫一宇宙速度;
(3)“神舟”十号飞船发射成功后,进入距地面300km 的圆形轨道稳定运行,估算出“神十”绕地球飞 行一圈需要的时间.(π2≈g )
【答案】(1) a =5g (2)37.9210m/s v =⨯ (3)T =5420s 【解析】
【分析】
(1)由k 值可得加速过程宇航员所受的支持力,进而还有牛顿第二定律可得加速过程的加速度.
(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,此时万有引力近似等于地球表面的重力,然后结合牛顿第二定律即可求出;
(3)由万有引力提供向心力的周期表达式,可表示周期,再由地面万有引力等于重力可得黄金代换,带入可得周期数值. 【详解】
(1)由k =6可知,F =6mg ,由牛顿第二定律可得:F -mg =ma 即:6mg -mg =ma 解得:a =5g
(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,
由万有引力提供向心力得:2
v mg m R
=
所以:37.9210m/s v =
==⨯
(3)由万有引力提供向心力周期表达式可得:2
22()Mm G m r T
π= 在地面上万有引力等于重力:2
Mm
G
mg R =
解得:5420s T ===
【点睛】
本题首先要掌握万有引力提供向心力的表达式,这在天体运行中非常重要,其次要知道地面万有引力等于重力.
8.已知地球的半径为R ,地面的重力加速度为g ,万有引力常量为G 。

求 (1)地球的质量M ; (2)地球的第一宇宙速度v ;
(3)相对地球静止的同步卫星,其运行周期与地球的自转周期T 相同。

求该卫星的轨道半径r 。

【答案】(1)2R g M G =(2(3【解析】 【详解】
(1)对于地面上质量为m 的物体,有 2Mm
G
mg R
= 解得 2R g
M G
=
(2)质量为m 的物体在地面附近绕地球做匀速圆周运动,根据牛顿第二定律有
22Mm v G m R R
=
解得 v =
= (3)质量为m 的地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有
2224Mm G m r r T
π=
解得r ==
9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.
(1)真空中一个孤立的点电荷,电荷量为+Q ,静电力常量为k ,推导距离点电荷r 处的电场强度E 的表达式.
(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为M ,半径为R ,引力常量为G .
a .请参考电场强度的定义,推导距离地心r 处(其中r ≥R )的引力场强度E 引的表达式.
b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中r <R )的引力场强度E 引的表达式. 【答案】(1)2kQ
E r =(2)a . 2GM E r =引 b . 3
GM E r R =引
【解析】 【详解】 (1)由F E q =
,2qQ F k r
= ,得 2kQ
E r = (2)a .类比电场强度定义,
F E m
=万引,由2GMm
F r =万,
得 2
GM
E r =
引 b .由于质量分布均匀的球壳对其内部的物体的引力为0,当r <R 时,距地心r 处的引力场强是由半径为r 的“地球”产生的.设半径为r 的“地球”质量为M r ,
3
3334433
r M r M r M
R R
ππ=⨯=. 得23r GM GM
E r r R
=
=引
10.假如你乘坐我国自行研制的、代表世界领先水平的神州X 号宇宙飞船,通过长途旅行,目睹了美丽的火星,为了熟悉火星的环境,飞船绕火星做匀速圆周运动,离火星表面的高度为H ,测得飞行n 圈所用的时间为t ,已知火星半径为R ,引力常量为G ,求: (1)神舟X 号宇宙飞船绕火星的周期T ; (2)火星表面重力加速度g .
【答案】(1)t T n = (2)()3
22224n R H g R t
π+=
【解析】
(1)神舟X 号宇宙飞船绕火星的周期t T n
= (2)根据万有引力定律()
()2
2
24Mm
G
m R H T
R H π=++,
2
Mm
G
mg R = 解得()
3
2222
4n R H g R t
π+=
【点睛】本题考查了万有引力定律的应用,考查了求重力加速度、第一宇宙速度问题,知道万有引力等于重力、万有引力提供向心力是解题的前提与关键,应用万有引力公式与牛顿第二定律可以解题.。

相关文档
最新文档