高考物理带电粒子在磁场中的运动题20套(带答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理带电粒子在磁场中的运动题20套(带答案)含解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点
3
,0P L ⎛⎫ ⎪ ⎪⎝⎭
处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.
(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;
(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;
(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.
某同学查阅资料后,得到一种处理相关问题的思路:
带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq
32
2
3
0B E E v B +⎛⎫ ⎪⎝⎭
【解析】 【详解】
(1)粒子1在一、二、三做匀速圆周运动,则2
111
v qv B m r =
由几何憨可知:()2
22
1133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭
得到:123BLq
v m
=
(2)粒子2在第一象限中类斜劈运动,有:
13
3
L v t
=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到2
89qLB E m
=
又22
212v v Eh =+,得到:2221BLq
v =
(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0
E v B
'= 而'223
v v v ''=
+ 所以,运动过程中粒子的最小速率为v v v =''-'
即:2
2
003E E v v B B ⎛⎫=+- ⎪⎝⎭
2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=
3
2
mv 02。
两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=7
2
R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;
(2)如果某次实验时将磁场O 的圆心往上移了2
R
,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。
【答案】(1) 02v v =;02mv B eR =(2) 0336
l π++≥ 【解析】 【详解】
解:(1)对于单个质子进入加速电场后,则有:22
0011eU mv mv 22
=- 又:2
003eU mv 2
=
解得:0v 2v =;
根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R
根据洛伦磁力提供向心力有:2
v evB m r
=
可得磁场磁感应强度:0
2mv B eR
=
(2)磁场O 的圆心上移了
R
2
,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心
由于磁场上移了R
2
,故sin∠COF=
R
2
R
=
1
2
,∠
COF=
π
6
,∠DOF=∠FKD=
π
3
对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D点,
下方粒子到达C后最先到达D点的粒子所需时间为
00
(2)(4)
22
24
R
R H R R
t
v v
π
π
++-+
'==
而上方粒子最后一个到达E点的试卷比下方粒子中第一个达到C的时间滞后0
l
Δt
t
=
上方最后的一个粒子从E点到达D点所需时间为
()
000
π1
R Rsin2πR62π33
36
t R
2v2v12v
-+-
=+=
要使两质子束相碰,其运动时间满足t t t
'≤+∆
联立解得
π336
l
++
≥
3.在如图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与y坐标轴相切于原点O点。
y 轴右侧存在一个匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m。
现从坐标为(﹣0.2m,﹣0.2m)的P点发射出质量m=2.0×10﹣9kg、带电荷量q=5.0×10﹣5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s(粒子重力不计)。
(1)带电粒子从坐标为(0.1m,0.05m)的点射出电场,求该电场强度;
(2)为了使该带电粒子能从坐标为(0.1m,﹣0.05m)的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】
解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:
20
0v qv B m r
=
可得:r =0.20m =R
根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012
l v t y at ==
, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C
(2)粒子飞离电场时,沿电场方向速度:30
5.010y qE l
v at m v ===⨯m/s=0v
粒子射出电场时速度:0=v
根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:r '=
根据洛伦兹力提供向心力可得: 2
v qvB m r '='
联立可得所加匀强磁场的磁感应强度大小:4mv
B qr
'=
='T 根据左手定则可知所加磁场方向垂直纸面向外。
4.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为
(-,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;
(2)求粒子束射入电场的纵坐标范围;
(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.
【答案】(1)0v Ba
(2)0≤y≤2a (3)78y a =,94a
【解析】 【详解】
(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得
Bqv 0=m 2
v r
故粒子的比荷
v q m Ba
= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.
由几何关系知
O ′A =r ·
AB
BC
=2a 则
OO ′=OA -O ′A =a
即粒子离开磁场进入电场时,离O 点上方最远距离为
OD =y m =2a
所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有
3a =v 0·t 0
2019
222
qE y t a a m =
=>,
所以,粒子应射出电场后打到荧光屏上
粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有
x =v 0·t
竖直方向有
2
12qE y t m
=
代入数据得
x
=2ay
设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则
002tan y x qE x v m v y v v a
θ⋅
===
有
H =(3a -x )·tan θ=(32)2a y y -
当322a y y -=时,即y =9
8
a 时,H 有最大值 由于
9
8
a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为
y =
98
a -2a =-78a
5.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:
(1)求带电粒子在磁场中运动的半径r ;
(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;
(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x
轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为
222x y R +=(3
0.1,
0.120
R m m x m =≤≤) 【解析】 【分析】 【详解】
(1)洛伦兹力充当向心力,根据牛顿第二定律可得2
v qvB m r
=,解得0.1r m =
(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,
粒子在电场中运动的加速度qE a m
= 粒子在电场中运动的时间2v t a
= 解得43.310t s -=⨯
(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,
则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,
曲线方程为2
2
x y R += 3
0.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭
【点睛】
带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径
6.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷
4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:
(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?
(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?
(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.
【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)
【解析】
【分析】
(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;
(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;
(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.
【详解】
(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2
代入数据解得r1=1m
粒子不能进入中间磁场,所以轨道半径r1<1m.
(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛
伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m
2 v r
得r=
mv
qB
易知r3=4r2
且满足(r2+r3)2=(R2-r2)2+r32
解得r2=
3
m,r3=3m
又由动能定理有qU=
1
2
mv2
代入数据解得U=3×107V.
(3)带电粒子从P到Q的运动时间为t1,则t1满足
1
2
v t1=d
得t1=10-9s
令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)
圆周运动的周期T=
2m
qB
π
故粒子从Q孔进入磁场到第一次到O点所用的时间为
8
2
21
372180532
610
360360
m m
t s
qB qB
ππ
-
⨯⨯⨯-
=+=
考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-
8k)s(k=0,1,2,3,…).
7.在平面直角坐标系x0y中,第I象限内存在垂直于坐标平面向里的匀强磁场,在A(L,0)点有一粒子源,沿y轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m,电荷量为q.在B(0,L)、C(0,3L)、D(0,5L)放一个粒子接收器,B点的接收器只能吸收来自y轴右侧到达该点的粒子,C、D两点的接收器可以吸收沿任意方向到达该点的粒
子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.
(1)求第I 象限内磁场的磁感应强度B 1;
(2)计算说明速率为5v 、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mv
B qL
=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL
=
-(或2(17317)'4mv
B qL +=),垂直坐标平面向外
【解析】 【详解】
(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①
由牛顿运动定律得2
1v qvB m R
=②
得1mv B qL
=
③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式
222()R L y R -+=④
得这两种粒子在y 轴上的交点到O 的距离分别为3L 、17L ⑤ 故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥
(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有
15172917L L R L L
-
= 又221
(9)9v q vB m R ⋅=⑨
解得2217(517)mv B qL
=
-(或2(51717)mv
B +=)⑩
若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里
同理:21732917L L
R L L
-=
2
22
(9)9'v q vB m R ⋅=
解得2217'(173)m B qL
=
-(或2(17317)'mv
B +=)
8.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为
2
R
的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.
(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;
(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?
【答案】(1) 2
2mv E =2v ,速度方向沿y 轴负方向
(2)82225mv mv B qR qR ≤≤
(3))
2713mv qR
【解析】 【分析】
【详解】
(1)在电场中,粒子沿初速度方向做匀速运动
13
2cos452
2
cos45
R
L R R
=-︒=
︒
1
L vt
=
沿电场力方向做匀加速运动,加速度为a
2
2sin452
L R R
=︒=
2
2
1
2
L at
=
qE
a
m
=
设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v' 1
v v
=、
2
v at
=,2
tan
v
v
θ=
联立可得
2
2
4
mv
E
qR
=
进入磁场的速度22
12
2
v v v v
=+=
'
45
θ=︒,速度方向沿y轴负方向
(2)由左手定则判定,粒子向右偏转,当粒子从A点射出时,运动半径
12
R
r=
由
2
1
1
mv
qv B
r
=
'
'得
1
22mv
B=
当粒子从C点射出时,由勾股定理得
()2
22
22
2
R
R r r
⎛⎫
-+=
⎪
⎝⎭
解得
2
5
8
r R
=
由
2 2
2
mv
qv B
r
=
'
'
得
2
82
5
mv
B
qR
=
根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当
8222
5
mv mv
B
qR qR
≤≤时,粒子从AC边界射出
(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行于x轴,其半径为3r,由几何关系得
2
22
332
R
r r R
⎛⎫
+-=
⎪
⎝⎭
解得
()
3
71
4
R
r
+
=
由
2
3
3
mv
qv B
r
=
'
'得
()
3
2271
3
mv
B
qR
-
=
磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中
9.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:
(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)
3E
B
(2)2.4B 【解析】试题分析:(
1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d d
r sin sin α=
==︒ 根据2
00mv qv B r =得0233qBd
v m
=
粒子在第一象限中做类平抛运动,则有2
1602qE r cos t m -︒=(); 00
y v qEt tan v mv α==
联立解得03E
v B
=
(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.
则有:x=v 0t , 2
y v y t =
得
03
222
y v y tan x v α===
由几何知识可得 y=r-rcosα= 13 2
r d
=
则得
2
3
x d
=
所以粒子在第三、四象限圆周运动的半径为
12
53
23
d d
R d
sinα
⎛⎫
+
⎪
⎝⎭
==
粒子进入第三、四象限运动的速度0
43
2
v qBd
v v
cosα
===
根据
2
'
v
qvB m
R
=
得:B′=2.4B
考点:带电粒子在电场及磁场中的运动
10.如图所示,在xoy平面(纸面)内,存在一个半径为R=02.m的圆形匀强磁场区域,磁感应强度大小为B=1.0T,方向垂直纸面向里,该磁场区域的左边缘与y轴相切于坐标原点O.在y轴左侧、-0.1m≤x≤0的区域内,存在沿y轴负方向的匀强电场(图中未标出),电场强度的大小为E=10×104N/C.一个质量为m=2.0×10-9kg、电荷量为q=5.0×10-5C的带正电粒子,以v0=5.0×103m/s的速度沿y轴正方向、从P点射入匀强磁场,P点的坐标为(0.2m,-0.2m),不计粒子重力.
(1)求该带电粒子在磁场中做圆周运动的半径;
(2)求该带电粒子离开电场时的位置坐标;
(3)若在紧靠电场左侧加一垂直纸面的匀强磁场,该带电粒子能回到电场,在粒子回到电场前瞬间,立即将原电场的方向反向,粒子经电场偏转后,恰能回到坐标原点O,求所加匀强磁场的磁感应强度大小.
【答案】(1)0.2
r m
=
(2)()
0.1,0.05
m m
--
(3)14
B T
=
【解析】
【分析】
粒子进入电场后做类平抛运动,将射出电场的速度进行分解,根据沿电场方向上的速度,结合牛顿第二定律求出运动的时间,从而得出类平抛运动的水平位移和竖直位移,即得出射出电场的坐标.先求出粒子射出电场的速度,然后根据几何关系确定在磁场中的偏转半径,然后根据公式B mv
qR
=求得磁场强度 【详解】
(1)带正电粒子在磁场中做匀速圆周运动,由牛顿第二定律有:20
0v qv B m r
=
解得:0.2r m =
(2)由几何关系可知,带电粒子恰从O 点沿x 轴负方向进入电场,带电粒子在电场中做类平抛运动,设粒子在电场中的加速度为a ,到达电场边缘时,竖直方向的位移为y ,有:
0L v t =,212
y at =
由牛顿第二定律有:qE ma = 联立解得:0.05y m =
所以粒子射出电场时的位置坐标为()0.1,0.05m m -- (3)粒子分离电场时,沿电场方向的速度y v at = 解得:3
0 5.010/y v v m s ==⨯
则粒子射出电场时的速度:0v =
设所加匀强磁场的磁感应强度大小为1B ,粒子磁场中做匀速圆周运动的半径为1r ,由几何
关系可知:1r m =
由牛顿第二定律有:2
11
v qvB m r =
联立解得:14B T =
11.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷
9110q
m
=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:
(1)粒子源发射的粒子进入磁场时的速度大小;
(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数
字);
(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.
【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】
(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2
v qvB m R
=求解速度;
(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】
(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,
由2
v qvB m
R
= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s
(2)粒子在磁场中运动的时间61121044
R t s v ππ-=
⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间
62 1.010x
t s v
-=
=⨯ 总时间6612110 1.8104t t t s s π--⎛⎫
=+=+⨯=⨯
⎪⎝⎭
(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qE
a m s m
==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫=
=⨯⨯⨯= ⎪⨯⎝⎭
打在屏上的纵坐标为0.75;
经磁场偏转后从坐标为(0,1)的点平行于x轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上的纵坐标区域为0.75≤y≤1.75.
12.如图所示,y,N为水平放置的平行金属板,板长和板间距均为2d.在金属板左侧板间中点处有电子源S,能水平发射初速为V0的电子,电子的质量为m,电荷量为e.金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽度均为d.磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d处有一个荧光屏.过电子源S作荧光屏的垂线,垂足为O.以O为原点,竖直向下为正方向,建立y轴.现在y,N两板间加上图示电压,使电子沿SO方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)
(1)电子进人磁场时的速度v;
(2)改变磁感应强度B的大小,使电子能打到荧光屏上,求
①磁场的磁感应强度口大小的范围;
②电子打到荧光屏上位置坐标的范围.
【答案】(1)
2v,方向与水平方向成45°
(2)①
()0
12mv
B
ed
+
<,②4224
d d d
-→
【解析】
试题分析:(1)电子在MN间只受电场力作用,从金属板的右侧下边沿射出,有(1分)
(1分)
(1分)
(1分)
解得(1分)
速度偏向角(1分)
(1分)
(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值
B,此时电子在磁场
中作圆周运动的半径为R
(2分)
又有2
0mv qvB R
=(2分)
由⑦⑧解得:00(12)m
B v +=
(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)m
B v ed
+<时电子能打
在荧光屏上(得0(12)m
B v ed
+≤
不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,
即. (1分)
出射点位置到SO 连线的垂直距离
12sin 45y d R =-︒(1分)
电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标
021tan 45y y d =+(1分)
解得2422y d d =-(1分)
当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标
为0
33tan 454y d d d =+=(1分)
电子穿出磁场后打在荧光民屏上的位置坐标范围为:
422d d -到4d (2分)
考点:带电粒子在磁场中受力运动.
13.(20分)如图所示,平面直角坐标系xOy 的第二象限内存在场强大小为E ,方向与x 轴平行且沿x 轴负方向的匀强电场,在第一、三、四象限内存在方向垂直纸面向里的匀强磁场。
现将一挡板放在第二象限内,其与x,y 轴的交点M 、N 到坐标原点的距离均为2L 。
一质量为m ,电荷量绝对值为q 的带负电粒子在第二象限内从距x 轴为L 、距y 轴为2L 的A 点由静止释放,当粒子第一次到达y 轴上C 点时电场突然消失。
若粒子重力不计,粒子
与挡板相碰后电荷量及速度大小不变,碰撞前后,粒子的速度与挡板的夹角相等(类似于光反射时反射角与入射角的关系)。
求:
(1)C 点的纵坐标。
(2)若要使粒子再次打到档板上,磁感应强度的最大值为多少?
(3)磁感应强度为多大时,粒子从A 点出发与档板总共相碰两次后到达C 点?这种情况下粒子从A 点出发到第二次到达C 点的时间多长? 【答案】(1)3L ;(2)qL mE B 221=;(3)qL Em B 2322=;9(2)24mL
t qE
π+=总 【解析】
试题分析:(1)设粒子到达挡板之前的速度为v 0
有动能定理 202
1
mv qEL =
(1分) 粒子与挡板碰撞之后做类平抛运动
在x 轴方向 2
2t m
qE L = (1分) 在y 轴方向 t v y 0= (1分) 联立解得 L y 2=
C 点的纵坐标为L L y 3=+ (1分) (2)粒子到达C 点时的沿x 轴方向的速度为m
qEL
at v x 2== (1分) 沿y 轴方向的速度为m
qEL
v v y 20== (1分) 此时粒子在C 点的速度为m
qEL
v 2= (1分) 粒子的速度方向与x 轴的夹角 x
y v v =
θtan
45=θ (1分)
磁感应强度最大时,粒子运动的轨道半径为
L r 2
2
1=
(2分)
根据牛顿第二定律 1
2
1r v m qvB = (1分)
要是粒子再次打到挡板上,磁感应强度的最大值为 qL
mE
B 22
1= (1分) (3)当磁感应强度为B 2时,粒子做半径为r 2的圆周运动到达y 轴上的O 点,之后做直线运动打到板上,L r 2
2
32=
(2分) 此时的磁感应强度为qL
Em
B 2322=
(1分)
此后粒子返回到O 点,进入磁场后做匀速圆周运动,由对称性可知粒子将到达D 点,接着做直线运动到达C 点 从A 到板,有2121t m Eq L =
qE
mL
t 21=
(1分) 在磁场中做圆周运动的时间 qE
mL
T t 24
9232π
==
(1分) 从O 到板再返回O 点作直线运动的时间qE
mL
t 23= (1分)
从x 轴上D 点做匀速直线运动到C 点的时间为qE
mL
t 2234= (1分)
总时间为qE
mL
t t t t t t 24)2(94321π+=
++++=总 (1分)
考点:带电粒子在磁场中的运动,牛顿第二定律,平抛运动。
14.飞行时间质谱仪可以对气体分子进行分析.如图所示,在真空状态下,脉冲阀P 喷出。