宁夏银川一中2020届高三下学期第一次模拟考试 理科数学(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年普通高等学校招生全国统一考试
理科数学试题卷
(银川一中第一次模拟考试)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合A={-1,0,1}, A 的子集中,含有元素0的子集共有 A.2个
B.4个
C.6个
D.8个
2.复数3
2
(1)i i += A. -2i
B. -2
C.2i
D.2
3.已知等比数列{}n a 的公比为正数,且2
39522,1a a a a ⋅==,则1a =
2.
2
A
.2B
1.
2
C
D.2
4.已知m ∈R ,“函数21x
y m =+-有零点”是“函数.log m y x =在(0,+∞)上为减函数”的
A.既不充分也不必要条件
B.充要条件
C.必要不充分条件
D.充分不必要条件
5.若函数f(x)=-cosx+ax 为增函数,则实数a 的取值范围为 A.[-1,+∞)
B.[1,+∞)
C.(-1,+∞)
D.(1,+∞)
6.一个空间几何体的三视图如图,则该几何体的体积为
.23A
.25B
43
.
C
53
.
D
7.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是
8.若231()n
x x
+展开式的各项系数之和为32,则其展开式中的常数项为 A.1
B.5
C.10
D.20
9.在平面区域(,)02y x M x y x x y ⎧≥⎧⎫⎪⎪⎪=≥⎨⎨⎬⎪⎪⎪
+≤⎩⎭⎩
内随机取一点P,则点P 在圆22
2x y +=内部的概率为
.
8
A π
.
4
B π
.
2
C π
3.
4
D π
10.已知直线l ,m,平面α、β、γ,给出下列命题: ①l//α,l//β,α∩β= m,则l//m;②α//β,β//γ,m ⊥α,则m ⊥γ; ③α⊥γ,β⊥γ,则α⊥β;④l ⊥m,l ⊥α,m ⊥β,则α⊥β. 其中正确的命题有 A.1个
B.2个
C.3个
D.4个
11.设12,F F 分别为双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点,若在双曲线右支上存在一点
P,满足212||||PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率为
4
.
3
A
5.
3
B
5.
4
C
41.
4
D 12.已知以T=4为周期的函数21,(1,1]
()1|2|,(1,3]
x x f x x x ⎧⎪-∈-=⎨--∈⎪⎩,其中m>0,若方程3f(x)=x 恰有5个
实数解,则m 的取值范围为.
15
.(
7)A 4
.(7)3
B
48.(,)33
C
158.)3
D 二、填空题:本大题共4小题,每小题5分,共20分.
13. 已知tanθ=2,则cos 2θ的值为___.
14.若D 点在三角形ABC 的边BC 上,且4CD DB r AB sAC ==+u u u r u u u r u u u r u u u r
,则3r+s 的值为___.
15.已知A,B 两点均在焦点为F 的抛物线2
2(0)y px p =>上,若||||4,AF BF +=u u u r u u u r 线段AB 的中
点到直线2
p
x =
的距离为1,则P 的值为___. 16.观察下列算式:
311,= 3235,=+ 337911,=++
3413151719=+++
……
若某数3
n 按上述规律展开后,发现等式右边含有“2021”这个数,则n=___.
三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分) 17. (12分)
在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c,且bsin2A-asin(A+C)=0. (1)求角A;
(2)若a=3,△ABC 的面积为33,2求11
b c
+的值.
18. (12分)
如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60, 70),[70,80),[80,90),[90, 100],
据此解答如下问题:
(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80, 100]之间的试卷中任取3份分析学生情况,设抽取的试卷分数在[90,100]的份数为X ,求X 的分布列和数学望期.
19. (12 分)
如图所示,在矩形ABCD 中,AB=4, AD=2, E 是CD 的中点,O 为AE 的中点,以AE 为折痕将△ADE 向上折起,使D 点折到P 点,且PC=PB.
(1)求证: PO ⊥面ABCE;
(2)求AC 与面PAB 所成角θ的正弦值.
20. (12 分)
已知椭圆22221(0)x y a b a b
+=>>过点(0,1),6
.直线l 与x 轴正半轴和y 轴分别交于
点Q 、P,与椭圆分别交于点M 、N,各点均不重合且满足12,.PM MQ PN NQ λλ==u u u u r u u u u r u u u r u u u r
(1)求椭圆的标准方程;
(2)若123,λλ+=-试证明:直线l 过定点并求此定点.
21. (12 分)
已知函数21()ln 12f x x ax bx =-
++的图象在x= 1处的切线l 过点11(,)22
. (1)若函数g(x)=f(x)-(a-1)x(a>0),求g(x) 的最大值(用a 表示); (2)若a=-1212124,()()32,f x f x x x x x ++++=证明:121
.2
x x +≥
(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.
22. [选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线1C 的参数方程为11cos :sin x C y αα
=+⎧⎨=⎩(α为参数),曲线2
22: 1.2x C y += (1)在以O 为极点, x 轴的正半轴为极轴的极坐标系中,求12,C C 的极坐标方程; (2)若射线((0)6
π
θρ=≥与1C 的异于极点的交点为A,与2C 的交点为B,求|AB|.
23. [选修4-5:不等式选讲]
已知关于x 的不等式|x- 2|-|x+3|≥|m+1|有解,记实数m 的最大值为M . (1)求M 的值;
(2)正数a,b,c 满足a+ 2b+c=M ,求证
11
1.a b b c
+≥++。