10KV变电所及其配电系统的设计 --优秀毕业论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10KV变电所及低压配电系统的设计
摘要:变电所是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备的转设场所。

变电所涉及方面很多,需要考虑的问题多,分析变电所担负的任务及用户负荷等情况,选择所址,利用用户数据进行负荷计算,确定用户无功功率补偿装置。

同时进行各种变压器的选择,从而确定变电站的接线方式,再进行短路电流计算,选择送配电网络及导线,进行短路电流计算。

选择变电所高低压电气设备,为变电所平面及剖面图提供依据。

本变电所的初步设计包括了:(1)总体方案的确定(2)负荷分析(3)短路电流的计算(4)配电系统设计与系统接线方案选择(5)继电保护的选择与整定等容。

关键词:变电所;负荷;输电系统;配电系统
The Design Of 10KV Substation And Power Distribution
System
Abstract:The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. The region of factory effect many fields and should consider many problems.Analyse change to give or get an electric shock a mission for carrying and customers carries etc. circumstance, make good use of customer data proceed then carry calculation, ascertain the correct equipment of the customer. At the same time following the choice of every kind of transformer, then make sure the line method of the transformer substation, then calculate the short-circuit electric current, choosing to send together with the electric wire method and the style of the wire, then proceeding the calculation of short-circuit electric current. This first step of design included:(1) ascertain the total project (2) load analysis(3) the calculation of the short-circuit electric current (4) the design of an electric shock the system design to connect with system and the choice of line project (5) the choice and the settle of the protective facility (6) the contents to defend the thunder and protection of connect the earth.
Keywords:substation;load;transmission system;power distribution system
目录
第1章绪论 (1)
1.1工厂变配电所的设计 (1)
1.1.1用户供电系统 (1)
1.1.2工厂变配电所的设计原则 (1)
1.2课题来源及设计背景 (2)
1.2.1课题来源 (2)
1.2.2设计背景 (2)
第2章变电所负荷计算和无功补偿的计算 (3)
2.1变电站的负荷计算 (3)
2.1.1负荷统计全厂的用电设备统计如下表 (3)
2.1.2负荷计算 (3)
2.2无功补偿的目的和方案 (5)
2.3无功补偿的计算及设备选择 (6)
第3章变电所变压器台数和容量的选择 (8)
3.1变压器的选择原则 (8)
3.3变压器台数的选择 (8)
3.4变压器容量的选择 (9)
第4章主接线方案的确定 (11)
4.1主接线的基本要求 (11)
4.1.1安全性 (11)
4.1.2可靠性 (11)
4.1.3灵活性 (11)
4.1.4经济性 (11)
4.2主接线的方案与分析 (11)
4.3电气主接线的确定 (13)
第5章短路电流的计算 (14)
5.1短路电流及其计算 (14)
5.2三相短路电流的计算 (14)
第6章变电所高压进线、一次设备和低压出线的选择 (18)
6.1用电单位总计算负荷 (18)
6.2高压进线的选择与校验 (18)
6.2.1架空线的选择 (18)
6.2.2电缆进线的选择 (18)
6.3变电所一次设备的选择 (19)
6.3.1高压断路器的选择 (19)
6.3.2高压隔离开关的选择 (20)
6.3.4电流互感器的选择 (22)
6.3.5电压互感器的选择 (24)
6.3.6高压开关柜的选择 (25)
6.4低压出线的选择 (26)
6.4.1低压母线桥的选择 (26)
6.4.2低压母线的选择 (26)
第7章变电所二次回路方案 (28)
7.1继电保护的选择与整定 (28)
7.1.1继电保护的选择要求 (28)
7.1.2继电保护的装置选择与整定 (29)
结论 (34)
参考文献 (35)
辞 (36)
开题报告 (37)
结题报告 (38)
答辩报告 (39)
第1章绪论
1.1工厂变配电所的设计
1.1.1用户供电系统
电力用户供电系统由外部电源进线、用户变配电所、高低压配电线路和用电设备组成。

按供电容量的不同,电力用户可分为大型(10000kV·A以上)、中型(1000-10000kV·A)、小型(1000kV·A及以下)
1.大型电力用户供电系统
大型电力用户的用户供电系统,采用的外部电源进线供电电压等级为35kV 及以上,一般需要经用户总降压变电所和车间变电所两级变压。

总降压变电所将进线电压降为6-10kV的部高压配电电压,然后经高压配电线路引至各个车间变电所,车间变电所再将电压变为220/380V的低电压供用电设备使用。

某些厂区环境和设备条件许可的大型电力用户也有采用所谓“高压深入负荷中心”的供电方式,即35kV的进线电压直接一次降为220/380V的低压配电电压。

2.中型电力用户供电系统
一般采用10kV的外部电源进线供电电压,经高压配电所和10kV用户部高压配电线路馈电给各车间变电所,车间变电所再将电压变换成220/380V的低电压供用电设备使用。

高压配电所通常与某个车间变电所合建。

3.小型电力用户供电系统
一般小型电力用户也用10kV外部电源进线电压,通常只设有一个相当于车间变电所的降压变电所,容量特别小的小型电力用户可不设变电所,采用低压220/380V直接进线。

1.1.2工厂变配电所的设计原则
1.必须遵守国家的有关规程和标准,执行国家的有关方针政策,包括节约能源、节约有色金属等技术经济政策。

2.应做到保障人身和设备安全、供电可靠、电能质量合格、技术先进和经济合理,应采用效率高、能耗低、性能较先进的电气产品。

3.应根据工程特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远、近期结合,以近期为主,适当考虑扩建的可能性。

4.必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。

1.2课题来源及设计背景
1.2.1课题来源
本课题是来源于联合能源化工下属的安装公司的变电所新建项目,具有一定的实践性和可行性。

1.2.2设计背景
本公司现要新建一个10/0.4kV的变配电所,向公司生产区、办公楼、职工住宅区及其生活水泵组供电。

原先变电所只能满足两个车间、办公楼和生活区的用电负荷。

随着近年来,联合能源公司的企业部的调整,下属子公司之间的相互合并等原因,安装公司扩充了规模,兼并了原来其他单位的一些用电设备,因此,原先的变电所已经不能满足需要,要在原址旁边新建一座10/0.4kV变配电所,以满足单位改革后用电负荷的要求。

鉴于联合能源公司用电的特殊性,新建变电所的电源取自3km外联合能源
公司一专用35kV变电站和3km外市供电公司另一相同容量的35kV变电站。

新变电所建成后,能满足现有的生产、生活用电,有效地提高负荷转移能力,进一步提高供电可靠性。

第2章变电所负荷计算和无功补偿的计算
2.1变电站的负荷计算
2.1.1负荷统计全厂的用电设备统计如下表:
表2.1 用电负荷统计
用电设备负荷统计(kW)负荷类别
机床设备组433.45 三级
电焊机设备组129.35 三级
起重机组
113.2 三级 办公楼
30 三级 住宅区水泵组
176 二级 住宅用电
768 三级 厂区照明
29 三级
2.1.2负荷计算
按需要系数法计算各组负荷: 有功功率 P= K d ⨯Σpei (2.1)
无功功率 Q=P ⨯ϕtan (2.2)
视在功率 S=22Q P + (2.3)
上述三个公式中:ΣPei :每组设备容量之和,单位为kW ;K d :需要用系数;ϕcos :功率因数。

⒈ 小批量生产的金属冷加工机床电动机:
K d =0.16-0.2(取0.2)ϕcos =0.5 ϕtan =1.73
有功负荷 P C1=K d P S1=0.2*433.45=86.69kW
无功负荷 Q C1=P C1ϕtan =86.69*1.73=149.97kvar
视在功率 S C1=2121C C Q P +=174.74kV ·A
⒉ 电焊机组的计算负荷:
K d =0.35 ϕcos =0.35 ϕtan =2.68
有功负荷 P C2=K d P S2=0.35*129.35=45.27kW 无功负荷 Q C2=P C2ϕtan =45.27*2.68=121.33kvar
视在功率 S C2=2
2C 22C Q P +=129.5kV ·A
⒊ 起重机的计算负荷:
K d =0.1-0.15(取0.15) ϕcos =0.5 ϕtan =1.73
有功负荷 P C3=K d P S3=0.15*113.2=16.98kW 无功负荷 Q C3=P C3ϕtan =16.98*1.73=29.38kvar
视在功率 S C3=23C 23C Q P +=33.93kV ·A
⒋ 住宅区水泵组:
K d =0.8 ϕcos =0.8 ϕtan =0.75 有功负荷 P C4=K d P S4=0.8*176=140.8kW 无功负荷 Q C4=P C4ϕtan =0.75*140.8=105.6kvar
视在功率 S C4=24C 24C Q P +=176kV ·A
⒌ 办公楼:
K d =0.8 ϕcos =1 ϕtan =0
有功负荷 P C5=K d P S5=0.8*30=24kW 无功负荷 Q C5=P C5ϕtan =0kvar
视在功率 S C5=25C 25C Q P +=24kV ·A
⒍ 住宅区:
K d =0.45 ϕcos =1 ϕtan =0
有功负荷 P C6=K d P S6=0.45*768=345.6kW
无功负荷 Q C6=P C6ϕtan =0kvar
视在功率 S C6=2
6C 26C Q P +=345.6kV ·A
⒎ 厂区照明:
K d =1 ϕcos =1 ϕtan =0
有功负荷 P C7=K d P S7=1*29=29kW 无功负荷 Q C7=P C7ϕtan =0kvar
视在功率 S C7=27C 27C Q P +=29kV ·A
总负荷的计算:
1.有功功率 P c =K ∑ p ⨯ΣP c.i (
2.4)
2.无功功率 Q c = K ∑q ⨯ΣQ c.i
(2.5)
3.视在功率 S c =2
C 2C Q P + (2.6)
式中:对于干线,可取K ∑ p =0.85-0.95,K ∑q =0.90-0.97。

对于低压母线,由用电设备计算负荷直接相加来计算时,可取K ∑ p =0.8-0.9,K ∑q =0.85-0.95。

由干线负荷直接相加来计算时,可取K ∑ p =0.9-0.95,K ∑=0.93-0.97。

表2.2 计算负荷表
设备组
K d
需要系数
ϕcos ϕtan
计算负荷
Pc/kW
Qc/kv
ar
Sc/kV ·A
机床组 0.2 0.5 1.73 86.69 149.97 174.74 电焊机组 0.35 0.35 2.68 45.27 121.33 129.5 起重机
0.15
0.5
1.73
16.98
29.38
33.93
水泵组0.8 0.8 0.75 140.8 105.6 176 办公楼0.8 1 0 24 0 24 住宅区0.45 1 0 345.6 0 345.6 厂区照明 1 1 0 29 0 29
总计
——
688.3
4
406.2
8
——对干线取K∑p=0.95, K∑
q
=0.97
653.9
2
394.0
9
763.49 对低压母线取K∑p=0.90, K∑
q
=0.95
619.50
6
385.9
66
729.9
2.2无功补偿的目的和方案
由于用户的大量负荷如感应电动机、电焊机、气体放电灯等,都是感性负荷,使得功率因数偏低,因此需要采用无功补偿措施来提高功率因数。

电力系统要求用户的功率因数不低于0.9,按照实际情况本次设计要求功率因数为0.92以上,因此,必须采取措施提高系统功率因数。

目前提高功率因数的常用的办法是装设无功自动补偿并联电容器装置。

根据现场的实际情况,拟定采用低压集中补偿方式进行无功补偿。

2.3无功补偿的计算及设备选择
我国《供电营业规则》规定:容量在100kV·A及以上高压供电用户,最大负荷时的功率因数不得低于0.9,如达不到上述要求,则必须进行无功功率补偿。

一般情况下,由于用户的大量如:感应电动机、电焊机、电弧炉及气体放电
灯等都是感性负荷,使得功率因数偏低,达不到上述要求,因此需要采用无功补偿措施来提高功率因数。

当功率因数提高时,在有功功率不变的情况下,无功功率和视在功率分别减小,从而使负荷电流相应减小。

这就可使供电系统的电能损耗和电压损失降低,并可选用较小容量的电力变压器、开关设备和较小截面的电线电缆,减少投资和节约有色金属。

因此,提高功率因数对整个供电系统大有好处。

要使功率因数提高,通常需装设人工补偿装置。

最大负荷时的无功补偿容量Q N ·C 应为:
Q N ·C ='C C Q Q -=P C (ϕtan -'tan ϕ) (2.7)
按此公式计算出的无功补偿容量为最大负荷时所需的容量,当负荷减小时,补偿容量也应相应减小,以免造成过补偿。

因此,无功补偿装置通常装设无功功率自动补偿控制器,针对预先设定的功率因数目标值,根据负荷的变化相应投切电容器组数,使瞬时功率因数满足要求。

提高功率因数的补偿装置有稳态无功功率补偿设备和动态无功功率补偿设备。

前者主要有同步补偿机和并联电容器。

动态无功功率补偿设备用于急剧变动的冲击负荷。

低压无功自动补偿装置通常与低压配电屏配套制造安装,根据负荷变化相应循环投切的电容器组数一般有4、6、8、10、12组等。

用上式确定了总的补偿容量后,就可根据选定的单相并联电容器容量q N ·C 来确定电容器组数:
C
.N C
.N q Q n =
(2.8) 在用户供电系统中,无功补偿装置位置一般有三种安装方式:
(1)高压集中补偿 补偿效果不如后两种补偿方式,但初投资较少,便于集中运行维护,而且能对企业高压侧的无功功率进行有效补偿,以满足企业总功率因数的要求,所以在一些大中型企业中应用。

(2)低压集中补偿 补偿效果较高压集中补偿方式好,特别是它能减少变压器的视在功率,从而可使主变压器的容量选的较小,因而在实际工程中应用相当普遍。

(3)低压分散补偿 补偿效果最好,应优先采用。

但这种补偿方式总的投资较大,且电容器组在被补偿的设备停止运用时,它也将一并被切除,因此其利用率较低。

本次设计采用低压集中补偿方式。

P C Q C S C 取自低压母线侧的计算负荷,ϕcos 提高至0.92
ϕcos =
C
C S P =9.729506.619=0.85
Q N ·C =P C (ϕtan -'tan ϕ)=619.506*[tan(arccos0.85)-tan(arccos0.92)]=120kvar 选择BSMJ0.4-20-3型自愈式并联电容器,q N ·C =20kvar
C
.N C
.N q Q n =
(2.9) =120kvar/20kvar=6 取6
补偿后的视在计算负荷
S C =2C ·N C 2C Q Q (P )-+=674.19kV ·A
ϕcos =
C
C
S P =0.92
第3章 变电所变压器台数和容量的选择
3.1变压器的选择原则
电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能
的合理输送、分配和使用,对变电所主接线的形式及其可靠性与经济性有着重要影响。

所以,正确合理地选择变压器的类型、台数和容量,是对接下来主接线设计的一个主要前题。

选择时必须遵照有关国家规标准,因地制宜,结合实际情况,合理选择,并应优先选用技术先进、高效节能、免维护的新产品,并优先选用技术先进的产品。

3.2变压器类型的选择
电力变压器类型的选择是指确定变压器的相数、调压方式、绕组形式、绝缘及冷却方式、联结组别等。


变压器按相数分,有单相和三相两种。

用户变电所一般采用三相变压器。

变压器按调压方式分,有无载调压和有载调压两种。

10kV配电变压器一般采用无载调压方式。

变压器按绕组形式分,有双绕组变压器、三绕组变压器和自耦变压器等。

用户供电系统大多采用双绕组变压器。

变压器按绝缘及冷却方式分,有油浸式、干式和充气式(SF6)等。

10kV配电变压器有Yyn0和Dyn11两种常见联结组。

由于Dyn11联结组变压器具有低压侧单相接地短路电流大,具有利于故障切除、承受单相不平衡负荷的负载能力强和高压侧三角形接线有利于抑制零序谐波电流注入电网等优点,从而在TN及TT系统接地形式的低压电网中得到越来越广泛的应用。

3.3变压器台数的选择
变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。

《10kV及以下变电所设计规GB50053-94》中规定,当符合以下条件之一时,宜装设两台及两台以上的变压器:
⑴有大量一级或二级负荷;
⑵季节性负荷变化较大;
⑶集中负荷容量较大。

变电所中单台变压器(低压为0.4kV)的容量不宜大于1250kV·A。

当用电设备容量较大、负荷集中且运行合理时,可选用较大容量的变压器。

在一般情况下,动力和照明宜共用变压器。

当属下列情况之一时,可设专用变压器:
一、当照明负荷较大或动力和照明采用共用变压器严重影响照明质量及灯泡寿命时,可设照明专用变压器;
二、单台单相负荷较大时,宜设单相变压器;
三、冲击性负荷较大,严重影响电能质量时,可设冲击负荷专用变压器。

四、在电源系统不接地或经阻抗接地,电气装置外露导电体就地接地系统(IT 系统)的低压电网中,照明负荷应设专用变压器。

由于本单位的用电设备负荷有二级负荷和三级负荷。

根据设计规GB50053-94的要求,宜装设两台变压器,选择台数为两台。

3.4变压器容量的选择
变压器的容量S N·T首先应保证在计算负荷S C下变压器能长期可靠运行。

对有两台变压器的变电所,通常采用等容量的变压器,每台容量应同时满足以下两个条件:
①满足总计算负荷70%的需要,即S
N·T ≈0.7 S
C
;(3.1)
②满足全部一、二级负荷S
N
的需要,即S N·T≥S C(I+II)(3.2)条件①是考虑到两台变压器运行时,每台变压器各承受总计算负荷的50%,
负载率约为0.7,此时变压器效率较高。

而在事故情况下,一台变压器承受总计算负荷时,只过载40%,可继续运行一段时间。

在此时间,完全有可能调整生产,可切除三级负荷。

条件②是考虑在事故情况下,一台变压器仍能保证一、二级负荷的供电。

根据无功补偿后的计算负荷,S C=674.19kV·A
即S N·T≥0.7*674.19=471.933kV·A
取变压器容量为500kV·A
因此,选择S9-500/10 Dyn11型电力变压器。

为油浸式、无载调压、双绕组变压器。

表3.1 主变压器的选择
额定容量
S N/kV·A 联结组别
空载损耗
△P O
/kW
短路损耗
△P K
/kW
空载电流
I O %
阻抗电压
U K %
500 Dyn11 1.03 4.95 3 4
第4章主接线方案的确定
4.1主接线的基本要求
主接线是指由各种开关电器、电力变压器、互感器、母线、电力电缆、并联电容器等电气设备按一定次序连接的接受和分配电能的电路。

它是电气设备选择及确定配电装置安装方式的依据,也是运行人员进行各种倒闸操作和事故处理的重要依据。

概括地说,对一次接线的基本要求包括安全、可靠、灵活和经济四个方面。

4.1.1安全性
安全包括设备安全及人身安全。

一次接线应符合国家标准有关技术规的要求,正确选择电气设备及其监视、保护系统,考虑各种安全技术措施。

4.1.2可靠性
不仅和一次接线的形式有关,还和电气设备的技术性能、运行管理的自动化程度因素有关。

4.1.3灵活性
用最少的切换来适应各种不同的运行方式,适应负荷发展。

4.1.4经济性
在满足上述技术要求的前提下,主接线方案应力求接线简化、投资省、占地少、运行费用低。

采用的设备少,且应选用技术先进、经济适用的节能产品。

总之,变电所通过合理的接线、紧凑的布置、简化所附属设备,从而达到减少变电所占地面积,优化变电所设计,节约材料,减少人力物力的投入,并能可靠安全的运行,避免不必要的定期检修,达到降低投资的目的。

4.2主接线的方案与分析
主接线的基本形式有单母线接线、双母线接线、桥式接线等多种。

1.单母线接线
这种接线的优点是接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置;
缺点:不够灵活可靠,任一元件(母线及母线隔离开关等)故障检修,均需要使整个配电装置停电,单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障段的供电。

适用围:适应于容量较小、对供电可靠性要求不高的场合,出线回路少的小型变配电所,一般供三级负荷,两路电源进线的单母线可供二级负荷。

图4.1 单母线不分段主接线
2.单母线分段主接线
当出线回路数增多且有两路电源进线时,可用断路器将母线分段,成为单母线分段接线。

母线分段后,可提高供电的可靠性和灵活性。

在正常工作时,分段断路器可接通也可断开运行。

两路电源进线一用一备时,分段断路器接同运行,此时,任一段母线出现故障,分段断路器与故障段进线断路器都会在继电保护装置作用下自动断开,将故障段母线切除后,非故障段母线便可继续工作,而当两路电源同时工作互为备用时,分段断路器则断开运行,此时若任一电源出现故障,电源进线断路器自动断开,分段断路器可自动投入,保证给全部出线或重要负荷继续供电。

图4.2 单母线分段主接线
单母线分段接线保留了单母线接线的优点,又在一定程度上克服了它的缺点,如缩小了母线故障的影响围、分别从两段母线上引出两路出线可保证对一级负荷的供电等。

4.3电气主接线的确定
电源进线为两路,变压器台数为两台。

二次侧采用单母线分段接线。

两路外供电源容量相同且可供全部负荷,采用一用一备运行方式,故变压器一次侧采用单母线接线,而二次侧采用单母线分段接线。

该方案中,两路电源均设置电能计量柜,且设置在电源进线主开关之后。

变电所采用直流操作电源,为监视工作电源和备用电源的电压,在母线上和备用进线断路器之前均安装有电压互感器。

当工作电源停电且备用电源电压正常时,先断开工作电源进线断路器,然后接通备用电源进线断路器,由备用电源供所有负荷。

备用电源的投入方式采用备用电源自动投入装置APD。

第5章短路电流的计算
5.1短路电流及其计算
供电系统应该正常的不间断地可靠供电,以保证生产和生活的正常进行。

但是供电系统的正常运行常常因为发生短路故障而遭到破坏。

所谓短路,就是供电系统中一相或多相载流导体接地或相互接触并产生超出规定值的大电流。

造成短路的主要原因是电气设备载流部分的绝缘损坏、误动作、雷击或过电压击穿等。

短路电流数值通常是正常工作电流值的十几倍或几十倍。

当它通过电气设备时,设备的载流部分变形或损坏,选用设备时要考虑它们对短路电流的稳定。

短路电流在线路上产生很大的压降,离短路点越近的母线,电压下降越厉害,从而影响与母线连接的电动机或其它设备的正常运行。

计算方法采用标幺值法计算。

进行计算的物理量,不是用具体单位的值,而
是用其相对值表示,这种计算方法叫做标幺值法。

标幺值的概念是:
某量的标幺值=
()()
与实际值同单位该量的标准值任意单位该量的实际值 (5.1) 所谓基准值是衡量某个物理量的标准或尺度,用标幺值表示的物理量是没有单位的。

供电系统中的元件包括电源、输电线路、变压器、电抗器和用户电力线路,为了求出电源至短路点电抗标幺值,需要逐一地求出这些元件的电抗标幺值。

5.2三相短路电流计算
电源取自距本变电所3km 外的35kV 变电站,用10kV 双回架空线路向本变电所供电,出口处的短路容量为250MV ·A 。

图5.1短路电流计算图
求10kV 母线上K-1点短路和380V 低压母线上K-2点短路电流和短路容量。

电源侧短路容量定为S k =250MV ·A ⑴.确定基准值:
取 S d =100MV ·A U c1=10.5kV I d1=
1
c d U 3S =100MV ·A/(3*10.5kV )=5.50kA
Z d = d
S U 2
cl =(10.5kV)2/100MV ·A=1.10Ω
⑵.计算:
① 电力系统
X 1*= S d /S k =100MV ·A/250MV ·A=0.4 ② 架空线路
X 2*=X 0LS d /U c 2=0.35Ω/km*3km*2
)
5.10(·100kV A
MV =0.95 ③ 电力变压器
X 3
*
=U k %S d /100S NT =A
·kV 500*100A
·kV 10*100*43=8
⑶.求K-1点的短路电路总阻抗标幺值及三相短路电流和短路容量: ① 总电抗标幺值
X *∑(k-1) =X 1*+X 2*=0.4+0.95=1.35
② 三相短路电流周期分量有效值
I k-1(3) = I d1/X *∑(k-1) =5.50kA/1.35=4.07kA
③ 其他三相短路电流
I k-1”(3) =I ∞k-1 (3) = I k-1(3) =4.07kA i sh (3) =2.55*4.07kA=10.38kA I sh (3) =1.51*4.07kA=6.15kA ④ 三相短路容量
S k-1(3) = S d /X *∑(k-1) =100MV ·A/1.35=74.1 MV ·A ·
⑷.求K-2点的短路电路总阻抗标幺值及三相短路电流和短路容量: 两台变压器并列运行: ① 总电抗标幺值
X *∑(k-2) =X 1*+X 2*+X 3*// X 4*=0.4+0.95+
2
8
=5.35
② 三相短路电流周期分量有效值
I k-2(3) = I d2/X *∑(k-2) =144.34kA/5.35=26.98kA
③ 其他三相短路电流
在10/0.4KV 变压器二次侧低压母线发生三相短路时,R ∑<3
1
<X ∑,可取
k sh =1.6,因此:
I k-2”(3) =I ∞k-2 (3) = I k-2(3) =26.98kA i sh (3) =2.26*26.98kA=60.97kA I sh (3) =1.31*26.98kA=35.34kA ④ 三相短路容量
S k-2(3) = S d /X *∑(k-2) =100MV ·A/5.35=18.69 MV ·A
两台变压器分列运行:
① 总电抗标幺值
X *∑(k-2) =X 1*+X 2*+X 3*=0.4+0.95+8=9.35 ② 三相短路电流周期分量有效值
I k-2(3) = I d2/X *∑(k-2) =144.34kA/9.35=15.44kA
③ 其他三相短路电流
I k-2”(3) =I ∞k-2 (3) = I k-2(3) =15.44kA i sh (3) =2.26*15.44kA=34.89kA I sh (3) =1.31*15.44kA=20.23kA
④ 三相短路容量
S k-2(3) = S d /X *∑(k-2) =100MV ·A/9.35=10.7MV ·A
表5.1 三相短路电流计算结果
短路计算点总电
抗标
幺值
三相短路电流/ kA
三相短路
容量
/MV·A X*∑I k (3)I”(3)I∞(3)i sh (3)I sh(3)S k (3)
k-1 1.35 4.07 4.07 4.07 10.38 6.15 74.1
k-2 变压器并列运

5.35
26.9
8
26.9
8
26.9
8
60.9
7
35.3
4
18.69 变压器分列运

9.35 15.44 15.44 15.44
34.8
9
20.2
3
10.7
第6章变电所高压进线、一次设备和低压出线的选择
6.1用电单位总计算负荷
对于本单位而言,变电所变压器高压侧的计算负荷即是全厂及家属住宅区的总计算负荷,因此,不需要采用需要系数逐级计算法和全厂需要系数法进行计算。

P= P c +△P T=619.506+10.03=629.91kW
Q= Q c+△Q T =285.966+51.36=317.33kvar
S=705.33kV·A
I=40.72A
6.2高压进线的选择与校验
高低压配电电路最普遍的两种户外结构是架空线和电缆。

架空线的主要优点是:设备简单,造价低;有故障易于检修和维护;利用空气绝缘,建造比较容易。

电力电缆的建设费用高于架空线路,具有美观、占地少,传输性能稳定、可靠性高等特点。

对于高压开关柜,从柜下进线时一般需通过电缆引入,因此,采用架空线长距离传输,再由电缆线引入的接线方式。

对给变压器供电的高压进线以及变电所用电电源线路,因短路容量较大而负
荷电流较小,一般先按短路热稳定条件选择导体截面,然后再校验发热条件。

6.2.1架空线的选择
①按热稳定条件选择导体截面:长度为3km
t取1.2(取值为继电器动作时间)查表,C=87A·s·mm2,
ima
t/C=4.07*103*2.1/87=51.25 mm2
A≥A min=I∞*103
ima
初选70 mm2的LGJ型钢芯铝绞线。

②按发热条件进行校验:
全厂总计算电流为:I c=40.72A
查表,70 mm2的LGJ型钢芯铝绞线在25℃、30℃时的载流量为275A、
259A,大于40.72A,故满足条件。

6.2.2电缆进线的选择
①按热稳定条件选择导体截面:
t取1.2
查表,C=143A·s·mm2,
ima
t/C=4.07*103*2.1/143=31.18mm2
A≥A min=I∞*103
ima
初选35mm2的YJY型交联聚乙烯绝缘铜芯电力电缆
②按发热条件进行校验:
全厂总计算电流为:I c=32.45A
查表,35 mm2的YJY型三芯交联聚乙烯绝缘铜芯电力电缆在25℃的空
气中敷设时的载流量为172A,在20℃直埋敷设时的载流量为166A,大
于计算电流,故选择35mm2的YJY型三芯交联聚乙烯绝缘铜芯电力电
缆。

6.3变电所一次设备的选择。

相关文档
最新文档