2008年山东师范大学离散数学考研真题-考研真题资料
信计08级离散数学A试题 A卷
![信计08级离散数学A试题 A卷](https://img.taocdn.com/s3/m/e1a64926192e45361066f583.png)
2. When the proposition (p→q)→r is false? A . p=0, q=1, r=1 r=1
C. p=1, q=1,
D. p=0, q=0, r=0
山东建筑大学试卷
3. Let A={a, b, c, d}, which of the following is a partition (划分) of A? A. {{a, b}, {d}} C. {{a }, {b, c}, {c, d}} B. {{a}, {c}, {b, d}} D. {{a}, {b},{c}, { d},{φ}} ( ) ( )
共4页 第2页
···········································································································
装 订 线
4. Let A=Z+, defined a relation R on A by aRb if and only if |a-b|≤ 3 , which is true for R? A. R is reflexive C. R is transtive B. R is antisymmetric D. R is asymmetric
三、 计算题 (每小题 6 分, 共 30 分) 每小题 1. The college catering service must decide if the mix of food that is supplied for reception is appropriate. Of 100 people questioned, 37 say they eat fruits, 33 say they eat vegetables, 9 say they eat cheese and fruits, 12 eat cheese and vegetables, 10 eat fruits and vegetables, 12 eat only cheese, and 3 report they eat all three offerings. How many people surveyed eat cheese? How many do not eat any of the offerings? ( )
2008年全国硕士研究生入学统一考试数学二真题及答案
![2008年全国硕士研究生入学统一考试数学二真题及答案](https://img.taocdn.com/s3/m/a3b05daaa5e9856a57126019.png)
(Ⅱ)记 则 可逆,
即 .
【难易度】★★
【详解】
解析:
则 。记 ,则
则 ,正、负惯性指数相同,故选
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)已知函数 连续,且 ,则
【答案】2
【考点】等价无穷小
【难易度】★★
【详解】
解析:利用等价无穷小因子替换有
.
(10)微分方程 的通解是 .
【答案】y=Cx-xe-x,其中C为任意常数
2个无穷间断点
2个跳跃间断点
【答案】
【考点】函数间断点的类型
【难易度】★★
Hale Waihona Puke 【详解】解析: 的间断点为 ,而 ,故 是可去间断点;
, ,故 是跳跃间断点
故选 .
(5)设函数 在 内单调有界, 为数列,下列命题正确的是( )
若 收敛,则 收敛. 若 单调,则 收敛.
若 收敛,则 收敛. 若 单调,则 收敛.
【详解】
解析:令
得方程组 即 ,解得 或
得 .
.
(22)(本题满分11分)
设 元线性方程组 ,其中 , , .
(Ⅰ)证明行列式 ;
(Ⅱ)当 为何值时,该方程组有唯一解,求 ;
(Ⅲ)当 为何值时,该方程组有无穷多解,求通解.
【考点】行列式的基本性质,非齐次线性方程组解的判定
【难易度】★★★
【详解】
解析:(Ⅰ)证明:消元法.记
.
(Ⅱ)由克莱姆法则, 时方程组有唯一解,故 时方程组有唯一解.
由克莱姆法则,将 得第一列换成 ,得行列式为
所以, .
(Ⅲ)当 时,方程组为
此时方程组系数矩阵的秩和增广矩阵的秩均为 ,所以方程组有无穷多组解,其通解为 ,其中 为任意常数.
20082离散数学试卷A答案(1)
![20082离散数学试卷A答案(1)](https://img.taocdn.com/s3/m/3de4feee19e8b8f67c1cb962.png)
o
a b c
a ① a ③
c ② c ④
21. 推理题(写出详细推理过程) 航海家都教育自己的孩子成为航海家,有一个人教育他的孩子去做飞行员,证明推理:这个人一定不是 航海家。 证明: 设个体域为人的集合。谓词 s(x) 是航海家;E(x) 教育他的孩子成为航海家。 :x :x 前提: ∀x ( s ( x ) → E ( x )), ∃x(¬E(x)) 结论: ∃x (¬E ( x ) ∧ ¬S ( x )) 推理过程为: (1) ∃x (¬E ( x )) (2) ¬E (c ) 条件引入 存在规定 ES
(2) < p, q >∈ R × R , f (< x, y >) =< p, q > , ∀ 由 通过计算可得 的原像存在, f 是满射。 20.在运算表 1 中空白处填入适当符号,使 ({a, b, c},o) 成为群。 (写出推理过程和依据) 答案 c b b a 表1 b a b c
x = ( p + q) / 2 , 从而 < p, q > y = ( p − q) / 2
n
得分
评阅人
二、填空题: (共 10 题,每小题 2 分,共 20 分)
9. 设 A = {a, b, c} ,则集合 S1 = {{a, b}, {b, c}} , S 2 = {{a}, {a, b}, {a, c}} , S 3 = {{a}, {b, c}} ,
S 4 = {{a, b, c}} , S 5 = {{a}, {b}, {c}} 和 S 6 = {{a}, {a, c}} 中是 A 的覆盖的有
¬(( P → Q ) ∧ ( R → P )) ∨ ¬(( R → ¬Q ) → ¬P )
2008全国考研数学(二)真题及答案.doc
![2008全国考研数学(二)真题及答案.doc](https://img.taocdn.com/s3/m/b3ef16b26529647d26285218.png)
2008年研究生入学统一考试数学二试题与答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A ''''''440y y y y +--= ()B ''''''440y y y y +++=()C ''''''440y y y y --+=()D ''''''440y y y y -+-=(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f 连续,若2222()(,)uvD f x y F u v dxdy x y +=+⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂ ()A 2()vf u ()B 2()vf u u ()C ()vf u ()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0xy x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______. (13)设xyy z x ⎛⎫=⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0200x t dx te dt x --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分 12arcsin 1x x dx x-⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式. (20)(本题满分11分)(1) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x d x ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程A X B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解. (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+, (1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 又()f x '中含有因子x ,故0x =也是()f x '的零点, D 正确. 本题的难度值为0.719. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.本题的难度值为0.829.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为0.832. (4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以 0x =是可去间断点,1x =是跳跃间断点.本题的难度值为0.486.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.本题的难度值为0.537. (6)【答案】A【详解】用极坐标得 ()()222()22211,()vu uf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为0.638. (7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为0.663. (8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. 本题的难度值为0.759. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f = 本题的难度值为0.828. (10)【答案】()xx eC --+【详解】微分方程()20xy x edx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为0.617. (11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x yy xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得1x dy dx==,所以切线方程为10y x -=-,即1y x =+本题的难度值为0.759. (12)【答案】(1,6)-- 【详解】53235y xx =-⇒23131351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x --+''=+=1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为0.501. (13)【答案】2(ln 21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yvvy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)2(ln 21)2z x ∂=-∂本题的难度值为0.575.(14)【答案】-1【详解】||236A λλ =⨯⨯= 3|2|2||A A =32648λ∴ ⨯=- 1λ⇒=-本题的难度值为0.839.三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦ 本题的难度值为0.823. (16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d y e x dx=+ 本题的难度值为0.742. (17)【详解】 方法一:由于221arcsin lim 1x x x x-→=+∞-,故212arcsin 1x x dx x-⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈22122222000arcsin sin cos 2cos sin ()cos 221x x t t t t t dx tdt t tdt dt t x πππ===--⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+ 方法二:212arcsin 1x x dx x -⎰12201(arcsin )2x d x =⎰121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈1222200011(arcsin )sin 2cos 224x x dx tdt t d t ππ==-⎰⎰⎰222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+ 本题的难度值为0.631.(18)【详解】 曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+ 本题的难度值为0.524.(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积202()1()tS f x f x dx π'=+⎰,由题设条件知220()()1()ttf x dx f x f x dx '=+⎰⎰上式两端对t 求导得 22()()1()f t f t f t '=+, 即 21y y '=-O 0.5 2 xD 1D 3 D 2由分离变量法解得 21l n (1)y y t C+-=+, 即 21t y y C e+-= 将(0)1y =代入知1C =,故21t y y e +-=,1()2t t y e e -=+于是所求函数为 1()()2x xy f x e e -==+ 本题的难度值为0.497.(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使32()()(32)()x dx ϕϕηϕη=-=⎰又由 32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂本题的难度值为0.719. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为0.486. (22)【详解】(I)证法一:2222122212132101221221122a a a a a a aa aA r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a a n a a n ar ar a n a nnn a n--+-=⋅⋅⋅=++ 证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立.当2n =时,2222132aD a a a ==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a a D aD a a -=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为 2221122(1)(1)112102121221122n n n n n n a aa a a aa a D na a a a a --⨯-⨯-===所以 11(1)n n D n x D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,T Tk k +为任意常数. 本题的难度值为0.270.(23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭. 本题的难度值为0.272.赠送以下资料考研英语作文模板(英语一)大作文考研英语大作文一般是看图写作,从一幅图分析含义及意义,所以只需要几个好的模板,根据题目套上去就行了。
离散数学试题带答案(五)
![离散数学试题带答案(五)](https://img.taocdn.com/s3/m/bd8c6fc61eb91a37f0115c7d.png)
离散数学试题带答案一、选择题1、G是一棵根树,则()。
A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题()。
A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。
A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、下面说法中正确的是()。
A、所有可数集合都是等势的B、任何集合都有与其等势的真子集C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图K3的不同构的生成子图有()个。
A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。
A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。
A 、R 是对称的 B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。
A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z 上的二元运算,y x xy y x Z y x -+=*∈∀,,,则*的幺元和零元分别是( )。
山东大学离散数学题库及答案
![山东大学离散数学题库及答案](https://img.taocdn.com/s3/m/b99bd9a20722192e4436f617.png)
《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式x((A(x)B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1) 北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) x y(x+y=0) (2) y x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真?( )(1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。
2008考研数二真题及解析
![2008考研数二真题及解析](https://img.taocdn.com/s3/m/3824884a312b3169a551a40d.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 设2()(1)(2)f x x x x =--,求()f x '的零点个数( )()A 0()B 1 ()C 2()D 3(2) 如图,曲线段方程为()y f x =, 函数在区间[0,]a 上有连续导数,则 定积分()axf x dx '⎰等于( )()A 曲边梯形ABOD 面积.()B 梯形ABOD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3) 在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=. ()B 440y y y y ''''''+++=. ()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.(4) 判断函数ln ()sin (0)1xf x x x x =>-间断点的情况( ) ()A 有1个可去间断点,1个跳跃间断点 ()B 有1个跳跃间断点,1个无穷间断点 ()C 有两个无穷间断点 ()D 有两个跳跃间断点yC (0, f (a )) A (a , f (a ))y =f (x )O B (a ,0) xD(5) 设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6) 设函数f 连续. 若()()2222,uvD f x y F u v dxdy x y+=+⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂( ) ()A ()2vf u()B ()2vf u u ()C ()vf u()D ()v f u u(7) 设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若3A O =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8) 设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) ()f x 连续,21cos(sin )lim1(1)()x x x e f x →-=-,则(0)f =(10) 微分方程2()0xy x e dx xdy -+-=的通解是y =O xvx 2+y 2=u 2 x 2+y 2=1 D uvy(11) 曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12) 求函数23()(5)f x x x =-的拐点______________. (13) 已知xyy z x ⎛⎫=⎪⎝⎭,则(1,2)_______z x ∂=∂. (14) 矩阵A 的特征值是,2,3λ,其中λ未知,且248A =-,则λ=_______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求极限()40sin sin sin sin limx x x x x →-⎡⎤⎣⎦.(16) (本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题 020|0xt dx te dtx -=⎧-=⎪⎨⎪=⎩的解. 求22d y dx .(17)(本题满分9分)计算212arcsin 1x x dx x-⎰(18)(本题满分11分)计算{}max ,1,Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[0,)+∞上具有连续导数的单调增加函数,且(0)1f =. 对于任意的[0,)t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成曲边梯形绕x 轴旋转一周生成一旋转体. 若该旋转体的侧面面积在数值上等于其体积的2倍,求函数()f x 的表达式.(20)(本题满分11分)(I) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰;(II) 若函数()x ϕ具有二阶导数,且满足,32(2)(1),(2)()x dx ϕϕϕϕ>>⎰,则至少存在一点(1,3)ξ∈,()0ϕξ''<使得.(21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大和最小值.(22)(本题满分12分)设n 元线性方程组Ax b =,其中2221212n n a a a A a a ⨯⎛⎫ ⎪⎪= ⎪⎪⎝⎭ ,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,100b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(I) 证明行列式()1nA n a =+(II) 当a 为何值时,该方程组有唯一解,并求1x (III) 当a 为何值时,该方程组有无穷多解,并求通解(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足323A ααα=+,(I) 证明123,,ααα线性无关; (II) 令()123,,P ααα=,求1P AP -2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 由于()f x '是三次多项式,三次方程()0f x '=的实根不是三个就是一个,故D 正确.(2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是440y y y ''''''-+-=(4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 111ln lim ()lim lim sin sin11x x x xf x x x --+→→→=⋅=--所以 0x =是可去间断点,1x =是跳跃间断点.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.(6)【答案】A【详解】用极坐标得 ()()222()22211,()vu uf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰⎰⎰所以()2Fvf u u∂=∂(7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆.(8) 【答案】D 【详解】记1221D -⎛⎫=⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==---- 所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确.二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f =(10)【答案】()xx eC --+【详解】微分方程()20xy x e dx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx xx x x x y e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得01x dy dx==,所以切线方程为10y x -=-,即1y x =+(12)【答案】(1,6)-- 【详解】53235y xx =-⇒23131351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x--+''=+= 1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)--(13)【答案】2(ln 21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yv vy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)2(ln 21)2z x ∂=-∂(14)【答案】-1【详解】||236A λλ =⨯⨯=3|2|2||A A = 32648λ∴⨯=- 1λ⇒=-三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦(16)【详解】方法一:由20x dx te dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2l n (1)x t =+所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dx te dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2l n (1)x t =+所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d ye x dx=+(17)【详解】 方法一:由于221arcsin lim 1x x x x-→=+∞-,故212arcsin 1x x dx x-⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈22122222000arcsin sin cos 2cos sin ()cos 221x x t t t t t dx tdt t tdt dt t x πππ===--⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+ 方法二:212arcsin 1x x dx x -⎰1221(arcsin )2x d x =⎰ 121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈12222200011(arcsin )sin 2cos 224x x dx t tdt t d t ππ==-⎰⎰⎰ 222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+(18)【详解】 曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+(19)【详解】旋转体的体积2()tV f x dx π=⎰,侧面积202()1()tS f x f x dx π'=+⎰,由题O 0.5 2 xD 1D 3 D 2设条件知220()()1()ttf x dx f x f x dx '=+⎰⎰上式两端对t 求导得 22()()1()f t f t f t '=+, 即 21y y '=- 由分离变量法解得 21l n (1)y y t C +-=+, 即 21t y y C e +-=将(0)1y =代入知1C =,故21t y y e +-=,1()2tt y e e -=+ 于是所求函数为 1()()2tt y f x e e -==+(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使 32()()(32)()x dx ϕϕηϕη=-=⎰又由32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得 1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂(21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6.(22)【详解】(I)证法一:2222122212132101221221122aa a a a a a a a A r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a an a a n a r ar a n a nnn a n--+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+. 当1n =时,12D a =,结论成立.当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a a D aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)n A n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+ 1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为 ()()10000100,TTk k + 为任意常数.(23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3) 因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.。
2008年数学三_考研数学真题及解析
![2008年数学三_考研数学真题及解析](https://img.taocdn.com/s3/m/feabf85243323968011c92c4.png)
2008年考研数学(三)真题一、选择题:(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x =⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点. ()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分0()a taf x dx ⎰等于() ()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积. ()D 三角形ACD 面积.(3)已知(,)f x y =,则(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在(C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在(4)设函数f连续,若22(,)uv D f u v =⎰⎰,其中uv D 为图中阴影部分,则F u ∂=∂( )(A )2()vf u (B )2()vf u u (C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆. ()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆. ()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫= ⎪⎝⎭则在实数域上域与A 合同矩阵为( )()A 2112-⎛⎫⎪-⎝⎭. ()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭. ()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x . ()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦. ()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=.()B {}211P Y X =-=. ()C {}211P Y X =-+=. ()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x c f x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = . (10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()D xy dxdy -=⎰⎰ .(12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=.(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分) 求极限201sin lim ln x x x x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时. (1)求dz(2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. (17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数,(1)证明对任意实数t ,有()()220t t f x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数. (19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元?(20) (本题满分12分)设矩阵2221212n n a a a A a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解;(3)a 为何值,方程组有无穷多解.(21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+,证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n i i S X X n ==--∑,221T X S n=-. (1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。
2008年4月到2013年7月自考离散数学试题附答案
![2008年4月到2013年7月自考离散数学试题附答案](https://img.taocdn.com/s3/m/4f7d0be2e45c3b3567ec8bbe.png)
全国2008年4月自考离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不.在室内运动”可符合化为()A.⎤P∧QB.⎤P→QC.⎤P→⎤QD.P→⎤Q2.下列命题联结词集合中,是最小联结词组的是()A.{⎤,}B.{⎤,∨,∧}C.{⎤,∧}D.{∧,→}3.下列命题为假.命题的是()A.如果2是偶数,那么一个公式的析取范式惟一B.如果2是偶数,那么一个公式的析取范式不惟一C.如果2是奇数,那么一个公式的析取范式惟一D.如果2是奇数,那么一个公式的析取范式不惟一4.谓词公式∀x(P(x)∨∃yR(y))→Q(x))中变元x是()A.自由变元B.约束变元C.既不是自由变元也不是约束变元D.既是自由变元也是约束变元5.若个体域为整数减,下列公式中值为真的是()A.∀x∃y(x+y=0)B.∃y∀x(x+y=0)C.∀x∀y(x+y=0)D.⎤∃x∃y(x+y=0)6.下列命题中不.正确的是()A.x∈{x}-{{x}}B.{x}⊆{x}-{{x}}C.A={x}∪x,则x∈A且x⊆AD.A-B=∅⇔A=B7.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A.P⊃QB.P⊇QC.Q⊃PD.Q=P8.下列表达式中不.成立的是()A.A∪(B⊕C)=(A∪B) ⊕ (A∪C)B.A∩(B⊕C)=(A∩B) ⊕ (A∩C)C.(A⊕B)×C=(A×C) ⊕ (B×C)D.(A-B) ×C=(A×C)-(B×C)9.半群、群及独异点的关系是()A.{群}⊂{独异点}⊂{半群}B.{独异点}⊂{半群}⊂{群}C.{独异点}⊂{群}⊂{半群}D.{半群}⊂{群}⊂{独异点}10.下列集合对所给的二元运算封闭的是()A.正整数集上的减法运算B.在正实数的集R+上规定*为a*b=ab-a-b ∀a,b∈R+C.正整数集Z+上的二元运算*为x*y=min(x,y) ∀x,y∈Z+D.全体n×n实可逆矩阵集合R n×n上的矩阵加法11.设集合A={1,2,3},下列关系R中不.是等价关系的是()A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C.R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>}12.下列函数中为双射的是( )A.f :Z →Z,f(j)=j(mod)B.f :N →N,f(j)=⎩⎨⎧是偶数是奇数j ,0j ,1 C.f :Z →N,f(j)=|2j|+1 D.f :R →R,f(r)=2r-1513.设集合A={a,b, c}上的关系如下,具有传递性的是( )A.R={<a,c>,<c,a>,<a,b>,<b,a>}B.R={<a,c>,<c,a>}C.R={<a,b>,<c,c>,<b,a>,<b,c>}D.R={<a,a>}14.含有5个结点,3条边的不.同构的简单图有( ) A.2个 B.3个C.4个D.5个15.设D 的结点数大于1,D=<V ,E>是强连通图,当且仅当( )A.D 中至少有一条通路B.D 中至少有一条回路C.D 中有通过每个结点至少一次的通路D.D 中有通过每个结点至少一次的回路二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
成人教育离散数学复习题及参考答案
![成人教育离散数学复习题及参考答案](https://img.taocdn.com/s3/m/b9104adc336c1eb91b375d07.png)
山东师范大学成人高等教育
《离散数学》课程复习题A
参考答案在试卷后(7月无纸化考试)
一、选择题(每小题4分,共20分)
1、下列公式中哪些不是永真式?( )
(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)
2、设A={a,{a}},下列命题错误的是()。
(1) {a}∈P(A) (2) {a}⊆P(A) (3) {{a}}∈P(A) (4) {{a}}⊆P(A) 3、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y∈A},则R 的性质为()。
(1) 自反的(2) 对称的 (3) 传递的,对称的 (4) 传递的4、设G是一个哈密尔顿图,则G一定是( )。
(1) 欧拉图 (2) 树(3) 平面图 (4) 连通图
5、设G是一棵树,则G 的生成树有( )棵。
(1) 0 (2) 1 (3) 2 (4) 不能确定
一、填空题(每空4分,共20分)
1、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
2、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校。
word版,《离散数学》题库及答案
![word版,《离散数学》题库及答案](https://img.taocdn.com/s3/m/36e574a1e45c3b3566ec8b73.png)
《失散数学》题库与答案一、选择或填空(数理逻辑部分)1、以下哪些公式为永真包含式?( )(1) Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P (P Q)=> P答:在第三章里面有公式(1)是附带律,(4)能够由第二章的包含等值式求出(注意与汲取律差别)2、以下公式中哪些是永真式? ( )(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(P Q)→P(4)P →(P Q)答:(2),(3),(4)可用包含等值式证明3、设有以下公式,请问哪几个是永真蕴涵式 ?( )(1)P=>P Q(2)P Q=>P(3)P Q=>PQ(4)P (P→Q)=>Q(5)(P→Q)=>P(6)P(P Q)=> P答:(2)是第三章的化简律,(3)近似附带律,(4)是假言推理,(3),(5),(6)都可以用包含等值式来证明出是永真包含式4、公式 x((A(x) B(y,x)) zC(y,z)) D(x)中,自由变元是( ) ,拘束变元是() 。
答:x,y, x,z (观察定义在公式xA和xA中,称x为指导变元,A为量词的辖域。
在xA和xA的辖域中,x的全部出现都称为拘束出现,即称x为拘束变元,A中不是拘束出现的其余变项则称为自由变元。
于是A(x)、B(y,和zC(y,z)中y为自由变元,x和z为拘束变元,在D(x)中x为自由变元)5、判断以下语句能否是命题。
假如,给出命题的真值。
( )(1)北京是中华人民共和国的国都。
(2)陕西师大是一座工厂。
(3)你喜爱唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)行进!(6)给我一杯水吧!1答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命必足是述句,不可以是疑句或许祈使句。
)6、命题“存在一些人是大学生”的否认是( ) ,而命题“全部的人都是要死的”的否认是( ) 。
2008考研数一真题及解析
![2008考研数一真题及解析](https://img.taocdn.com/s3/m/92d23f1a2cc58bd63086bd9f.png)
X
1 n
n i 1
Xi
,
S 2
1 n 1
n i 1
(X i
X
)2
,T
X
2
1 n
S2
(I) 证 T 是 2 的无偏估计量.
(II) 当 0, 1 时 ,求 DT .
第 4 页 共 14 页
2008
2008 年全国硕士研究生入学统一考试数学一试题解析
一、选择题
(1)【答案】 B 【详解】 f (x) [ln(2 x 2)] 2x , f (0) 0 ,即 x 0 是 f (x) 的一个零点
3x2
x
1 6
方法二:sin x x 1 x3 o(x3) 6
sin(sin x) sin x 1 sin 3 x o(sin 3 x) 6
lim x0
[sin
x
sin(sin x4
x)]sin
x
lim
x0
sin 4 x
6x4
o(sin 4 x4
x)
1 6
(16) 【详解】
方法一:(直接取 x 为参数将对坐标的曲线积分化成定积分计算)
(4)【答案】 B 【详解】因为 f (x) 在 (, ) 内单调有界,且 {xn} 单调. 所以{ f (xn )} 单调且有界. 故 { f (xn )} 一定存在极限
(5)【答案】 C 【详解】 (E A)(E A A2) E A3 E , (E A)(E A A2) E A3 E 故 E A, E A 均可逆.
D E A 可逆, E A 不可逆.
x
(6)
设
A
为
3
阶实对称矩阵,如果二次曲面方程
(
2008年全国硕士研究生入学统一考试数学二试题及答案详解
![2008年全国硕士研究生入学统一考试数学二试题及答案详解](https://img.taocdn.com/s3/m/bcc4ccda50e2524de5187edf.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设2()(1)(2)f x x x x =--,求()f x '的零点个数( )()A 0()B 1 ()C 2()D 3解:()D分析:()()()()()()22221212494f x x x x x x x x x x x '=--+-+-=-+令()0f x '=,则可得()f x '零点的个数为3.(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'()axf x dx ⎰( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.解:()C分析:0()()()()aaaxf x dx xdf x af a f x dx '==-⎰⎰⎰,其中()af a 是矩形面积,0()af x dx⎰为曲边梯形的面积,所以()axf x dx '⎰为曲边三角形的面积。
(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=.()B 440y y y y ''''''+++=. ()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.解:()D .分析;由123cos2sin 2x y C e C x C x =++可知其特征根为12,31,2i λλ==±.故对应的特征方程为 2(1)(2)(2)(1)(4)i i λλλλλ-+-=-+,即32440λλλ-+-=所以所求微分方程为440y y y y ''''''-+-=, 选()D . (4)判断函数ln ()sin (0)1xf x x x x =>-间断点的情况( )()A 有1个可去间断点,1个跳跃间断点 ()B 有1个跳跃间断点,1个无穷间断点 ()C 有两个无穷间断点 ()D 有两个跳跃间断点解:()A分析:()f x 的间断点为1,0x =,而0lim ()0x f x →+=,故0x =是可去间断点;1lim ()sin1x f x →+=,1lim ()sin1x f x →+=-,故1x =是跳跃间断点故选()A 。
离散数学试题带答案(二)
![离散数学试题带答案(二)](https://img.taocdn.com/s3/m/fa7c6db86edb6f1aff001ffd.png)
离散数学试题带答案一、选择题1、G 是一棵根树,则( )。
A 、G 一定是连通的B 、G 一定是强连通的C 、G 只有一个顶点的出度为0D 、G 只有一个顶点的入度为12、下面哪个语句不是命题( )。
A 、中国将成功举办2008年奥运会B 、一亿年前地球发生了大灾难C 、我说的不是真话D 、哈密顿图是连通的3、设R 是实数集合,在上定义二元运算*:a ,b ∈R ,a*b=a+b-ab ,则下面的论断中正确的是( )。
A 、0是*的零元B 、1是*的幺元C 、0是*的幺元D 、*没有等幂元4、下面说法中正确的是( )。
A 、所有可数集合都是等势的B 、任何集合都有与其等势的真子集C 、有些无限集合没有可数子集D 、有理数集合是不可数集合5、无向完全图K 3的不同构的生成子图有( )个。
A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A 、无回路的连通图B 、有n 个顶点n-1条边的连通图C 、每对顶点间都有通路的图D 、连通但删去一条边则不连通的图7、设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。
A 、必惟一B 、不惟一C 、不一定惟一D 、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )A 、 x*y=max{x,y}B 、 x*y=min{x,y}C 、 x*y=GCD(x,y),即x,y 的最大公约数D 、 x*y=LCM(x,y),即x,y 的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。
A 、R 是对称的B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。
2008年全国考研数学一真题及答案.doc
![2008年全国考研数学一真题及答案.doc](https://img.taocdn.com/s3/m/dbeb2132a8956bec0975e386.png)
2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。
【解析】且,则是唯一的零点综上所述,本题正确答案是B。
【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A)(B)(C)(D)【答案】A。
【解析】所以综上所述,本题正确答案是A。
【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为任意常数为通解的是(A)(B)(C)(D)【答案】D。
【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。
【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。
【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。
【方法二】排除法:若取,,则显然单调,收敛,但,为偶数为奇数,显然不收敛,排除A。
若取,显然收敛且单调,但不收敛,排除C和D。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则(5)设为阶非零矩阵,为阶单位矩阵,若,则(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。
【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。
【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则的正特征值的个数为(A)(B)1(C)2 (D)3【答案】B。
【解析】所给图形为双叶双曲线,标准方程为二次型正交变换化为标准形时,其平方项的系数就是的特征值,可知的正特征值的个数为1综上所述,本题正确答案是B。
离散数学试题(2008)_C(答案)
![离散数学试题(2008)_C(答案)](https://img.taocdn.com/s3/m/f99be213cc7931b765ce15e0.png)
第2页 共 2页C .7.D .5.3. 素数阶群一定是 【B 】A .无限群.B .循环群,也是Abel 群.C .非交换群.D .循环群.4. 下列图中那一个是欧拉图 【A 】A .K 4,4.B .K 4.C .K 3,4.D .K 3,3.5. 下列图中是哈密尔顿图的是 【B 】A .K 3,4.B .K 5.C .K 2.D .K 1,1.三、 计算与简答题(每小题10分,共50分)1. 利用等值演算方法求命题公式((p ∨q )∧(p →q ))↔(q →p )的主析取范式;并指出该公式的成真赋值和成假赋值.((p ∨q )∧(p →q ))↔(q →p )⇔((p ∨q )∧(⌝p ∨q ))↔(⌝q ∨p )⇔q ↔(⌝q ∨p ) ⇔(q →(⌝q ∨p ))∧((⌝q ∨p )→q )⇔⌝q ∨(⌝q ∨p )∧⌝(⌝q ∨p )∨q⇔(⌝q ∨p )∧((q ∧⌝p )∨q )⇔(⌝q ∨p )∧q ⇔(⌝q ∧q )∨(p ∧q )⇔p ∧q ⇔m 3 原公式的主析取范式为m 3;原公式的成真赋值为11;成假赋值为00,01,10.第5页 共6页第6页 共 6页四、 证明题(每小题10分,共20分)1. 在一阶逻辑中构造下面推理的证明 前提:∀x (F (x )→ G (x )),⌝∀x (F (x )→H (x ))结论:∃x (F (x ) ∧G (x ) ∧⌝H (x ))(1) ⌝∀x (F (x )→H (x )) 前提引入 (2) ∃x ⌝(F (x )→H (x )) (1)置换 (3) ⌝(F (c )→H (c )) (2)EI 规则 (4) F (c )∧⌝H (c) (3)置换 (5) F (c ) (4)化简 (6) ∀x (F (x )→ G (x )) 前提引入 (7) F (c )→ G (c )) (7)UI 规则 (8) G (c ) (5)(8)假言推理 (9) F (c )∧G (c )∧⌝H (c) (4)(8)合取 (10) ∃x (F (x ) ∧G (x ) ∧⌝H (x )) (9)EG 规则2. 设H ≤G ,∀a ,b ∈G ,定义〈a ,b 〉∈R ⇔ab -1∈H ,证明R 是G 上的等价关系,求出等价关系R 的等价类. 自反性:∀a ∈G , aa -1=e ∈H ⇒〈a , a 〉∈R 对称性:∀a ,b ∈G ,〈a ,b 〉∈R ⇒ab -1∈H ⇒(ab -1)-1∈H =ba -1∈H ⇒〈b ,a 〉∈R传递性:∀a ,b ,c ∈G ,〈a ,b ∈〉R ,〈b ,c ∈〉R ⇒ab -1∈H , bc -1∈H =ab -1bc -1∈H ⇒ac -1∈H ⇒〈a ,c 〉∈R等价类: ∀a ∈G ,b ∈[a ]R ⇔〈a ,b 〉∈R ⇔ab -1∈H ⇔b ∈Ha , 因此,对∀a ∈G ,[a ]R =Ha .R 的商集为G /R =G /H ={[x ]R |x ∈G }={Ha |a ∈G }.。
《离散数学》题库及答案解析
![《离散数学》题库及答案解析](https://img.taocdn.com/s3/m/91c1fc3a5f0e7cd1842536f8.png)
《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。
在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。
)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
山东大学离散数学题库及答案(计本)
![山东大学离散数学题库及答案(计本)](https://img.taocdn.com/s3/m/f66a775d7cd184254b3535d5.png)
《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式x((A(x)B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1) 北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗 (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) x y(x+y=0) (2) y x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真( )(1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。
离散数学考试题详细答案【范本模板】
![离散数学考试题详细答案【范本模板】](https://img.taocdn.com/s3/m/4b4e73100242a8956aece448.png)
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报",命题符号化为:(⌝P⇄Q)∧(P⇄R∨S)b)我今天进城,除非下雨。
设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:⌝Q→P或⌝P→Qc)仅当你走,我将留下.设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P2.用谓词逻辑把下列命题符号化a)有些实数不是有理数设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:∃x(R(x) ∧⌝Q(x))或⌝∀x(R(x) →Q(x))b)对于所有非零实数x,总存在y使得xy=1。
设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy,命题符号化为:∀x(R(x) ∧⌝E(x,0)→∃y(R(y) ∧E(f(x,y),1))))c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.设F(f)表示“f是从A到B的函数”,A(x)表示“x∈A”, B(x)表示“x∈B",E(x,y)表示“x=y”,命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧ c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)(P→(Q→R))↔(R→(Q→P))⇔(⌝P∨⌝Q∨R)↔(P∨⌝Q∨⌝R)⇔((⌝P∨⌝Q∨R)→(P∨⌝Q∨⌝R)) ∧ ((P∨⌝Q∨⌝R) →(⌝P∨⌝Q∨R))。
⇔((P∧Q∧⌝R)∨(P∨⌝Q∨⌝R)) ∧((⌝P∧Q∧R)∨(⌝P∨⌝Q∨R))⇔(P∨⌝Q∨⌝R) ∧(⌝P∨⌝Q∨R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧R)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)a) T b) F3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式.(4分)∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))⇔∀x(F(x)→G(x))→(∃yF(y)→∃zG(z))⇔∀x(F(x)→G(x))→∀y∃z(F(y)→G(z))⇔∃x∀y∃z((F(x)→G(x))→(F(y)→G(z)))4.判断下面命题的真假,并说明原因。