2014年山东省潍坊市中考数学试题及答案
潍坊中考数学试题及答案
潍坊中考数学试题及答案潍坊市是山东省的一个地级市,每年都会举行中考,其中包括了数学科目的考试。
为了帮助同学们更好地复习和备考,本文将提供潍坊中考数学试题及答案。
以下是一些典型的试题示例及对应的答案解析。
题目一:已知正方形ABCD的边长为8cm,点E在BC边上,且BE=3cm,请计算三角形AEC的面积。
解答一:首先我们可以通过求得AE的长度来计算三角形AEC的面积。
根据正方形性质可知点E与点C重合,所以AE = AC - EC = 8cm - 3cm =5cm。
利用三角形的面积公式:面积 = 底边 ×高 ÷ 2,我们可以计算得到三角形AEC的面积为:5cm × 3cm ÷ 2 = 7.5cm²。
题目二:小明去超市买水果,他买了10个苹果和5个橙子,苹果的单价为2元/个,橙子的单价为3元/个。
请计算小明购买水果的总价。
解答二:根据题目可知,小明购买的苹果总价为10个 × 2元/个 = 20元,橙子总价为5个 × 3元/个 = 15元。
所以小明购买水果的总价为20元 + 15元 = 35元。
题目三:已知函数f(x) = 2x² - 3x + 1,求其对称轴的方程和顶点坐标。
解答三:对称轴方程可以通过求解一次项系数的相反数得到。
由于f(x) = 2x²- 3x + 1,我们可以求得对称轴的方程为 x = -(-3) ÷ 2×2 = 3/4。
对称轴方程的解释是,函数在该直线上对称。
所以函数f(x)在x =3/4处有对称。
接下来我们求顶点坐标,顶点的x坐标可以通过对称轴的方程得到,即顶点的x坐标为 3/4。
将x = 3/4代入函数f(x)中,我们可以求得顶点的y坐标:f(3/4) = 2(3/4)² - 3(3/4) + 1 = 3/8 - 9/4 + 1 = -17/8。
所以函数f(x)的顶点坐标为 (3/4, -17/8)。
山东省中考数学真题试题(含解析)
山东省中考数学真题试题(含解析)山东省潍坊市中考数学试卷一、选择题〔本大题共12小题,在每个小题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对的3分,选错、不选或选出的答案超出一个均记0分.〕0﹣11.〔3分〕〔2022?潍坊〕在|﹣2|,2,2,这四个数中,最大的数是〔〕 0﹣1 A. |﹣2| B. 2 C. 2 D. 2.〔3分〕〔2022?潍坊〕如下图几何体的左视图是〔〕A. B. C. D. 3.〔3分〕〔2022?潍坊〕2022年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来〞××××10 4.〔3分〕〔2022?潍坊〕如图汽车标志中不是中心对称图形的是〔〕A. B. C. D.5.〔3分〕〔2022?潍坊〕以下运算正确的选项是〔〕 22 A. += B. 3xy ﹣xy=3 2363 C. D.〔ab〕=ab =a+b 6.〔3分〕〔2022?潍坊〕不等式组的所有整数解的和是〔〕A. 2 B. 3 C. 5 D. 6 7.〔3分〕〔2022?潍坊〕如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,那么∠C的度数是〔〕1A. 70° B. 50° C. 45° 0D. 20° 8.〔3分〕〔2022?潍坊〕假设式子的图象可能是〔〕 A. B. +〔k﹣1〕有意义,那么一次函数y=〔k﹣1〕x+1﹣kC. D. 9.〔3分〕〔2022?潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A. 2 B. 4 C. 6 D. 8 10.〔3分〕〔2022?潍坊〕将一盛有缺乏半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如下图,水杯内径〔图中小圆的直径〕是8cm,水的最大深度是2cm,那么杯底有水局部的面积是〔〕A.〔2π﹣42B.〕cm 〔π﹣82C.〕cm 〔π﹣42D.〕cm 〔π﹣2〕cm 211.〔3分〕〔2022?潍坊〕如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,那么该纸盒侧面积的最大值是〔〕A. cm 2B. cm 2C. cm 2D. cm 2 212.〔3分〕〔2022?潍坊〕二次函数y=ax+bx+c+2的图象如下图,顶点为〔﹣1,0〕,2以下结论:①abc<0;②b﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是〔〕A. 1 B. 2 C. 3 D. 4 二、填空题〔本大题共6小题,每题3分,共18分,只要求填写最后结果.〕 13.〔3分〕〔2022?潍坊〕“植树节〞时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.这组数据的众数是5,那么该组数据的平均数是. 14.〔3分〕〔2022?潍坊〕如图,等腰梯形ABCD 中,AD∥BC,BC=50,AB=20,∠B=60°,那么AD= .215.〔3分〕〔2022?潍坊〕因式分解:ax﹣7ax+6a= . 16.〔3分〕〔2022?潍坊〕观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D处的俯角是30°.楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是 m.317.〔3分〕〔2022?潍坊〕如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共局部的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共局部的面积记为S2;?,以此类推,那么Sn= .〔用含n的式子表示〕18.〔3分〕〔2022?潍坊〕正比例函数y1=mx〔m>0〕的图象与反比例函数y2=〔k≠0〕的图象交于点A〔n,4〕和点B,AM⊥y轴,垂足为M.假设△AMB 的面积为8,那么满足y1>y2的实数x的取值范围是.三、解答题〔本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.〕 19.〔9分〕〔2022?潍坊〕为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.〔1〕求A、B两种型号家用净水器各购进了多少台;〔2〕为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.〔注:毛利润=售价﹣进价〕420.〔10分〕〔2022?潍坊〕某校了解九年级学生近两个月“推荐书目〞的阅读情况,随机抽取了该年级的局部学生,调查了他们每人“推荐书目〞的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少〞;当3≤n<5时,为“一般〞;当5≤n<8时,为“良好〞;当n≥8时,为“优秀〞.将调查结果统计后绘制成不完整的统计图表:阅读本数n〔本〕 1 2 3 4 5 6 7 8 9 人数〔名〕 1 2 6 7 12 x 7 y 1 请根据以上信息答复以下问题:〔1〕分别求出统计表中的x、y的值;〔2〕估计该校九年级400名学生中为“优秀〞档次的人数;〔3〕从被调查的“优秀〞档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.〔10分〕〔2022?潍坊〕如图,在△ABC中,AB=AC,以AC为直径的⊙O 交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.〔1〕求证:直线DF与⊙O相切;〔2〕假设AE=7,BC=6,求AC的长.522.〔11分〕〔2022?潍坊〕“低碳生活,绿色出行〞的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v〔米/分钟〕随时间t〔分钟〕变化的函数图象大致如下图,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T〔t,0〕,直线l 左侧局部的面积即为t分钟内王叔叔行进的路程s〔米〕.〔1〕①当t=2分钟时,速度v= 200 米/分钟,路程s= 200 米;②当t=15分钟时,速度v= 300 米/分钟,路程s= 4050 米.〔2〕当0≤t≤3和3<t≤15时,分别求出路程s〔米〕关于时间t〔分钟〕的函数解析式;〔3〕求王叔叔该天上班从家出发行进了750米时所用的时间t. 23.〔12分〕〔2022?潍坊〕如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.〔1〕求证:DE⊥AG;〔2〕正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角〔0°<α<360°〕得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②假设正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.624.〔14分〕〔2022?潍坊〕如图,在平面直角坐标系中,抛物线y=mx﹣8mx+4m+2〔m>2〕与y轴的交点为A,与x轴的交点分别为B〔x1,0〕,C〔x2,0〕,且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E〔t,0〕过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.〔1〕求抛物线的解析式;〔2〕当0<t≤8时,求△APC面积的最大值;〔3〕当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?假设存在,求2出此时t的值;假设不存在,请说明理由.7山东省潍坊市中考数学试卷解析一、选择题〔本大题共12小题,在每个小题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对的3分,选错、不选或选出的答案超出一个均记0分.〕0﹣11.〔3分〕〔2022?潍坊〕在|﹣2|,2,2,这四个数中,最大的数是〔〕 0﹣1 A. |﹣2| B. 2 C. 2 D.考点:实数大小比拟;零指数幂;负整数指数幂.. 分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的 0﹣1反而小,首先求出|﹣2|,2,2的值是多少,然后根据实数比拟大小的方法判断即可. 0﹣1解答:解:|﹣2|=2,2=1,2=0.5,∵∴0﹣1,,∴在|﹣2|,2,2,这四个数中,最大的数是|﹣2|.应选:A.点评:〔1〕此题主要考查了实数大小比拟的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.〔2〕此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a=﹣p 〔a≠0,p为正整数〕;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. 0〔3〕此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a=10〔a≠0〕;②0≠1. 2.〔3分〕〔2022?潍坊〕如下图几何体的左视图是〔〕A. B. C. D.考点:简单组合体的三视图.. 分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看可得矩形中间有一条横着的虚线.应选C.点评:此题考查了三视图的知识,左视图是从物体的左面看得到的视图. 8。
2014年山东潍坊数学中考模拟题(二)
2014年潍坊市初中学生学业考试(二)数 学 模 拟 试 题一、选择题(本题共12个小题,每小题3分,满分36分)将正确的答案代号写在下一页的表格中,否则不计分.其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似3.学完分式运算后,老师出了一道题“化简:x+3x+2+2-xx 2-4小明的做法是:原式= (x+3)(x-2)x 2-4-x-2x 2-4=x 2+x-6-x-2x 2-4=x 2-8x 2-4; 小亮的做法是:原式=(x+3)(x-2)+(2-x)=x 2+x-6+2-x=x 2-4;小芳的做法是:原式=x+3x+2 - x-2(x-2)(x+2)=x+3x+2- 1x+2=x+3-1x+2=1. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a,b 是方程x 2-x-2010=0的两个实数根,则a 2+2a+b 的值为( )A .2007B .2008C .2009D .20105.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为-1,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .-2-√3B .-1-√3C .-2+√3D .1-√37.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩8.如图,直线y=kx+b 经过点A(-1,-2)和点B(-2,0),直线y=2x 过点A ,则不等式2x <kx+b <0的解集为( ) A .x <-2 B .-2<x<-1C .-2<x<0D .-1<x<0 9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种10.如图,等边ABC △的边长为3,P 为BC 上一点, 且BP=1,D 为AC 上一点,若∠BPD=60°,则 CD 的长为() A .32B .23C .12D .3411.二次函数y=ax2+bx+c 的图象如图所示,则一次函数y=bx+b 2-4ac 与反比例函数y=a+b+c x在同一坐标系内的图象大致为()12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是() A .73cm B.74cm C .75cm D .76cm①②(第12题3左视图俯视图 (第5题图) (第6题图) (第8A DC PB(第10题图) 60° x x x x标准对数视力表 0.1 4.00.12 4.1 0.154.2 (第2题图)姓名 二、填空题(本题共6个小题,每小题3分,满分18分) 13.若3x m+2y 2与3n x y 的和是单项式,则m n = . 14.设a ≠b ≠0,a 2+b 2-6ab=0,则a+bb-a的值等于 .15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组的解集是0≤x<1,那么a-b 的值为 .17.分解因式:227183x x ++= .18.如图,ABC △与AEF △中,AB=AE,BC=EF,∠B=∠E,AB 交EF 于D .给出下列结论:①∠AFC=∠C ;②DF=CF ;③ADE FDB △∽△;④∠BFD=∠CAF .其中正确的结论是 (填写所有正确结论的序号).三、解答题(本大题共8个小题,满分66分)19.(本题满分6分)化简:√18 - √92 -√3-√6√3- (√3+2)0- √(1-√2) 220.(本题满分6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21.(本题满分5分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)(第20题图)27 (第21题图)A E DB FC(第18题图)腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1173. ).23.(本题满分9分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y 与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分8分)如图,AB,BC分别是O⊙的直径和弦,点D为 BC上一点,弦DE交O⊙于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交O⊙于点M,连接MD ME,.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.BD CA(第22题图)A(第24题图)25.(本题满分12分)如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作ABDE∥,交∠BCD的平分线于点E,连接BE.(1)求证:BC=CD;(2)将BCE△绕点C,顺时针旋转90°得到DCG△,连接EG..求证:CD垂直平分EG.(3)延长BE交CD于点P.求证:P是CD的中点.26.(本题满分12分)如图,抛物线y=ax2+bx+3与x轴交于A B,两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P A C N,,,为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B D,重合),经过A B E,,三点的圆交直线BC于点F,试判断AEF△的形状,并说明理由;(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?(请直接写出结论).A DGECB(第25题图)。
山东省潍坊市中考数学试题(含答案)
义务教育基础课程初中教学资料2013年潍坊市初中学业水平考试一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22 D.21 2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.3.2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学技术法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D.1110865.0⨯ 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y < 2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).8.如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.549.一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时10.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解11.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y x y x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000yx y x12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ).A.40B.45C.51D.56二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.)13.方程012=++x xx 的根是_________________ 14.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可) 15.分解因式:()()=+-+a a a 322_________________.16.一次函数b x y +-=2中,当1=x 时,y <1;当1-=x 时,y >0则b 的取值范围是_____________.17.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数) 18.如图,直角三角形ABC 中,︒=∠90ACB ,10=AB ,6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.) 19.(本题满分10分)如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形. (2)若BC BE BD ⋅=2试判断直线CD 与⊙O 的位置关系,并说明理由.20.(本题满分10分)为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?21.(本题满分10分)随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城市的交通状况进行了调查,得到的数据如下表所示:(1)根据上班花费时间,将下面的频数分布直方图补充完整; (2)求15个城市的平均上班堵车时间(计算结果保留一位小数); (3)规定: %100⨯-=上班堵车时间上班花费时间上班堵车时间城市堵车率,比如:北京的堵车率=%100145214⨯-=36.8%;沈阳的堵车率=%100123412⨯-=54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.22.(本题满分11分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'''D F CE ,旋转角为α.(1)当点'D 恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC ,且0°<α<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.23.(本题满分12分)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?24.(本题满分13分)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫⎝⎛232,D 在抛物线上,直线l 是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线l 平分四边形OBDC 的面积,求k 的值. (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l 交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.。
2014年全国各地中考数学试卷解析版分类汇编_阅读理解、图表信息
阅读理解、图表信息一、选择题1. (2014•山东潍坊,第12题3分)如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(—2012,2)B .(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M 的对应点的坐标,即可得规律.解答:∵正方形ABCD ,点A (1,3)、B (1,1)、C (3,1).∴M 的坐标变为(2,2)∴根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M 的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A .点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.(2014山东济南,第14题,3分)现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D .二、填空题1.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.=××+=三、解答题1. (2014•四川巴中,第22题5分)定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.考点:新定义.分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.解答:3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:<x<.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.2.(2014•湖南张家界,第23题,8分)阅读材料:解分式不等式<0解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)≤0(2)>0.或②或②3.(2014•江西抚州,第24题,10分)【试题背景】已知:∥m∥n∥,平行线与m、m与n、n与之间的距离分别为d1、d2、d3,且d 1 =d3 = 1,d2 = 2 . 我们把四个顶点分别在、m、n、这四条平行线上的四边形称为“格线四边形”.【探究1】 ⑴ 如图1,正方形ABCD 为“格线四边形”,BE l ⊥于点E ,BE 的反向延长线交直线于点F . 求正方形ABCD 的边长.【探究2】 ⑵ 矩形ABCD 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形ABCD 的宽为--------------------2. (直接写出结果即可)【探究3】 ⑶ 如图2,菱形ABCD 为“格线四边形”且∠ADC =60°,△AEF 是等边三角形,AE ⊥k 于点E , ∠AFD =90°,直线DF 分别交直线、于点G 、M . 求证:EC DF =.【拓 展】 ⑷ 如图3,∥,等边三角形ABC 的顶点A 、B 分别落在直线、上,AB ⊥k于点B ,且AB =4 ,∠A C D =90°,直线CD 分别交直线、于点G 、M ,点D 、E 分别是线段GM 、BM 上的动点,且始终保持AD =AE ,DH l ⊥于点H .猜想:DH 在什么范围内,BC ∥DE ?并说明此时BC ∥DE 的理由.解析:(1) 如图1,∵BE ⊥l , l ∥k ,∴∠AEB=∠BFC=90°,又四边形ABCD 是正方形,∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,∴⊿ABE ≌⊿BCF(AAS),∴AE=BF=1 , ∵BE=d 1+d 2=3 , ∴=,.(2)如图2,3,⊿ABE ∽⊿BCF,∴BF BCAE AB ==21 或BF BCAE AB ==12∵BF=d 3=1 ,∴AE=12 或AE =2∴AB==2 或AB==∴矩形ABCD 的宽为2(注意:要分2种情况讨论)(3)如图4,连接AC ,∵四边形ABCD 是菱形,∴AD=DC,又∠ADC=60°,∴⊿ADC 是等边三角形,∴AD=AC ,∵AE ⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,∵⊿AEF 是等边三角形, ∴ AF=AE,∴⊿AFD ≌⊿AEC(HL), ∴EC=DF.(4)如图5,当2<DH <4时, BC ∥DE .理由如下:连接AM,∵AB ⊥k , ∠ACD=90°,∴∠ABE=∠ACD=90°,∵⊿ABC 是等边三角形,∴AB=AC ,已知AE=AD, ∴⊿ABE ≌⊿ACD(HL),∴BE=CD ;在Rt ⊿ABM 和Rt ⊿ACM 中,AB ACAM AM=⎧⎨=⎩ ,∴Rt ⊿ABM ≌Rt ⊿ACM(HL), ∴ BM=CM ;∴ME=MD,∴ME MD MB MC= , ∴ED ∥BC. 4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x 的函数y=2kx 2﹣(4kx+1)x ﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.=﹣销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
2014年山东潍坊中考试题及答案
绝密★启用前2014年初中毕业升学考试(山东省潍坊卷)化学(带解析)考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________ 题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、空气成分中,体积健康约占78%的是A.氮气B.氧气C.稀有气体D.二氧化碳2、下列物质在氧气中燃烧,产生大量白烟的是A.铁丝B.红磷C.木炭D.硫磺3、下列物质放入水中,能形成溶液的是A.面粉B.冰块C.花生油D.蔗糖4、下列实验操作不正确的是A B CD5、下列变化属于物理变化的是A.纸张燃烧B.铜表面生成铜绿C.活性炭吸附有色气体D.含氢氧化铝的药物治疗胃酸过多症6、下列物质的主要成分(括号内物质)属于氧化物的是A.磷矿粉[Ca3(PO4)2] B.菱铁矿(FeCO3)C.辉铜矿(Cu2S)D.铝土矿(Al2O3)7、水是生命活动不可缺少的物质。
下列说法不正确的是A.自来水是纯净物B.肥皂水可以区分软水和硬水C.工业废水不能直接排放D.过量使用农药、化肥会造成水体污染8、下列物质分别放入水中,溶液温度明显降低的是A.浓硫酸B.硝酸铵C.氧化钙D.氢氧化钠9、下列化学方程式的书写不正确的是A.CO2+Ca(OH)2=CaCO3↓+H2OB.H2SO4+BaCl2=BaSO4↓+2HClC.Al+CuSO4=AlSO4+CuD.Na2CO3+CaCl2=CaCO3↓+2NaCl10、为了防止事故发生,下列做法不正确的是A.厨房煤气泄漏要先关闭阀门,再开窗通风B.变霉有大米,要煮熟后食用C.燃放烟花爆竹时,要远离人群和可燃物D.电器失火后首先要切断电源11、某饼干包装袋上的说明(部分)如下:商品名称XX饼干配料小麦粉、白砂糖、精炼植物油、鲜鸡蛋、奶油、食盐、膨松剂、食用香精规格400g储藏方法存放于阴凉干爽处,避免阳光直射下列说法正确的是A.鲜鸡蛋、奶油中富含蛋白质B.饼干配料中只有白砂糖属于糖类C.从营养均衡的角度看,饼干中缺乏维生素类营养素D.饼干配料中不含无机盐12、下列各图中和分别表示两种不同元素的原子,其中表示混合物的是()13、小军同学自制汽水所需配料如图所示。
山东潍坊某中学2013-2014学年九年级下学期期中考试(数学)
2013—2014学年度第二学期期中质量检测九年级数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题纸上.2.第I卷(选择题)每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他的答案,不能答在试卷上.3.第II卷(非选择题),请用黑色中性笔直接答在答题纸上。
第Ⅰ卷(选择题共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.4的算术平方根是()A.2 B.2±C.±2D.22. 雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解,摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现他们有的是复合体,有的是生物颗粒,有的是矿物质,形状各异,平均直径大约在10-20微米左右,其中20微米用科学记数法可表示为()米.(1米=1 000 000微米)A.2×105B.0.2×10-4C.2×10-5D.2×10-43. 从不同方向看一只茶壶,你认为是俯视图的是()4. 在一次九年级学生视力检查中,随机抽查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8则下列说法正确的是()A.这组数据的中位数是4.4 B.这组数据的众数是4.5C.这组数据的平均数是4.3 D.这组数据的极差是0.55. 不等式组235324xx+>⎧⎨-<⎩的解集等于()A B C DA.1<x<2 B.x>1 C.x<2 D.x<1或x>26. 反比例函数y=kx在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.47. 在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1个B.2个C.3个D.4个8.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为AN的中点,P是直径MN上一动点,则PA+PB的最小值为()A.22B.2C.1 D.29.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2C.x>2 D. x<-1或x>210.关于x的一元二次方程x2-(2a-3)x+a-2=0根的情况是()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.根的情况无法确定第6第7第8(-1,1)1y(2,2)2yxyO11. 在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1) D.(2.4,1)12.对于点A(1x,1y),B(2x,2y),定义一种运算:A⊕ B=(1x+2x)+(1y+2y).例如A(-5,4),B(2,-3),A⊕ B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上 B.在同一条抛物线上C.在同一反比例函数图象上 D.是同一个正方形的四个顶点第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13. 方程113262xx x-=--的根是__________.14. 如图,△ABC中,点D在AB上,请填上一个你认为适合的条件,使得△ACD∽△ABC.15.分解因式:x3﹣18x﹣3x2 =_________.16. 如图,如图,AB是圆0直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是_____________17. 下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.第16第14题18.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19. (本题满分9分)为响应我市“中国梦”•“昌邑梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖a0.1二等奖10 0.2三等奖b0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a= ,b= ,n= .(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.20. (本题满分10分)中国“海巡01”轮4月5日下午4时30分左右,在南纬25度、东经101度附近南印度洋水域通过黑匣子搜寻仪侦听到频率37.5KHz每秒一次的疑似马航失联客机MH370黑匣子脉冲信号,为进一步核实,派出一艘核潜艇继续检测.如图,核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(精确到米,参考数据:2≈1.414,3≈1.732,5≈2.236)21.(本题满分10分)设C为线段AB的中点,四边形BCDE是以BC为一边的正方形.以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)BC2=CF•EG.22. (本题满分12分)我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:西瓜种类A B C每辆汽车运载量(吨) 4 5 6每吨西瓜获利(百元)16 10 12(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?23. (本题满分12分)如图,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:(1)四边形CGEF的面积S关于x的函数表达式和x的取值范围;(2)面积S是否存在着最小值?若存在,求其最小值;若不存在,请说明理由;(3)当x为何值时,S的数值等于x的4倍.24.(本题满分13分)如图,经过点A (0,-4)的抛物线y =21x 2+bx +c 与x 轴相交于B (-2,0)、C 两点,O 为坐标原点. (1)求抛物线的解析式; (2)将抛物线y =21x 2+bx +c 向上平移27个单位长度,再向左平移m (m >0)个单位长度得到新抛物线.若新抛物线的顶点P 在△ABC 的内部,求m 的取值范围; (3)设点M 在y 轴上,∠OMB +∠OAB =∠ACB ,求AB 的长.九年级数学试题参考答案一、选择题1.D2.C3.A4.C5.A6.C7.C8.B9.D 10.C 11.C 12.A 二、填空题13. x =-2 14. ∠2=∠ACB (答案不唯一) 15. x (x -6)(x +3) 16. 433π- 17. n 2+n +2 18. ①③三、解答题19. 解:(1)观察统计表知,二等奖的有10人,频率为0.2,故参赛的总人数为10÷0.2=50人,a=50×0.1=5人,b=50×0.4=20.n=0.4×360°=144°,故答案为:5,20,144;……(3分)(2)列表得:A B C王李A- AB AC A王A李B BA- BC B王B李C CA CB- C王C李王王A王B王C- 王李李李A李B李C李王-∵共有20种等可能的情况,恰好是王梦、李刚的有2种情况,∴恰好选中王梦和李刚两位同学的概率P=220=110.………(6分)20. 解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=4000(米),∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC-∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=4000(米).………(3分)在Rt△BEC中,EC=BC•sin60°=4000×3=20003(米).……(3分)∴CF=CE+EF=20003+500≈3964(米).………(4分)答:海底黑匣子C点处距离海面的深度约为3964米.21. 证明:(1)连接BD,∵四边形BCDE是正方形,∴∠DBA=45°,∠DCB=90°,即DC⊥AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠DBA=45°,∴∠ADB=90°,即BD⊥AD,∵BD为半径,∴AD是⊙B的切线;………(5分)(2)连接DF,在△BDF中,BD=BF,∴∠BFD=∠BDF,又∵∠DBF=45°,∴∠BFD=∠BDF=67.5°,∠GDB=∠G =22.5°,在Rt△DEF与Rt△GCD中,∵∠GDE=∠GDB+∠BDE=67.5°=∠DFB,∠DCF=∠E=90°,∴Rt△DCF∽Rt△GED,∴CF CD ED EG=,又∵CD=DE=BC,∴BC2=CF•EG.………(5分)22. 解:(1)根据题意得4x+5y+6(40-x-y)=200,整理得y=-2x+40,则y与x的函数关系式为y=-2x+40;………(3分)(2)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,装运C种西瓜的车辆数为z辆,则x+y+z=40,∵40240x y zy x++=⎧⎨=-+⎩,∴z=x,∵x≥10,y≥10,z≥10,∴有以下6种方案:①x=z=10,y=20;装运A种西瓜的车辆数为10辆,装运B种西瓜的车辆数20辆,装运C种西瓜的车辆数为10辆;②x=z=11,y=18;装运A种西瓜的车辆数为11辆,装运B种西瓜的车辆数为18辆,装运C种西瓜的车辆数为11辆;③x=z=12,y=16;装运A种西瓜的车辆数为12辆,装运B种西瓜的车辆数为16辆,装运C种西瓜的车辆数为12辆;④x=z=13,y=14;装运A种西瓜的车辆数为13辆,装运B种西瓜的车辆数为14辆,装运C种西瓜的车辆数为13辆;⑤x=z=14,y=12;装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;⑥x=z=15,y=10;装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆;………(6分)(3)由题意得:1600×4x +1000×5y +1200×6z ≥250000,将y =-2x +40,z =x ,代入得3600x +200000≥250000,解得x ≥138139, 经计算当x =z =14,y =12;获利=250400元; 当x =z =15,y =10;获利=254000元;故装运A 种西瓜的车辆数为14辆,装运B 种西瓜的车辆数为12辆,装运C 种西瓜的车辆数为14辆; 或装运A 种西瓜的车辆数为15辆,装运B 种西瓜的车辆数为10辆,装运C 种西瓜的车辆数为15辆. ………(3分)23. 解:(1)S 四边形CGEF =S 梯形ABCD -S △EGD -S △EFA -S △BCF =12×(3+6)×4-12x (4−x )− 12x (6−x )− 12x •4=x 2-7x +18 ∵x >0,且3-x >0,4-x >0,6-x >0,∴0<x <3则所求的函数表达式是S =x 2-7x +18(0<x <3)………(4分) (2)S =x 2-7x +18=(x −72)2+234,由于x =72不在x 的取值范围内,而x 也取不到0, 则面积S 的最小值不存在. ………(4分) (3)由题意,令S =4x ,代入(1)题中求得的S 关于x 的表达式, 得x 2-7x +18=4x ,解方程,得x 1=2,x 2=9 ∵0<x <3,∴x 2=9不合题意.则当x =2时,S 的数值等于x 的4倍.………(4分) 24. 解:(1)∵点A (0,-4)、B (-2,0)在抛物线y =21x 2+bx +c 上,∴⎩⎨⎧=+--=0224c b c ,解得⎩⎨⎧-=-=41c b ,∴所求二次函数的解析式为y =21x 2-x -4;………(4分)知识像烛光,能照亮一个人,也能照亮无数的人。
潍坊历年数学中考试题(答案)
数学中考试题(代数部分)1.已知实数在数轴上对应的点如图所示,则下列式子正确的是( C ).A. B.C. D.2.计算的结果是( D )A. B.C.D.3.下列运算正确的是( B )A. B.C.D.4.计算的结果是( C )A.2 B.C.D.15.=( A )A. B.C.D.1-6.国家统计局统计资料显示,2005年第一季度我国国内生产总值为亿元,用科学记数法表示为( C )元.(用四舍五入法保留3个有效数字)A.B.C.D.7.函数中,自变量的取值范围是( D )A.B. C.且 D.且8.代数式的值为9,则的值为( A )A.7 B.18 C.12 D.99.关于x的一元二次方程的一个根为1,则实数p的值是( C )A.4 B.0或2 C.1 D.-110.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40时这一组数据的A.平均数但不是中位数 B.平均数也是中位数C.众数 D. 中位数但不是平均数1.今年在北京举行的“财富世界论坛”的有关资料显示,近几年中国和印度经济的年平均增长率分别为7.3%和6.5%,则近几年中国比印度经济的年平均增长率高(B ).A.0.8 B.0.08 C.0.8 % D.0.08%11.某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第罐按照原价销售,若用户继续购买,则从第罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是( B ).A.买甲站的 B.买乙站的C.买两站的都可以 D.先买甲站的1罐,以后再买乙站的12.某种品牌的同一种洗衣粉有三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为元、2.8元、1.9元.三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售三种包装的洗衣粉各1200千克,获得利润最大的是( B ).A.种包装的洗衣粉 B.种包装的洗衣粉C.种包装的洗衣粉 D.三种包装的都相同13.若求的值是( A ).A. B. C. D.14.已知,且,则函数与在同一坐标系中的图象不可能是( B )15.如图,在直角坐标系中,将矩形沿对折,使点落在点处,已知,,则点的坐标是( A ).A.(,) B.(,3)C.(,) D.(,)16.若一次函数的图象过第一、三、四象限,则函数()A.有最大值B.有最大值C.有最小值D.有最小值17.已知a,b,c是△ABC三条边的长,那么方程的根的情况是()(A)没有实数根(B)有两个不相等的正实数根(C)有两个不相等的负实数根(D)有两个异号实数根18、如图3,是三个反比例函数,,在轴上方的图象,由此观察得到,,的大小关系为【】A、>>B、>>C、>>D、>>19、如图,直线(>0)与双曲线在第一象限内的交点面积为R,与轴的交点为P,与轴的交点为Q;作RM⊥轴于点M,若△OPQ与△PRM的面积是4:1,则20.已知一次函数的图象与反比例函数的图象交于第四象限的一点,则这个反比例函数的解析式为__14.21.盒子里装有大小形状相同的3个白球和2个红球,搅匀后从中摸出一个球,放回搅匀后,再摸出第二个球,则取出的恰是两个红球的的概率是___22.小明与小亮玩掷骰子游戏,有两个均匀的正方体骰子,六个面上分别写有1,2,3,4,5,6这六个数.如果掷出的两个骰子的两个数的和为奇数则小明赢,如果掷出的两个骰子的两个数的和为偶数则小亮赢,则小明赢的概率是23不等式组的解是,那么的值等于 1 .24.在实数范围内分解因式:。
山东省潍坊市2013-2014学年九年级期末检测数学试题
a y= x 与
正比例函数 y=( b+c)x 在同一坐标系中的大致图象可能是(
)
A.
B
.
C
.
D
.
二、填空题 ( 10 小题,每小题 3 分,共 30 分)
1、如图,矩形 ABCD中, AB=2,BC= 3,对角线 AC的垂直平分线分别交
于点 E、F,连接 CE,则 CE的长 ________.
AD,BC
A
ED
O
BF
C
2 、在 Rt△ABC中,∠ C= 90 , AB =3,BC= 1,以 AC所在直线为轴旋转一周,
所得圆锥的侧面展开图的面积是 __________.
3、两个正四面体骰子的各面上分别标明数字 1,2,3,4 ,如同时投掷这两个正四
面体骰子,则着地的面所得的点数之和等于 5 的概率为
.
①
②
③
④
9、如图,菱形 ABCD 的边长为 2, ABC 45 ,则点 D 的坐标为
.
y
A
D
O (B)
C
x
10、如图, AB、 CD是半径为 5 的⊙ O的两条弦, AB = 8 ,CD = ,
MN是直径, AB⊥MN于点 E, CD⊥MN于点 F,P 为 EF 上的
任意一点,则 PA+PC的最小值为
1、若关于 x 的一元二次方程 x2 kx 4k 2 3 0 的两个实数根分别是 x1, x2 , 且满足
x1 x2 x1 x2 . 则 k 的值为( 存在
)(A)- 1 或 3
4
(B)- 1 ( C) 3 (D)不
4
2、某商品原价 200 元,连续两次降价 a%后售价为 148 元,下列所列方程正确
2014年山东省潍坊市中考数学试题(含答案)
山东省潍坊市2014年中考数学试卷一、选择题1.(3分)(2014•潍坊)的立方根是()A.﹣1 B.0C.1D.±1考点:立方根分析:根据开立方运算,可得一个数的立方根.解答:解:的立方根是1,故选:C.点评:本题考查了立方根,先求幂,再求立方根.A.B.C.D.考点:中心对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,故此选项不合题意;故选:C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.D.s in45°A.B.2﹣2C.5.考点:无理数分析:根据无理数是无限不循环小数,可得答案.解答:解:A、B、C、是有理数;D、是无限不循环小数,是无理数;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014•潍坊)一个几何体的三视图如图,则该几何体是()A.B.C.D.考点:由三视图判断几何体分析:由空间几何体的三视图可以得到空间几何体的直观图.解答:解:由三视图可知,该组合体的上部分为圆台,下部分为圆柱,故选:D.点评:本题只要考查三视图的识别和判断,要求掌握常见空间几何体的三视图,比较基础.5.(3分)(2014•潍坊)若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠3考点:二次根式有意义的条件;分式有意义的条件分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x+1≥0且x﹣3≠0,解得x≥﹣1且x≠3.故选B.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2014•潍坊)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°考点:圆周角定理;平行四边形的性质分析:首先根据直径所对的圆周角为直角得到∠BAE=90°,然后利用四边形ABCD 是平行四边形,∠E=36°,得到∠BEA=∠DAE=36°,从而得到∠BAD=126°,求得到∠ADC=54°.解答:解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选B.点评:本题考查了圆周角定理及平行四边形的性质,解题的关键是认真审题,发现图形中的圆周角.7.(3分)(2014•潍坊)若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1考点:解一元一次不等式组分析:分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.解答:解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得a≤﹣1.故选D.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(3分)(2014•潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()A.B.C.D.考点:动点问题的函数图象分析:利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.解答:解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选A.点评:本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.9.(3分)(2014•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的2A.27 B.36 C.27或36 D.18考点:等腰三角形的性质;一元二次方程的解分析:由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行10.(3分)(2014•潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.考点:概率公式;折线统计图分析:先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.解答:解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;∴此人在该市停留期间有且仅有1天空气质量优良的概率==.故选C.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.11.(3分)(2014•潍坊)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的)A.x<﹣1或0<x <3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3D.x<x<3考点:反比例函数与一次函数的交点问题.分析:根据观察图象,可得直线在双曲线上方的部分,可得答案.解答:解:如图:直线在双曲线上方的部分,故答案为:x<﹣1或0<x<3,故选:A.点评:本题考查了反比例函数与一次函数的交点问题,直线在双曲线上方的部分是不等式的解.12.(3分)(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2012,2) B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-平移专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点B的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点B的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.二、填空题13.(3分)(2014•潍坊)分解因式:2x(x﹣3)﹣8= 2(x﹣4)(x+1).考点:因式分解-十字相乘法等分析:首先去括号,进而整理提取2,即可利用十字相乘法分解因式.解答:解:2x(x﹣3)﹣8=2x2﹣6x﹣8=2(x2﹣3x﹣4)=2(x﹣4)(x+1).故答案为:2(x﹣4)(x+1).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,熟练掌握十字相乘法分解因式是解题关键.14.(3分)(2014•潍坊)计算:82014×(﹣0.125)2015= ﹣0.125.考点:幂的乘方与积的乘方;同底数幂的乘法分析:根据同底数幂的乘法,可化成指数相同的幂的乘法,根据积的乘方,可得答案.解答:解:原式=82014×(﹣0.125)2014×(﹣0.125)=(﹣8×0.125)2014×(﹣0.125)=﹣0.125,故答案为:﹣0.125.点评:本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.15.(3分)(2014•潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)考点:扇形面积的计算;等边三角形的判定与性质;相交两圆的性质分析:根据题意得出一部分弓形的面积,得出=﹣S进而得出即可.解答:解:连接O1O2,过点O1作O1C⊥AO2于点C,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形,∴CO1=O1O2sin60°=,∴S=××=,==,∴=﹣S=﹣,∴图中阴影部分的面积为:4(﹣)=2π﹣3.故答案为:2π﹣3.点评:此题主要考查了扇形的面积公式应用以及等边三角形的判定与性质,熟练记忆扇形面积公式是解题关键.16.(3分)(2014•潍坊)已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为9.考点:方差;中位数专题:计算题.分析:由于有6个数,则把数据由小到大排列时,中间有两个数中有1,而数据的中位数为1,所以中间两个数的另一个数也为1,即x=1,再计算数据的平均数,然后利用方差公式求解.解答:解:∵数据﹣3,x,﹣2,3,1,6的中位数为1,∴=1,解得x=1,∴数据的平均数=(﹣3﹣2+1+1+3+6)=1,∴方差=[(﹣3﹣1)2+(﹣2﹣1)2+(1﹣1)2+(1﹣1)2+(3﹣1)2+(6﹣1)2]=9.故答案为5.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.17.(3分)(2014•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔50米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是50米.考点:相似三角形的应用分析:根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.解答:解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=50m,FH=4m,∴=①,=②,∴=,解得BD=50m,∴=,解得AB=52m.故答案为:52.点评:本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.(3分)(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.考点:平面展开-最短路径问题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.解答:解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为25.点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.三、解答题19.(9分)(2014•潍坊)今年我市把男生“引体向上”项目纳入学业水平体育考试内容,考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试,测试成绩(单位:个)如图1:其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图(如图2);测试成绩/个频数频率1~5 20.106~10 60.3011~15 90.4516~20 3 0.15合计20 1.0011个以上(包含11个)“引体向上”?考点:频数(率)分布直方图;用样本估计总体;频数与频率;频数(率)分布表.分析:(1)直接利用平均数求法得出x的值,进而求出极差即可;(2)直接利用已知数据得出各组频数,进而求出频率,填表和补全条形图即可;(3)利用样本估计总体的方法得出,能完成11个以上的是后两组所占百分比,进而得出九年级男生能完成11个以上(包含11个)“引体向上”的人数.解答:解:(1)设被污损的数据为x,由题意知:=11.3,解得:x=19,根据极差的定义,可得该组数据的极差是:19﹣3=16,(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是:=0.30,测试成绩在11~15个的有9名,该组频数为9,相应频率是:=0.45,补全的频数、频率分布表和频数分布直方图如下所示:测试成绩/个频数频率1~5 2 0.106~10 6 0.3011~15 9 0.4516~20 3 0.15合计20 1.00(3)由频率分布表可知,能完成11个以上的是后两组,(0.45+0.15)×100%=60%,由此估计在学业水平体育考试中能完成11个以上“引体向上”的男生数是:220×60%=132(名).点评:此题主要考查了频数分布直方表以及条形统计图等知识,正确掌握相关定义求出各组频率是解题关键.20.(10分)(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;梯形分析:(1)连接OE,证出RT△OAD≌RT△OED,利用同弦对圆周角是圆心角的一半,得出∠AOD=∠ABE,利用同位角相等两直线平行得到OD∥BE,(2)由RT△COE≌RT△COB,得到△COD是直角三角形,利用S梯形ABCD=2S△COD,求出xy=48,结合x+y=14,求出CD.解答:(1)证明:如图,连接OE,∵CD是⊙O的切线,∴OE⊥CD,在Rt△OAD和Rt△OED,∴Rt△OAD≌Rt△OED(SAS)∴∠AOD=∠EOD=∠AOE,在⊙O中,∠ABE=∠AOE,∴∠AOD=∠ABE,∴OD∥BE.(2)解:与(1)同理可证:Rt△COE≌Rt△COB,∴∠COE=∠COB=∠BOE,∵∠DOE+∠COE=90°,∴△COD是直角三角形,∵S△DEO=S△DAO,S△OCE=S△COB,∴S梯形ABCD=2(S△DOE+S△COE)=2S△COD=OC•OD=48,即xy=48,又∵x+y=14,∴x2+y2=(x+y)2﹣2xy=142﹣2×48=100,在RT△COD中,CD====10,∴CD=10.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和全等三角形的判定与性质.关键是综合运用,找准线段及角的关系.21.(10分)(2014•潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.考点:解直角三角形的应用-仰角俯角问题分析:首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE 为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900米,CD=1.99×104米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得两海岛间的距离AB.解答:解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900米,CD=1.99×104米=19900米.在Rt△AEC中,∠C=60°,AE=900米.∴CE===300(米).在Rt△BFD中,∠BDF=45°,BF=900米.∴DF===900(米).∴AB=EF=CD+DF﹣CE=19900+300﹣900=19000+300(米).答:两海岛间的距离AB为(19000+300)米.点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.(12分)(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP 的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.考点:四边形综合题分析:(1)运用Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°求证;(2)△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QP求解;(3)先求出正方形的边长,再根据面积比等于相似边长比的平方,求得S△AGN=,再利用S四边形GHMN=S△AHM﹣S△AGN求解.解答:(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面积为4,∴边长为2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=1﹣=,∴四边形GHMN的面积是.点评:本题主要考查了四边形的综合题,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.23.(12分)(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.考点:一次函数的应用分析:(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.解答:解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88;(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值时4840辆/小时.点评:本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.24.(13分)(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.考点:二次函数综合题分析:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F 作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,四边形的面积,平行四边形的判定等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。
潍坊市中考数学试卷含答案解析
2017年山东省潍坊市中考数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分■在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1 •下列算式,正确的是()A. a3x a2=a6B. a3十a=a3C. a2+a2=a4D. (a2)2=a【考点】48:同底数幕的除法;35:合并同类项;46:同底数幕的乘法;47:幕的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2护,故C错误;故选(D)2 •如图所示的几何体,其俯视图是()【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3•可燃冰,学名叫天然气水合物”,是一种高效清洁、储量巨大的新能源•据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量•将1000亿用科学记数法可表示为()A. 1 X 103B. 1000X 108C. 1 X 1011D. 1 X 1014【考点】11:科学记数法一表示较大的数.【分析】科学记数法的表示形式为a x 10n的形式,其中K | a| v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同•当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n 是负数.【解答】解:将1000亿用科学记数法表示为:1x 1011.故选:C.4. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,- 1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (-2, 1)B. (- 1, 1)C. (1,- 2)D. (- 1,- 2)【考点】P6:坐标与图形变化-对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(-1, 0)表示,则这点所在的横线是x轴, 右下角方子的位置用(0, - 1),则这点所在的纵线是y轴,则当放的位置是(- 1, 1)时构成轴对称图形.故选B.5. 用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.”___ _____ _ . A B C D E FFH叼rn 1二i &虫玄;s f扌新A. B与CB. C与DC. E与FD. A与B【考点】25:计算器一数的开方;29:实数与数轴.【分析】此题实际是求-[的值.【解答】解:在计算器上依次按键转化为算式为- "=;计算可得结果介于-2与-1之间.故选A.6. 如图,/ BCD=90, AB// DE,贝a与/ B满足()A.Z a+Z P =180°B./ P-Z a =90°C./ P =/ aD./ a+/ B =90°【考点】JA平行线的性质.【分析】过C作CF/ AB,根据平行线的性质得到/ 仁/ a, / 2=180°-/ P,于是得到结论.【解答】解:过C作CF/ AB,••• AB// DE,••• AB// CF/ DE,• ••/ 1=/ a, / 2=180°-/ P,•••/ BCD=90 ,•••/ 1+/ 2=/ a+1800-/ P =90;.・./ P_/ a =90,故选B.8.—次函数y=ax+b 与反比例函数其中ab v 0,a 、b 为常数, 它们在同 \£7•甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示•丙、丁两人的成绩如图所示•欲选一名运动员参赛,从平均 数与方差两个因素分析,应选()甲乙 平均数9 8 方差11A .甲 B.乙 C.丙 D . 丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断. [1+1+1=1] =0.4,乙的平均数=「:「「「=8.2, 由题意可知,丙的成绩最好, 故选C .【解答】解: 丙的平均9+8+9+10+9+8+9+10+9-i- 10=9,丙的方差=T- y=.,C【考点】G2:反比例函数的图象;F3: —次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab v0,计算a- b 确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b v 0,满足ab v0,a- b>0,•••反比例函数y二」的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a v0,交y轴正半轴,则b>0, 满足ab v0,a- b v 0,反比例函数y= 的图象过二、四象限,所以此选项不正确;C由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b v0, 满足ab v0,.a- b>0,反比例函数y= 的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a v0,交y轴负半轴,贝U b v0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9 .若代数式宁」有意义,则实数x的取值范围是()A. x> 1B. x>2C. x> 1D. x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知: •••解得:x > 2 故选(B )10•如图,四边形 ABCD 为O O 的内接四边形•延长 AB 与DC 相交于点G , AO 丄CD,垂足为E,连接BD,Z GBC=50,则/ DBC 的度数为( )A . 50° B. 60° C. 80° D . 90° 【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:/ GBC=/ ADC=50,由垂径定理得:“ n, 则/ DBC=2/ EAD=80.【解答】解:如图A B 、D 、C 四点共圆, •••/ GBC W ADC=50, ••• AE 丄 CD, •••/ AED=90,•••/ EAD=90 - 50°=40°, 延长AE 交。
2014山东省潍坊市中考数学试卷-推荐下载
D.±1
2. (2014 山东潍坊,2,3 分)下列标志中不是中心对称图形的是( )
中国移动
【答案】C
A.
中国银行
B.
3. (2014 山东潍坊,3,3 分)下列实数中是无理数的是( )
A. 22 7
【答案】D
B.2-2
中国人民银行
C. 5.15 D.sin45°
4. (2014 山东潍坊,4,3 分)一个几何体的三视图如右图所示,则该几何体是( )
C. 【答案】D
精品资源
A.
B.
D.
JSCM 中考团队
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014-2015年山东省潍坊市七年级(上)期末数学试卷和答案
2014-2015学年山东省潍坊市七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.﹣ D.2.(3分)用平面去截下列几何体,不能截出三角形的是()A.B.C.D.3.(3分)平面上有三点A,B,C,如果AB=8,AC=5,BC=3,下列说法正确的是()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.(3分)如图,直线l1与l2相交于点O,OM⊥l1,若α=44°,则β=()A.56°B.46°C.45°D.44°5.(3分)有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.a+b>0 B.a﹣b>0 C.ab>0 D.6.(3分)2014年上半年,潍坊市经济运行呈现出良好发展态势,全市实现地区生产总值约为2380亿元,问比增长9.1%,增幅高于全国、全省平均水平,总量居全省第四位,主要经济指标增速度高于全省平均水平,其中2380亿这个数用科学记数法表示为()A.238×1010B.23.8×1010C.2.38×1011D.2.38×10127.(3分)下列说法中,正确的个数是()(1)相等的角是对顶角;(2)平面内,过一点有且只有一条直线和已知直线垂直;(3)两条直线相交有且只有一个交点;(4)两条直线相交成直角,则这个两条直线互相垂直.A.1 B.2 C.3 D.48.(3分)下列计算结果为﹣1的是()A.﹣2﹣1 B.﹣(﹣12)C.2014×(﹣)D.(﹣1)×(﹣|﹣1|)9.(3分)若﹣3a m b7与5a3b2m+n可以合并成一项,则m n的值是()A.3 B.1 C.﹣3 D.910.(3分)如图是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是()A.0.75万元B.1.25万元C.1.75万元D.2万元11.(3分)已知OC是∠AOB内的一条射线,下列所给的条件中,不能判断OC 是∠AOB的平分线的是()A.∠AOC+∠BOC=∠AOB B.∠AOC=∠AOBC.∠AOB=2∠AOC D.∠AOC=∠BOC12.(3分)有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140 B.142 C.210 D.212二、填空题(共10小题,每小题3分,满分30分)13.(3分)比较大小:﹣﹣.14.(3分)七年级1班有女生x人,男生人数是女生人数的1倍,七年级1班的总人数用代数式表示为人.15.(3分)按照如图所示的操作步骤,若输入x的值是5,则输出的值是97,若输入的x的值是﹣3,则输出的值为.16.(3分)如图,是由两个半圆组成的图形,已知大的半圆的半径是a,小的半圆的半径是b,则图中阴影部分的面积是.17.(3分)将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=度.18.(3分)定义新运算“⊗”,规定:a⊗b=a﹣4b,则12⊗(﹣1)=.19.(3分)某同学在计算11+x的值时,误将“+”看成了“﹣”,计算结果为20,那么11+x的值应为.20.(3分)计算:﹣+(﹣)4=.21.(3分)新学年开始,有位家长领着孩子前来学校的某个班级报名.他问这个班上的老师,班上现在有多少学生,老师答道:“如果再来一批同现在班上人数一样多的学生,再加上现有人数的一半,又加上现有人数的四分之一,如果你的孩子也里读书,那正好是100人”,请你帮这位家长算一算,现在班上学生人数是.22.(3分)一个正方体的六个面上分别标有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,三个正方体下底面所标数字分别是a,b,c,则a+b+c+abc=.三、解答题(共6小题,满分54分)23.(10分)(1)计算:[(﹣5)2×]×(﹣2)3÷7.(2)解方程:x+(20﹣x)=8.24.(12分)化简求值:(1)先化简再求代数式的值:5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)],其中2a+1=0;(2)已知A=a2+b2﹣c2,B=4a2+2b2+3c2,并且A+B+C=0,求多项式C.25.(8分)依照下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为()去分母,得2(2x+1)﹣(10x+1)=6()去括号,得4x+2﹣10x﹣1=6()(),得4x﹣10x=6﹣2+1()()得﹣6x=5.(合并同类项法则)(),得x=﹣()26.(8分)为积极响应我市创建“全国文明城市”的号召,某校组织1500名学生参加了“公德在我心,文明伴我行”知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,解答下列问题.(1)抽取了名学生的成绩进行统计;(2)计算所抽取的学生中,成绩为A等和D等的人数;(3)计算扇形统计图中D等所对应的圆心角的度数;(4)估计全校学生成绩为A等的大约有多少人?27.(8分)已知一个由50个偶数排成的数阵.(1)如图所示,框内的四个数有什么关系?(2)在数阵中任意作一类似于(1)中的框,设左上角的数为x,那么其他三个数怎样表示?(3)如果框内四个数的和是172,能否求出这四个数?(4)如果框内四个数的和是322,能否求出这四个数?28.(8分)某商品的定价是5元,元旦期间,该商品优惠活动:若一次购买该商品的数量,超过2千克,则超过2千克的部分,价格打8折;若一次购买的数量不超过2千克(含2千克),仍按原价付款.(1)根据题意,填写如表:(2)若一次购买的数量为x千克,请你写出付款金额y(元)与x(千克)之间的关系式;(3)若某顾客一次购买该商品花费了38元,求该顾客购买商品的数量.2014-2015学年山东省潍坊市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.﹣ D.【解答】解:﹣的绝对值是.故选:D.2.(3分)用平面去截下列几何体,不能截出三角形的是()A.B.C.D.【解答】解:A、过长方体的三个面得到的截面是三角形,符合题意;B、过圆柱的三个面得到的截面与圆和四边形有关,有符合题意;C、过三棱柱的三个面得到的截面是三角形,符合题意;D、过圆锥的顶点和下底圆心的面得到的截面是三角形,符合题意.故选:B.3.(3分)平面上有三点A,B,C,如果AB=8,AC=5,BC=3,下列说法正确的是()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【解答】解:从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:A.4.(3分)如图,直线l1与l2相交于点O,OM⊥l1,若α=44°,则β=()A.56°B.46°C.45°D.44°【解答】解:∵OM⊥l1,∴β+90°+α=180°,把α=44°代入,得β=46°.故选:B.5.(3分)有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.a+b>0 B.a﹣b>0 C.ab>0 D.【解答】解:∵由图可知,a<﹣1<0<b<1,∴a+b<0,故A错误;a﹣b<0,故B错误;ab<0,故C错误;<0,故D正确.故选:D.6.(3分)2014年上半年,潍坊市经济运行呈现出良好发展态势,全市实现地区生产总值约为2380亿元,问比增长9.1%,增幅高于全国、全省平均水平,总量居全省第四位,主要经济指标增速度高于全省平均水平,其中2380亿这个数用科学记数法表示为()A.238×1010B.23.8×1010C.2.38×1011D.2.38×1012【解答】解:将2380亿用科学记数法表示为:2.38×1011.故选:C.7.(3分)下列说法中,正确的个数是()(1)相等的角是对顶角;(2)平面内,过一点有且只有一条直线和已知直线垂直;(3)两条直线相交有且只有一个交点;(4)两条直线相交成直角,则这个两条直线互相垂直.A.1 B.2 C.3 D.4【解答】解:如图,两角相等,但不是对顶角,故(1)错误;在平面内,过一点有且只有一条直线和已知直线垂直,故(2)正确;两条直线相交有且只有一个交点,故(3)正确;两条直线相交成直角,则这个两条直线互相垂直,故(4)正确;即正确的个数是3个,故选:C.8.(3分)下列计算结果为﹣1的是()A.﹣2﹣1 B.﹣(﹣12)C.2014×(﹣)D.(﹣1)×(﹣|﹣1|)【解答】解:A、﹣2﹣1=﹣3,此选项错误;B、﹣(﹣12)=1,此选项错误;C、2014×(﹣)=﹣1,此选项正确;D、(﹣1)×(﹣|﹣1|)=1,此选项错误.故选:C.9.(3分)若﹣3a m b7与5a3b2m+n可以合并成一项,则m n的值是()A.3 B.1 C.﹣3 D.9【解答】解:由﹣3a m b7与5a3b2m+n可以合并成一项,得,m=3,2m+n=7.解得m=3,n=1.m n=31=3,故选:A.10.(3分)如图是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是()A.0.75万元B.1.25万元C.1.75万元D.2万元【解答】解:∵2010年的总收入为5万元,则打工收入占25%,∴5×25%=1.25(万元).故选:B.11.(3分)已知OC是∠AOB内的一条射线,下列所给的条件中,不能判断OC 是∠AOB的平分线的是()A.∠AOC+∠BOC=∠AOB B.∠AOC=∠AOBC.∠AOB=2∠AOC D.∠AOC=∠BOC【解答】解:A、如图所示,OC不是∠AOB的平分线,但是也符合∠AOC+∠BOC=∠AOB,故本选项错误;B、当∠AOC=∠AOB时,OC是∠AOB的平分线,故本选项正确;C、当∠AOC=∠AOB,∠BOC=∠AOB,∠AOB=2∠BOC时,OC是∠AOB的平分线,故本选项正确;D、当∠AOC=∠BOC时,OC是∠AOB的平分线,故本选项正确.故选:A.12.(3分)有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140 B.142 C.210 D.212【解答】解:根据题意分析可得:其中左边第一个黑色六边形与6个白色六边形相邻.即每增加一个黑色六边形,则需增加4个白色六边形.若链子上有35个黑色六边形,则链子共有白色六边形6+34×4=142个.故选B.二、填空题(共10小题,每小题3分,满分30分)13.(3分)比较大小:﹣<﹣.【解答】解:根据两个负数,绝对值大的反而小的规律得出:﹣<﹣.14.(3分)七年级1班有女生x人,男生人数是女生人数的1倍,七年级1班的总人数用代数式表示为x人.【解答】解:七年级1班的总人数用代数式表示为x+x=x人.故答案为:x.15.(3分)按照如图所示的操作步骤,若输入x的值是5,则输出的值是97,若输入的x的值是﹣3,则输出的值为1.【解答】解:由题意得,(5+5)2﹣a=97,解得:a=3,若输入的x的值是﹣3,则输出的值为(﹣3+5)2﹣3=4﹣3=1.故答案为:1.16.(3分)如图,是由两个半圆组成的图形,已知大的半圆的半径是a,小的半圆的半径是b,则图中阴影部分的面积是πa2﹣πb2.【解答】解:图中阴影部分的面积是πa2﹣πb2.故答案为:πa2﹣πb2.17.(3分)将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=53度.【解答】解:∵∠AOD=∠AOC+∠DOC=∠AOC+90°=127°,∴∠AOC=37°,又∵∠AOC+∠BOC=37°+∠BOC=90°,∴∠BOC=53°.故答案为53.18.(3分)定义新运算“⊗”,规定:a⊗b=a﹣4b,则12⊗(﹣1)=8.【解答】解:根据题中的新定义得:12⊗(﹣1)=4+4=8,故答案为:819.(3分)某同学在计算11+x的值时,误将“+”看成了“﹣”,计算结果为20,那么11+x的值应为2.【解答】解:根据题意得:11﹣x=20,解得x=﹣9,则11+x=11+(﹣9)=2故答案为:220.(3分)计算:﹣+(﹣)4=﹣.【解答】解:原式=﹣+=﹣.故答案为:﹣.21.(3分)新学年开始,有位家长领着孩子前来学校的某个班级报名.他问这个班上的老师,班上现在有多少学生,老师答道:“如果再来一批同现在班上人数一样多的学生,再加上现有人数的一半,又加上现有人数的四分之一,如果你的孩子也里读书,那正好是100人”,请你帮这位家长算一算,现在班上学生人数是36.【解答】解:设现在班上学生人数是x人,根据题意可得:(1+1++)x+1=100,解得:x=36,故答案为:36.22.(3分)一个正方体的六个面上分别标有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,三个正方体下底面所标数字分别是a,b,c,则a+b+c+abc=﹣85.【解答】解:由图可知,∵与﹣2相邻的面的数字有﹣1、﹣4、﹣5、﹣6,∴﹣2的对面数字是﹣3,∵与﹣4相邻的面的数字有﹣1、﹣2、﹣3、﹣5,∴﹣4的对面数字是﹣6,∴a=﹣3,b=﹣6,c=﹣4,∴a+b+c+abc=﹣3﹣6﹣4﹣3×6×4=﹣85.故答案为:﹣85.三、解答题(共6小题,满分54分)23.(10分)(1)计算:[(﹣5)2×]×(﹣2)3÷7.(2)解方程:x+(20﹣x)=8.【解答】解:(1)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7=[﹣15+8]×(﹣8)÷7=﹣7×(﹣8)÷7=56÷7=8;(2)x+(20﹣x)=8,2x+3(20﹣x)=48,2x+60﹣3x=48,﹣x=﹣12,x=12.24.(12分)化简求值:(1)先化简再求代数式的值:5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)],其中2a+1=0;(2)已知A=a2+b2﹣c2,B=4a2+2b2+3c2,并且A+B+C=0,求多项式C.【解答】解:(1)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]=5a2﹣(a2+5a2﹣2a﹣2a2+6a),=5a2﹣(4a2+4a),=a2﹣4a,当2a+1=0,即a=﹣时,原式=+2=2.(2)∵A=a2+b2﹣c2,B=4a2+2b2+3c2,A+B+C=0,∴C=﹣(A+B)=﹣(a2+b2﹣c2+4a2+2b2+3c2)=﹣(5a2+3b2+2c2)=﹣5a2﹣3b2﹣2c2.25.(8分)依照下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为(分数的性质)去分母,得2(2x+1)﹣(10x+1)=6(等式的性质2)去括号,得4x+2﹣10x﹣1=6(乘法分配律)(移项,得),得4x﹣10x=6﹣2+1(等式的性质1)(合并同类项)得﹣6x=5.(合并同类项法则)(系数化为1,得),得x=﹣(等式的性质2)【解答】解:原方程可变形为(分数的性质)去分母,得2(2x+1)﹣(10x+1)=6(等式的性质2)去括号,得4x+2﹣10x﹣1=6(乘法分配律)(移项,得),得4x﹣10x=6﹣2+1(等式的性质1)(合并同类项)得﹣6x=5.(合并同类项法则)(系数化为1,得),得x=﹣(等式的性质2).26.(8分)为积极响应我市创建“全国文明城市”的号召,某校组织1500名学生参加了“公德在我心,文明伴我行”知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,解答下列问题.(1)抽取了200名学生的成绩进行统计;(2)计算所抽取的学生中,成绩为A等和D等的人数;(3)计算扇形统计图中D等所对应的圆心角的度数;(4)估计全校学生成绩为A等的大约有多少人?【解答】解:(1)抽取的学生数50÷25%=200名,故答案为:200.(2)抽取的学生中,成绩为A等的人数为200×60%=120人D等的人数为200﹣120﹣50﹣20=10人;(3)扇形统计图中D等所对应的圆心角的度数×360°=18°.(4)估计全校学生成绩为A等的大约人数1500×60%=900人.27.(8分)已知一个由50个偶数排成的数阵.(1)如图所示,框内的四个数有什么关系?(2)在数阵中任意作一类似于(1)中的框,设左上角的数为x,那么其他三个数怎样表示?(3)如果框内四个数的和是172,能否求出这四个数?(4)如果框内四个数的和是322,能否求出这四个数?【解答】解:(1)框内的4个数:16+26=14+28;26﹣14=12,28﹣16=12,(2)∵其中的一个数为x,∴另一个数为:x+2,x+12,x+14,(3)∵四个数的和是172,∴x+x+2+x+12+14+x=172,解得:x=36,∴这4个数是:36,38,48,50.(4)当x+x+2+x+12+14+x=322,解得:x=73.5,故四个数的和不可能是322.28.(8分)某商品的定价是5元,元旦期间,该商品优惠活动:若一次购买该商品的数量,超过2千克,则超过2千克的部分,价格打8折;若一次购买的数量不超过2千克(含2千克),仍按原价付款.(1)根据题意,填写如表:(2)若一次购买的数量为x千克,请你写出付款金额y(元)与x(千克)之间的关系式;(3)若某顾客一次购买该商品花费了38元,求该顾客购买商品的数量.【解答】解:(1)填表如下:故答案为:10,18.(2)∵购买种子数量x与付款金额y之间的解析式,当0≤x≤2时,y=5x,当x>2时,y=10+0.8(x﹣2)×5=4x+2,(3)依题意有4x+2=38,解得:x=9.答:该顾客购买商品的数量9千克.。
潍坊市中考数学试卷及答案(Word解析版)
潍坊市初中学业水平考试数学试题一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22 D.21 答案:C .考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.答案:A .考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D.1110865.0⨯答案:C .考点: 科学记数法的表示。
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).答案:B .考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数答案:D .考点:统计量数的含义.点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑.与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度. 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).答案:C .考点:变量间的关系,函数及其图象.点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
潍坊市中考数学试卷含答案解析(版)
潍坊市中考数学试卷含答案解析(版)潍坊市中考数学试卷含答案解析(版)一、选择题(共30小题,每小题4分,共120分)1. (3x – 1)(2x + 3)的乘积等于下列哪个多项式?A) 6x^2 + 7x – 3B) 6x^2 - 7x + 3C) 6x^2 - 7x - 3D) 6x^2 + 7x + 3答案:A解析:使用分配律展开,得到(3x * 2x + 3x * 3 - 1 * 2x - 1 * 3),整理得6x^2 + 7x - 3。
2. 以下三个指数恒等式中正确的是:A) (2^3)^4 = 2^7B) (2^2)^3 = 2^6C) (2^4)^3 = 2^12D) (2^5)^2 = 2^10答案:B解析:根据指数的乘法法则,我们将幂相乘。
(2^2)^3 = 2^(2*3) = 2^6。
3. 简化根式√12 + 2√27 - 3√48的结果是:A) 5√2B) 2√5C) 3√2D) 4√3答案:B解析:将根式依次应用化简公式,√12 + 2√27 - 3√48 = 2√3 + 2(3√3) - 3(4√3) = 2√3 + 6√3 - 12√3 = -4√3。
根式√3可化简为√3 * 1 = √3。
4. 若正整数a、b满足a:b = 4:5,且a+b=180,那么a的值等于:A) 100B) 80C) 60D) 48答案:B解析:根据题意得到的等式是a/b = 4/5,将其转化为a = (4/5) * b。
将a + b = 180代入,得到(4/5) * b + b = 180,化简得到b = 80,代入a = (4/5) * b,可得到a = 64。
因此,a的值等于80。
5. 若平行四边形ABCD中,∠A = 80°,则∠C的度数是:A) 80°B) 100°C) 120°D) 140°答案:B解析:平行四边形的对角线互相平分,所以∠C = 180° - ∠A = 180°- 80° = 100°。
2014年山东省潍坊市中考数学试卷.
2014年山东省潍坊市中考数学试卷一、选择题1.(3分)(2014•潍坊)的立方根是( ).CD ..4.(3分)(2014•潍坊)一个几何体的三视图如图,则该几何体是( ).CD .5.(3分)(2014•潍坊)若代数式有意义,则实数x的取值范围是( )6.(3分)(2014•潍坊)如图,▱ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E=36°,则∠ADC 的度数是( )7.(3分)(2014•潍坊)若不等式组无解,则实数a 的取值范围是( )8.(3分)(2014•潍坊)如图,已知矩形ABCD 的长AB 为5,宽BC 为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交CD 于点F .设BE=x ,FC=y ,则点E 从点B 运动到点C 时,能表示y 关于x 的函数关系的大致图象是( ).CD .9.(3分)(2014•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=010.(3分)(2014•潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是( ).CD .11.(3分)(2014•潍坊)已知一次函数y 1=kx+b (k <0)与反比例函数y 2=(m ≠0)的图象相交于A 、B 两点,其12.(3分)(2014•潍坊)如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )二、填空题 13.(3分)(2014•潍坊)分解因式:2x (x ﹣3)﹣8= _________ .14.(3分)(2014•潍坊)计算:82014×(﹣0.125)2015=_________.15.(3分)(2014•潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为_________.(结果保留π)16.(3分)(2014•潍坊)已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为_________.17.(3分)(2014•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD 和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A 和标杆顶端E在同一条直线上,则建筑物的高是_________米.18.(3分)(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_________尺.三、解答题19.(9分)(2014•潍坊)今年我市把男生“引体向上”项目纳入学业水平体育考试内容,考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试,测试成绩(单位:个)如图1:其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图(如图2);(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?20.(10分)(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.21.(10分)(2014•潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.22.(12分)(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.23.(12分)(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.24.(13分)(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.2014年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2014•潍坊)的立方根是()的立方根是.C D..4.(3分)(2014•潍坊)一个几何体的三视图如图,则该几何体是( ).CD .5.(3分)(2014•潍坊)若代数式有意义,则实数x 的取值范围是( )6.(3分)(2014•潍坊)如图,▱ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E=36°,则∠ADC 的度数是( )7.(3分)(2014•潍坊)若不等式组无解,则实数a的取值范围是(),8.(3分)(2014•潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是().C D.y=(+(+)9.(3分)(2014•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=010.(3分)(2014•潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是().C D.==11.(3分)(2014•潍坊)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其12.(3分)(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()二、填空题13.(3分)(2014•潍坊)分解因式:2x(x﹣3)﹣8=2(x﹣4)(x+1).14.(3分)(2014•潍坊)计算:82014×(﹣0.125)2015=﹣0.125.15.(3分)(2014•潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)根据题意得出一部分弓形的面积,得出﹣,,××==,﹣=﹣(﹣316.(3分)(2014•潍坊)已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为9.(﹣[[﹣))17.(3分)(2014•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD 和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A 和标杆顶端E在同一条直线上,则建筑物的高是54米.=,,=,==18.(3分)(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.=25三、解答题19.(9分)(2014•潍坊)今年我市把男生“引体向上”项目纳入学业水平体育考试内容,考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试,测试成绩(单位:个)如图1:其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图(如图2);(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?由题意知:=0.30=0.4520.(10分)(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.,EOD=∠ABE=∠COB===21.(10分)(2014•潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.CE====300CE=19900+300﹣900=19000+30019000+30022.(12分)(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.,==,,=,的面积是23.(12分)(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.x+88﹣x+88(24.(13分)(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.﹣,﹣,﹣t t= OCx,.若以mm﹣解方程﹣+2m=)﹣(﹣mm)﹣2+=1,x,﹣ttt=×,x(,﹣3=,﹣mm﹣m)﹣(﹣m,±,经检验适合题意,)﹣2+2+﹣,)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:A2 0 1 4年潍坊市初中学业水平考试数学试题注意事项:1.本试题分第1卷和第Ⅱ卷两部分.第1卷2页,为选择题,3 6分;第Ⅱ卷2 页,为非选择题,84分;共1 20分.考试时间为1 20分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、 写在答题卡相应位置,答在本试卷上一律无效.第1卷 (选择题 共3 6分)一、选择题(本题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记O 分.)1.31 的立方根是( )A .-1B .OC .1D . ±12.下列标志中不是中心对称图形的是( )中国移动 中国银行 中国人民银行 方正集团3.下列实数中是无理数的是( )A .722 B.2-2 c.51.5 D.sin 450 4.一个几何体的三视图如右图所示,则该几何体是( )5.若代数式2)3(1-+x x 有意义,则实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C .x >-l D .x >-1且x ≠36.如图,平行四边形ABCD 的顶点A 、B 、D 在⊙0上,顶点C 在⊙0的直径BE 上,连接AE ,∠E =360,,则∠ADC 的度数是( )A,440 B .540 C .720 D .5307. 若不等式组⎩⎨⎧--≥+2210x x a x 无解,则实数a 的取值范围是( ) A .a ≥一1 B .a <-1 C .a ≤1 D.a ≤-18.如图,已知矩形ABCD 的长AB 为5,宽BC 为4.E 是BC 边上的一个动点,AE ⊥上EF ,EF 交CD 于点F .设BE =x ,FC =y ,则点 E 从点B 运动到点C 时,能表示y 关于x 的函数关系的大致图象是9.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2 -12x +k =O 的两个根,则k 的值是( )A:27 B:36 C:27或36 D:1810. 右图是某市7月1日至1 0日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于2 00表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量优良的概率是( )A 、31 B 、52 C 、21 D 、43 11.已知一次函数y 1=kx +b (k <O )与反比例函数y 2=x m (m ≠O )的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A.x<-l或O<x<3 B.一1<x<O或O<x<3 C.一1<x<O或x>3 D.O<x<3 12,如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013, 2)第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共1 8分,只要求填写最后结果,每小题填对得3分)13.分解因式:2x(x-3)一8= .14.计算:82014×(一0.125)2015= .15.如图,两个半径均为3的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为.(结果保留π)16.已知一组数据一3,x,一2, 3,1,6的中位数为1,则其方差为. 17.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.18。
我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明算步骤.)19.(本小题满分9分)今年我市把男生“引体向上”项目纳入学业水平体育考试内容.考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试成绩(单位:个)如下:9 12 3 13 18 8 8 4 ■ ,1213 12 9 8 12 13 18 13 12 10其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图;(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?20.(本小题满分1 0分)如图,在梯形ABCD中,AD∥BC,∠B=900,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.21.(本小题满分10分)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是450,然后:沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是600,求两海岛间的距离AB.22.(本小题满分1 2分)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.23、(本小题满分12分)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为O千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.24.(本小题满分13分)如图,抛物线y=ax2+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。
参考答案及评分标准一、选择题(本题共12小题,每小题选对得3分,共36分.)CCDDB BDABC AA二、填空题(本大题共6小题,每小题填对得3分,共1 8分.)13. 2(x +l )(x -4) 14.81 15.332-π 16. 9 17. 54 18. 25三、解答题(本大题共6小题,共6 6分.)1 9.(本小题满分9分)解:(1)设被污损的数据为x , 由题意知:3.1121841351210293843=+⨯+⨯+⨯++⨯+⨯++xx .....1分 解得:x =19 ................2分 根据极差的定义,可得该组数据的极差是19-3=16. ……………………………3分(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是206 =o .30; 测试成绩在11~15个的有9名,该组频数为9,相应频率是209=0.45. 补全的频数、频率分布表和频数分布直方图如下所示:(3)由频率分布表可知,能完成_11个以上的是后两组,(0.45 +0.15)×100%=60%, 由此估计在学业水平体育考试中能完成11个以上“引体向上’的男生数是220×60% =132(名) ...........................9分20.(本小题满分1 0分)(1)证明:连接OE ,∵CD 是⊙O 的切线, ∴OE ⊥CD :),.........1分在Rt △OAD 和Rt △OED 中,OA =OE , OD =OD ,∴Rt △OADcR ≌t △OED, ∴∠AOD =∠EOD =21∠AOE ,...................2分 在⊙O 中,ABE =21∠AOE , ∴∠AOD =∠ABE , ....................3分 ∴OD ∥BE ..................4分(2)同理可证:Rt △COE ≌Rt △COB .∴∠COE =∠COB =21∠BOE , ∴∠DOE +∠COE =900,∴△COD 是直角三角形, ………………5分 ∵S △DEO =S △DAO , S △COE =S △COB ,∴S 梯形ABCD =2(S △DOE +S △COE )=2S △COD =OC ·OD =48,即xy =48, .....7分 又∵x +y = 14,∴x 2 +y 2=(x +y )2-2xy =142-2×48=100,在Rt △COD 中,101002222==+=+=y x OD OC CD …………………9分 即CD 的长为10. ……………1 0分21.(本小题满分10分)解:如图,过点A 作AE ⊥CD 于点E ,过点B 作BF 上CD ,交CD 的延长线于点F ,则四边形ABFE 为矩形,所以AB =EF , AE =BF , (2)由题意可知AE =BF =1100—200=900,CD =19900..................................3分.∴在Rt △AEC 中,∠C =450, AE =900,∴90045tan 900tan 0==∠=C AE CE ............................5分 在Rt △BFD 中,∠BDF =600,BF =900, BF =900 ∴330060tan 900tan 0==∠=BDF BF DF .........................7分 ∴ AB =EF =CD +DF -CE =19900+3300-900=19000+3300 ……………9分 答:两海岛之间的距离AB 是(19000+300√3)米 ................ .10分22.(本小题满分1 2分)(1)证明:∵E 、F 分别是正方形ABCD 边BC 、CD 的中点,∴CF =BE , ……1分 ∵Rt △ABE ≌Rt △BCF ∴∠BAE =∠CBF ................................2分又∵∠BAE +∠BEA =900,∴∠CBF +∠BEA =900,∴∠BGE =900, ∴AE ⊥BF ..... ...........................,.,...3分(2)根据题意得:FP =FC ,∠PFB =∠BFC ,∠FPB =900, ……………………4分 ∵CD ∥AB , ∴∠CFB =∠ABF ,∴∠ABF =∠PFB .∴QF =QB ……………5分 令PF =k (k >O ),则PB =2k ,在Rt △BPQ 中,设QB =x , ∴x 2=(x -k )2+4k 2, ∴x =25k ,..................6分 ∴sin ∠BQP =54252==k k QP BP .........................7分 由题意得:∠BAE =∠EAM ,又AE ⊥BF , ∴AN =AB =2,...,,.,....,...,........8分∵ ∠AHM =900, ∴GN //HM , . .........................................9分∴2)(AM AN AHM AGN =∆∆ ∴54)52(12==ΛAGN ...................10分 ∴ 四边形GHMN =SΔAHM - SΔAGN =1一54= 54 .................... 11分 所以四边形GHMN 的面积是54 …………………………………12分23.(本小题满分1 2分)解:(1)由题意得:当20≤x ≤220时,v 是x 的一次函数则可设v =kx +b (k ≠O ), ...............................,...,.....1分 由题意得:当x =20时,v =80,当x =220时,v =0所以⎩⎨⎧=+=+02208020b k b k 解得:⎪⎩⎪⎨⎧=-=8852b k ,所以当20≤x ≤220时,v =-52x +88 ,.........,.................4分则当x =100时,y =一52×100+88=48.即当大桥上车流密度为100辆/千米时,车流速度为48千米/小时.……………5分(2)当20≤v ≤220时,v =一52x +88(0≤v ≤80), 由题意得:⎪⎪⎩⎪⎪⎨⎧+-+-608852408852 x x .解得70<x <120, 所以应控制车流密度的范围是大于70辆/千米且小于120辆/千米, ........7分(3)①当0≤x ≤20时,车流量y 1=vx =80x ,因为k =80>0,,所以y 1随x 的增大面增大,故当x =20时,车流量y 1的最大值为1600. ……………………………………9分 ②当20≤x ≤220时,车流量y 2=vx =(一52x +88)x =一(x -110)2+4840, 当x =110时,车流量y 2取得最大值4840, ………………………………..1 0分 因为4840>1600,所以当车流密度是110辆/千米,车流量y 取得最大值.....1 2分24.(本小题满分1 3分)解:(1)由抛物线经过点C (O ,4)可得c =4,①∵对称轴x =ab 2- =1,∴b =-2a ,②, . ..................,.]分 又抛物线过点A (一2,O )∴0=4a -2b +c ,③ ……………………………………2分由①②③ 解得:a =21-, b =1 ,c =4. ………………………………3分 所以抛物线的解析式是y =21-x +x +4 (2)假设存在满足条件的点F ,如图如示,连接BF 、CF 、OF .过点F 分别作FH ⊥x 轴于H , FG ⊥y 轴于G .设点F 的坐标为(t , 21-t 2+t +4),其中O <t <4, 则FH =21-t 2 +t +4 FG =t , ∴△OBF =21OB .FH =21×4×(21-t 2+4t +4)=一t 2+2t +8 ………………5分 S △OFC =21OC .FC =21×4×t =2t ∴S 四边形ABFC —S △AOC +S △OBF +S △OFC =4-t 2+2t +8+2t =-t 2+4t +12.……6分 令一t 2+4t +12 =17,即t 2-4t +5=0,则△=(一4)2-4×5=一4<0,∴方程t 2 -4t +5=0无解,故不存在满足条件的点F .. …………7分(3)设直线BC 的解析式为y =kx +b (k ≠O ),又过点B (4,0,), C (0,4)所以⎩⎨⎧==+404b b k ,解得:⎩⎨⎧=-=41b k , 所以直线BC 的解析式是y =一x +4. . …………8分由y =21-x 2+4x +4=一21(x 一1)2+29,得D (1,29), . 又点E 在直线BC 上,则点E (1,3),于是DE =29一3= 23 .…………………9分 若以D .E .P .Q 为顶点的四边形是平行四边形,因为DE ∥PQ ,只须DE =PQ ,............10分 设点P 的坐标是(m ,一m +4),则点Q 的坐标是(m ,一21t 2+m +4). ①当O <m <4时,PQ =(一21t 2+m +4)一(一m +4)=一21m 2+2m . 由一21m 2+2m =23 ,解得:m =1或3.当m =1时,线段PQ 与DE 重合,m =-1舍去, ∴m =-3,此时P 1 (3,1). ..............11分②当m <o 或m >4时,PQ =(一m +4)一(一21m 2++m +4)= 21m 2—2m , 由21m 2—2m =23,解得m =2±7,经检验适合题意, 此时P 2(2+7,2一7),P 3(2一7,2+7).… .........12分. 综上所述,满足条件的点P 有三个,分别是P 1 (3,1),P 2(2+7,2 -7),P 3(2—7,2十7). ..............1 3分。