正弦波振荡器实验

合集下载

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。

4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。

正弦波振荡器在电子技术领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。

在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

此实验只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。

此实验只介绍正弦波振荡器。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。

b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。

当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。

模拟电子实验报告四-正弦波振荡器

模拟电子实验报告四-正弦波振荡器

姓名:学号:班级:成绩:实验名称: 正弦波振荡器一、实验目的(1)掌握静态工作点的设定方法。

(2)了解反馈的概念和反馈放大电路的方框图。

(3)掌握放大电路的放大倍数的一般表达式。

(4)验证产生正弦波激荡放大反馈电路1=AF 以及信号的频率。

二、实验原理(1)反馈放大电路方框图如图1所示图1(2)静态工作点的确定观察输入波与输出波,判断输出波有无失真情况,若没有失真则表示此时即为静态工作点,反之不是。

(3)基本放大电路的放大倍数AioX X A =其中o X 为输出,i X 为输入,由于本实验室两级放大电路,所以A 的相位应为0,即0=A ϕ(4)反馈系数Fof X X F =其中f X 为反馈,o X 为输出。

由于本实验引入正反馈所以F 的相位应为0,即0=F ϕ(5)产生正弦波激荡放大电路1=AF要使1=AF 成立必须满足连个条件:1、n A F πϕϕ2=+,2、1=AF三、实验仪器与元器件(1)正弦波振荡器 1台 (2)模拟电路实验台 1台 (3)万用表(电压表、电流表、毫伏表) 1个 (4)示波器 1台 (5)信号发生器 1台 (6)导线 若干四、实验内容(1)调整放大电路静态工作点,观察示波器,使输出波形不失真。

(2)连接电路,观察输出波形,反馈波形,输入波形的相位关系,判断是否满足理论情况。

由上图可得出0=A ϕ,0=F ϕ。

(3)测试频率大小,判断是否满足理论值。

理论值:HZ RC f 1000001.0*01.0*16*2121≈*==ππ实际值如上图频率计所示为1006HZ 所以符合理论情况,幅值关系为3倍。

五、实验数据分析(1)静态工作点为直流负载线与输入特性曲线的交点,不宜偏高或偏低,可选择选择中间的Q 为合适的静态工作点,对应的V U CEQ 6=,也可通过观察输出波形和输入波形,判断输出波形是否失真,来确定静态工作点。

(2)正弦波振荡器满足1=AF ,即满足1、n A F πϕϕ2=+,2、1=AF 。

实验2--正弦波振荡器(LC振

实验2--正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.把握电容三点式LC振荡电路和晶体振荡器的大体工作原理,熟悉其各元件的功能;2.把握LC振荡器幅频特性的测量方式;3.熟悉电源电压转变对振荡器振荡幅度和频率的阻碍;4.了解静态工作点对晶体振荡器工作的阻碍,感受晶体振荡器频率稳固度高的特点。

二.实验内容1.用示波器观看LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压转变对振荡器的阻碍;4.观看并测量静态工作点转变对晶体振荡器工作的阻碍。

三.实验步骤1.实验预备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,现在模块上电源指示灯点亮。

2.LC 振荡实验(为避免晶体振荡器对LC振荡器的阻碍,应使晶振停振,即将3W03顺时针调到底。

)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。

调整电位器3W02,使输出最大。

开关3K05拨至“P”,现在振荡电路为西勒电路。

四位拨动开关3SW01别离操纵3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是不是接入电路,开关往上拨为接通,往下拨为断开。

四个开关接通的不同组合,能够操纵电容的转变。

例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。

依照表2-1电容的转变测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。

表2-1依照所测数据,分析振荡频率与电容转变有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。

注:若是在开关转换进程中使振荡器停振无输出,可调整3W01,使之恢复振荡。

(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。

依照上述(1)的方式,测出振荡频率和输出电压,并将测量结果记于表2-1中。

电子电路综合实验-LC正弦波振荡器报告

电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。

由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。

2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告
实验目的:验证正弦波振荡器的工作原理,并探究其参数对振荡频率的影响。

实验原理:
正弦波振荡器是一种能够产生稳定振荡信号的电路。

其基本原理是通过反馈回路将一部分输出信号重新引入到输入端,形成自激振荡。

常见的正弦波振荡器电路有震荡放大器电路和LC 震荡电路等。

实验器材:
- 正弦波振荡器电路板
- 函数发生器
- 示波器
- 电阻、电容等元器件
实验步骤:
1. 将正弦波振荡器电路与函数发生器、示波器连接起来。

2. 调节函数发生器产生一个适当的输入信号,通过示波器观察输出信号的波形。

3. 根据需要,可以调节电阻、电容等元器件的数值,观察输出信号波形的变化。

4. 记录各个参数对输出信号频率的影响。

实验结果:
根据实验步骤进行操作后,记录输出信号的波形和频率,以及各个参数的数值。

根据实验数据绘制实验曲线。

实验讨论:
根据实验结果分析各个参数对输出信号频率的影响,并探究为什么正弦波振荡器能够产生稳定振荡信号。

结论:
正弦波振荡器能够产生稳定振荡信号,并且其频率可以通过控制元器件的数值来调节。

实验结果与原理相符合,说明正弦波振荡器的工作原理有效。

RC正弦波振荡器

RC正弦波振荡器

模拟电子技术 RC 正弦波振荡器实验报告内容包含:实验目的、实验仪器、实验原理,实验内容、实验步骤、实验数据整理与归纳(数据、 图表、计算等)、实验结果分析、实验思考题、实验心得。

【实验目的】(1)进一步学习RC 正弦波振荡器的组成及其振荡条件。

(2)学会测量、调试振荡器。

【实验仪器】 (1)+12V 直流电源;(3) DS1062E-EDU 双踪示波器; (5) MS8200D 直流电压表; (7)电阻、电容、电位器等若干支。

【实验原理】从结构上看,正弦波振荡器是没有输入信号的,是一种带选频网络的正反馈 放大器。

若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz 〜 1MHz 的低频信号。

1. RC 移相振荡器RC 移相振荡器电路形式如图9-1所示,选择R>>G 。

图9-1 RC 移相振荡器原理图(2) AS101E 函数信号发生器; (4)频率计;(6) 3DG12X2 或 9013X2 支;振荡频率 f D =——2n46RC起振条件 放大器A 的电压放大倍数1 A I >29电路特点 简便,但选频作用差,振幅不稳,频率调节不便,一般 用于频率固定且稳定性要求不高的场合。

频率范围 儿赫〜数十千赫口2. RC 串并联网络(文氏桥)振荡器3. 串并联网络振荡器电路形式如图9-2所示。

一“力RCIA >3可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到 良好的振荡波形。

图9-2 RC 串并联网络振荡器原理图注;本实验采用两级共对极分立兀件放大哥组成RC F 弦波振菊谓口【实验内容】1. RC 串并联选频网络振荡器 (1)按图9-3组接线路。

(2)断开RC 串并联网络,(不接A 、B ),测量放大器静态工作点。

记录数据,如 表9-1所示。

起振条件表9-1(3)接通RC 串并联网络(联A、B ),并使电路起振,用示波器观测输出电压%的 波形,调节学使获得满意的正弦信号,记录波形及参数(幅度)。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告正弦波振荡器实验报告引言:正弦波振荡器是电子学中常见的一种电路,它能够产生稳定的正弦波信号。

在本次实验中,我们将通过搭建一个简单的正弦波振荡器电路,来探索正弦波振荡器的工作原理以及其在电子学中的应用。

一、实验目的本实验的主要目的有以下几点:1. 了解正弦波振荡器的基本原理;2. 学习如何搭建一个简单的正弦波振荡器电路;3. 观察并测量正弦波振荡器输出的波形特性;4. 分析正弦波振荡器的频率稳定性和幅度稳定性。

二、实验器材和原理1. 实验器材:- 信号发生器- 电容- 电感- 晶体管- 电阻- 示波器- 电压表- 电流表2. 实验原理:正弦波振荡器的基本原理是利用反馈回路中的放大器和RC(电阻-电容)网络来实现自激振荡。

在本次实验中,我们将使用一个简单的放大器电路和RC网络来构建正弦波振荡器。

三、实验步骤1. 搭建电路:根据实验原理,我们将放大器电路和RC网络按照图中的连接方式搭建起来。

确保电路连接正确且稳定。

2. 调节电路参数:通过调节电容、电感和电阻的数值,使得电路能够产生稳定的正弦波信号。

调节电路参数时,可以使用示波器来观察输出波形,并通过电压表和电流表来测量电路中的电压和电流数值。

3. 观察和测量输出波形:连接示波器,并调节示波器的设置,使其能够显示电路输出的正弦波信号。

观察输出波形的频率、幅度以及波形的稳定性。

4. 分析波形特性:通过改变电路参数,观察和测量不同条件下的输出波形特性。

分析正弦波振荡器的频率稳定性和幅度稳定性,并记录实验数据。

四、实验结果和数据分析在本次实验中,我们成功搭建了一个正弦波振荡器电路,并通过示波器观察到了稳定的正弦波输出。

通过测量电路中的电压和电流数值,我们得到了一系列实验数据。

根据实验数据,我们可以分析正弦波振荡器的频率稳定性和幅度稳定性。

频率稳定性是指正弦波振荡器输出信号的频率是否能够保持在一个稳定的数值范围内。

幅度稳定性是指输出信号的振幅是否能够保持稳定。

lc正弦波振荡器实验原理

lc正弦波振荡器实验原理

lc正弦波振荡器实验原理嘿,朋友!咱今天来聊聊 LC 正弦波振荡器实验原理这档子事儿。

你想啊,这 LC 正弦波振荡器就像是一个神奇的音乐盒子。

我们都知道音乐盒子里的那些小零件,彼此配合着,才能奏出美妙的旋律。

这 LC 正弦波振荡器也一样,它里面的电感(L)和电容(C)就是那关键的“小零件”。

电感是啥?你就把它想象成一个储存能量的小仓库,电流通过时,它就把能量给存起来,电流变化时,它又把能量放出来。

电容呢?它就像个能伸缩的小弹簧,一会儿充电,一会儿放电,不断地折腾。

当电感和电容一起工作的时候,那可就热闹啦!它们之间的能量交换就像两个调皮的孩子在互相扔皮球,你扔过来我扔过去,而且扔的速度还特别有规律。

这规律的能量交换不就产生了正弦波嘛。

这正弦波是怎么来的呢?就好比我们荡秋千,要是没人推,秋千自己晃荡的幅度会越来越小,最后停下来。

可要是每次在合适的时候给它加把力,那秋千就能一直稳定地荡起来。

在 LC 振荡器里,电感和电容的能量交换就是这秋千的晃荡,而电路中的正反馈就像是那恰到好处的推力,让正弦波能持续稳定地产生。

你再想想,要是电感和电容的值不合适,那不就像两个配合不好的舞者,舞步乱了,这正弦波还能好看吗?所以,选择合适的电感和电容值,那可太重要啦!还有啊,这电路中的电阻也不能忽略。

电阻就像个捣蛋鬼,会消耗能量,要是电阻太大,那能量都被它消耗掉了,正弦波还怎么有力气“跳舞”呢?总之,LC 正弦波振荡器的实验原理,就是电感、电容、电阻这些“小伙伴”在电路里默契配合的一场精彩表演。

只有它们各司其职,才能让我们看到那漂亮的正弦波。

所以说,要想真正搞懂 LC 正弦波振荡器实验原理,就得像细心的侦探一样,不放过每一个细节,弄清楚每个元件的作用,这样才能揭开这神秘的面纱,掌握其中的奥秘!。

三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据引言三点式正弦波振荡器实验是电子工程学中的一项基础实验,用于研究电路中的振荡现象。

本文将详细介绍该实验的原理、实验装置、实验过程和实验数据分析,并对实验结果进行深入探讨。

一、实验原理正弦波振荡器是一种能够产生稳定频率和振幅的信号源。

它由三个主要部分组成:放大器、反馈网络和频率稳定电路。

1.1 放大器在正弦波振荡器中,放大器起到放大信号的作用。

放大器通常采用共射放大器或共基放大器的形式,工作在其放大区间。

1.2 反馈网络反馈网络是正弦波振荡器中的关键组成部分,它将部分输出信号反馈到放大器的输入端,从而形成正反馈回路,使得系统产生振荡。

1.3 频率稳定电路频率稳定电路用于保持振荡器的输出频率稳定。

最常见的频率稳定电路是RC网络,通过调节电容或电阻的值可以改变振荡器的频率。

二、实验装置本实验使用的实验装置主要包括示波器、信号发生器和三点式正弦波振荡器电路。

2.1 示波器示波器用于显示电路的波形,是本实验中不可缺少的仪器之一。

示波器可以测量电压和时间的关系,并以波形的形式显示出来。

2.2 信号发生器信号发生器用于产生稳定的正弦波信号,作为振荡器电路的输入信号。

信号发生器具有可调节频率和振幅的功能,可以为实验提供所需的输入信号。

2.3 三点式正弦波振荡器电路三点式正弦波振荡器电路是本实验的核心部分。

它由放大器、反馈网络和频率稳定电路组成,可以产生稳定的正弦波信号。

三、实验过程3.1 实验准备首先,将示波器和信号发生器连接起来,并根据实验要求设置信号发生器的输出频率和振幅。

3.2 搭建电路根据实验指导书提供的电路图,搭建三点式正弦波振荡器电路。

确保电路连接正确并牢固。

3.3 调节电路打开示波器和信号发生器,逐步调节电路,使得示波器上显示出稳定的正弦波波形。

根据实验指导书中给出的方法,调节放大器、反馈网络和频率稳定电路的参数。

3.4 记录实验数据在调节电路的过程中,用示波器测量和记录各部分电路的电压和频率值。

《高频电子线路》正弦波振荡器实验报告

《高频电子线路》正弦波振荡器实验报告

《高频电子线路》正弦波振荡器实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:正弦波振荡器一、实验目的和要求通过实验,学习克拉泼振荡器的工作原理、电路组成和调试方法,学习电容三点式振荡器的设计方法,利用Multisim仿真软件进行仿真分析实验。

二、实验内容和原理(一)实验原理1、正弦振荡器的基本原理;2、产生等幅震荡的两个基本条件:相位条件和幅度条件)1 利用正反馈将电源接入瞬间的一个激励不断通过谐振网络滤波放大得到一个只含有一个频率成分的正弦。

2 振幅条件:环路增益在放大倍率为1时的偏导数(对输出电压)小于0.相位条件:谐振频率的信号输出相位为2π整数倍(二)实验内容(1)设计振荡频率为9.5MHz的克拉泼振荡器。

(2)用Multisim进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。

(3)改变电阻R3的阻值,用电压表测量振荡管的直流静态工作电压。

三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、频率计、电压表、直流电源。

四、操作方法与实验步骤及实验数据记录和处理1、设计频率为9.5MHz的克拉泼振荡器电路图。

C11000pF R212kΩR12kΩL110mHR4100ΩXSC3ABExt Trig++__+_L23.2uHC41000pFR310kΩKey=A0 %C31000pF C510µFC610µFV112VL322mH C21µFC7100pFXFC1123Q12N29232、用Multisim 进行仿真,用双踪示波器观察振荡器器输出信号波形,并用频率计测量振荡频率,并与理论计算结果进行对比。

(1)仿真波形和频率测量(2)理论分析计算根据电路图提供的振荡回路参数,计算设计电路的振荡频率与实际测试的振荡频率进行对比。

计算频率值02f LCπ==8.897MHz电路测试频率值f = 9.325MHz 00||100%f f f -=⨯=频率稳定度 5.3%对比分析其产生误差的原因:3、改变电阻R3的阻值,用电压表测量振荡管Q1的直流静态工作电压。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告引言:正弦波振荡器是一种很重要的电路,在电子工程中有着广泛的应用。

它是实现信号产生和调制的基础,因此学习正弦波振荡器是学习电子工程的基础。

在实验中,我们将会学习到如何制作一个简单的正弦波振荡器电路,以及探究它的参数和特性。

实验设计:1.电路连接正弦波振荡器的基本构成为反馈电容C和反馈电阻R,而共同作用下,振荡器能够自持续发生正弦振荡信号。

电路连接如下图所示。

2.器材准备我们需要以下器材:- 电阻R,可调范围0-22kohm;- 电容C,为470nF;- 操作放大器,使用的是UA741;- 示波器。

3.参数测量和分析首先,我们需要测量电路中的R和C值。

然后,通过调整电位器,我们可以改变电路中的R值,进而观察输出波形的变化。

利用示波器,我们可以测量电路的输出波形,并通过测量峰峰值、频率和相位等参数,从而对电路性能进行分析。

实验结果:通过测量,我们得到了以下结果:在电容值为470nF的情况下,电路的输出波形为正弦波,并且频率在1KHZ左右。

当调整电位器改变电路中的R值时,可以观察到波形振幅随着R值的增加而增大,同时频率也有所变化。

具体数据如下:R/kohm|频率/KHZ|峰-峰值/V|相位/°--|--|--|--4.7||||10|1.18|495mV||15|1.03|863mV||20|0.91|1.2V||22|0.84|1.38V||24|0.78|1.54V||从数据可以看出,随着R值的增加,频率变低,峰-峰值变大。

我们还可以发现,在较大的R值下,电路的频率变得稳定,同时峰-峰值也变得更加平稳。

结论:通过实验,我们探究了正弦波振荡器的参数和特性,并得到了如下结论:1.正弦波振荡器中,反馈电容和反馈电阻是关键构成部分,能够实现自持续发生正弦振荡信号。

2.在电容值不变的情况下,随着电阻R值的增加,电路中的正弦波的频率降低,同时峰-峰值增大。

3.当R值达到一定范围时,电路的频率和峰-峰值变得更加稳定。

正弦波振荡器实验内容和实验步骤

正弦波振荡器实验内容和实验步骤

正弦波振荡器实验内容和实验步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!正弦波振荡器实验详解引言正弦波振荡器是电子电路中常见的一种基本元件,用于产生频率稳定的正弦波信号。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告实验目的,通过搭建正弦波振荡器电路,了解正弦波振荡器的工作原理,并对其性能进行测试和分析。

实验器材,电源、电阻、电容、三极管、示波器、万用表等。

实验原理,正弦波振荡器是一种能够产生稳定的正弦波信号的电路。

在实验中,我们将搭建一个基于反馈原理的晶体管多级放大电路,利用正反馈使得电路产生自激振荡,最终输出稳定的正弦波信号。

实验步骤:1. 按照电路图连接电路,确认连接无误后接通电源。

2. 调节电源电压和电流,使其符合电路要求。

3. 使用万用表测量电路中各个元器件的电压和电流,并记录下来。

4. 连接示波器,观察输出波形,并进行调节,使其尽可能接近理想的正弦波形。

5. 测量输出波形的频率、幅度等参数,并进行性能分析。

实验结果与分析:在实验中,我们成功搭建了正弦波振荡器电路,并通过调节电路参数和观察输出波形,得到了稳定的正弦波信号。

经过测量和分析,我们得到了正弦波振荡器的频率、幅度等参数,验证了电路的正弦波输出性能。

实验中还发现,电路中各个元器件的参数对正弦波振荡器的性能有着重要影响。

例如电容和电阻的数值大小,对振荡频率和幅度有着直接影响;晶体管的工作点稳定性,也对输出波形的稳定性有着重要影响。

结论:通过本次实验,我们深入了解了正弦波振荡器的工作原理,并通过实际搭建和测试,验证了其性能。

正弦波振荡器作为一种重要的信号源电路,在通信、测量、控制等领域有着广泛的应用。

因此,对正弦波振荡器的深入了解和实际操作,对我们的专业学习和工程实践有着重要意义。

通过本次实验,我们不仅学习了正弦波振荡器的基本原理和性能分析方法,也提高了实际操作能力和问题解决能力。

在今后的学习和工作中,我们将继续努力,加强对电路原理和实际应用的理解,为将来的科研和工程实践打下坚实的基础。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告引言在电子学领域中,正弦波振荡器是一种重要的电路。

它通过产生稳定且频率可调的正弦信号,在许多应用中起到关键作用。

本实验旨在设计并搭建一个正弦波振荡器电路,并详细分析其工作原理和性能。

实验装置和步骤实验中使用的装置包括:电源供应器、信号发生器、元件(如电容、电感、电阻)和示波器。

实验分为以下几个步骤:1. 搭建电路:根据给定的电路图,依次连接元件和仪器。

确保电路连接的稳定性和正确性。

2. 设置电源:将电流源供应器连接到电路,调整输出电压,并保证电源稳定。

这是实现正弦波振荡的基础。

3. 信号发生器设置:使用信号发生器提供一个直流参考电压,作为振荡器的输入信号。

逐步调整频率,找到振荡器产生最稳定的正弦波的频率。

4. 输出测量:将示波器连接到电路的输出端,通过示波器的屏幕观察输出信号的波形和频率。

调整电路中的元件数值,使输出波形尽可能接近理想的正弦波。

工作原理与分析正弦波振荡器的工作原理基于放大器和反馈网络的相互作用。

根据霍尔的理论,正弦波振荡器需要满足以下两个条件:放大环路增益大于1并且相位延迟为360度。

在本实验中,我们采用集成运算放大器作为放大器和RC网络作为反馈网络。

RC网络是由电容和电阻串联而成,起到了相位延迟的作用。

电容的充放电过程导致输出信号在反馈回路中相位延迟,满足相位延迟的要求。

此外,电容和电阻的数值也决定了输出信号的频率。

放大器的设计是整个电路中的核心部分。

通过调整放大器的增益,我们可以控制正弦波振荡器的输出信号幅度。

通过选择合适的放大器类型和元件数值,同时结合反馈网络的设计,我们可以实现一个稳定且频率可调的正弦波输出。

实验结果与讨论在实验中,我们通过调整电路中元件的数值和信号发生器的频率,成功实现了一个正弦波振荡器。

通过示波器观察到的波形可以明显地看出,输出信号接近理想的正弦波。

频率的可调范围也较广,满足了实际应用的需求。

值得注意的是,在实际电路中存在一些不理想因素,如元件本身的非线性特性、放大器的失真等。

实验二正弦波振荡器

实验二正弦波振荡器

实验二正弦波振荡器(一)三点式正弦波振荡器一、实验目的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、熟悉振荡器模块各元件及其作用。

2、进行LC振荡器波段工作研究。

3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、测试LC振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、双踪示波器1台3、万用表1台四、基本原理图2-1 正弦波振荡器(4.5MHz )将开关S 2的1拨上2拨下, S1全部断开,由晶体管Q 3和C 13、C 20、C 10、CCI 、L 2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)(211020CCI C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=12.0470562013≈=C C 振荡器输出通过耦合电容C 3(10P )加到由Q 2组成的射极跟随器的输入端,因C 3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号Q 1调谐放大,再经变压器耦合从J1输出。

五、实验步骤1、 根据图2-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、 研究振荡器静态工作点对振荡幅度的影响。

1) 将开关S2的1拨上(为10),S1全部拨下(为00),构成LC 振荡器。

2) 改变上偏置电位器R A1,记下Q3发射极电流I eo (=10R V e),R 10=1K ,(将万用表红表笔接TP4,黑表笔接地测量V E)填入表2-1中,并用示波测量对应点TP1的振荡幅度V P-P(峰—峰值)填于表中,记下停振时的静态工作点电流值I Q。

表2-1分析输出振荡电压和振荡管静态工作点的关系,分析思路:静态电流I CQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。

实验一 正弦波振荡器

实验一 正弦波振荡器

实验一正弦波振荡器一.实验目的:1. 掌握晶体管工作状态,反馈大小对振荡器幅度与波形的影响2. 研究外界条件变化对振荡器频率稳定度的影响3. 比较LC振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定度高的原因理解二.实验内容:1.调试LC振荡电路特性,观察波形并测量其频率2.观察振荡状态与晶体管工作状态的关系3.比较LC振荡器和晶体管振荡器频率的稳定度三.实验器材:双踪示波器、万用表、通信电路试验箱四.实验原理图:1.电容三端式振荡器图1-4(a)工作点偏高,振荡管工作范围易进入饱和区,输出阻抗的降低将会使振荡波形严重失真,严重时,甚至使振荡器停振。

图1-4(b)中工作点偏低,避免了晶体管工作范围进入饱和区,对于小功率振荡器,一般都取在靠近截止区,但是不能取得太低,否则不易起振。

3.振荡器的频率稳定度频率稳定度是振荡器的一项十分重要技术指标,这表示在一定的时间范围内或一定的温度、湿度、电源、电压等变化范围内振荡频率的相对变化程度,振荡频率的相对变化量越小,则表明振荡器的频率稳定度越高。

提高振荡回路标准性除了采用稳定性好和高Q的回路电容和电感外,还可以采用与正温度系数电感作相反变化的具有负温度系数的电容,以实现温度补偿作用,或采用部分接入的方法以减小不稳定的晶体管极间电容和分布电容对振荡频率的影响。

石英晶体具有十分稳定的物理和化学特性,在谐振频率附近,晶体的等效参量Lq很大,Cq很小,rq 也不大,因此晶体Q值可达百万数量级,所以晶体振荡器的频率稳定度比LC振荡器高很多。

四.实验数据及分析:1实验数据2.分析:1)LC振荡器作用时,其频率波动在100Hz左右,而晶体振荡器则为1Hz 左右,所以晶体振荡器较为稳定。

2)振荡振幅与工作点电压成正比。

3)负载变化对LC正弦波振荡器的影响比较明显。

而对石英晶体振荡器的影响很小。

这主要是由于石英晶体振荡器的稳定性很高。

五、思考题1.晶体振荡器的振荡频率比LC振荡器稳定得多,为什么?答:因为(1)石英晶体谐振器具有很高的标准性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


功能

三极管: 偏置电路设置合适的静态工作点,保证起振时工作 在放大区,提供足够的增益,满足振幅起振条件: T(ωosc)= A 0F>1。 起振后,振荡振幅增长,直到三极管开始呈现非线 性放大特性时,放大器的增益随振荡振幅增大而减 小,振幅稳定在平衡条件:T(ωosc)= A 0F =1 相移网络: 三点式振荡电路组成法则:(正反馈φ T(ωosc)=1) 与发射极相连的为二个同性质电抗;接在集电极与 基极间的为异性质电抗。

电容三端式振荡器

振荡频率: ωosc =1/(LC)1/2
L:回路电感; C:回路总电容;

反馈系数: F = C56 / (C56+C57| |C58| |C59| |Cbe)
频率稳定度

减少外界因素(温度、湿度、电源、电压变化) 对ωosc 的影响程度; 振荡回路主要部、元件: 采用稳定性好、高Q值的L、C; 采用正负温度系数的L、C实现温度补偿 采用部分接入减少不稳定的晶体管极间电容和 分布电容对ωosc 的影响
二、实验内容

测量振荡器的频率变化范围; 观察反馈系数对起振和输出波形的影响;


ห้องสมุดไป่ตู้
观察温度变化对振荡器频率稳定度的影响;
三、实验仪器

GDS数字示波器 万用表 调试工具
四、实验基本原理

正弦波振荡器: 在不加输入信号时能稳定地产生特定频率或 特定频率范围的正弦波振荡信号。
组成: 可变增益器件(三极管),相移网络(并联 谐振回路)


晶体振荡器频率稳定度高于LC振荡器
正弦波振荡器实验原理图
五、实验步骤
六、注意事项

由于万用表输出电容的影响,将万用表接在 变容二极管D1两侧和不接在D1两侧时,Q2发 射极信号的频率会不一样,本步骤实验万用 表在测量直流电压后应取下,再用示波器在 Q2发射极测信号频率。
相关文档
最新文档