苏教版选修2-2高中数学导数的概念—平均变化率教案

合集下载

《平均变化率》教案及教案说明

《平均变化率》教案及教案说明

平均变化率江苏省南京外国语学校严青一、教材:苏教版《普通高中课程标准实验教科书(选修2—2)·数学》第1章。

二、地位和作用:《导数及其应用》在整个高中教材中的地位和作用是非常重要的,它既是对函数知识的补充和完善,也为今后进一步学习微积分奠定基础。

通过本章的学习,使学生对变量数学的思想方法有新的感悟,促进学生全面认识数学的价值(应用价值、科学价值、文化价值),从而进一步发展学生的数学思维能力。

新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,也有别于以往教材将导数仅仅作为一种特殊的极限、一种“规则”来学习的处理方式,而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法定义导数,这种概念建立的方式形象、直观、生动又容易理解,突出了导数概念的本质。

平均变化率是是本章的一个重要的基本概念,本节课是《导数及其应用》的起始课,对导数概念的形成起着奠基作用。

三、教学目标✧通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;✧理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;✧感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力。

四、教学重点平均变化率概念教学难点平均变化率概念的形成过程五、教学方法与教学手段✧启发式教学与探究式学习相结合。

通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。

这样学生不会感到突兀,并能进一步感受到数学来源于生活,生活中处处蕴含着数学化的知识,同时可以提高他们学习数学的主观能动性。

教师在教学中应遵循五“W”原则(who,what,why,when,how),尤其要关注其中的三个原则,即“谁在学?为什么要学?怎么学?”✧利用多媒体辅助教学,突出重点、突破难点,提高教学效率。

高中数学 第一章 导数及其应用教案 苏教版选修22

高中数学 第一章 导数及其应用教案 苏教版选修22

第一章导数及其应用1.1导数的概念1.1.1 平均变化率(教师用书独具)●三维目标1.知识与技能通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型.2.过程与方法理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率.3.情感、态度与价值观感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.●重点难点重点:平均变化率的概念.难点:平均变化率概念的形成过程.为了使得平均变化率概念的引入自然流畅,可创设实际问题情境,如气球吹气时的平均膨胀率、跳板跳水某段起跳后的平均速度,通过具体的实例提出问题;借助天气预报中某天气温的变化曲线,以形助数,让学生有一个直观的认识,然后从数学的角度,描述这种现象就一目了然了.(教师用书独具)●教学建议本节课是起始课,对导数概念的形成起着奠基作用.平均变化率是个核心概念,它在整个高中数学中占有极其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,要注意特殊到一般、数形结合等数学思想方法的渗透.●教学流程创设问题情境,提出问题,根据气球的平均膨胀率得出平均变化率的概念.⇒应用平均变化率的概念,完成例1及其变式训练.⇒实际问题中的平均变化率,完成例2及其变式训练.⇒通过例3及其变式训练,进一步理解平均变化率的意义及其应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.在吹气球时,气球的半径r(单位:dm )与气球空气容量(体积)V(单位:L )之间的函数关系是r(V)=33V4π.1.当空气容量V 从0增加到1 L 时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (1)-r (0)1-0≈0.621=0.62(dm /L ).2.当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (V 2)-r (V 1)V 2-V 1.一般地,函数y =f(x)在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1,其中Δy=f(x 2)-f(x 1)是函数值的改变量.如图所示,函数y =f(x)图象上四点A ,B ,D ,E.1.由Δy =f(x 2)-f(x 1)能否判断曲线在A→B 段的陡峭程度? 【提示】 不能.2.平均变化率f (x 2)-f (x 1)x 2-x 1能否近似刻画曲线在A→B 段的陡峭程度?为什么?曲线段AB 与曲线段DE 哪段更陡峭?【提示】 能.因为k AB =f (x 2)-f (x 1)x 2-x 1表示A ,B 两点所在直线的斜率,所以可近似地刻画曲线段AB 的陡峭程度.由于k DE >k AB ,知曲线段DE 更加陡峭.从平均变化率的定义知,其几何意义是经过曲线y =f(x)上两点P(x 1,y 1),Q(x 2,y 2)的直线PQ 的斜率.因此平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.已知函数f(x)=x 2+x ,分别计算f(x)在区间[1,3],[1,2],[1,1.5]上的平均变化率.【思路探究】 对于给定的三个区间,分别求函数值的增量Δy 与自变量的增量Δx 的比值ΔyΔx. 【自主解答】 (1)函数f(x)在区间[1,3]上的平均变化率为f (3)-f (1)3-1=32+3-(12+1)2=5.(2)函数f(x)在区间[1,2]上的平均变化率为 f (2)-f (1)2-1=22+2-(12+1)1=4.(3)函数f(x)在区间[1,1.5]上的平均变化率为f (1.5)-f (1)1.5-1=1.52+1.5-(12+1)0.5=3.5.1.本题主要依据平均变化率的意义代入公式直接计算,解题的关键是弄清自变量与函数值的增量.2.求函数y =f(x)在区间[x 1,x 2]上的平均变化率的步骤: (1)作差:求Δx =x 2-x 1,Δy =f(x 2)-f(x 1); (2)作商:求Δy Δx ,即f (x 2)-f (x 1)x 2-x 1的值.求函数y =5x 2+6在区间[2,3]上的平均变化率.【解】 函数在区间[2,3]上的平均变化率为f (3)-f (2)3-2=5×32+6-5×22-61=45-20=25.在高台跳水运动中,运动员相对于水面的高度h(单位:m )与起跳后的时间t(单位:s )存在函数关系h(t)=-4.9t 2+6.5t +10.(1)求运动员在第一个0.5 s 内高度h 的平均变化率;(2)求高度h 在1≤t≤2这段时间内的平均变化率.【思路探究】 (1)求函数h(t)=-4.9t 2+6.5t +10在区间[0,0.5]上的平均变化率;(2)求函数h(t)=-4.9t 2+6.5t +10在区间[1,2]上的平均变化率.【自主解答】 (1)运动员在第一个0.5 s 内高度h 的平均变化率为h (0.5)-h (0)0.5-0=4.05(m /s ).(2)在1≤t≤2这段时间内,高度h 的平均变化率为h (2)-h (1)2-1=-8.2(m /s ).1.结合物理知识可知,在第一个0.5 s 内高度h 的平均变化率为正值,表示此时运动员在起跳后处于上升过程;在1≤t≤2这段时间内,高度h 的平均变化率为负值,表示此时运动员已开始向水面下降.事实上平均变化率的值可正、可负也可以是0.2.平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度(重量)的平均变化率等等.解决这些问题的关键在于找准自变量和因变量.已知某物体运动位移与时间的关系为s(t)=12gt 2,试分别计算t 从3 s 到3.1 s ,3.001s 各段的平均速度,通过计算你能发现平均速度有什么特点吗?【解】 设物体在区间[3,3.1],[3,3.001]上的平均速度分别为V 1,V 2, 则ΔS 1=S(3.1)-S(3)=12g ×3.12-12g ×32=0.305g(m ). ∴物体从3 s 到3.1 s 时平均速度V 1=ΔS 13.1-3=0.305g 0.1=3.05g(m /s ),同理V 2=ΔS 23.001-3=0.003 000 5g 0.001=3.000 5g(m /s ).通过计算可以发现,随着时间间隔Δt 的变小,平均速度在向3g m /s 靠近,而3g m /s 为物体做自由落体运动时,t =3 s 时的瞬时速度.2012年冬至2013年春,我国北部某省冬麦区遭受严重干旱,根据某市农业部门统计,该市小麦受旱面积如图1-1-1所示,据图回答:图1-1-1(1)2012年11月至2012年12月间,小麦受旱面积变化大吗?(2)哪个时间段内,小麦受旱面积增幅最大?(3)从2012年11月到2013年2月,与从2013年1月到2013年2月间,试比较哪个时间段内,小麦受旱面积增幅较大?【思路探究】利用平均变化率的计算公式及其实际意义进行分析.【自主解答】(1)在2012年11月至2012年12月间,Δs变化不大,即小麦受旱面积变化不大.(2)由图形知,在2013年1月至2013年2月间,平均变化率ΔsΔt较大,故小麦受旱面积增幅最大.(3)在2012年11月至2013年2月间,平均变化率=s B -s A3, 在2013年1月至2013年2月间,平均变化率=s B -s C1=s B -s C ,显然k BC >k AB ,即s B -s C >s B -s A3,∴在2013年1月至2013年2月间,小麦受旱面积增幅较大.1.本例中的(2)(3)可数形结合,利用平均变化率进行分析,抓住平均变化率的几何意义.2.在实际问题中,平均变化率具有现实意义,应根据问题情境,理解其具体意义.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m /s 到0 m /s 花了5 s ,乙车从18 m /s 到0 m /s 花了4 s ,试比较两辆车的刹车性能.【解】 甲车速度的平均变化率为0-255=-5(m /s 2),乙车速度的平均变化率为0-184=-4.5(m /s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.实际问题中平均变化率意义不明致误甲、乙二人跑步,路程与时间关系以及百米赛跑路程与时间关系分别如图1-1-2中①②所示,试问:图1-1-2(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?【错解】(1)对于图①,设甲、乙两曲线的右端点分别为A,B,显然有k OB>k OA,故乙的平均变化率大于甲的平均变化率,所以乙比甲跑得快.(2)对于图②,在[0,t0]上,甲、乙的时间、路程相同,平均变化率相等,速度相等,所以两人跑得一样快.【错因分析】在(2)中,题意不明,误求甲、乙在[0,t0]上的平均变化率认为是终点附近的平均速度.【防范措施】(1)在实际问题中,理解平均变化率具有的现实意义;(2)弄清题目的要求,区别平均速度与瞬时速度.【正解】(1)同上面解法.(2)对于图②,在[0,t0]上,甲、乙的平均变化率是相等的,但甲的平均变化率是常数,而乙的变化率逐渐增大,快到终点时,乙的变化率大于甲的变化率,所以,快到终点时,乙跑得较快.1.准确理解平均变化率的意义是求解平均变化率的关键,其实质是函数值增量Δy与自变量取值增量Δx的比值.涉及具体问题,计算Δy很容易出现运算错误,因此,计算时要注意括号的应用,先列式再化简,这是减少错误的有效方法.2.函数的平均变化率在生产生活中有广泛的应用,如平均速度、平均劳动生产率、面积体积变化率等.解决这类问题的关键是能从实际问题中引出数学模型并列出函数关系式,需注意是相对什么量变化的.1.函数y=2x+2在[1,2]上的平均变化率是________.【解析】(2×2+2)-(2×1+2)2-1=2.【答案】 22.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为________. 【解析】 ∵S=πr 2, ∴ΔS Δr =S (0.3)-S (0.1)0.3-0.1=0.09π-0.01π0.2=0.4π. 【答案】 0.4π3.如图1-1-3,函数y =f(x)在A ,B 两点间的平均变化率是________.图1-1-3【解析】 ∵k AB =y A -y B x A -x B =3-11-3=-1,由平均变化率的意义知y =f(x)在A ,B 两点间的平均变化率为-1. 【答案】 -14.甲企业用2年时间获利100万元,乙企业投产6个月时间就获利30万元,如何比较和评价甲、乙两企业的生产效益?(设两企业投产前的投资成本都是10万元)【解】 甲企业生产效益的平均变化率为100-1012×2-0=154.乙企业生产效益的平均变化率为30-106-0=103.∵154>103, ∴甲企业的生产效益较好.一、填空题1.函数f(x)=1x 在[2,6]上的平均变化率为________.【解析】 f (6)-f (2)6-2=16-126-2=-112.【答案】 -1122.函数f(x)=log 2x 在区间[2,4]上的平均变化率是________. 【解析】 函数的平均变化率是f (4)-f (2)4-2=2-12=12.【答案】 123.已知某质点的运动规律为s(t)=5t 2(单位:米),则在1 s 到3 s 这段时间内,该质点的平均速度为________.【解析】 s (3)-s (1)3-1=5×32-5×122=20(m /s ).【答案】 20 m /s4.若函数f(x)=x 2-c 在区间[1,m]上的平均变化率为3,则m 等于________. 【解析】 由题意得(m 2-c )-(12-c )m -1=3,∴m =2(m =1舍去). 【答案】 25.在雨季潮汛期间,某水文观测员观察千岛湖水位的变化,在24 h 内发现水位从102.7m 上涨到105.1 m ,则水位涨幅的平均变化率是________m /h .【解析】105.1-102.724=0.1(m /h ).【答案】 0.16.服药后,人吸收药物的情况可以用血液中药物的浓度c(单位:mg /mL )来表示,它是时间t(单位:min )的函数,表示为c =c(t),下表给出了c(t)的一些函数值.). 【解析】c (70)-c (30)70-30=0.90-0.9840=-0.002 mg /(mL ·min ). 【答案】 -0.0027.已知某物体运动的速度与时间之间的关系式是v(t)=t +13t 3,则该物体在时间间隔[1,32]内的平均加速度为________.【解析】 平均加速度Δv Δt =32+13·(32)3-(1+13)32-1=3112.【答案】3112图1-1-48.如图1-1-4所示,显示甲、乙在时间0到t 1范围内路程的变化情况,下列说法正确的是________.①在0到t 0范围内甲的平均速度大于乙的平均速度; ②在0到t 0范围内甲的平均速度小于乙的平均速度; ③在t 0到t 1范围内甲的平均速度大于乙的平均速度; ④在t 0到t 1范围内甲的平均速度小于乙的平均速度.【解析】 在[0,t 0]内甲、乙的平均速度为s 0t 0,①②错.在[t 0,t 1]上,v 甲=s 2-s 0t 1-t 0,v乙=s 1-s 0t 1-t 0. ∵s 2-s 0>s 1-s 0,且t 1-t 0>0, ∴v 甲>v 乙,故③正确,④错误. 【答案】 ③ 二、解答题9.求函数f(x)=x 2+1x+4在区间[1,2]上的平均变化率.【解】 f(x)=x 2+1x +4在区间[1,2]上的平均变化率为22+12+4-(12+11+4)2-1=52.10.假设在生产8到30台机器的情况下,生产x 台机器的成本是c(x)=x 3-6x 2+15x(元),而售出x 台的收入是r(x)=x 3-3x 2+12x(元),则生产并售出10台至20台的过程中平均利润是多少元?【解】 依题意,生产并售出x 台所获得的利润是 L(x)=r(x)-c(x)=3x 2-3x(元), ∴x 取值从10台至20台的平均利润为L (20)-L (10)20-10=3×202-3×20-(3×102-3×10)10=87(元),故所求平均利润为87元.11.(2013·泰安高二检测)巍巍泰山为我国五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?图1-1-5【解】 山路从A 到B 高度的平均变化率为 h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为h BC =Δy Δx =15-1070-50=14, ∴h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭得多.(教师用书独具)已知气球的体积为V(单位:L )与半径r(单位:dm )之间的函数关系是V(r)=43πr 3.(1)求半径r 关于体积V 的函数r(V);(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?【自主解答】 ∵V=43πr 3,∴r 3=3V 4π,r = 33V 4π,即r(V)= 33V4π.(2)函数r(V)在区间[0,1]上的平均变化率约为 r (1)-r (0)1-0=33×14π-01≈0.62(dm /L ),函数r(V)在区间[1,2]上的平均变化率约为r (2)-r (1)2-1= 33×24π- 33×14π≈0.16(dm /L ).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着气球体积的增加,气球的半径增加得越来越慢.一块正方形的铁板在0 ℃时,边长为10 cm ,加热铁板会膨胀,当温度为t ℃时,边长变为10(1+at)cm ,a 为常数,试求0~10 ℃内铁板面积S 的平均变化率.【解】 铁板面积S =102(1+at)2, 在区间[0,10]上,S 的平均变化率为S (10)-S (0)10-0=102(1+10a )2-10210=200a +1 000a 2,即0~10 ℃内铁板面积S 的平均变化率为(200a +1 000a 2)cm 2/℃.1.1.2 瞬时变化率——导数(教师用书独具)●三维目标1.知识与技能了解导数概念的实际背景;理解函数在某点处导数以及在某个区间的导函数的概念;会用定义求瞬时速度和函数在某点处的导数.2.过程与方法用函数的眼光来分析研究物理问题;经历由平均速度与瞬时速度关系类比由平均变化率过渡到瞬时变化率的过程,体会数形结合、特殊到一般、局部到整体的研究问题的方法.3.情感、态度与价值观通过导数概念的形成过程,体会导数的思想及其内涵;激发学生兴趣,在从物理到数学,再用数学解决物理问题的过程中感悟数学的价值.●重点难点重点:函数在某一点处的导数的概念及用导数概念求函数在一点处的导数.难点:从实例中归纳、概括函数瞬时变化率的定量分析过程,及函数在开区间内的导函数的理解.为了突出重点、突破难点,在导数概念的教学中,积极创设问题情境,从学生已有的认知入手,例如物理学中的瞬时速度、曲线割线的斜率等,采用相互讨论、探究规律和引导发现的教学方法,通过不断出现的一个个问题,一步步创设出使学生有兴趣探索知识的“情境”,通过反映导数思想和本质的实例,引导学生经历由平均变化率到瞬时变化率的过程,从而更好地理解导数概念.(教师用书独具)●教学建议新课标对“导数及其应用”内容的处理有较大的变化,它不介绍极限的形式化定义及相关知识,而是按照“平均变化率——曲线在某一点处的切线——瞬时速度(加速度)——瞬时变化率——导数的概念”这样的顺序来安排,用“逼近”的方法来定义导数,这种概念建立的方式直观、形象、生动,又易于理解,突出导数概念的形成过程.因此,在教学中采用教师启发诱导与学生动手操作、自主探究、合作交流相结合的教学方式,引导学生动手操作、观察、分析、类比、抽象、概括,并借助excel及几何画板演示,调动学生参与课堂教学的主动性和积极性.●教学流程利用割线逼近切线的方法探究曲线上一点处的切线.⇒通过缩小时间间隔,由平均速度得出瞬时速度.⇒会求瞬时速度和瞬时加速度,完成例1与变式训练.⇒利用瞬时变化率得出导数的概念,会求函数在某点处的导数,完成例2及互动探究.⇒根据导数的几何意义,完成例3及其变式训练.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.曲线的切线与曲线只有一个公共点吗?曲线上在某一点处的切线的含义是什么?【提示】 切线与曲线不一定只有一个公共点,如图,曲线C 在点P 处的切线l 与曲线C 还有一个公共点Q.曲线上某一点处的切线,其含义是以该点为切点的切线.2.运动物体在某一时刻的瞬时加速度为0,那么该时刻物体是否一定停止了运动? 【提示】 不是.瞬时加速度刻画的是速度在某一时刻的变化快慢,瞬时加速度为0,并不是速度为0.1.曲线上一点处的切线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线,随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C.当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线.2.瞬时速度、瞬时加速度(1)如果当Δt 无限趋近于0时,运动物体位移S(t)的平均变化率S (t 0+Δt )-S (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,即位移对于时间的瞬时变化率.(2)如果当Δt 无限趋近于0时,运动物体速度v(t)的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,即速度对于时间的瞬时变化率.1.导数设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称该常数A 为函数f(x)在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f′(x 0)的几何意义就是曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率,切线PT 的方程是y -f(x 0)=f ′(x 0)(x -x 0).求瞬时速度、瞬时加速度已知质点M的运动速度与运动时间的关系为v=3t2+2(速度单位:cm/s,时间单位:s),(1)当t=2,Δt=0.01时,求ΔvΔt;(2)求质点M在t=2时的瞬时加速度.【思路探究】【自主解答】ΔvΔt=v(t+Δt)-v(t)Δt=3(t+Δt)2+2-(3t2+2)Δt=6t+3Δt.(1)当t=2,Δt=0.01时,ΔvΔt=6×2+3×0.01=12.03(cm/s2).(2)当Δt无限趋近于0时,6t+3Δt无限趋近于6t,则质点M在t=2时的瞬时加速度为12 cm/s2.1.求瞬时速度的关键在于正确表示“位移的增量与时间增量的比值”,求瞬时加速度的关键在于正确表示“速度的增量与时间增量的比值”,注意二者的区别.2.求瞬时加速度:(1)求平均加速度ΔvΔt;(2)令Δt →0,求出瞬时加速度.质点M 按规律s(t)=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2 s 时的瞬时速度为8 m /s ,求常数a 的值.【解】 ∵Δs =s(2+Δt)-s(2)=a(2+Δt)2+1-a·22-1=4a Δt +a(Δt)2, ∴ΔsΔt=4a +a Δt. 当Δt →0时,ΔsΔt→4a. ∵在t =2时,瞬时速度为8 m /s ,∴4a =8,∴a =2.求函数y =f(x)=x -1x在x =1处的导数.【思路探究】求Δy =f (1+Δx )-f (1)―→求Δy Δx→令Δx →0,求ΔyΔx→A 的值 【自主解答】 ∵Δy =(1+Δx)-11+Δx -(1-11)=Δx +1-11+Δx =Δx +Δx1+Δx.∴ΔyΔx=Δx +Δx 1+Δx Δx =1+11+Δx ,当Δx →0时,ΔyΔx→1+1=2. ∴f ′(1)=2.1.本题是利用定义求f′(1),解题的关键是求出ΔyΔx并化简,利用定义求解的步骤为:①求函数的增量Δy =f(x 0+Δx)-f(x 0);②求平均变化率ΔyΔx;③当Δx 无限趋近于0时,确定ΔyΔx的无限趋近值. 2.求f′(x 0)也可先求出导函数f′(x),再将x =x 0代入,即求出f′(x)在点x =x 0处的函数值.在例题中,若条件改为f′(x 0)=54,试求x 0的值.【解】 ∵Δy =f(x 0+Δx)-f(x 0)=(x 0+Δx)-1x 0+Δx -(x 0-1x 0)=Δx +Δxx 0(x 0+Δx )∴Δy Δx =1+1x 0(x 0+Δx )当Δx →0时,Δy Δx →1+1x 20. 又f′(x 0)=54,则1+1x 20=54.∴x 0=±2.已知抛物线y =2x 2,求抛物线在点(1,2)处的切线方程.【思路探究】 根据导数的几何意义求出切线的斜率,然后利用点斜式即可写出切线方程.【自主解答】 因为点(1,2)在抛物线上,所以抛物线在点(1,2)处的切线斜率为函数y =2x 2在x =1处的导数f′(1).因为Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2×12Δx=4+2Δx ,当Δx 无限趋近于0时,4+2Δx 无限趋近于4,所以f ′(1)=4. 所以切线方程为y -2=4(x -1),即4x -y -2=0.1.本题是“给出曲线和切点(x 0,f(x 0))求切线方程”,此时切线的斜率就是f′(x 0),则该点处的切线方程为y -f(x 0)=f′(x 0)(x -x 0).2.若求“过点(x 0,y 0)的切线方程”,此时所给的点有可能不是切点,切线的斜率还用f′(x 0)则可能会出错.此时应先设出切点坐标P(x′0,y ′0),由已知条件列出切点横坐标的方程,求x′0,然后再求解.曲线y =x 3+11在点P(1,12)处的切线与y 轴交点的纵坐标是________.【解析】 ∵Δy Δx =(x 0+Δx )3+11-x 30-11Δx=3x 0Δx +3x 20+(Δx)2,∴当x 0=1,Δx →0时,k =f′(1)=3.∴曲线y =x 3+11在点P(1,12)处的切线为y =3x +9. ∴当x =0时,y =9.因此所求切线与y 轴交点的纵坐标为9. 【答案】 9对导数定义理解不透彻致误已知f′(1)=-2,则当Δx →0时,f (1+2Δx )-f (1)Δx→________.【错解】 当Δx →0时,f (1+2Δx )-f (1)Δx →-2.【答案】 -2【错因分析】 产生错解的原因是对导数定义的理解不透彻,一味地套用公式.本题分子中自变量的增量是2Δx ,即(1+2Δx)-1=2Δx ,而错解中分母中的增量为Δx ,二者不是等量的.【防范措施】 在导数定义中,增量Δx 的形式是多种多样的,但无论如何变化,其实质是分子中的自变量的增量与分母中的增量必须保持一致.【正解】f (1+2Δx )-f (1)Δx =2·f (1+2Δx )-f (1)2Δx当Δx →0时,f (1+2Δx )-f (1)2Δx →f ′(1),∴2·f (1+2Δx )-f (1)2Δx →2f ′(1)=2×(-2)=-4. 【答案】 -41.不管是求切线的斜率、瞬时速度和瞬时加速度,还是求实际问题中的瞬时变化率,它们的解题步骤都是一样的——(1)计算Δy ,(2)求Δy Δx ,(3)看Δx 无限趋近于0时,Δy Δx无限趋近于哪个常数.2.准确理解导数的概念,正确求y =f(x)在点x =x 0处的导数注意两点:(1)Δy =f(x +Δx)-f(x)不能误认为Δy =f(Δx);(2)求解时不给出Δx 的具体值,否则求出的是平均变化率,而不是瞬时变化率(导数).3.求过某点曲线的切线方程的类型及求法.(1)若已知点(x 0,y 0)为切点,则先求出函数y =f(x)在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不是切点,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.因此求曲线的切线方程一定要明确切点的位置,分清楚是“曲线在某点处的切线”还是“过某点的曲线切线”.1.如果质点A 按规律s =3t 2运动,则在t =3时的瞬时速度为________.【解析】 Δs Δt =3(3+Δt )2-3×32Δt=18+3Δt ,当Δt →0时,ΔsΔt→18+3×0=18. ∴质点A 在t =3时的瞬时速度为18. 【答案】 182.已知f(x)=2x +5,则f(x)在x =2处的导数为________.【解析】 Δy =f(2+Δx)-f(2)=2(2+Δx)+5-(2×2+5)=2Δx , ∴ΔyΔx=2,∴f ′(2)=2. 【答案】 23.抛物线y =14x 2在点Q(2,1)处的切线方程为______.【解析】 Δy Δx =14(2+Δx )2-14×22Δx =1+14Δx.当Δx →0时,ΔyΔx→1,即f′(2)=1, 由导数的几何意义,点Q 处切线斜率k =f′(2)=1. ∴切线方程为y -1=1(x -2)即y =x -1. 【答案】 y =x -14.求函数y =x 在x =1处的导数. 【解】 法一 ∵Δy =1+Δx -1,∴Δy Δx =1+Δx -1Δx =11+Δx +1, 当Δx 无限趋近于0时,Δy Δx =11+Δx +1无限趋近于12, ∴函数y =x 在x =1处的导数为12.法二Δy Δx =x +Δx -x Δx =1x +Δx +x, 当Δx →0时,Δy Δx →12x ,所以y′=12x. 当x =1时,y ′=12.∴函数y =x 在x =1处的导数为12.一、填空题1.设函数f(x)在x =x 0处可导,当h 无限趋近于0时,对于f (x 0+h )-f (x 0)h 的值,以下说法中正确的是________.①与x 0,h 都有关;②仅与x 0有关而与h 无关; ③仅与h 有关而与x 0无关;④与x 0,h 均无关.【解析】 导数是一个局部概念,它只与函数y =f(x)在x =x 0处及其附近的函数值有关,与h 无关.【答案】 ②2.(2013·徐州高二检测)函数f(x)=x 2在x =3处的导数等于________.【解析】 Δy Δx =(3+Δx )2-32Δx=6+Δx ,令Δx →0,得f′(3)=6. 【答案】 63.(2013·合肥高二检测)函数y =f(x)的图象在点P 处的切线方程是y =-2x +9,若P 点的横坐标为4,则f(4)+f′(4)=________.【解析】 由导数的几何意义,f ′(4)=-2. 又f(4)=-2×4+9=1. 故f(4)+f′(4)=1-2=-1. 【答案】 -14.已知物体的运动方程为s =-12t 2+8t(t 是时间,s 是位移),则物体在t =2时的速度为________.【解析】 Δs =-12(2+Δt)2+8(2+Δt)-(8×2-12×22)=6Δt -12(Δt)2,则Δs Δt =6-12Δt , 当Δt →0时,ΔsΔt→6. 【答案】 65.曲线f(x)=x 3在x =0处的切线方程为________.【解析】 Δy Δx =f (0+Δx )-f (0)Δx =(Δx )3-0Δx=(Δx)2.当Δx →0时,ΔyΔx→0. ∴由导数的几何意义,切线的斜率k =f′(0)=0. 因此所求切线方程为y =0. 【答案】 y =06.若点(0,1)在曲线f(x)=x 2+ax +b 上,且f′(0)=1,则a +b =________. 【解析】 ∵f(0)=1,∴b =1.又Δy Δx =f (0+Δx )2-f (0)Δx=Δx +a. ∴当Δx →0时,ΔyΔx→a ,则f′(0)=a =1. 所以a +b =1+1=2. 【答案】 27.高台跳水运动员在t 秒时距水面高度h(t)=-4.9t 2+6.5t +10(单位:米),则该运动员的初速度为________米/秒.【解析】 Δh Δt =-4.9(Δt )2+6.5·(Δt )+10-10Δt=6.5-4.9Δt∵当Δt 无限趋近于0时,-4.9Δt +6.5无限趋近于6.5, ∴该运动员的初速度为6.5米/秒. 【答案】 6.58.(2013·泰州高二检测)已知函数f(x)在区间[0,3]上的图象如图1-1-6所示,记k 1=f′(1),k 2=f′(2),k 3=f(2)-f(1),则k 1,k 2,k 3之间的大小关系为________.图1-1-6【解析】 k 1表示曲线在x =1处的切线的斜率,k 2表示曲线在x =2处的切线的斜率, k 3表示两点(1,f(1)),(2,f(2))连线的斜率, 由图可知:k 1>k 3>k 2. 【答案】 k 1>k 3>k 2 二、解答题9.已知函数f(x)=2x 2+4x ,试求f′(3). 【解】 Δy =f(3+Δx)-f(3)=2(3+Δx)2+4(3+Δx)-30=2(Δx)2+16Δx , ∴ΔyΔx=2Δx +16, 当Δx →0时,ΔyΔx→16. 因此f′(3)=16.10.子弹在枪筒中的运动可以看作匀加速直线运动,运动方程为s =12at 2,如果它的加速度是a =5×105m /s 2,子弹在枪筒中的运动时间为1.6×10-3s ,求子弹射出枪口时的瞬时速度. 【解】 运动方程为s =12at 2.因为Δs =12a(t 0+Δt)2-12at 20=at 0(Δt)+12a(Δt)2,所以Δs Δt =at 0+12a(Δt).所以当Δt →0时,ΔsΔt→at 0. 由题意知,a =5×105m /s 2,t 0=1.6×10-3s ,所以at 0=8×102=800(m /s ), 即子弹射出枪口时的瞬时速度为800 m /s . 11.已知曲线y =1t -x 上两点P(2,-1),Q(-1,12). 求:(1)曲线在点P ,Q 处的切线的斜率; (2)曲线在点P ,Q 处的切线方程. 【解】 将P(2,-1)代入y =1t -x ,得t =1,∴y =11-x ,设f(x)=11-x, ∵f (x +Δx )-f (x )Δx =11-(x +Δx )-11-x Δx=Δx[1-(x +Δx )](1-x )Δx=1(1-x -Δx )(1-x ),∴当Δx →0时,1(1-x -Δx )(1-x )→1(1-x )2.∴f ′(x)=1(1-x )2.(1)由导数的几何意义,知曲线在点P 处的切线斜率f′(2)=1. 曲线在点Q 处的切线斜率f′(-1)=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.(教师用书独具)已知曲线y =2x +1,问曲线上哪一点处的切线与直线y =-2x +3垂直,并求切线方程.【自主解答】 设切点坐标为(x 0,y 0),Δy Δx =2x 0+Δx +1-(2x 0+1)Δx=2x 0+Δx -2x 0Δx =2[(x 0+Δx )2-(x 0)2]Δx (x 0+Δx +x 0)=2x 0+Δx +x 0.当Δx →0时,2x 0+Δx +x 0→2x 0+x 0=1x 0, 又直线y =-2x +3的斜率为-2, 所以所求切线的斜率为12,故1x 0=12.所以x 0=4,y 0=5,所以切点坐标为(4,5), 切线方程为y -5=12(x -4),即x -2y +6=0.已知曲线y =x 2+1,问是否存在实数a ,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.【解】 设切点为P(t ,t 2+1).∵Δy Δx =(t +Δx )2+1-(t 2+1)Δx=2t +Δx , 当Δx →0时,ΔyΔx→2t. 由导数的几何意义,在点P(t ,t 2+1)处切线的斜率k =f′(t)=2t , ∴切线方程为y -(t 2+1)=2t(x -t), 将(1,a)代入,得a -(t 2+1)=2t(1-t), 即t 2-2t +(a -1)=0, 因为切线有两条,所以Δ=(-2)2-4(a -1)>0, 解得a <2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2).1.2导数的运算1.2.1 常见函数的导数(教师用书独具)●三维目标1.知识与技能能够用导数的定义求几个常用函数的导数,会利用它们解决简单的问题.2.过程与方法使学生掌握由定义求导数的三个步骤,推导四种常见函数的导数公式.3.情感、态度与价值观通过本节的学习进一步体会导数与物理知识之间的联系,提高数学的应用意识,注意培养学生归纳类比的能力.●重点难点重点:利用导数公式,求简单函数的导数.难点:对导数公式的理解与记忆.在初等函数的求导公式中,对数函数与指数函数的求导公式比较难记忆,要区分公式的结构特征,找出他们之间的差异去记忆.(教师用书独具)●教学建议导数的定义不仅阐明了导数概念的实质,也给出了利用定义求导数的方法,但是,如果对每一个函数都直接按定义去求它的导数,往往是极为复杂和困难的,甚至是不可能的,因此,我们希望找到一些简单函数的导数(作为我们的基本公式),借助它们来简化导数的计算过程.因此教材直接给出了基本初等函数的导数公式,使得用定义求导数比较麻烦、计算量很大的问题得以解决,为以后导数的研究带来了方便,同时也将所学的导数和实际应用问题结合起来,使得导数的优越性发挥得淋漓尽致.●教学流程创设情境,回忆导数的概念与导数的求法.⇒利用导数的定义求y=x n(n=1,2,3,。

高中数学选修2-2导数导学案加课后作业及参考答案

高中数学选修2-2导数导学案加课后作业及参考答案

§1.1.1函数的平均变化率导学案【学习要求】1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.【学法指导】从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.【知识要点】1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商xx f x x f ∆-∆+)()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间的 .2.函数y =f (x )的平均变化率的几何意义:ΔyΔx =__________表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 .【问题探究】在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题. 探究点一 函数的平均变化率问题1 如何用数学反映曲线的“陡峭”程度?问题2 什么是平均变化率,平均变化率有何作用?例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义?跟踪训练1 如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?【当堂检测】1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________3.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是________.【课堂小结】1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的步骤: (1)求函数值的增量Δy =f (x 2)-f (x 1); (2)计算平均变化率Δy Δx =1212)()(xx x f x f --.【拓展提高】1.设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆- 2.质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆【课后作业】一、基础过关1.当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比是函数 ( )A .在[x 0,x 1]上的平均变化率B .在x 0处的变化率C .在x 1处的变化率D .以上都不对 2.函数f (x )=2x 2-x 在x =2附近的平均变化率是( ) A .7B .7+ΔxC .7+2ΔxD .7+2(Δx )23.某物体的运动规律是s =s (t ),则该物体在t 到t +Δt 这段时间内的平均速度是 ( ) A .v =s (t +Δt )-s (t )ΔtB .v =s (Δt )ΔtC .v =s (t )tD .v =s (t +Δt )-s (Δt )Δt4. 如图,函数y =f (x )在A ,B 两点间的平均变化率是 ( )A .1B .-1C .2D .-25.一物体的运动方程是s =3+t 2,则在[2,2.1]时间内的平均速度为 ( ) A .0.41B .3C .4D .4.16.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线, 当Δx =0.1时,割线的斜率k =________. 二、能力提升7.甲、乙二人跑步路程与时间关系如右图所示,则________跑得快. 8.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀 率为28π3,则m 的值为________.9.在x =1附近,取Δx =0.3,在四个函数①y =x ,②y =x 2,③y =x 3,④y =1x 中,平均变化率最大的是________.10.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.11.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.12.已知气球的体积为V (单位:L )与半径r (单位:dm )之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?三、探究与拓展13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?§1.1.2瞬时速度与导数导学案【学习要求】1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率. 3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法. 4.理解并掌握开区间内的导数的概念,会求一个函数的导数.【学法指导】导数是研究函数的有力工具,要认真理解平均变化率和瞬时变化率的关系,体会无限逼近的思想;可以从物理意义,几何意义多角度理解导数.【知识要点】1.瞬时速度:我们把物体在某一时刻的速度称为 .设物体运动路程与时间的关系是s =s (t ),物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率tt s t t s ∆-∆+)()(00,当Δt →0时的极限,即v =lim Δt →0 ΔsΔt =__________________2.瞬时变化率:一般地,函数y =f (x )在x 0处的瞬时变化率是lim Δx →0ΔyΔx=_________________. 3.导数的概念:一般地,函数y =f (x )在x 0处的瞬时变化率是_________________,我们称它为函数y =f (x )在x =x 0处的 ,记为 ,即f ′(x 0)=lim Δx →0 ΔyΔx =________________4.导函数:如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b ) .这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数)(x f ',于是在区间(a ,b )内,)(x f '构成一个新的函数,把这个函数称为函数y =f (x )的 .记为 或y ′(或y ′x ).导函数通常简称为【问题探究】探究点一 瞬时速度问题1 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?问题2 物体的平均速度能否精确反映它的运动状态? 问题3 如何描述物体在某一时刻的运动状态?例1 火箭竖直向上发射.熄火时向上速度达到100 s m /.试问熄火后多长时间火箭向上速度为0? 问题4 火箭向上速度变为0,意味着什么?你能求出此火箭熄火后上升的最大高度吗?跟踪训练1 质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2时的瞬时速度为8s m /,求常数a 的值.探究点二 导 数问题1 从平均速度当Δt →0时极限是瞬时速度,推广到一般的函数方面,我们可以得到什么结论? 问题2 导数和瞬时变化率是什么关系?导数有什么作用? 问题3 导函数和函数在一点处的导数有什么关系?例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 跟踪训练2 已知y =f (x )=x +2,求f ′(2).探究点三 导数的实际应用例3 一正方形铁板在0℃时,边长为10cm ,加热后铁板会膨胀.当温度为C t 0时,边长变为10(1+at )cm ,a 为常数,试求铁板面积对温度的膨胀率. 跟踪训练3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:C 0)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.【当堂检测】1.函数y =f (x )在x =x 0处的导数定义中,自变量x 在x 0处的增量Δx ( ) A .大于0 B .小于0 C .等于0 D .不等于02.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( )A .at 0B .-at 0C .12at 0D .2at 03.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是 ( )A .3B .-3C .2D .-24.已知函数f (x )=1x,则)1(f '=________【课堂小结】1.瞬时速度是平均速度当Δt →0时的极限值;瞬时变化率是平均变化率当Δx →0时的极限值.2.利用导数定义求导数的步骤:(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率ΔyΔx ;(2)取极限得导数f ′(x 0)=lim Δx →0Δy Δx. 【拓展提高】1.()()()为则设hf h f f h 233lim ,430--='→( )A .-1B .-2C .-3D .12.一质点做直线运动,由始点起经过t s 后的距离为23416441t t t s +-=,则速度为零的时刻是 ( ) A .4s 末 B .8s 末 C .0s 与8s 末 D .0s ,4s ,8s 末【课后作业】一、基础过关1.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为 ( )A .0.41B .3C .4D .4.1 2.函数y =1在[2,2+Δx ]上的平均变化率是( )A .0B .1C .2D .Δx 3.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1)D .f ′(3)4.一质点按规律s (t )=2t 3运动,则t =1时的瞬时速度为( ) A .4 B .6 C .24 D .48 5.函数y =3x 2在x =1处的导数为( )A .12B .6C .3D .26.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( )A .甲B .乙C .相同D .不确定7.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________. 二、能力提升8.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时, 割线的斜率k =________.9.函数f (x )=1x 2+2在x =1处的导数f ′(1)=________.10.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.11.求函数y =f (x )=2x 2+4x 在x =3处的导数.12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值.三、探究与拓展13.若一物体运动方程如下:(位移单位:m ,时间单位:s )s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.§1.1.3导数的几何意义导学案【学习要求】1.了解导函数的概念,理解导数的几何意义. 2.会求导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.【学法指导】前面通过导数的定义已体会到其中蕴涵的逼近思想,本节再利用数形结合思想进一步直观感受这种思想,并进一步体会另一种重要思想——以直代曲.【知识要点】1.导数的几何意义(1)割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx )) 的一条割线,此割线的斜率是ΔyΔx=__________________.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋向于在点A 的切线AD 的斜率k ,即k = =___________________. (2)导数的几何意义函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应地,切线方程为_______________________. 2.函数的导数当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,)(x f '是x 的一个函数,称)(x f '是f (x )的导函数(简称导数).)(x f '也记作y ′,即)(x f '=y ′=_______________【问题探究】探究点一 导数的几何意义问题1 如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?问题2 曲线的切线是不是一定和曲线只有一个交点?例1 如图,它表示跳水运动中高度随时间变化的函数h (t )=-4.9t 2+6.5t +10的图象.根据图象,请描述、比较曲线h (t )在t 0,t 1,t 2附近的变化情况.跟踪训练1 (1)根据例1的图象,描述函数h (t )在t 3和t 4附近增(减)以及增(减)快慢的情况.(2)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是 ( )探究点二 求切线的方程问题1 怎样求曲线f (x )在点(x 0,f (x 0))处的切线方程?问题2 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 例2 已知曲线y =x 2,求:(1)曲线在点P (1,1)处的切线方程; (2)曲线过点P (3,5)的切线方程. 跟踪训练2 已知曲线y =2x 2-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程.【当堂检测】1.已知曲线f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为 ( ) A .4 B .16 C .8 D .22.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则 ( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 3.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为_______【课堂小结】1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.【拓展提高】1.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 2.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为【课后作业】一、基础过关 1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在 2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是 ( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C .f ′(x A )=f ′(x B ) D .不能确定3.在曲线y =x 2上切线倾斜角为π4的点是 ( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B .12C .-12 D .-15.曲线y =-1x 在点(1,-1)处的切线方程为( ) A .y =x -2B .y =xC .y =x +2D .y =-x -26.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.二、能力提升7.设f (x )为可导函数,且满足lim x →0f (1)-f (1-x )x =-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是 ( ) A .1B .-1C .12D .-28.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________.9.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.11.已知抛物线y =x 2+4与直线y =x +10.求:(1)它们的交点;(2)抛物线在交点处的切线方程.12.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.三、探究与拓展13.根据下面的文字描述,画出相应的路程s 关于时间t 的函数图象的大致形状:(1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (2)小华早上从家出发后,为了赶时间开始加速; (3)小白早上从家出发后越走越累,速度就慢下来了§1.2.1 常数函数与幂函数的导数导学案 §1.2.2 导数公式表及数学软件的应用导学案【学习要求】1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.【学法指导】1.利用导数的定义推导简单函数的导数公式,类推一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣. 2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系.【知识要点】1原函数 导函数 f (x )=c f ′(x )=___ f (x )=x f ′(x )=___ f (x )=x 2 f ′(x )=___ f (x )=1xf ′(x )=_____ f (x )=xf ′(x )=_______2.基本初等函数的导数公式【问题探究】探究点一 求导函数问题1 怎样利用定义求函数y =f (x )的导数? 问题2 利用定义求下列常用函数的导数: (1)y =c ;(2)y =x ;(3)y =x 2;(4)y =1x;(5)y =x . 问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?例1 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x3;(4)y =4x 3;(5)y =log 3x .跟踪训练1 求下列函数的导数:(1)y =x 8;(2)y =(12)x ;(3)y =x x ;(4)x y 31log =探究点二 求某一点处的导数 例2 判断下列计算是否正确.求f (x )=cos x 在x =π3处的导数,过程如下:f ′⎝⎛⎭⎫π3=⎝⎛⎭⎫cos π3′=-sin π3=-32. 跟踪训练2 求函数f (x )=13x在x =1处的导数.探究点三 导数公式的综合应用例3 已知直线x -2y -4=0与抛物线y 2=x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧 上求一点P ,使△ABP 的面积最大.跟踪训练3 点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.【当堂检测】1.给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x 2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3.其中正确的个数是 ( ) A .1 B .2C .3D .42.函数f (x )=x ,则f ′(3)等于 ( )A .36B .0C .12xD .323.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 ( )A .[0,π4]∪[3π4,π)B .[0,π)C .[π4,3π4]D .[0,π4]∪[π2,3π4]4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________【课堂小结】1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.【拓展提高】1.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0° B .锐角C .直角 D .钝角2.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为___________【课后作业】一、基础过关1.下列结论中正确的个数为( )①y =ln 2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ln 2 ④y =log 2x ,则y ′=1x ln 2A .0B .1C .2D .3 2.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为( )A .⎝⎛⎭⎫12,2B .⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2C .⎝⎛⎭⎫-12,-2D .⎝⎛⎭⎫12,-2 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于 ( ) A .4 B .-4C .5D .-54.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定5.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于 ( )A .64B .32C .16D .86.若y =10x,则y ′|x =1=________.7.曲线y =14x 3在x =1处的切线的倾斜角的正切值为______.二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A .1eB .-1eC .-eD .e9.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________.10.求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4.11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程.12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.三、探究与拓展13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 012(x ).§1.2.3导数的四则运算法则(一)导学案【学习要求】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.【学法指导】应用导数的四则运算法则和已学过的常用函数的导数公式可迅速解决一类简单函数的求导问题.要透彻理解函数求导法则的结构内涵,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,达到巩固知识、提升能力的目的.【知识要点】导数的运算法则设两个可导函数分别为f (x )和g (x )【问题探究】探究点一 导数的运算法则问题1 我们已经会求f (x )=5和g (x )=1.05x 等基本初等函数的导数,那么怎样求f (x )与g (x )的和、差、积、商的导数呢?问题2 应用导数的运算法则求导数有哪些注意点? 例1 求下列函数的导数: (1)y =3x-lg x ;(2)y =(x 2+1)(x -1);(3)y =x 5+x 7+x 9x.跟踪训练1 求下列函数的导数:(1)f (x )=x ·tan x ; (2)f (x )=2-2sin 2x 2; (3)f (x )=x -1x +1; (4)f (x )=sin x1+sin x.探究点二 导数的应用例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为_______________(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________(3)已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度.跟踪训练2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为 ( ) A .-12B.12C .-22 D .22(2)设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c的值.【当堂检测】1.设y =-2e x sin x ,则y ′等于 ( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )2.曲线f (x )=xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2 3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A .193B .163C .133D .1034.已知f (x )=13x 3+3xf ′(0),则f ′(1)=_______5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值.【课堂小结】求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.【课后作业】一、基础过关1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1 D .若y =sin x +cos x ,则y ′=cos x +sin x2.函数y =x1-cos x 的导数是 ( )A .1-cos x -x sin x 1-cos xB .1-cos x -x sin x (1-cos x )2C .1-cos x +sin x (1-cos x )2D .1-cos x +x sin x (1-cos x )23.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .04.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12 D .-25.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f处切线的斜率为( )A .4B .-14C .2D .-126.已知a 为实数,f (x )=(x 2-4)(x -a ),且f ′(-1)=0,则a =________. 7.若某物体做s =(1-t )2的直线运动,则其在t =1.2 s 时的瞬时速度为________. 二、能力提升8.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]9.若函数f (x )=13x 3-f ′(-1)·x 2+x +5,则f ′(1)=________.10.求下列函数的导数:(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2; (3)y =x -sin x 2cos x2.11.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的表达式.12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.三、探究与拓展13.已知曲线C 1:y =x 2与曲线C 2:y =-(x -2)2,直线l 与C 1和C 2都相切,求直线l 的方程.§1.2.3导数的四则运算法则(二)导学案【学习要求】1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f (ax +b )的导数).【学法指导】复合函数的求导将复杂的问题简单化,体现了转化思想;学习中要通过中间变量的引入理解函数的复合过程.【问题探究】探究点一 复合函数的定义问题1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 问题2 对一个复合函数,怎样判断函数的复合关系?问题3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系? 例1 指出下列函数是怎样复合而成的:(1)y =(3+5x )2; (2)y =log 3(x 2-2x +5); (3)y =cos 3x . 跟踪训练1 指出下列函数由哪些函数复合而成:(1)y =ln x ; (2)y =e sin x ; (3)y =cos (3x +1).探究点二 复合函数的导数 问题 如何求复合函数的导数? 例2 求下列函数的导数:(1)y =(2x -1)4; (2)y =11-2x ; (3)y =sin(-2x +π3); (4)y =102x +3.跟踪训练2 求下列函数的导数.(1)y =ln 1x; (2)y =e 3x ; (3)y =5log 2(2x +1).探究点三 导数的应用 例3 求曲线y =e 2x+1在点(-12,1)处的切线方程.跟踪训练3 曲线y =e 2x cos 3x 在(0,1)处的切线与直线l 平行,且与l 的距离为5,求直线l 的方程.【当堂检测】1.函数y =(3x -2)2的导数为 ( )A .2(3x -2)B .6xC .6x (3x -2)D .6(3x -2) 2.若函数y =sin 2x ,则y ′等于 ( ) A .sin 2x B .2sin x C .sin x cos x D .cos 2x 3.若y =f (x 2),则y ′等于 ( ) A .2xf ′(x 2) B .2xf ′(x ) C .4x 2f (x ) D .f ′(x 2)4.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.【课堂小结】求简单复合函数f (ax +b )的导数 求简单复合函数的导数,实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再分别对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.【拓展提高】1 .已知函数2)1ln()(x x a x f -+=在区间)1,0(内任取两个实数q p ,,且q p ≠,不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围为____________ 【课后作业】一、基础过关1.下列函数不是复合函数的是( )A .y =-x 3-1x +1B .y =cos(x +π4)C .y =1ln x D .y =(2x +3)42.函数y =1(3x -1)2的导数是( )A .6(3x -1)3B .6(3x -1)2C .-6(3x -1)3D .-6(3x -1)23.y =e x 2-1的导数是( )A .y ′=(x 2-1)e x 2-1B .y ′=2x e x 2-1C .y ′=(x 2-1)e xD .y ′=e x 2-1 4.函数y =x 2cos 2x的导数为( )A .y ′=2x cos 2x -x 2sin 2xB .y ′=2x cos 2x -2x 2sin 2xC .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x5.函数y =(2 011-8x )3的导数y ′=________.6.曲线y =cos(2x +π6)在x =π6处切线的斜率为________.7.函数f (x )=x (1-ax )2(a >0),且f ′(2)=5,则实数a 的值为________. 二、能力提升8.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-29.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .92e 2B .4e 2C .2e 2D .e 210.求下列函数的导数:(1)y =(1+2x 2)8; (2)y =11-x 2; (3)y =sin 2x -cos 2x ; (4)y =cos x 2.11.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线.求切线l 的方程.12.有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离s (单位:m )关于时间t (单位:s)的函数为s =s (t )=5-25-9t 2.求函数在t =715 s 时的导数,并解释它的实际意义.三、探究与拓展13.求证:可导的奇函数的导函数是偶函数.§1.3.1利用导数判断函数的单调性导学案【学习要求】1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式. 3.会求函数的单调区间(其中多项式函数一般不超过三次).【学法指导】结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想.【知识要点】一般地,在区间(a ,b )内函数的单调性与导数有如下关系:f′(x)>0单调递___f′(x)<0单调递____f′(x)=0常函数【问题探究】探究点一函数的单调性与导函数正负的关系问题1观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?问题2若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?问题3(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出问题1中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4或x<1时,f′(x)<0;当x=4或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.例2求下列函数的单调区间:(1)f(x)=x3-4x2+x-1;(2)f(x)=2x(e x-1)-x2;(3)f(x)=3x2-2ln x.跟踪训练2求下列函数的单调区间:(1)f(x)=x2-ln x;(2)f(x)=e xx-2;(3)f(x)=sin x(1+cos x)(0≤x<2π).探究点二函数的变化快慢与导数的关系问题我们知道导数的符号反映函数y=f(x)的增减情况,怎样反映函数y=f(x)增减的快慢呢?你能否从导数的角度解释变化的快慢呢?例3如图,设有圆C和定点O,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图象大致是下图所示的四种情况中的哪一种?() 跟踪训练3(1)如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(2)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()【当堂检测】1.函数f(x)=x+ln x在(0,6)上是()A.单调增函数B.单调减函数C.在⎝⎛⎭⎫0,1e上是减函数,在⎝⎛⎭⎫1e,6上是增函数D.在⎝⎛⎭⎫0,1e上是增函数,在⎝⎛⎭⎫1e,6上是减函数2.f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()。

1.1.平均变化率-苏教版选修2-2教案

1.1.平均变化率-苏教版选修2-2教案

1.1.平均变化率-苏教版选修2-2教案课型设计教学目标1.掌握平均变化率的概念和计算方法;2.知道平均变化率在实际生活中的应用;3.学会利用平均变化率解决问题。

教学重点1.平均变化率的概念和计算方法;2.平均变化率在实际生活中的应用。

教学难点1.利用平均变化率解决问题。

教学方法1.讲授法;2.举例法;3.导入法;4.案例分析法。

教学过程一、导入(5分钟)1.通过一个生活案例,让学生感受到物体的变化是随着时间而变化的。

二、讲授(20分钟)1.引入平均变化率的概念;2.讲解平均变化率的计算方法;3.通过例题演示平均变化率的计算过程;4.讲解平均变化率的三种情况:增加、减少、变化量为0。

三、举例(15分钟)1.通过一些日常生活中的例子,让学生更好地理解平均变化率的应用。

四、案例分析(20分钟)1.提供一些实际问题,让学生运用平均变化率求解答案。

五、总结(5分钟)1.对平均变化率进行总结,并强调其在实际生活中的应用。

教学评价1.学生能够正确理解平均变化率的概念和计算方法;2.学生能够灵活运用平均变化率解决实际问题;3.学生能够在日常生活中发现和分析变化率的存在。

课堂练习练习1甲、乙两人购买了同一品牌手机,甲8月20日以980元购买,9月20日以820元卖出;乙8月28日以980元购买,9月20日以880元卖出。

比较两人的获利情况。

练习2某厂家建筑面积为1200平方米,今年销售额为300万元,去年销售额为200万元,请计算该厂家今年销售额的平均增长率。

练习3某学生的成绩如下表所示,请计算他的平均分数和日常学习进步情况。

科目语文数学英语政治历史分数(分)90 80 75 85 78参考资料苏教版高中数学选修2-2《平均变化率》。

苏教版高中数学选修2-2知识讲解_平均变化率与导数的概念_基础

苏教版高中数学选修2-2知识讲解_平均变化率与导数的概念_基础

平均变化率与导数的概念【学习目标】(1)理解平均变化率的概念;(2)了解瞬时速度、瞬时变化率的概念;(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(4)会求函数在某点的导数或瞬时变化率;【要点梳理】要点一:平均变化率问题1.平均变化率一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121()()f x f x x x -- 要点诠释:① 本质:如果函数的自变量的“增量”为x ∆,且21x x x ∆=-,相应的函数值的“增量”为y ∆,21()()y f x f x ∆=-,则函数()f x 从1x 到2x 的平均变化率为2121()()f x f x y x x x -∆=∆- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势. 即递增或递减幅度的大小。

对于不同的实际问题,平均变化率富于不同的实际意义。

如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。

高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。

2.如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=- ②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-。

要点诠释:1. x ∆是1x 的一个“增量”,可用1x x +∆代替2x ,同样21()()y f x f x ∆=-。

2. x 是一个整体符号,而不是与x 相乘。

3. 求函数平均变化率时注意,x y ,两者都可正、可负,但x 的值不能为零,y 的值可以为零。

若函数()y f x =为常函数,则y =0.要点二:导数的概念定义:函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x 无限趋近于0时,比值()()00f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A , 则称()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作()0f x '. 要点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0。

2018版高中数学苏教版选修2-2学案:1.1.1平均变化率

2018版高中数学苏教版选修2-2学案:1.1.1平均变化率

1. 1.1 平均变化率【学习目标】1•通过实例,了解平均变化率的概念,并会求具体函数的平均变化率2了解平均变化率概念的形成过程,会在具体的环境中,说明平均变化率的实际意义.问题导学知识点函数的平均变化率假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系. 顶.爬山路线用函数 y = f(x)表示.自变量x 表示某旅游者的水平位置,函数值 y = f(x)表示此时旅游者所在的高度.设点 A 的坐标为 区,y i ),点B 的坐标为(X 2, y 2).思考1若旅游者从点A 爬到点B ,自变量x 和函数值y 的改变量分别是多少?思考2怎样用数量刻画弯曲山路的陡峭程度?导数及其应用」导数的概念O曲 &新知採究点点落实A 是出发点,H 是山思考3观察函数y= f(x)的图象,平均变化率炉眷1 2表示什么?函数f(x)在区间[x i , X2]上的平均变化率⑴定义式:等/.(2) 实质:_____ 的增量与 ________ 增量之比.(3) 作用:刻画函数值在区间[X1, X2]上变化的快慢.△y ⑷几何意义:已知P l(X l, f(X i)) , P2(X2, f(X2))是函数y= f(x)的图象上两点,则平均变化率△=f (X2厂X X1表示割线P1P2的_________ .X2 - X1题型探究車点难庶仆奇餓类型一求函数在某区间内的平均变化率例1 (1)已知函数y= f(x)= x2+ 1,则在x = 2, △<= 0.1时,△y的值为 ______________ .2⑵已知函数f(x)= x+ -,分别计算f(x)在自变量x从1变到2和从3变到5时的平均变化率,跟踪训练1分别计算下列三个图象表示的函数h(t)在区间[0,3]上的平均变化率.类型二 实际问题中的平均变化率例2在高台跳水运动中,运动员相对于水面的高度 存在函数关系 h(t)= — 4.9t 2 + 6.5t + 10.(1) 求运动员在第一个 0.5 s 内高度h 的平均变化率; (2) 求高度h 在 K t < 2这段时间内的平均变化率.反思与感悟 (1)综合物理知识可知,在第一个 0.5 s 内高度h 的平均变化率为正值,表示此 时运动员在起跳后处于上升过程;在K t <2这段时间内,高度h 的平均变化率为负值,表示此时运动员已开始向水面下降.事实上平均变化率的值可正、可负也可以是 0.(2)平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度 (重量)的平均变化率等等•解决这些问题的关键在于找准自变量和因变量. 跟踪训练2已知某物体运动位移与时间的关系s(t) = |gt 2,试分别计算t 从3 s 到3.1 s,3.001 s 各(3)求平均变化率 A y _ f(X 2 匸型)A XX 2 — X 1h(单位:m)与起跳后的时间t(单位:s)⑴ (2)段的平均速度,通过计算你能发现平均速度有什么特点吗?类型三平均变化率的应用例3 2012年冬至2013年春,我国北部某省冬麦区遭受严重干旱,根据某市农业部门统计,该市小麦受旱面积如图所示,据图回答:(1) 2012年11月至2012年12月间,小麦受旱面积变化大吗?(2) 哪个时间段内,小麦受旱面积增幅最大?⑶从2012年11月到2013年2月,与从2013年1月到2013年2月间,试比较哪个时间段内,小麦受旱面积增幅较大?反思与感悟(1)本例中的(2)(3)可数形结合,利用平均变化率进行分析,抓住平均变化率的几何意义.(2)在实际问题中,平均变化率具有现实意义,应根据问题情境,理解其具体意义.跟踪训练3甲、乙二人跑步,路程与时间关系以及百米赛跑路程与时间关系分别如图中①②所示,试问:(1) 甲、乙二人哪一个跑得快?(2) 甲、乙二人百米赛跑,问快到终点时,谁跑得较快?达标检测当堂检测巩固反馍1.如果函数y= ax+ b在区间[1,2]上的平均变化率为3,贝U a= ________2.在雨季潮讯期间,某水文观测员观察千岛湖水位的变化,在24 h内发现水位从102.7 m 上涨到105.1 m,则水位涨幅的平均变化率是 ___________ m/h.A y,当A x= 1 时,割线AB 的斜3.已知曲线—2 , B 2 +&,—2+率为_________4.甲企业用2年时间获利100万元,乙企业投产6个月时间就获利30万元,如何比较和评价甲、乙两企业的生产效益?(设两企业投产前的投资成本都是10万元)--------- 规律与方法■■--------- ,1.准确理解平均变化率的意义是求解平均变化率的关键,其实质是函数值增量A y与自变量取值增量A x的比值•涉及具体问题,计算A y很容易出现运算错误,因此,计算时要注意括号的应用,先列式再化简,这是减少错误的有效方法.2•函数的平均变化率在生产生活中有广泛的应用,如平均速度、平均劳动生产率、面积体积变化率等.解决这类问题的关键是能从实际问题中引出数学模型并列出函数关系式,意是相对什么量变化的.提醒:完成作业需注1.1.1答案精析问题导学 知识点思考1自变量x 的改变量为X 2— X i ,记作A x ,函数值的改变量为 y 2— y i ,记作A y.思考2 对山路AB 来说,用 申=y2—i 可近似地刻画其陡峭程度.A xX 2 — X i 思考3观察图象可看出, 亨表示曲线y = f(x)上两点(X i , f(X i )), (X 2, f(X 2))连线的斜率.Z.A\⑵函数值自变量⑷斜率 题型探究 例 1 (1)0.41(2)解 自变量X 从1变到2时,函数f(X )的平均变化率为1f 2 — f 12+ 2— 1+ 11T =1=2;自变量X 从3变到5时,函数f(x)的平均变化率为f 5 — f 3 5+ 5- 3+ §145 — 3 =2=15.1 14 1因为14,所以函数f(x)= X +1在自变量x 从3变到5时函数值变化得较快.2 15 x 跟踪训练 1 解 对于(1), A h = h(3) — h(0) = 10— 0= 10,.A h = 10 =卫A t3— 03'即平均变化率为乎•同理可以算得⑵(3)中函数h(t)在区间[0,3]上的平均变化率均为1°.例2 解 (1)运动员在第一个 0.5 s 内高度h 的平均变化率为h °5 — h° = 4.05(m/s);0.5— 0⑵在 K t < 2这段时间内,高度 h 的平均变化率为 口一口 = — 8.2(m/s).2— 1跟踪训练2解设物体在区间[3 , 3.1],v1, V 2,=0.305g(m).•••物体从3 s 到3.1 s 时平均速度通过计算可以发现,随着时间间隔 △的变小,平均速度在向 3 g m/s 靠近,而3g m/s 为物体做自由落体运动时,t = 3 s 时的瞬时速度.例3 解(1)在2012年11月至2012年12月间,△s 变化不大,即小麦受旱面积变化不大. (2)由图可知,在2013年1月至2013年2月间,平均变化率 △较大,故小麦受旱面积增幅 最大.⑶在2012年11月至2013年2月间,平均变化率=、 S B — S A 显然 k BC > k AB ,即 S B — S c > 3 ,•••在2013年1月至2013年2月间,小麦受旱面积增幅较大. 跟踪训练3解(1)对于图①,设甲、乙两曲线的右端点分别为 A , B ,显然有k oB > k oA ,故乙的平均变化率大于甲的平均变化率,所以乙比甲跑得快.⑵对于图②,在[0 , t 0]上,甲、乙的平均变化率是相等的,但甲的平均变化率是常数,而乙 的变化率逐渐增大,快到终点时,乙的变化率大于甲的变化率,所以,快到终点时,乙跑得 较快. 达标检测v i△s i3.1 — 30.305g0.1=3.05g(m/s), 同理△S 2 3.001 — 30.003 000 5g0.001=3.000 5g(m/s).S B — S A3 ,在2013年1月至2013年2月间,平均变化率= S B — s =S B — s c ,11. 32.0.13.—-6100—10 154.解甲企业生产效益的平均变化率为=严.乙企业生产效益的平均变化率为12X 2—0 4X 并判断在哪个区间上函数值变化得较快.反思与感悟 求函数平均变化率的步骤:(1)求自变量的改变量 &= X 2- X 1; ⑵求函数值的改变量 A y = f(X 2)-f(x” ;30- 10 6- 010~3'••15 10•••甲企业的生产效益较好.。

高中数学平均变化率教案

高中数学平均变化率教案

高中数学平均变化率教案一、教学目标:1. 掌握平均变化率的概念;2. 能够计算函数在两点之间的平均变化率;3. 能够应用平均变化率解决实际问题。

二、教学重点和难点:1. 平均变化率的概念和计算方法;2. 能够准确应用平均变化率解决实际问题。

三、教学过程:1. 导入新知识(5分钟):通过一个生活中的例子引入平均变化率的概念,让学生了解平均变化率的重要性和应用场景。

2. 讲解平均变化率的概念和计算方法(10分钟):通过具体的数学例题讲解平均变化率的定义和计算公式,并让学生掌握平均变化率的计算方法。

3. 练习题讲解(15分钟):通过一些实例题和应用题,引导学生熟练掌握平均变化率的计算方法和解题技巧。

4. 小组讨论(10分钟):分成小组,让学生根据所学知识讨论解决实际问题的方法,并在小组中相互讨论和交流。

5. 整合巩固(10分钟):让学生根据所学知识,解决一些复杂的实际问题,巩固平均变化率的应用能力。

6. 课堂小结(5分钟):对本节课学习内容进行总结,强调平均变化率的重要性和应用意义。

四、板书设计:1. 平均变化率的概念和计算方法;2. 函数在两点之间的平均变化率公式;3. 应用平均变化率解决实际问题的步骤。

五、课后作业:1. 完成课堂练习题;2. 练习书上相关练习题目;3. 总结平均变化率的概念和应用方法,写一份小结。

六、教学反思:通过本节课的教学,学生掌握了平均变化率的概念和应用方法,并能够熟练解决相关问题。

同时,也发现了学生在计算过程中容易犯的错误和不足之处,需要加强课后练习和巩固。

通过不断总结和反思,提高自己的教学水平,更好地引导学生学习。

高中数学第一章导数及其应用1.1导数的概念1.1.1导数的概念平均变化率教学案苏教版选修2_2

高中数学第一章导数及其应用1.1导数的概念1.1.1导数的概念平均变化率教学案苏教版选修2_2

1.1.1 平均变化率假设下图是一座山的剖面示意图,并在上面建立平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示.自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1).问题1:若旅游者从A 点爬到B 点,则自变量x 和函数值y 的改变量Δx ,Δy 分别是多少?提示:Δx =x 1-x 0,Δy =y 1-y 0.问题2:如何用Δx 和Δy 来刻画山路的陡峭程度? 提示:对于山坡AB ,可用ΔyΔx 来近似刻画山路的陡峭程度.问题3:试想Δy Δx =y 1-y 0x 1-x 0的几何意义是什么?提示:Δy Δx =y 1-y 0x 1-x 0表示直线AB 的斜率.问题4:从A 到B ,从A 到C ,两者的Δy Δx 相同吗?ΔyΔx 的值与山路的陡峭程度有什么关系?提示:不相同.ΔyΔx的值越大,山路越陡峭.1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f x 2-f x 1x 2-x 1.2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.在函数平均变化率的定义中,应注意以下几点:(1)函数在[x 1,x 2]上有意义; (2)在式子f x 2-f x 1x 2-x 1中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0.(3)在平均变化率中,当x 1取定值后,x 2取不同的数值时,函数的平均变化率不一定相同;同样的,当x 2取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同.[对应学生用书P3][例1] (1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率; (2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率.[思路点拨] 求出所给区间内自变量的改变量及函数值的改变量,从而求出平均变化率.[精解详析] (1)函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率为:f-f 2.1-2=2+-2+0.1=12.3.(2)函数g (x )=3x -2在区间[-2,-1]上的平均变化率为g --g ----=--2]---2]---=----1+2=3.[一点通] 求函数平均变化率的步骤为: 第一步:求自变量的改变量x 2-x 1; 第二步:求函数值的改变量f (x 2)-f (x 1); 第三步:求平均变化率f x 2-f x 1x 2-x 1.1.函数g (x )=-3x 在[2,4]上的平均变化率是________. 解析:函数g (x )=-3x 在[2,4]上的平均变化率为g-g 4-2=-3×4--4-2=-12+62=-3. 答案:-32.如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f-f -1--=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f-f2-0=3-322=34.答案::(1)12 (2)343.本例条件不变,分别计算f (x )与g (x )在区间[1,2]上的平均变化率,并比较变化率的大小.解:(1)f-f2-1=3×22+2-2+2-1=9.(2)g-g 2-1=3×2-2--2-1=3.f (x )比g (x )在[1,2]上的平均变化率大.[例2] t =1 s 到t =(1+Δt )s 这段时间内的平均速度.[思路点拨] 求物体在某段时间内的平均速度,就是求位移的改变量与时间的改变量的比值.[精解详析] 物体在[1,1+Δt ]内的平均速度为S+Δt -S+Δt -1=+Δt +1-1+1Δt=2+Δt -2Δt=2+Δt -22+Δt +2Δt2+Δt +2=12+Δt +2(m/s).即物体在t =1 s 到t =(1+Δt )s 这段时间内的平均速度为12+Δt + 2m/s.[一点通] 平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度、膨胀率、经济效益等.分清自变量和因变量是解决此类问题的关键.4.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为________. 解析:∵S =πr 2,∴圆的半径r 从0.1变化到0.3时, 圆的面积S 的平均变化率为S-S0.3-0.1=π×0.32-π×0.120.2=0.4π.答案:0.4π5.在F 1赛车中,赛车位移(单位:m)与比赛时间t (单位:s)存在函数关系S =10t +5t 2,则赛车在[20,20.1]上的平均速度是多少?解:赛车在[20,20.1]上的平均速度为S-S20.1-20=+5×20.12-+5×20220.1-20=21.050.1=210.5(m/s).[例3] 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图所示,试比较两人的速度哪个大?[思路点拨] 要比较两人的速度,其实就是比较两人走过的路程对时间的平均变化率,通过平均变化率的大小关系得出结论.[精解详析] 在t 0处s 1(t 0)=s 2(t 0), 但s 1t 0-s 1t 0-Δt Δt <s 2t 0-s 2t 0-ΔtΔt,所以在单位时间内乙的速度比甲的速度大,因此,在如图所示的整个运动状态中乙的速度比甲的速度大.[一点通] 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化率越快;平均变化率的绝对值越小,函数在区间上的变化率越慢.6.汽车行驶的路程s 和时间t 之间的函数图象如图所示.在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系是________.解析:v 1=s t 1-s t 0t 1-t 0=k OA ,v 2=s t 2-s t 1t 2-t 1=k AB ,v 3=s t 3-s t 2t 3-t 2=k BC ,由图象知:k OA <k AB <k BC , 所以v 3>v 2>v 1. 答案:v 3>v 2>v 17.A 、B 两机关开展节能活动,活动开始后,两机关每天的用电情况如图所示,其中W 1(t )、W 2(t )分别表示A 、B 两机关的用电量与时间第t 天的关系,则下列说法一定正确的是________.(填序号)①两机关节能效果一样好; ②A 机关比B 机关节能效果好;③A 机关在[0,t 0]上的用电平均变化率比B 机关在[0,t 0]上的用电平均变化率大; ④A 机关与B 机关自节能以来用电量总是一样大. 解析:由图可知,在t =0时,W 1(0)>W 2(0), 当t =t 0时,W 1(t 0)=W 2(t 0), 所以W 1t 0-W 1t 0<W 2t 0-W 2t 0,且⎪⎪⎪⎪⎪⎪W 1t 0-W 1t 0>⎪⎪⎪⎪⎪⎪W 2t 0-W 2t 0.故只有②正确. 答案:②1.求函数在指定区间上的平均变化率应注意的问题(1)平均变化率的公式中,分子是区间两端点间的函数值的差,分母是区间两端点间的自变量的差.(2)平均变化率公式中,分子、分母中被减数同时为右端点,减数同为左端点. 2.一次函数的平均变化率一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率为f n -f mn -m=kn +b -km +bn -m=k .由上述计算可知,一次函数y =kx +b ,在区间[m ,n ]上的变化率与m ,n 的值无关,只与一次项系数有关,且其平均变化率等于一次项的系数.3.平均变化率的几何意义 (1)平均变化率f x 2-f x 1x 2-x 1表示点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率,是曲线陡峭程度的“数量化”.(2)平均变化率的大小类似函数的单调性,可说明函数图象的陡峭程度.[对应课时跟踪训练(一)]一、填空题1.函数f (x )=x 2-1在区间[1,1.1]上的平均变化率为________. 解析:f-f 1.1-1=2--2-1.1-1=0.210.1=2.1. 答案:2.12.函数f (x )=2x +4在区间[a ,b ]上的平均变化率为________. 解析:f b -f ab -a=b +-a +b -a=b -ab -a=2.答案:23.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示为c =c (t ),下表给出了c (t )的一些函数值:服药后30~70 min 这段时间内,药物浓度的平均变化率为________. 解析:c-c 70-30=0.90-0.9840=-0.002.答案:-0.0024.如图所示物体甲、乙在时间0到t 1范围内路程的变化情况,则在0到t 0范围内甲的平均速度________乙的平均速度,在t 0到t 1范围内甲的平均速度________乙的平均速度(填“等于”、“大于”或“小于”).解析:由图可知,在[0,t 0]上,甲的平均速度与乙的平均速度相同;在[t 0,t 1]上,甲的平均速度大于乙的平均速度.答案:等于 大于5.函数y =x 3+2在区间[1,a ]上的平均变化率为21,则a =________. 解析:a 3+-3+a -1=a 3-1a -1=a 2+a +1=21. 解之得a =4或a =-5. 又∵a >1,∴a =4. 答案:4 二、解答题6.已知函数f (x )=2x 2+1.求函数f (x )在区间[2,2.01]上的平均变化率. 解:函数f (x )在区间[2,2.01]上的平均变化率为2×2.012+1-2×22-12.01-2=8.02.7.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小. 解:在0到π6之间的平均变化率为sin π6-sin 0π6-0=3π;在π3到π2之间的平均变化率为sin π2-sinπ3π2-π3=-3π.∵2-3<1,∴3π>-3π,∴函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为-3π,故在0到π6之间的平均变化率较大.8.已知气球的表面积S (单位:cm 2)与半径r (单位:cm)之间的函数关系是S (r )=4πr 2.求:(1)气球表面积S 由10 cm 2膨胀到20 cm 2时的平均膨胀率即气球膨胀过程中半径的增量与表面积增量的比值;(2)气球表面积S 由30 cm 2膨胀到40 cm 2时的平均膨胀率. 解:根据函数的增量来证明.由S (r )=4πr 2,r >0,把r 表示成表面积S 的函数:r (S )=12ππS .(1)当S 由10 cm 2膨胀到20 cm 2时,气球表面积的增量ΔS =20-10=10(cm 2),气球半径的增量Δr =r (20)-r (10)=12π(20π-10π)≈0.37(cm).所以气球的平均膨胀率为Δr ΔS ≈0.3710=0.037.(2)当S 由30 cm 2膨胀到40 cm 2时,气球表面积的增量ΔS =12π(40π-30π)≈0.239(cm 2).所以气球的平均膨胀率为Δr ΔS ≈0.23910=0.023 9.。

高中数学 导数平均变化率1-4课时教案 苏教版选修2-2

高中数学 导数平均变化率1-4课时教案 苏教版选修2-2

平均变化率【探索研究】 1、平均变化率:一般地,函数f(x)在区间[x 1,x 2]上的平均变化率为2121()()f x f x x x --【例题评析】例1. 小远从出生到第12个月的体重变化如下图,比较从出生到第3个月与第6个月到第12个月小远体重变化的快慢. 重量W (单位:kg)例2.国家环保局在规定的排污达标的日期前,对甲、乙两家企业进行检查,其连续检测结果如下图所示(其中12(),()w t w t 分别表示甲、乙两家企业的排污量).试问哪个企业治污效果好?(见课本第7页第2题图)例3.甲、乙两人从事某种经营活动所得利润如下图 ,试比较并评价两人的经营效果.(甲用5年获利10万,乙用5月获利2万)例4.水经过虹吸管从容器甲中流向容器乙,ts 后容器甲中水的体积0.1()5t v t e -=⨯(单位: cm 3),计算第一个10 s 内V 的平均变化率.(已知:e ≈2.718,10.368e -≈ )例5.已知函数 ()21,()2f x x g x x =+=-计算在区间[-3,-1],[0,5]上 ()f x 及 g(x)的平均变化率.例6.已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率:[1,3],[1,2],[1,1.1],[1,1.01],[1,1.001]练1:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; 1.[1,2] 2. [3,4] 3. [-1,1]变题1:在曲线y=x 2+1的图象上取一点A (1,2)及邻近一点B (1+△x ,2+△y ),求yx∆∆; 练2:已知函f(x)=2x+1, 1.分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; 2.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点;变式3:求函数()y f x ==在区间[1,1+x ]内的平均变化率 练3:自由落体运动的物体的位移s (单位:s )与时间t (单位:s )之间的关系是:s(t)=12gt 2(g 是重力加速度),求该物体在时间段[t 1,t 2]内的平均速度;作业:1.试比较正弦函数y=sinx 在区间0,6π⎡⎤⎢⎥⎣⎦和,32ππ⎡⎤⎢⎥⎣⎦上的平均变化率,并比较大小;2.练习:已知函数2()f x ax =在区间[1,2]则()f x 在区间[-2,-1]上的平均变化率为 ( )A.B. C.-2 D.-33.在高台跳水运动中,运动员相对于水面高度与起跳的时间t 的函数关系为2()(0,0)h t c bt at a b =+->>,则 ( )A. ()(0)()()22022b b b h h h h a a a b b b a a a --<-- B. ()(0)()()22022b b b h h h h a a a b b b a a a --=-- C. ()(0)00bh h a b a-=- D.运动员在0b t a ≤≤这段时间内处于静止状态4.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为_______5、已知函数2()f x x x =-在区间[1,t ]上的平均变化率为2,求t 的值.T(月)39126.十七大报告中首次提出2020年人均GDP 将比2000年翻两番.通过互联网收集有关中国GDP 增长的数据,并比较GDP 增长的平均变化率,从而了解近几年中国经济发展的趋势.1.1.2瞬时变化率-导数(一)曲线上一点处的切线一、教学目标1.理解并掌握曲线在某一点处的切线的概念2.掌握用割线逼近切线的方法. 3.会求曲线在一点处的切线的斜率与切线方程, 二.例题讲解: 例1:已知2()f x x =,求曲线()y f x =在2x =处的切线斜率和切线方程.变1:已知2()f x x =,求曲线()y f x =在1x =-处的切线斜率和切线方程.变2:已知1()f x x -=,求曲线()y f x =在1x =-处的切线斜率和切线方程.变3:已知()f x =()y f x =在12x =处的切线斜率是多少?例2.已知曲线y =2x 2上一点A (1,2),求(1)点A 处的切线的斜率.(2)点A 处的切线方程.五、课堂练习1练习已知求曲线在处的切线斜率是多少?()f x =2x =()y f x =六、课后作业1.曲线的方程为y =x 2+1,那么求此曲线在点P (1,2)处的切线的斜率,以及切线的方程.2.求曲线f (x )=x 3+2x +1在点(1,4)处的切线方程.3.求曲线f (x )=31x 3-x 2+5在x =1处的切线的倾斜角.4. y =x 3在点P 处的切线斜率为3,求点P 的坐标.5.求下列曲线在指定点处的切线斜率. (1)y=-3x +2, x =2处 (2)y =11+x ,x =0处.6..求曲线y =x 2+1在点P (-2,5)处的切线方程.1.1.2瞬时变化率-导数(二)瞬时速度与瞬时加速度一、教学目标(1)理解瞬时速度与瞬时加速度的定义,掌握如何由平均速度和平均加速度“逼近” 瞬时速度与瞬时加速度的过程。

苏教版数学高二-数学苏教版选修2-2 平均变化率 教案

苏教版数学高二-数学苏教版选修2-2 平均变化率 教案

1.1.1《平均变化率》教案一、教学目标1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程.体会数学的博大精深以及学习数学的意义.2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景. 二、教学重点、难点重点:平均变化率的实际意义和数学意义 难点:平均变化率的实际意义和数学意义 三、教学过程一、问题情境1.情境:现有南京市某年3月和4月某天日最高气温记载.观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为: (理解图中A 、B 、C 点的坐标的含义)问题1:你能用数学语言来量化BC 段曲线的陡峭程度吗?(形与数两方面) 曲线上BC 之间一段几乎成了“直线”,由此联想如何量化直线的倾斜程度. 问题2:你能据此归纳出 “函数f (x )的平均变化率”的一般性定义吗?如果将上述气温曲线看成是函数y = f (x ) 的图象,任取x 1,x 2 [1,34]则函数y = f (x )在区(d)20间[1,34]上的平均变化率为(34)(1)341f f--,在区间[1,x1]上的平均变化率为11()(1)1f x fx--,在区间[x2,34]上的平均变化率为22(34)()34f f xx--.问题3:下面分别是两个函数y=f(x)和y=g(x)的图象,它们在区间[x1,x2 ]上平均变化率是否相等?为什么?用平均变化率来量化曲线的陡峭程度是“粗糙不精确”的.问题4:如图,请分别计算气温在区间[1,32]和区间[32,34]上的平均变化率.气温在区间[1,32] 上的平均变化率约为0.5;气温在区间[32,34]上的平均变化率为7.4.问题5:你能发现“平均变化率的数值”和“曲线的陡峭程度”以及“气温变化的速度”之间有什么样的对应关系吗?平均变化率的绝对值越大,曲线越陡峭,变量变化的速度越快.二、学生活动1.曲线上BC之间一段几乎成了“直线”,由此联想如何量化直线的倾斜程度.2.由点B上升到C点,必须考察y C—y B的大小,但仅仅注意y C—y B的大小能否精确量化BC段陡峭程度,为什么?3.在考察y C—y B的同时必须考察x C—x B,函数的本质在于一个量的改变本身就隐含着这种改变必定相对于另一个量的改变.三、建构数学1.通过比较气温在区间[1,32]上的变化率0.5与气温[32,34]上的变化率7.4,感知曲线陡峭程度的量化.2.一般地,给出函数f(x)在区间[x1,x2]上的平均变化率为2121()()f x f xx x--.3.回到气温曲线图中,从数和形两方面对平均变化率进行意义建构.4.平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x 2—x 1很小时,这种量化便有“粗糙”逼近“精确”.四、数学运用例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.重量W (单位:kg)解:从出生到第3个月,婴儿体重的平均变化率为6.5 3.530--=1(kg/月)从第6个月到第12个月,婴儿体重的平均变化率为118.6126--=0.4(kg/月)【跟踪练习1】水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()52t V t -=⨯ (单位:3cm ),试计算第一个10s 内V 的平均变化率.解:在第一个10秒内,体积V 的平均变化率为(10)(0)100V V --=2.5510-=-0.25(3cm /639 1211t/月W/kgs),即第一个10s 内容器甲中水的体积V 的平均变化率为-0.25(3cm /s).例2 已知函数f (x )=2x +1,g (x )=—2x ,分别计算函数f (x )及g (x )在区间[-3,-1],[0,5]上的平均变化率.解:函数f (x )在区间[-3,-1]上的平均变化率为(1)(3)(1)(3)f f ------=[2(1)1][2(3)1]2⨯-+-⨯-+=2.同理可得,函数f (x )在区间[0,5]上的平均变化率为 2; 函数g (x )在区间[-3,-1]上的平均变化率为-2; 函数g (x )在区间[0,5]上的平均变化率为-2.【跟踪练习2】已知f (x )=3x +1,求f (x )在区间[a ,b ]上的平均变化率: (1)a =-1,b =-2; (2)a =-1,b =1; (3)a =-1,b =-0.9.例3 已知函数2()f x x =,分别计算函数()f x 在下列区间上的平均变化率: (1) [1,3]; (2) [1,2]; (3) [1,1.1]; (4) [1,1.01]; (5)[1,1.001] .[探究与思考]当x 0逼近1的时候,f (x )在区间[1, x 0]上的平均变化率呈现什么样的变化?答案:逼近2五、回顾小结1.本节课学习的数学知识有:平均变化率的概念;平均变化率的应用2.本节课涉及的数学思想方法有:以直代曲、数形结合、归纳、逼近思想六、课堂练习必做题2-1课本P7(2、3、4)选做题:向气球内匀速吹气时,你会发现:随着气球内空气容量的增加,气球的半径增加得越来越慢,你能从数学的角度解释这一现象吗?。

苏教版选修2-2高中数学导数的概念—平均变化率教案

苏教版选修2-2高中数学导数的概念—平均变化率教案

导数的概念—平均变化率教学目的: 知识与技能:了解曲线的切线的概念过程与方法:掌握用割线的极限位置上的直线来定义切线的方法.情感、态度与价值观:并会求一曲线在具体一点处的切线的斜率与切线方程 。

教学重点:理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景.教学难点:会求一条具体的曲线在某一点处的切线斜率.教具准备:与教材内容相关的资料。

教学设想:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。

教学过程:学生探究过程: 导数是解决函数的最大值、最小值问题的有力工具.导数的知识形成一门学科,就是我们通常所说的微积分.微积分除了解决最大值、最小值问题,还能解决一些复杂曲线的切线问题.导数的思想最初是法国数学家费马(Fermat)为解决极大、极小问题而引入的.但导数作为微分学中最主要概念,却是英国科学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)分别在研究力学与几何学过程中建立的.微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛顿和莱布尼兹的工作.但遗憾的是他们之间发生了优先权问题的争执.其实,他们差不多是在相同的时间相互独立地发明了微积分.方法类似但在用语、符号、算式和量的产生方式稍有差异.牛顿在1687年以前没有公开发表,莱布尼兹在1684年和1686年分别发表了微分学和积分学. 所以,就发明时间而言,牛顿最于莱布尼兹,就发表时间而言,莱布尼兹则早于牛顿.关于谁是微积分的第一发明人,引起了争论.而我们现在所用的符号大多数都是莱布尼兹发明的.而英国认为牛顿为第一发明人,拒绝使用莱布尼兹发明的符号,因此,一、复习引入:圆与圆锥曲线的切线定义:与曲线只有一个公共点并且位于曲线一边的直线叫二、讲解新课:1.曲线的切线切线x O y如图,设曲线c 是函数()y f x =的图象,点00(,)P x y 是曲线 c 上一点作割线PQ 当点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线 y=f(x)β∆x ∆yQM Px O y2.确定曲线c 在点00(,)P x y 处的切线斜率的方法: 因为曲线c 是给定的,根据解析几何中直线的点斜是方程的知识,只要求出切设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PQ 的斜率tan α,即tan α=0lim →∆x =∆∆x y 0lim →∆x 0x∆ 我们可以从运动的角度来得到切线,所以可以用极限来定义切线,以及切线的斜率.那么以后如果我们碰到一些复杂的曲线,也可以求出它在某一点处的切线了.三、讲解范例:例1曲线的方程为y =x 2+1,那么求此曲线在点P (1,2)处的切线的斜率,以及切线的方程.解:k =xx f x x f x ∆-∆+→∆)()(lim 000 2200(1)(1)(1)1(11)lim lim x x f x f x x x∆→∆→+∆-+∆+-+==∆∆ y=x 2+1y=2x P(1,2)x O y200()2lim lim (2)2x x x x x x∆→∆→∆+∆==∆+=∆ ∴切线的斜率为2.切线的方程为y -2=2(x -1),即y =2x .例2求曲线f (x )=x 3+2x +1在点(1,4)处的切线方程.解:k =xf x f x x f x x f x x ∆-∆+=∆-∆+→∆→∆)1()1(lim )()(lim 0000 330(1)2(1)1(1211)lim x x x x∆→+∆++∆+-+⋅+=∆ 23053()()lim x x x x x ∆→∆+∆+∆=∆20lim[53()]5x x x ∆→=+∆+∆= ∴切线的方程为y -4=5(x -1),即y =5x -1例3求曲线f (x )=31x 3-x 2+5在x =1处的切线的倾斜角. 分析:要求切线的倾斜角,也要先求切线的斜率,再根据斜率k =tan α,求出倾斜角α.解:∵tan α=xf x f x x f x x f x x ∆-∆+=∆-∆+→∆→∆)1()1(lim )()(lim 0000 32011(1)(1)5(15)33lim x x x x∆→+∆-+∆+--+=∆ 301()3lim x x x x∆→∆-∆=∆201lim[()1]13x x ∆→=∆-=- ∵α∈[0,π),∴α=43π. ∴切线的倾斜角为43π.例4求曲线y =sin x 在点(21,6π)处的切线方程. 解:k =xx x f x f x x ∆-∆+=∆-∆+→∆→∆6sin )6sin(lim )6()6(lim 00ππππ011cos 222lim x x x x ∆→∆+∆-=∆001cos 1sin lim lim 22x x x x x x ∆→∆→∆-∆=+∆∆202sin 12lim 22x x x ∆→∆-=+∆202sin 12lim ()222()2x x x x ∆→∆∆=⋅-+∆110222=⋅⋅+= ∴切线方程是)6(2321π-=-x y , 即2112323+-=πx y 例5 y =x 3在点P 处的切线斜率为3,求点P 的坐标.解:设点P 的坐标(x 0,x 03)∴斜率3=xx f x x f x ∆-∆+→∆)()(lim 00033000()lim x x x x x ∆→+∆-=∆ 22300033()()lim x x x x x x x∆→∆+∆+∆=∆2220000lim[33()]3x x x x x x ∆→=+∆+∆= ∴3x 02=3,x 0=±1∴P 点的坐标是(1,1)或(-1,-1) 四、巩固练习:1.已知曲线y =2x 2上一点A (1,2),求(1)点A 处的切线的斜率.(2)点A 处的切线方程.解:(1)k =xx x f x f x x ∆⋅-∆+=∆-∆+→∆→∆220012)1(2lim )1()1(lim 4)24(lim )(24lim 020=∆+=∆∆+∆=→∆→∆x xx x x x ∴点A 处的切线的斜率为4.(2)点A 处的切线方程是y -2=4(x -1)即y =4x -22.求曲线y =x 2+1在点P (-2,5)处的切线方程.解:k =xx x f x f x x ∆---+∆+-=∆--∆+-→∆→∆1)2(1)2(lim )2()2(lim 2200 4)4(lim )(4lim 020-=∆+-=∆∆+∆-=→∆→∆x xx x x x ∴切线方程是y -5=-4(x +2),即y =-4x -3.点评:求切线的斜率与方程,主要转化为求极限,要从切线的斜率的定义出发五、教学反思 :这节课主要学习了曲线在一点处的切线以及切线的斜率的概念.六、课后作业:1. 求下列曲线在指定点处的切线斜率.(1)y=-3x +2, x =2处 (2)y =11+x ,x =0处. 答案:(1)k=-12,(2)k=-1。

2019-2020年苏教版高中数学选修2-2 1-1-1 平均变化率 教案1

2019-2020年苏教版高中数学选修2-2 1-1-1 平均变化率 教案1

2019-2020年苏教版高中数学选修2-2 1-1-1 平均变化率 教案1教学目标:了解导数概念的广阔背景,体会导数的思想及其内涵;理解平均变化率的意义,掌握平均变化率的求法。

教学过程:一. 情境引入:现有某市某年3月和4月某天日最高气温记载.观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:(理解图中A 、B 、C 点的坐标的含义)问题1:“气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)问题2:如何量化(数学化)曲线上升的陡峭程度?二.新课导学:1.过点,的直线的斜率为 ,其反映了直线的倾斜程度。

2.平均变化率:一般地,函数在区间上上的平均变化率为注:平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.三.应用举例:t (d) 20 30 34 0 2 10例1.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。

例2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体积 (单位:),试计算第一个10s 内V 的平均变化率。

例3.已知函数,分别计算函数在下列区间上的平均变化率:(1)[1,3];(2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。

例4.已知函数,分别计算函数及在区间上的平均变化率。

6 3 9 1211t/月 甲 乙注意:在区间上的平均变化率有什么特点?作业:班级姓名学号1.已知函数,分别计算函数在下列区间上的平均变化率。

(1)[-1,2];(2)[-1,1];(3)[-1,-0.9];2.已知函数,分别计算在下列区间上的平均变化率:(1)[0.9,1];(2)[0.99,1];(3)[0.999,1].3.求函数在上的的平均变化率。

高中数学第1章导数及其应用1.1.1平均变化率学案苏教版选修2_2

高中数学第1章导数及其应用1.1.1平均变化率学案苏教版选修2_2

1.1.1 平均变化率1.函数平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2.平均变化率的意义平均变化率的几何意义是经过曲线y =f (x )上两点P (x 1,y 1),Q (x 2,y 2)的直线PQ 的斜率.因此平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.思考:Δx ,Δy 的值一定是正值吗?平均变化率是否一定为正值?[提示] Δx ,Δy 可正可负,Δy 也可以为零,但Δx 不能为零.平均变化率ΔyΔx可正、可负、可为零.1.函数y =f (x ),自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)D [Δy =f (x 0+Δx )-f (x 0),故选D.]2.若一质点按规律s =8+t 2运动,则在一小段时间[2,2.1]内的平均速度是( ) A .4 B .4.1 C .0.41D .-1.1B [v =Δs Δt =s (2.1)-s (2)2.1-2=2.12-220.1=4.1,故选B.]3.函数y =2x +2在[1,2]上的平均变化率是________. 2 [(2×2+2)-(2×1+2)2-1=2.]4.如图所示为物体甲、乙在时间0到t 1范围内路程的变化情况,下列说法正确的是__________.①在0到t 0范围内,甲的平均速度大于乙的平均速度; ②在0到t 0范围内,甲的平均速度小于乙的平均速度; ③在t 0到t 1范围内,甲的平均速度大于乙的平均速度; ④在t 0到t 1范围内,甲的平均速度小于乙的平均速度.③ [在0到t 0范围内,甲、乙的平均速度都为s 0t 0,故①②错误; 在t 0到t 1范围内,甲的平均速度为s 2-s 0t 1-t 0,乙的平均速度为s 1-s 0t 1-t 0. 因为s 2-s 0>s 1-s 0,t 1-t 0>0, 所以s 2-s 0t 1-t 0>s 1-s 0t 1-t 0,故③正确,④错误.]【例1】 (1)函数f (x )=x在[2,6]上的平均变化率为________.(2)已知函数f (x )=x +1x,分别计算f (x )在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快.(1)-112 [f (6)-f (2)6-2=16-126-2=-112.](2)[解] 自变量x 从1变到2时,函数f (x )的平均变化率为 f (2)-f (1)2-1=2+12-(1+1)1=12;自变量x 从3变到5时,函数f (x )的平均变化率为 f (5)-f (3)5-3=5+15-⎝ ⎛⎭⎪⎫3+132=1415.因为12<1415,所以函数f (x )=x +1x在自变量x 从3变到5时函数值变化得较快.1.求函数平均变化率的三个步骤 第一步,求自变量的增量x 2-x 1;第二步,求函数值的增量f (x 2)-f (x 1); 第三步,求平均变化率f (x 2)-f (x 1)x 2-x 1.2.求平均变化率的一个关注点 求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.如图,函数y =f (x )在A ,B 两点间的平均变化率是________.-1 [k AB =y A -y B x A -x B =3-11-3=-1, 由平均变化率的意义知y =f (x )在A ,B 两点间的平均变化率为-1.]t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.(1)求运动员在第一个0.5 s 内高度h 的平均变化率; (2)求高度h 在1≤t ≤2这段时间内的平均变化率.[思路探究] (1)求函数h (t )=-4.9t 2+6.5t +10在区间[0,0.5]上的平均变化率;(2)求函数h (t )=-4.9t 2+6.5t +10在区间[1,2]上的平均变化率.[解] (1)运动员在第一个0.5 s 内高度h 的平均变化率为h (0.5)-h (0)0.5-0=4.05(m/s).(2)在1≤t ≤2这段时间内,高度h 的平均变化率为h (2)-h (1)2-1=-8.2 (m/s).实际问题中的平均变化率与函数在某一区间上的平均变化率类似,首先求f (x 2)-f (x 1),再求比值f (x 2)-f (x 1)x 2-x 1,当函数解析式没有给定时,先根据实际问题求出函数解析式,再重复上述步骤即可.2.一质点作直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在2到2+Δt (Δt >0)之间的平均速度不大于5,则Δt 的取值范围是________.(0,1] [质点在2到2+Δt 之间的平均速度为v =[(2+Δt )2+1-(22+1)]Δt=4Δt +(Δt )2Δt=4+Δt ,又v ≤5,则4+Δt ≤5,所以Δt ≤1,又Δt >0,所以Δt 的取值范围是(0,1].][探究问题]1.函数y =f (x )由x 1变化到x 2时的平均变化率是什么? [提示]f (x 2)-f (x 1)x 2-x 1.2.平均变化率的大小说明什么意义?[提示] 平均变化率的绝对值越大,表示函数值变化的越快,若平均变化率为负,则表示函数值在减小,若平均变化率为正,表示函数值在增加.【例3】 为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m/s 到0 m/s 花了5 s ,乙车从18 m/s 到0 m/s 花了4 s ,试比较两辆车的刹车性能.[解] 甲车速度的平均变化率为0-255=-5(m/s 2),乙车速度的平均变化率为0-184=-4.5(m/s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度(重量)的平均变化率等等.解决这些问题的关键在于找准自变量和因变量.3.已知气球的体积为V (单位:L)与半径r (单位:dm)之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?[解] (1)∵V =43πr 3,∴r 3=3V 4π,r =33V4π, 即r (V )=33V 4π.(2)函数r (V )在区间[0,1]上的平均变化率约为r (1)-r (0)1-0=33×14π-01≈0.62(dm/L), 函数r (V )在区间[1,2]上的平均变化率约为r (2)-r (1)2-1=33×24π-33×14π≈0.16(dm/L). 显然体积V 从0 L 增加到1 L 时,半径变化快,这说明气球刚开始膨胀的比较快,随着体积的增大,半径增加的越来越慢.1.平均变化率对函数而言,即是函数值的改变量与自变量的改变量的比值.即Δy Δx=f (x 2)-f (x 1)x 2-x 1.2.平均变化率的几何意义是函数y =f (x )图象上两点P 1(x 1,y 1),P 2(x 2,y 2)所在直线的斜率.3.平均变化率的意义:平均变化率的绝对值越大,表示函数值变化得越快,绝对值越小,表示函数值变化得越慢.平均变化率的正负只表示变化的方向.1.判断(正确的打“√”,错误的打“×”)(1)Δx 表示x 2-x 1,是相对于x 1的一个增量,Δx 可以为零.( ) (2)Δy 表示f (x 2)-f (x 1),Δy 的值可正可负也可以为零.( )(3)ΔyΔx 表示曲线y =f (x )上两点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率.( ) [答案] (1)× (2)√ (3)√2.已知函数y =f (x )=2x 2的图象上点P (1,2)及邻近点Q (1+Δx,2+Δy ),则Δy Δx 的值为( )A .4B .4xC .4+2Δx 2D .4+2ΔxD [Δy Δx =2(1+Δx )2-2×12Δx=4+2Δx .]3.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于________. 8+2Δt [s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt .∴s (2+Δt )-s (2)2+Δt -2=2(Δt )2+8Δt Δt=8+2Δt .]4.已知函数y =2x 2+3x -5,当x 1=4,且Δx =1时,求函数值的改变量Δy 和平均变化率Δy Δx.[解] Δy =2(x 1+Δx )2+3(x 1+Δx )-5-(2x 21+3x 1-5) =2[(Δx )2+2x 1Δx ]+3Δx =2(Δx )2+(4x 1+3)Δx . 当x 1=4,Δx =1时, Δy =2+(4×4+3)×1=21, 所以Δy Δx =211=21.。

高中数学 1.1.1平均变化率导学案 苏教版选修22

高中数学 1.1.1平均变化率导学案 苏教版选修22

通过实例理解平均变化率的概念及其意义重难点:平均变化率的实际意义与数学意义(预习教材P5 ~ P7,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1.平均变化率的概念:2.平均变化率的实际意义:3.平均变化率的数学意义:二、小试身手、轻松过关1. P7----练习32. P7----练习4三、基础训练、锋芒初显1.已知函数f(x)=-x2+x,则f(x)从-1到-0.9的平均变化率为( ) A.3 B.0.29C.2.09 D.2.92.已知函数f(x)=-x2+2x,函数f(x)从2到2+Δx的平均变化率为( ) A.2-Δx B.-2-ΔxC .2+ΔxD .(Δx )2-2·Δx 3.质点运动规律S (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( )A .6.3B .36.3C .3.3D .9.3 4. P7----练习5四、举一反三、能力拓展1.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①2.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),则物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )A .v 0B.Δt s (t 0+Δt )-s (t 0)C.s (t 0+Δt )-s (t 0)ΔtD.s (t )t3.函数y =x 在x =1附近,当Δx =12时的平均变化率为________. 4.已知曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.。

苏教版高中数学选修2-2 平均变化率 教案

苏教版高中数学选修2-2 平均变化率  教案

2019-2020学年苏教版选修2-2 平均变化率教案教学重点:会利用平均变化率来刻画变量变化得快与慢.教学难点:对平均变化率概念的本质的理解;对生活现象作出数学解释.教学过程:一、问题情境1.问题情境.法国《队报》网站的文章称刘翔以不可思议的速度统治了赛场.这名21岁的中国人跑的几乎比炮弹还快.赛道上显示的12.94秒的成绩已经打破了12.95秒的奥运会纪录,但经过验证他是以12.91秒的成绩追平了世界纪录,他的平均速度达到了8.52m/s.某人走路的第1秒到第34秒的位移时间图象如图所示:观察图象,回答问题:问题1从A到B的位移是多少?从B到C的位移是多少?问题2从A到B这一段与从B到C这一段,你感觉哪一段的位移变化得较快?2.学生活动.案例中,从B到C位移“陡增”,这是我们从图像中的直观感觉,那么如何量化陡峭程度呢?(1)由点B 上升到C 点必须考察C B y y -的大小,但仅注意到C B y y -的大小 能否精确量化BC 段陡峭的程度?为什么?(2)还必须考察什么量?在考察C B y y -的同时必须考察C B x x -.(3)曲线上BC 之间一段几乎成了直线,由此联想到如何量化直线的倾斜程 度?二、建构数学(1)一般地,函数()f x 在区间[]12x x ,上的平均变化率为()()2121f x f x x x --注意:平均变化率不能脱离区间而言(2)平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化 率的“视觉化”.思考:(1) 若设21∆x x x =-,即将x ∆看作是对于1x 的一个增量21()()∆y f x f x =-, 则)(x f 在[]12x x ,平均变化率为211121()()()()∆∆∆∆f x f x f x x f x y x x x x-+-==-(2))(x f 在[]12x x ,平均变化率的几何意义即为区间两端点连线所在直线的 斜率.三、数学运用例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到 第3个月以及第6个月到第12个月该婴儿体重的平均变化率.问题(1) 如何解释例1中从出生到第3个月,婴儿体重平均变化率为1(kg /月)?问题(2) 本题中两个不同平均变化率的实际意义是什么? 讲评 在不同的区间上平均变化率可能不同.例2 水经过虹吸管从容器甲流向容器乙,t s 后容器甲中的水的体积0.1()52t V t -=×(单位:cm 3),试计算第一个10s 内V 的平均变化率.问题(1) 例2中解出的平均变化率实际意义是什么?问题(2) 25.0-(cm 3/s )是否表示10秒内每一时刻容器甲中水的体积V 减少的速度?问题(3) 第一个10秒内,甲容器中水的体积的平均变化率为25.0-(cm 3/s ),那么乙容器中的水的体积的平均变化率呢? 讲评:平均变化率可能正可能负也可能为零.例3 已知函数()21()2f x x g x x =+,=-,分别计算在区间[31]-,-,[05] ,上函数)(x f 及)(x g 的平均变化率.问题(1) 你在解本题的过程中有没有发现什么?讲评 一次函数y kx b =+在区间[]m n ,上的平均变化率等于它的斜率k . 例4 已知函数2()f x x =,分别计算在下列区间上的平均变化率: ① ⑤ ② ⑥ ③⑦④⑧问题(4) 例4中八个区间的变化导致平均变化率有怎样的变化?这种变化乙的实际意义和数学意义分别是什么?四、当堂训练练习1 回答问题情境中提出的问题:平均速度的数学意义是什么? 练习2 在寓言龟兔赛跑中,从比赛开始到结束的这一段时间(规定有一方到达终点则比赛结束),是乌龟的位移平均变化率大还是兔子的位移平均变化率大?为什么?练习3 下图中白线是一天内某个股票的走势图,试从平均变化率的角度分析这支股票在下列时间段的涨跌情况.①09:30至11:00 ②11:00至11:30 ③14:00至14:07 ④14:07至15:00五、回顾反思(1)一般地,函数()f x 在区间[]12x x ,上的平均变化率为()()2121f x f x x x --.(2)平均变化率近似的刻画了曲线在某区间上的变化趋势,那么,如何精确的刻画曲线上某一点处的变化趋势呢?六、布置作业1.预习第1.1.2节瞬时变化率——导数.2.课本P7练习2;P16习题1.1第1题.3.下图中记载着刘翔在雅典奥运会110米栏中的比赛数据,试通过计算各个阶段刘翔位移的平均变化率.。

苏教版高中数学选修2-2知识讲解_平均变化率与导数的概念_提高

苏教版高中数学选修2-2知识讲解_平均变化率与导数的概念_提高

平均变化率与导数的概念【学习目标】(1)理解平均变化率的概念;(2)了解瞬时速度、瞬时变化率的概念;(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(4)会求函数在某点的导数或瞬时变化率;【要点梳理】要点一:平均变化率问题1.平均变化率一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121()()f x f x x x -- 要点诠释:① 本质:如果函数的自变量的“增量”为x ∆,且21x x x ∆=-,相应的函数值的“增量”为y ∆,21()()y f x f x ∆=-,则函数()f x 从1x 到2x 的平均变化率为2121()()f x f x y x x x -∆=∆- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势. 即递增或递减幅度的大小。

对于不同的实际问题,平均变化率富于不同的实际意义。

如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。

高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。

2.如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=- ②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-。

要点诠释:1. x ∆是1x 的一个“增量”,可用1x x +∆代替2x ,同样21()()y f x f x ∆=-。

2. x 是一个整体符号,而不是与x 相乘。

3. 求函数平均变化率时注意,x y ,两者都可正、可负,但x 的值不能为零,y 的值可以为零。

若函数()y f x =为常函数,则y =0.要点二:导数的概念定义:函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x 无限趋近于0时,比值()()00f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A , 则称()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作()0f x '.要点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的概念—平均变化率
教学目的: 知识与技能:了解曲线的切线的概念
过程与方法:掌握用割线的极限位置上的直线来定义切线的方法.
情感、态度与价值观:并会求一曲线在具体一点处的切线的斜率与切线方程 。

教学重点:理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景.
教学难点:会求一条具体的曲线在某一点处的切线斜率.
教具准备:与教材内容相关的资料。

教学设想:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。

教学过程:
学生探究过程: 导数是解决函数的最大值、最小值问题的有力工具.导数的知识形成一门学科,就是我们通常所说的微积分.微积分除了解决最大值、最小值问题,还能解决一些复杂曲线的切线问题.导数的思想最初是法国数学家费马(Fermat)为解决极大、极小问题而引入的.但导数作为微分学中最主要概念,却是英国科学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)分别在研究力学与几何学过程中建立的.
微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛顿和莱布尼兹的工作.但遗憾的是他们之间发生了优先权问题的争执.其实,他们差不多是在相同的时间相互独立地发明了微积分.方法类似但在用语、符号、算式和量的产生方式稍有差异.牛顿在1687年以前没有公开发表,莱布尼兹在1684年和1686年分别发表了微分学和积分学. 所以,就发明时间而言,牛顿最于莱布尼兹,就发表时间而言,莱布尼兹则早于牛顿.关于谁是微积分的第一发明人,引起了争论.而我们现在所用的符号大多数都是莱布尼兹发明的.而英国认为牛顿为第一发明人,拒绝使用莱布尼兹发明的符号,因此,
一、复习引入:
圆与圆锥曲线的切线定义:与曲线只有一个公共点并且位于曲线一边的直线叫
二、讲解新课:
1.曲线的切线
切线x O y
如图,设曲线c 是函数()y f x =的图象,点00(,)P x y 是曲线 c 上一点作割线PQ 当点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线 y=f(x)
β
∆x ∆y
Q
M P
x O y
2.确定曲线c 在点00(,)P x y 处的切线斜率的方法: 因为曲线c 是给定的,根据解析几何中直线的点斜是方程的知识,只要求出切设割线PQ 的倾斜角为β,切线PT 的倾斜角为α,既然割线PQ 的极限位置上的直线PT 是切线,所以割线PQ 斜率的极限就是切线PQ 的斜率tan α,即
tan α=0lim →∆x =∆∆x y 0lim →∆x 0x
∆ 我们可以从运动的角度来得到切线,所以可以用极限来定义切线,以及切线的
斜率.那么以后如果我们碰到一些复杂的曲线,也可以求出它在某一点处的切线了.
三、讲解范例:
例1曲线的方程为y =x 2+1,那么求此
曲线在点P (1,2)处的切线的斜率,以及切线的方程.
解:k =x
x f x x f x ∆-∆+→∆)()(lim 000 2200(1)(1)(1)1(11)lim lim x x f x f x x x
∆→∆→+∆-+∆+-+==∆∆ y=x 2+1
y=2x P(1,2)x O y
200()2lim lim (2)2x x x x x x
∆→∆→∆+∆==∆+=∆ ∴切线的斜率为2.
切线的方程为y -2=2(x -1),即y =2x .
例2求曲线f (x )=x 3+2x +1在点(1,4)处的切线方程.
解:k =x
f x f x x f x x f x x ∆-∆+=∆-∆+→∆→∆)1()1(lim )()(lim 0000 330(1)2(1)1(1211)lim x x x x
∆→+∆++∆+-+⋅+=∆ 23
053()()lim x x x x x ∆→∆+∆+∆=∆
20lim[53()]5x x x ∆→=+∆+∆= ∴切线的方程为y -4=5(x -1),
即y =5x -1
例3求曲线f (x )=3
1x 3-x 2+5在x =1处的切线的倾斜角. 分析:要求切线的倾斜角,也要先求切线的斜率,再根据斜率k =tan α,求出倾斜角α.
解:∵tan α=x
f x f x x f x x f x x ∆-∆+=∆-∆+→∆→∆)1()1(lim )()(lim 0000 32011(1)(1)5(15)3
3lim x x x x
∆→+∆-+∆+--+=∆ 301()3
lim x x x x
∆→∆-∆=∆201lim[()1]13x x ∆→=∆-=- ∵α∈[0,π),∴α=4
3π. ∴切线的倾斜角为4
3π.
例4求曲线y =sin x 在点(2
1,6π)处的切线方程. 解:k =x
x x f x f x x ∆-∆+=∆-∆+→∆→∆6sin )6sin(lim )6()6(lim 00π
πππ
011cos 2
22lim x x x x ∆→∆+∆-=
∆001cos 1sin lim lim 22x x x x x x ∆→∆→∆-∆=+∆∆
202sin 12lim 22x x x ∆→∆-=+
∆202sin 12lim ()222
()2
x x x x ∆→∆∆=⋅-+∆
110222
=⋅⋅+= ∴切线方程是)6
(2321π-=-x y , 即2
112323+-=πx y 例5 y =x 3在点P 处的切线斜率为3,求点P 的坐标.
解:设点P 的坐标(x 0,x 03)
∴斜率3=x
x f x x f x ∆-∆+→∆)()(lim 00033000()lim x x x x x ∆→+∆-=∆ 223
00033()()lim x x x x x x x
∆→∆+∆+∆=∆2220000lim[33()]3x x x x x x ∆→=+∆+∆= ∴3x 02=3,x 0=±1
∴P 点的坐标是(1,1)或(-1,-1) 四、巩固练习:
1.已知曲线y =2x 2上一点A (1,2),求(1)点A 处的切线的斜率.(2)点A 处的切线方程.
解:(1)k =x
x x f x f x x ∆⋅-∆+=∆-∆+→∆→∆2
20012)1(2lim )1()1(lim 4)24(lim )(24lim 02
0=∆+=∆∆+∆=→∆→∆x x
x x x x ∴点A 处的切线的斜率为4.
(2)点A 处的切线方程是y -2=4(x -1)即y =4x -2
2.求曲线y =x 2+1在点P (-2,5)处的切线方程.
解:k =x
x x f x f x x ∆---+∆+-=∆--∆+-→∆→∆1)2(1)2(lim )2()2(lim 2200 4)4(lim )(4lim 02
0-=∆+-=∆∆+∆-=→∆→∆x x
x x x x ∴切线方程是y -5=-4(x +2),即y =-4x -3.
点评:求切线的斜率与方程,主要转化为求极限,要从切线的斜率的定义出发
五、教学反思 :这节课主要学习了曲线在一点处的切线以及切线的斜率的概念.
六、课后作业:
1. 求下列曲线在指定点处的切线斜率.
(1)y=-3x +2, x =2处 (2)y =1
1+x ,x =0处. 答案:(1)k=-12,(2)k=-1。

相关文档
最新文档