依兰县第一高级中学2018-2019学年高二上学期第一次月考试卷化学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
依兰县第一高级中学2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( )
①f (x )<0恒成立;
②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0;③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;
④;
⑤
.
A .①③
B .①③④
C .②④
D .②⑤
2. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是(
)
A .
B .
C .
D .
3. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )
A .0<a ≤
B .0≤a ≤
C .0<a <
D .a >
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
4. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )
A .
B .
C .
D .
5. 不等式≤0的解集是(
)
A .(﹣∞,﹣1)∪(﹣1,2)
B .[﹣1,2]
C .(﹣∞,﹣1)∪[2,+∞)
D .(﹣1
,2]
6. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是(
)
A .变量X 与变量Y 有关系的概率为1%
B .变量X 与变量Y 没有关系的概率为99%
C .变量X 与变量Y 有关系的概率为99%
D .变量X 与变量Y 没有关系的概率为99.9%
7. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
8. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是(
)O D
A
B
C
O A .
B .
C .
D .
π
1
π
21
π
1
21-π
2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
9. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )
A .(0,+∞)
B .(﹣1,0)∪(2,+∞)
C .(2,+∞)
D .(
﹣1,0)
10.不等式的解集是( )
A .{x|≤x ≤2}
B .
{x|≤x <2}
C .{x|x >2或x ≤}
D .{x|x ≥}11.已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )AD → DB → CD →
A .1 B.4
3
C. D .253
12.已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为(
)
A .p ∧q
B .p ∨q
C .¬p ∨q
D .p ∧¬q
二、填空题
13.直线ax+
by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐
标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .
14.函数f (x )=
﹣2ax+2a+1的图象经过四个象限的充要条件是 .
15.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
16.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则
的最大值为
;
④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•
=5,则△ABC 的形状是直角三角形.
17.(
﹣
)5的展开式的常数项为 (用数字作答).
18.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
三、解答题
19.(本小题满分12分)
已知平面向量,,.
(1,)a x =r (23,)b x x =+-r
()x R ∈(1)若,求;
//a b r r ||a b -r r
(2)若与夹角为锐角,求的取值范围.
20.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:
(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率
(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围
21.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点
(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.
(Ⅱ)证明:AM⊥PM.
22.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.
如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所
以P2具有性质Ω.
(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.
(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.
(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.
23.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k 2.072 2.706 3.841 5.024 6.6357.87910.828
(参考公式:K2=,其中n=a+b+c+d)
24.已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.
依兰县第一高级中学2018-2019学年高二上学期第一次月考试卷化学(参考答案)
一、选择题
1.【答案】D
【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.
f(x)<0恒成立,没有依据,故①不正确;
②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;
③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,
④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,
右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,
故④不正确,⑤正确,综上,正确的结论为②⑤.
故选D.
2.【答案】D
【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减
结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C
当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B
故选D
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
3.【答案】B
【解析】解:当a=0时,f(x)=﹣2x+2,符合题意
当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数
∴⇒0<a≤
综上所述0≤a ≤故选B
【点评】本题主要考查了已知函数再某区间上的单调性求参数a 的范围的问题,以及分类讨论的数学思想,属于基础题.
4. 【答案】A
【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:
=
.
故选:A .
5. 【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x ≤2,故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
6. 【答案】C
【解析】解:∵概率P (K 2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C .
【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.
7. 【答案】A
【解析】解:∵复数z 满足(1+i )z=2i ,∴z==
=1+i ,它在复平面内对应点的坐标为(1,1),
故选A .
8. 【答案】C
【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为
,扇形
OA OC 112
-π
的面积为,所求概率为.OAC ππ
π
π
1
2112
-=
-=P
9. 【答案】C
【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,
令2x ﹣2﹣
>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,
结合函数的定义域知,f ′(x )>0的解集为(2,+∞).故选:C .
10.【答案】B 【解析】解:不等式,移项得:
,即
≤0,
可化为:或
解得:≤x <2,
则原不等式的解集为:≤x <2故选B .
【点评】此题考查了其他不等式的解法,考查了转化及分类讨论的数学思想,是高考中常考的题型.学生进行不等式变形,在不等式两边同时除以﹣1时,注意不等号方向要改变.
11.【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ),∵A (0,1),B (3,2),=2,AD → DB →
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴即x =2,y =,{
x =6-2x ,y -1=4-2y )
53
∴=(2,)-(2,0)=(0,),CD → 5353
∴||==,故选C.CD → 02+(53)253
12.【答案】C
【解析】解:根据线面垂直的定义知若直线a 与平面α内两条相交直线垂直,则直线a 与平面α垂直,当两条直线不相交时,结论不成立,即命题p 为假命题.
垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q 为假命题.
则¬p ∨q 为真命题,其余都为假命题,故选:C .
【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.
二、填空题
13.【答案】 .
【解析】解:∵△AOB是直角三角形(O是坐标原点),
∴圆心到直线ax+by=1的距离d=,
即d==,
整理得a2+2b2=2,
则点P(a,b)与点Q(1,0)之间距离d==≥,
∴点P(a,b)与点(1,0)之间距离的最小值为.
故答案为:.
【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.
14.【答案】 ﹣ .
【解析】解:∵f(x)=﹣2ax+2a+1,
∴求导数,得f′(x)=a(x﹣1)(x+2).
①a=0时,f(x)=1,不符合题意;
②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,
∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;
③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,
∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数
因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,
即()()<0,解之得﹣.
故答案为:﹣
【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.
15.【答案】 [0,2] .
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件,
∴q⊊p,
∴,
解得0≤a≤2,
则实数a的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
16.【答案】:①②③
【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;
对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;
对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;
对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,
即π﹣A﹣B<,即A+B>,B>﹣A,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,
由
则,
即
则
又BC=5
则有
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形;⑤不正确.
故答案为:①②③
17.【答案】 ﹣10
【解析】解:由于(﹣)5展开式的通项公式为T r+1=•(﹣1)r •,
令15﹣5r=0,解得r=3,故展开式的常数项是﹣10,
故答案为:﹣10.
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.
18.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==海里,则这时船与灯塔的距离为
海里.故答案为.
三、解答题
19.【答案】(1)2或2).
(1,0)(0,3)-U 【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量的夹角为锐角的充要条件是且不共线,由此可得范围.,a b r r 0a b ⋅>r r ,a b r r 试题解析:(1)由,得或,//a b r r 0x =2x =-当时,,,0x =(2,0)a b -=-r r ||2a b -=r r
当时,,.2x =-(2,4)a b -=-r r ||a b -=r r (2)与夹角为锐角,,,,0a b ∙>r r 2230x x -++>13x -<<又因为时,,
0x =//a b r r 所以的取值范围是.
(1,0)(0,3)-U 考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积可得向量的夹角公式,当为锐角时,,但当cos a b a b θ⋅=r r r r cos 0θ>cos 0
θ>
时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是且不同0a b a b ⋅>r r r r ,a b r r 向,同样两向量夹角为钝角的充要条件是且不反向.0a b a b
⋅<r r r r ,a b r r 20.【答案】
【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,
一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,
记一周课外阅读时间在[0,2)的学生为A ,B ,一周课外阅读时间在[2,4)的学生为C ,D ,E ,从5人中选取2人,得到基本事件有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M ,
其中事件M 包含AC ,AD ,AE ,BD ,BC ,BE ,共有6个基本事件,
所以P (M )==,即恰有1人一周课外阅读时间在[2,4)的概率为.
(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t 0,即一周课外阅读时间未达到t 0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P 1=0.02,
课外阅读时间落在[2,4)的频率为P 2=0.03,
课外阅读时间落在[4,6)的频率为P 3=0.05,
课外阅读时间落在[6,8)的频率为P 1=0.2,
因为P 1+P 2+P 3<0.2,且P 1+P 2+P 3+P 4>0.2,
故t 0∈[6,8),
所以P 1+P 2+P 3+0.1×(t 0﹣6)=0.2,
解得t 0=7,
所以教育局拟向全市中学生的一周课外阅读时间为7小时.
【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.
21.【答案】
【解析】(Ⅰ)解:在棱AD 上找中点N ,连接CN ,则CN ∥平面AMP ;
证明:因为M 为BC 的中点,四边形ABCD 是矩形,
所以CM 平行且相等于DN ,
所以四边形MCNA 为矩形,
所以CN ∥AM ,又CN ⊄平面AMP ,AM ⊂平面AMP ,
所以CN ∥平面AMP .
(Ⅱ)证明:过P 作PE ⊥CD ,连接AE ,ME ,
因为边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2
,M 为BC 的中点所以PE ⊥平面ABCD ,CM=,
所以PE⊥AM,
在△AME中,AE==3,ME==,AM==,
所以AE2=AM2+ME2,
所以AM⊥ME,
所以AM⊥平面PME
所以AM⊥PM.
【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.
22.【答案】
【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.
∴集合P3,P5中的元素个数分别为9,23,
∵集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,
∴P3不具有性质Ω.…..
证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.
因为1∈E15,所以1∈A∪B,
不妨设1∈A.因为1+3=22,所以3∉A,3∈B.
同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.
所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..
解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,
取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},
则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.
当b=4时,集合中除整数外,其余的数组成集合为,令,,
则A2,B2具有性质Ω,且A2∩B2=∅,使.
当b=9时,集中除整数外,其余的数组成集合
,
令,.
则A3,B3具有性质Ω,且A3∩B3=∅,使
.
集合中的数均为无理数,
它与P14中的任何其他数之和都不是整数,
因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.
综上,所求n的最大值为14.…..
【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.
23.【答案】
【解析】
【专题】综合题;概率与统计.
【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;
(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.
【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2
P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉
则随机变量ξ的分布列为
ξ012
P
数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉
(Ⅲ)2×2列联表为
甲班乙班合计
优秀31013
不优秀171027
合计202040
┉┉┉┉┉
K2=≈5.584>5.024
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉
【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.24.【答案】
【解析】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].。