二次型标准型和规范型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次型标准型和规范型
二次型是代数学中的一个重要概念,它在线性代数和矩阵理论中有着广泛应用。
二次型标准型和规范型是将一个任意的二次型通过线性变换化为一个简化的形式,使得我们可以更方便地研究和分析二次型的性质。
一个二次型可以表示为如下形式:
$$
Q(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n}
a_{ij}x_ix_j
$$
其中 $x_1, x_2, \dots, x_n$ 是变量,$a_{ij}$ 是常数。
二次型的标准型是指将二次型中的二次项化为平方和的形式。
对于一个二次型 $Q(x)$,假设其矩阵为 $A$,则存在一个非奇异矩阵 $P$,使得:
$$
P^TAP = D
$$
其中 $D$ 是对角阵,对角线上的元素称为二次型的标准型系数。
标准型的特点是二次型的二次项仅包含平方和,没有交叉项和混合项。
这样的形式更简单,更容易研究和分析。
为了得到二次型的标准型,需要进行正交变换。
正交变换可以通过选取一组特殊的基进行,其中基向量之间两两正交且模长为1。
设有一组基向量 $p_1, p_2, \dots, p_n$,构成正交矩阵
$P = [p_1, p_2, \dots, p_n]$,则有 $P^TP = I$。
通过变换 $y = Px$,可以得到新的变量 $y$ 对应的二次型 $Q(y)$。
从而有:$$
Q(y) = Q(Px) = x^TP^TAPx = x^TDx
$$
其中 $D = P^TAP$,$D$ 是一个对角阵,对角线上的元素就是二次型的标准型系数。
在二次型的标准型基础上,可以进一步进行规范化处理。
规范化处理是将标准型系数中的非零元素变为1或-1,以及调整它们的顺序。
具体步骤如下:
1. 如果标准型系数中存在非零元素 $d_{ii}$,则可以将其除以本身的绝对值,将其变为1或-1。
2. 如果标准型系数中存在连续的非零元素 $d_{ii}$ 和 $d_{i+1, i+1}$,且它们同号,则可以将 $d_{i+1, i+1}$ 变为与
$d_{ii}$ 同号,并将它直接相加;如果符号相反,则将它们的绝对值取为1。
3. 重复步骤2,直到所有非零元素都被处理。
通过规范化处理,可以使得二次型的标准型系数具有统一的形式,从而更方便进行比较和分析。
总结起来,二次型的标准型是通过正交变换将二次型中的二次项化为平方和的形式,而规范型是在标准型基础上对系数进行
规范化处理。
标准型和规范型都是简化了的二次型形式,使我们更容易进行研究和分析。