初一数学下册期末几何压轴题模拟试卷及答案(5)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解答题

1.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.

(1)如图,当点D在线段OB的延长线上时,

①若D点的坐标为(﹣5,0),求点E的坐标.

②求证:M为BE的中点.

③探究:若在点D运动的过程中,OM

BD

的值是否是定值?如果是,请求出这个定值;如

果不是,请说明理由.

(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).

2.如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且100

EOF

∠=︒.

(1)求BEO OFD ∠+∠的值;

(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出

EMN FNM ∠-∠的值;

(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,

DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且

50FMN ENM ∠-∠=︒,直接写出m 的值.

3.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且

()

2

350αβα-+-=.

(1)α=________,β=________;直线AB 与CD 的位置关系是______;

(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.

(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点

1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中

1

FPN Q

∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.

4.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .

(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;

(2)如图2,若∠ABM =13∠ABF ,∠CDM =1

3

∠CDF ,∠BED =α°,求∠M 的度数;

(3)若∠ABM =1n ∠ABF ,∠CDM =1

n

∠CDF ,请直接写出∠M 与∠BED 之间的数量关系

5.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;

(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ; (3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.

6.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H . (1)当点H 在线段EG 上时,如图1 ①当∠BEG =36︒时,则∠HFG = .

②猜想并证明:∠BEG 与∠HFG 之间的数量关系.

(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.

7.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a

例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f = 根据以上定义,完成下列问题:

(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .

(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b

(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.

8.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:

(1)由33101000,1001000000==,因为1000327681000000<<______位数;

(2)由32768的个位上的数是8________,划去32768

后面的三位数768得到32,因为333=27,4=64_____________

(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:

________=

9.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.

你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:

3

1000100==,又1000593191000000<<,

10100∴,∴能确定59319的立方根是个两位数.

②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,

34<<,可得3040<<, 由此能确定59319的立方根的十位数是3 因此59319的立方根是39.

(1)现在换一个数195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________. ④195112的立方根是________. (2)请直接填写....结果:

=________.

=________. 10.[阅读材料]

相关文档
最新文档