生物医用材料详解
生物医用材料
生物医用材料生物医用材料是指用于医学领域的一类材料,广泛应用于医疗器械、医疗器具等领域。
生物医用材料具有生物相容性好、生物降解性以及生物仿生性等特点,可以与人体组织有效地进行交互作用,提供持久、安全和可靠的医疗效果。
生物医用材料一般可分为金属材料、聚合物材料、陶瓷材料和复合材料四大类。
其中,金属材料一般采用不锈钢、钛合金等;聚合物材料主要有聚乳酸、聚偏氟乙烯等;陶瓷材料则包括氧化铝、羟基磷灰石等;复合材料则可以是一种或多种材料的组合。
不同的材料在生物医用领域起到不同的作用,满足不同的医疗需求。
在生物医用器械中,金属材料常用于制作支架、骨板等。
金属材料具有强度高、硬度好的特点,可以有效承担人体部位的力学负荷。
常用的钛合金材料具有生物相容性好、不易引起过敏等优点,广泛应用于骨科和牙科领域。
聚合物材料则在生物医用领域中具有广泛的应用。
聚乳酸被广泛应用于可吸收缝合线、骨内固定器等器械中。
聚乳酸具有良好的生物降解性,可以在人体内自然降解,避免了二次手术取出材料的需要。
此外,聚合物材料还可以根据不同的需求进行修饰,如改变材料的表面形态,提高材料与人体组织的相容性。
陶瓷材料主要应用于牙科和骨科领域。
陶瓷材料具有优异的生物相容性和生物降解性能,可以模拟人体骨组织的结构和力学性能,实现与人体骨组织的良好结合。
羟基磷灰石是一种常用的陶瓷材料,被广泛使用于人工骨、缺损修复和牙科修复等领域。
复合材料则是将不同的材料进行组合,以达到更好的功能和性能。
复合材料可以包括金属与聚合物的组合,或是多种不同的金属的组合。
在生物医用领域中,复合材料常用于制作人工关节等器械。
复合材料在强度和生物相容性上可以兼具,提高了材料的性能。
总的来说,生物医用材料是一类专门用于医疗领域的材料,具有生物相容性、生物降解性和生物仿生性等特点。
不同的生物医用材料在医疗领域起到不同的作用,满足不同医疗需求。
随着科技的不断进步,生物医用材料的研究发展将为医学领域的发展提供更多可能性。
生物医用材料名词解释
生物医用材料名词解释生物医用材料是指在医疗保健、生物工程和生物技术领域应用的材料。
生物医用材料具有特定的物理、化学和生物学特性,可以在入侵机体时保持安全性和功能性,年岁较长的材料有可能成为改变生物体性能的缓慢和有害的外源物质。
1.胞培养用材料:细胞培养用材料是指用于细胞培养的生物材料,是一种由细胞组成的复杂体系。
其中包括:细胞培养基、细胞分离剂、细胞膜和细胞增殖促进因子等。
它们可以被用来维持和改变细胞生长和能量代谢状态,促进细胞的繁殖和活动,有助于细胞的形成和稳定。
2.胞支架:细胞支架是支撑细胞增殖活动的材料。
它们可以提供细胞性能所需的物理和化学环境,促进分子和细胞构成体内环境的相互作用,它们也可以改变细胞的形状和迁移行为以及控制细胞的位置和活性。
3.合材料:缝合材料是用于缝合组织的外科材料。
它们具有吸水性和耐疲劳性,它们可以被用来支撑伤口边缘以促进组织愈合,保护伤口免受外界的污染和损伤。
4.物载体:药物载体是一种用于药物投递的材料。
它们有助于药物在机体中的传输和释放,它们能够水解在肝脏中,以实现更有效的药物投递。
药物载体也可以应用于药物和细胞治疗领域,促进细胞的生长和迁移,改善细胞的质量和性能。
5.入材料:植入材料是一种生物材料,用于植入人体内部以取代受损或缺失的组织和器官。
其主要功能是维护组织间的结构,并根据组织发生变化,有效地管理细胞在组织中的活动。
它们能够抵抗微生物和机体免疫应答,耐受体内温度、pH和湿度等环境变化,对身体无害,可以有效刺激组织和细胞的再生和修复。
以上就是关于生物医用材料的解释。
生物医用材料的应用可以解决复杂的医疗保健问题,改善患者的生活质量。
它们不仅能够提高治疗效率,还能使治疗变得更加安全、有效、可靠。
因此,对于对生物技术有兴趣的人来说,学习和研究生物医用材料是一个非常有意义的活动。
生物医用材料介绍
生物医用材料导论一、生物医用材料定义生物材料:广义的说,一是指用于生物体内的材料,达到治疗康复的目的,例如隐形眼镜、人工髋关节;二是指来源于生物体,可能用于或不再用于生物体,例如动物皮革用于服装。
生物医用材料:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。
生物医用材料本身不是药物,而是通过与生物机体直接结合和相互作用来进行治疗。
另一种说法是:生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。
生物医用材料又叫做生物材料,分别来自于Biomedical Materials 和Biomaterials的译名。
目前国际上两本最主要的学术期刊是英国的《Biomaterials》和美国的《Journal of Biomedical Materials Research》,两个期刊所涉及的内容是相同的,由此可见Biomedical Materials 和Biomaterials两词是指相同的材料。
举例说明:(FDA分类:美国食品与药物管路局对医用材料的分类)名称是否生物材料相接触的组织FDA分类眼镜架no隐形眼镜yes 与角膜接触III假肢no人工髋关节yes 与骨组织接触并要求牢固结合III假牙yes 与口腔粘膜接触II牙根植入体yes 与牙床骨接触并希望牢固结合III人工心肺系统yes 与血液接触III生物医用材料学科的研究内容1.各种器官的作用;2.生物医用材料的性能;3.它们之间的相互作用,在体内生物医用材料如何影响活组织(称之为宿主反应);活组织又如何影响生物材料的性能变化(称之为材料反应)。
相互作用重点研究化学和力学两方面。
(例如植入髋关节,磨损碎屑,炎症反应,以及金属离子的溶出)二、生物医用材料的分类:生物材料应用广泛,品种很多,有不同的分类方法。
按材料的传统分类法分为:(1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物、其他医用合成塑料和橡胶)、(2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖)、(3)金属与合金材料(如钦金属及其合金)、(4)无机材料(生物活性陶瓷,羟基磷灰石)、(5)复合材料(碳纤维/聚合物、玻璃纤维/聚合物)。
《生物医用材料课件》
常见的生物医用材料
骨科材料
心脏血管材料
用于修复断骨和进行骨重建手术的
用于血管扩张和支架植入等心脏血
材料,如人工髋关节和骨修复螺钉。 管手术的材料,如心脏支架。
人工器官材料
用于制造人工心脏、人工肝脏等器 官的材料,如生物相容性高的聚合 物。
生物医用材料的应用
医疗领域的需求
生物医用材料满足了医疗领域对安全、耐用、可降 解等特性的需求。
生物医用材料课件
生物医用材料是用于医疗及医学研究的特殊材料。本课件将带您了解生物医 用材料的概述、分类和应用领域,以及未来发展趋势。
材料概述
1 什么是生物医用材料
2 生物医用材料的分类
生物医用材料是指用于医疗目的的材料,如医疗 器械、植入材料等。
生物医用材料可分为可降解和不可降解两类,根 据其在人体内的降解速度和能力。
生物医用材料的未来趋势
1 新材料的研发与应用
不断研发新的生物医用材料,应用于更广泛的医疗领域。
2
生物医用材料的优势和局限性
生物医用材料具有生物相容性好、可塑性高等优势, 但也存在降解速度难以控制等局限性。
生物医用材料的研发与评价
1
生物相容性测试
通过体外和体内实验对材料进行生物相容性
材料性能评估
ห้องสมุดไป่ตู้
2
评估。
对材料的力学性能、生物活性等进行评估。
3
临床试验
将材料应用于临床实践中,评估其安全性和 有效性。
《生物医用材料》课件
案例二
总结词
药物载体的新选择
详细描述
可降解高分子材料具有良好的生物相容性和可降解性,是 药物载体的理想选择。这种材料可以在体内降解,减少了 对身体的副作用和不良反应。
总结词
材料的合成与改性
详细描述
为了提高可降解高分子材料的载药量、稳定性和靶向性, 需要进行合成和改性研究。通过化学修饰和共聚等手段, 可以改善材料的性能,提高药物的包覆率和释放效果。
系统生物学与生物医用材料
结合系统生物学的研究方法,深入探究生物医用材料与人体组织之间 的相互作用机制,为新材料的研发和应用提供理论支持。
05
案例分析
案例一
总结词
骨修复领域的创新应用
详细描述
生物活性玻璃陶瓷材料是一种新型的骨修复材料,具有良 好的生物相容性和骨传导性。它在骨修复领域的应用已经 得到了广泛认可,能够有效地促进骨组织的再生和修复。
某些生物医用材料具有诱导骨形成的特性,可通 过体内外实验验证其诱导骨生成的潜力。
生长因子活性
某些生物医用材料能够吸附和释放生长因子,促 进组织再生,可通过实验验证其生长因子活性。
抗菌性能
某些生物医用材料具有抗菌性能,可抑制微生物 的生长,可通过实验验证其抗菌效果。
体内植入实验
短期植入
功能评价
将生物医用材料植入动物体内,观察 短期内的组织反应和材料性能变化。
总结词
应用范围与限制
详细描述
可降解高分子材料在药物载体领域的应用已经得到了广泛 的研究和探索。然而,其应用仍受到一些限制,如材料的 降解速度和药物的释放速度需要精确控制,同时也需要进 一步研究其长期稳定性和安全性。
案例三
总结词
癌症治疗的新突破
生物医用材料简介
生物医用材料简介
汇报人: 2024-01-09
目录
• 生物医用材料的定义与分类 • 生物医用材料的特性与要求 • 生物医用材料的应用领域 • 生物医用材料的发展趋势与挑
战 • 生物医用材料的未来展望
01
生物医用材料的定义与分类
定义
01
生物医用材料是指用于诊断、治 疗、修复或替换人体组织、器官 或增进其功能的非金属、非陶瓷 类无机非金属材料。
药物缓释技术
利用生物医用材料制备的药物缓释剂 ,可在一定时间内持续释放药物,减 少服药次数和剂量。
组织工程
人工器官
利用生物医用材料和细胞工程技术, 可以构建人工器官,以替代病变或损 伤的器官。
组织修复
生物医用材料可以用于修复和再生人 体组织,如皮肤、骨骼、肌肉等。Βιβλιοθήκη 再生医学干细胞培养
生物医用材料可以作为干细胞培养的支架,促进干细胞增殖和分化,实现受损组织的再生修复。
总结词
生物活性是指生物医用材料能够与人体细胞或组织发生相互作用,促进细胞生长 、分化、修复等功能的能力。
详细描述
具有生物活性的材料能够与人体细胞或组织形成紧密的结合,增强材料与人体之 间的相互作用,促进组织再生和功能恢复。生物活性可以通过材料的表面改性、 生长因子加载等方式实现。
安全性
总结词
安全性是指生物医用材料在使用过程中对人体的无害性,以 及在生产、储存、运输等环节中的安全性。
生物医用材料
生物医用材料生物医用材料导论一、生物医用材料定义广义的生物材料:一是指用于生物体内的材料,达到治疗康复的目的,例如隐形眼镜、人工髋关节;二是指来源于生物体,可能用于或不再用于生物体内(这种不是本课程研究对象),例如动物皮革用于服装。
我们给生物医用材料明确的定义:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。
生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗。
生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。
二、生物医用材料学科的研究内容1.各种器官的作用;2.生物医用材料的性能;3.组织器官与材料之间的相互作用。
专题一、生物医用材料的生物相容性及其生物学评价第一节、生物相容性概念和原理生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。
生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。
因此,材料的生物相容性优劣是生物医用材料研究设计中首先考虑的重要问题。
生物医用材料与组织、细胞、血液接触时,会产生各种反应,(包括宿主反应(即机体生物学反应)和材料反应)。
材料与机体之间存在反应,会使各自的功能和性质受到影响,不仅使生物材料变形变性,还会对机体将造成各种危害。
下图列出相互影响产生的后果。
多数医用材料很难保持植入时的形状、物理化学性能。
引起生物医用材料变化的因素有:(1)生理活动中骨路、关节、肌肉的力学性动态运动;(2)细胞生物电、磁场和电解、氧化作用;(3)新陈代谢过程中生物化学和酶催化反应;(4)细胞粘附吞噬作用;(5)体液中各种酶、细胞因子、蛋白质、氨基酸、多肽、自由基对材料的生物降解作用。
生物医用材料及装置植入人体后,引起三种生物学反应:组织反应、血液反应和免疫反应。
生物医用材料
生物医用材料
生物医用材料是指用于医疗治疗和修复组织的材料,包括生物材料和医用材料
两大类。
生物医用材料具有良好的生物相容性和生物活性,能够与人体组织相互作用,并且在医疗治疗和组织修复中发挥重要作用。
生物医用材料的种类繁多,常见的包括生物陶瓷、生物金属、生物高分子材料等。
这些材料在医疗治疗和组织修复中扮演着重要角色,例如生物陶瓷可用于骨修复和关节置换,生物金属可用于植入体内支撑和修复骨折,生物高分子材料可用于软组织修复和再生。
生物医用材料的研究和应用对于医疗领域具有重要意义。
通过不断创新和研发,可以开发出更加安全、有效的生物医用材料,为医疗治疗和组织修复提供更好的支持和帮助。
同时,生物医用材料的研究也为医学科研提供了新的方向和机遇,推动了医学科学的发展和进步。
在生物医用材料的研究和应用过程中,需要充分考虑材料的生物相容性、力学
性能、耐久性等因素。
只有在充分了解材料的特性和作用机制的基础上,才能更好地应用于医疗治疗和组织修复中,确保治疗效果和患者安全。
总的来说,生物医用材料是医疗治疗和组织修复中不可或缺的重要组成部分,
其研究和应用对于医学领域具有重要意义。
随着科学技术的不断进步和创新,相信生物医用材料将会在医疗领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。
生物医用药用材料
(C)一般报道的整体HAP的断裂韧性在 0.7MPa · 1/2左右,人体骨的断裂韧性在2-10 m (2)羟基磷灰石的成型与 1/2之间。 MPa · m
(1)HAP的粉体制备工艺 烧结工艺
(3)HAP系复合材料目前 已达到的性能 (4)HAP系复合材料的应 用
HAP基复合材料主要应用在颌面骨、牙槽脊、 听小骨等非承重材料以及一些骨缺损的修复等方 面,而在承重材料方面尚没有应用。
发展
公元前2500年在中国及埃及人的墓穴中已
发现有假手、假耳等人工假体,我国隋唐 时代就有了补牙用的银膏。 金银铂 不锈钢 纯钛的骨钉、骨板 Ti-Ni形状记忆合金
目前国外有数以百万计的人靠人工器官维持着生 命。仅在美国,每年约有100万人接受人工器官的 植入手术。其中,人工心脏瓣膜3.5万人,人工血 管18万人;人工髋骨12.5万人;人工膝盖605万人; 人工肾5万人。 每年以20%—30%的速度递增。1980年世界销售 额达200亿美元,1990年增加到500亿美元。
金属纤维+生物活性玻璃 HA+PE
注:G—生物活性玻璃 HA—羟基磷灰石 P—金云母 W—硅灰石 PE—聚乙烯 A—磷灰石
生物材料的国内外研究现状
主要是指利用骨的压电效应能刺激骨 惰性生物陶瓷是指一类在生物环 随着生物陶瓷材料研究的深入 活性生物陶瓷是一类在生理环境中可 折愈合的特点,人们试图利用压电陶瓷与 境中能保持稳定,不发生或仅发生微 和越来越多医学问题的出现,对生 通过其表面发生的生物化学反应与生 生物活性陶瓷复合,在进行骨置换的同时, 弱化学反应的生物医学材料。主要包 物陶瓷材料提出了更高的要求。原 体组织形成化学键性结合的材料。其 利用生物体自身运动对置换体产生的压电 括氧化铝、氧化锆等陶瓷以及医用碳 先的生物陶瓷材料无论是生物惰性 发展始于1969年Hench等人首次发现 该类材料是将天然有机物 效应来刺激骨损伤部位的早期硬组织生长。 素材料。这类材料的发展期在上世纪 的还是生物活性的,强调的是材料 Na2 (如骨胶原、纤维蛋白以及骨 70年代以前。它们结构都比较稳定, 另外,将铁氧体与生物活性陶瓷复合,填 -CaO-SiO2-P2O5系统中的玻璃45S5 在生物体内的组织力学环境和生化 具有生物活性。目前主要包括羟基磷 形成因子等)和无机生物材料 充在因骨肿瘤而产生的骨缺损部位,利用 分子中的键力较强,而且都具有较高 环境的适应性,而现在组织电学适 灰石、磷酸三钙、石膏等可降解吸收 复合,以改善材料的力学性能 外加交变磁场,充填物因磁滞损耗而产生 的强度、耐磨性及化学稳定性。现在 应性和能参与生物体物质、能量交 陶瓷。它们在生理环境中可被逐渐的 和手术的可操作性,并能发挥 局部发热,杀死癌细胞,又不影响周围正 换的功能已成为生物材料应具备的 它们在临床上得到了广泛的应用[5-7]。 降解吸收,并随之为新生组织替代, 天然有机物的促进人体硬组织 常组织,也是研究方向之一。现在,功能 条件。因此,又提出了功能活性生 活性生物陶瓷的研究还处于探索阶段,临 物材料的概念[2]。 1.2.1生长的特性。 从而达到修复或替换被损坏组织的目 惰性生物陶瓷 的。 (1)模拟人体 床应用鲜有报道,但其发展应用前景是很 硬组织成分和 光明的。 结构的生物陶 生物陶瓷 1.2.2 活性生物陶瓷 瓷材料
生物医用材料
2021/4/24
3
• 生物材料发展简史
(历史上、近代、现代)
• 生物材料分类
(属性、功能、来源、使用)
• 生物材料的特征与评价
(宿主反应、材料反应、生物相容性)
2021/4/24
4
10.1.1 生物医学材料发展简史
植 c.异种器官及组织 如动物骨、肾替换人体器官 d.天然生物材料 如动物骨胶原、甲壳素、珊瑚等 e.人工合成材料 如各种人工合成的新型材料
2021/4/24
14
4.按使用部位分类:
a.硬组织材料 骨、牙齿用材料 b.软组织材料 软骨、脏器用材料 c.心血管材料 心血管以及导管材料 d.血液代用材料 人工红血球、血浆等 e.分离、过滤、透析膜材料 血液净化、肾透析以
不锈钢: 1926年,含18%铬和8%镍首先应与于骨科治疗,随后应与于口腔科; 1934年,研制出高铬低镍单相组织的AISI302和304,在体内生理环 境下的耐腐蚀性显著提高; 1952年,开发出耐蚀性更好的AISI316不锈钢,并逐渐取代AISI302; 60年代,为了解决不锈钢的晶间腐蚀问题,又研制出超低碳不锈钢 AISI316L和317L。
生物材料是材料科学领域中正在发展的多种学科相互交叉
渗透的领域,其研究内容涉及材料科学、生命科学、化学、生
物学、解剖学、病理学、临床医学、药物学等学科,同时还涉
及2工021程/4/2技4 术和管理学科的范畴。
2
生物材料正在挽救和 维持世界上成千上万血 管患者的生命;正广泛 用于伤残人肢体形态和 功能的恢复 ;正在计划 生育、控制人口、提高 人们健康水平方面发挥 巨大作用。如图8-பைடு நூலகம்。
生物医用材料的性能与应用
生物医用材料的性能与应用生物医用材料是用于医疗领域的一种特殊材料,可以被应用于医疗器械、假体、医疗纤维、组织工程、再生医学等许多领域。
它们具备一系列特殊的性能,可以满足医疗领域的苛刻要求,并且在人体内表现出良好的生物相容性,不会引起排异反应或副作用。
下面将介绍一些常见的生物医用材料及其性能与应用。
1.金属材料:金属材料是生物医用材料中最常见的一种,常用的有钛、钢、铝等。
金属材料的强度高、稳定性好,可以应用于骨锚定、人工关节、牙植体等领域。
金属材料还可以通过表面处理或涂层来增强其生物相容性和抗腐蚀性能。
2.高分子材料:高分子材料是生物医用材料中应用最广泛的一类,包括聚乙烯醇、聚乳酸、聚丙烯等。
高分子材料具有良好的生物相容性、生物降解性和可塑性,可以应用于可吸收缝合线、骨填充材料、修复软骨等。
高分子材料还可以通过控制其合成方法和结构来调节材料的降解速率和力学性能。
3.陶瓷材料:陶瓷材料在生物医用领域中主要用于人工骨、牙科修复材料和人工晶体等。
陶瓷材料具有优异的抗腐蚀性、生物相容性和力学性能,可以模拟自然骨组织的结构和功能,并在人体内长期稳定使用。
4.复合材料:复合材料是由两种或两种以上的材料组合而成的新材料,可以将各种材料的优点相结合。
生物医用领域常见的复合材料有钛合金/生物陶瓷复合材料、高分子纳米复合材料等。
复合材料可以通过调节不同组分的比例和结构来调节材料的性能,实现多种功能的综合利用。
以上介绍了一些常见的生物医用材料及其性能与应用。
随着医学技术的不断发展,生物医用材料的研究也得到了越来越多的关注。
未来,我们可以期待更多新型材料的应用于医疗领域,为人类的健康事业作出更大的贡献。
生物医用材料
生物医用材料
生物医用材料是一类被广泛应用于医疗领域的特殊材料,具有与生物体相容性、生物相容性和生物功能性等特点。
这些特点使得生物医用材料在修复和替换组织器官、促进生物医学的进展等方面扮演着至关重要的角色。
本文将探讨生物医用材料的种类、应用领域以及未来发展趋势。
生物医用材料的种类
生物医用材料主要包括生物惰性材料和生物活性材料两大类。
生物惰性材料是
指那些在生物体内表现出较低的活性和与生物组织相容性较好的材料,如聚乙烯、聚丙烯等;而生物活性材料则是指那些在生物体内具有特定的生物功能性和生物相容性的材料,如陶瓷、生物降解材料等。
生物医用材料的应用领域
生物医用材料在医疗领域具有广泛的应用,包括但不限于以下几个方面:
1.人工关节:生物医用材料被用于制造人工关节,如人工髋关节、人工
膝关节等,以帮助那些由于关节炎等疾病导致的关节功能障碍的患者恢复正常生活。
2.修复组织:生物医用材料用于修复组织,包括软骨、骨骼等组织的再
生和修复,为患者提供更好的治疗手段。
3.医疗器械:生物医用材料还被广泛应用于制造医疗器械,如心脏起搏
器、支架等,为医生提供更好的治疗工具。
生物医用材料的未来发展趋势
随着医疗技术的不断发展和生物医学领域的进步,生物医用材料的应用领域将
越来越广泛。
未来,生物医用材料将更多地应用于生物医学领域,如组织工程、干细胞治疗等方面,为人类健康事业做出更大的贡献。
总的来说,生物医用材料是一类极具潜力和重要性的材料,在医疗领域有着广
泛的应用前景。
通过不断的研究和发展,相信生物医用材料将为医学领域带来更多的创新和突破。
生物医用材料PPT演示课件
个性化与定制化
随着医疗技术的发展, 临床对个性化、定制化 的生物医用材料需求越 来越高。
未来发展方向与展望
01
创新性研究
加强新材料、新技术和新工艺的研究,推动生物医用材料的创新发展。
02
交叉学科合作
加强生物医学工程、化学、物理学等多个学科的交叉合作,共同推动生
分类
根据用途可分为药物载体、医疗 器械、组织工程和再生医学材料 等。
生物医用材料的特性
生物相容性
功能性
稳定性
可加工性
材料与人体组织、血液 等相互作用时不产生有
害反应。
具备所需要的功能,如 传导热量、机械支撑等。
在体内保持稳定,不发 生降解、变质或毒性反
应。
易于加工成所需形状和 大小,以满足医疗需求。
常见的金属生物医用材料
不锈钢、钛和钛合金、钴铬合金等。
金属生物医用材料的优缺点
优点包括良好的机械性能和加工性能,缺点包括可能引发过敏反应 和金属腐蚀。
高分子生物医用材料
高分子生物医用材料的特性
01
具有良好的化学稳定性、生物相容性和加工性能,广泛用于制
造医疗用品、人工器官和药物载体等。
常见的高分子生物医用材料
氧化铝、氧化锆、生物活性玻璃和玻璃陶瓷等。
陶瓷生物医用材料的优缺点
优点包括良好的化学稳定性和生物相容性,缺点包括脆性大、加工 困难。
复合生物医用材料
复合生物医用材料的特性
通过将两种或多种材料组合在一起,发挥各自的优势,弥补单一材 料的不足,具有良好的综合性能。
常见的复合生物医用材料
聚合物/陶瓷复合材料、聚合物/高分子复合材料、金属/陶瓷复合 材料等。
生物医药材料
生物医药材料
生物医药材料是指用于医疗和医学研究的各种生物材料,包括生物医用材料、生物医学材料和生物医药材料。
这些材料在医疗器械、医用耗材、药物制剂等领域发挥着重要作用,对于促进医学技术的发展和提高人类健康水平起着至关重要的作用。
生物医药材料的种类繁多,包括生物陶瓷、生物玻璃、生物金属、生物高分子材料等。
这些材料具有生物相容性好、机械性能优良、生物活性高等特点,能够与生物体组织良好地相容,不会引起排异反应,具有良好的生物相容性和生物活性。
生物医药材料在医疗器械领域应用广泛,如人工关节、骨科植入物、心脏起搏器、人工心脏瓣膜等,这些器械都需要具备良好的生物相容性和机械性能,以确保在人体内能够正常使用并且不会对人体造成损害。
在医用耗材领域,生物医药材料也发挥着重要作用,如医用敷料、医用胶带、医用缝合线等,这些耗材需要具备良好的生物相容性和生物活性,以确保在医疗过程中不会对患者造成不良反应。
此外,生物医药材料还广泛应用于药物制剂领域,如缓释药物载体、靶向药物传递系统等,这些材料能够提高药物的生物利用度,减少药物的副作用,提高药物的疗效。
总的来说,生物医药材料在医疗和医学研究领域发挥着重要作用,对于提高医学技术水平,改善人类生活质量起着至关重要的作用。
随着生物技术的不断发展和进步,相信生物医药材料将会有更广阔的应用前景,为人类健康事业做出更大的贡献。
生物医学材料简介
想材料
• 基因工程让我们“种豆得瓜”了
The End!
德国产品 UHMWPE材料
三、生物高分子材料
医用高分子材料
聚氨酯、有机硅材料(聚硅氧烷、甲基硅油)等合成高分 子材料用于人工器官、手术缝合线 、组织修补材料 等。
药用高分子材料
缓释药物、药物载体、辅助材料
用于人工脏器的医用高分子材料
人工脏器 高分子材料
心 脏
肾 脏
嵌段聚醚氨酯弹性体、硅橡胶
HAP是人牙和骨骼的主要无机成分,具有吸收和聚集体液中 钙离子的作用,参与体内钙代谢,对骨质增生有刺激或诱导 作用,促进缺损组织的修复,显示出生物活性。与高分子材 料制成的混合材料常用做人工中耳骨等。
采用增强含微孔羟基磷灰石(HA)陶瓷制成人工听小骨假 体,在语言频率范围,平均提高病人的听力20-30dB,在特定 语言频率范围提高45~60dB。
人工血管
人工仿真耳
人工髋关节
种豆得瓜——能在乳汁中分泌丝蛋白的新品种山羊
• 采用基因工程的办法,将蜘蛛的基因 植进入山羊细胞的DNA中,培育出了能
在乳汁中分泌蜘蛛丝蛋白的新品种山羊
• 使“生物钢材”的大规模生产成为可 能
• 用其组合成牢固的复合材料用于宇航
和汽车工业 • 制造外科手术缝合线和防弹背心的理
2.与生体高分子的杂化
主要是人工材料与酶、抗体、抗原、激素等的杂 化。这类材料除可作为人体组织、器官的结构材料外, 尚可用于生物传感器及医学诊断和治疗
利用酶的生物信息传递功能与具有刺激响应的材料组合可形成酶传感器, 同样可形成免疫传感器、细胞传感器等生物传感器。
3.与细胞的杂化
人工材料与细胞的杂化最早用于人工血管的伪内膜法。杂化 细胞材料还可用于生物传感器,还可制造生物人工器官。
生物医用材料的种类及应用
生物医用材料的种类及应用
一、生物医用材料的种类
1、金属材料
金属材料具有良好的机械特性,其中常用的金属材料包括钛材料、钢
材料、不锈钢材料、铝合金等。
它们通常用于制造医疗器械(例如刀具、
针管、器官移植支架)以及一些器械设备,如内窥镜、微创手术的器具等。
2、陶瓷材料
陶瓷材料是一种熔体结晶性材料,具有良好的刚性、热导率和耐热性
特征,常用的陶瓷材料包括氧化铝陶瓷、三氧化硅系陶瓷、氧化铝自熔质
陶瓷等。
它们在医疗领域的应用非常广泛,如制造血液净化膜、体外血液
流变仪等。
3、高分子材料
高分子材料是以热塑性聚合物为主的多种物质的总称,具有良好的柔
韧性和可加工性,常用的高分子材料有聚乙烯、聚丙烯、聚氯乙烯、聚甲
醛等。
它们的应用主要是用于制造生物相容性的医疗器械。
例如人工植入物、组织修复材料、心脏假体等。
4、纳米材料
纳米材料是指重量在一吨以下,体积在10-9m3以下的微型材料。
纳
米材料具有极好的生物相容性,可以用于制造人工器官和生物体内的结构
材料,例如纳米纤维、纳米胶囊等。
二、生物医用材料的应用
1、生物活性器件
生物活性器件是将器件与生物体(例如人体)结合制成的新型器件。
第八章 生物医用材料
(二)化学稳定性 二 化学稳定性 耐体液侵蚀,不产生有害降解产物; ①耐体液侵蚀,不产生有害降解产物; 不产生吸水膨润、软化变质; ②不产生吸水膨润、软化变质; 自身不变化等。 ③自身不变化等。
(三)力学条件 三 力学条件 足够的静态强度,如抗弯、抗压、拉伸、 ①足够的静态强度,如抗弯、抗压、拉伸、剪 切等; 切等; 具有适当的弹性模量和硬度; ②具有适当的弹性模量和硬度; 耐疲劳、摩擦、磨损、有润滑性能。 ③耐疲修复和重建 主要是用于人体硬组织修复和重建 生物陶瓷 的生物医学陶瓷材料。 的生物医学陶瓷材料。 生物陶瓷的类型和特点 惰性生物陶瓷材料 可吸收生物材料 生物活性陶瓷 可治疗癌症的生物陶瓷
在生物体内与组织几乎不发生反应 惰性生物陶瓷: 惰性生物陶瓷: 或反应很小。 或反应很小。 氧化铝陶瓷、 如:氧化铝陶瓷、碳、氧化锆 陶瓷、氮化硅陶瓷等。 陶瓷、氮化硅陶瓷等。
二、生物医学材料的基本要求 材料与机体组织发生的两种反应: 材料与机体组织发生的两种反应:
包括生物环境对材料的腐蚀、降解、 包括生物环境对材料的腐蚀、降解、 磨损和性质退化,甚至破坏。 磨损和性质退化,甚至破坏。
材料反应
活体系统
宿主反应
材料
包括局部和全身反应,如炎症、 包括局部和全身反应,如炎症、细胞 毒性、凝血、过敏、致癌、 毒性、凝血、过敏、致癌、畸形和免 疫反应等。 疫反应等。
优良的塑性, 优良的塑性,易加工
几种主要的Ti基合金的组成与性能 表3 几种主要的 基合金的组成与性能
钛基合金的医学应用: 钛基合金的医学应用:
EL1Ti6Al4V钛基合金制作的骨钉和骨板 钛基合金制作的骨钉和骨板
广泛用于制作各种人工关节、牙床、人工心脏瓣膜、 广泛用于制作各种人工关节、牙床、人工心脏瓣膜、 头盖骨修复等方面。 头盖骨修复等方面。
生物医学材料
生物医学材料1.引言生物医学材料是应用材料科学、生物医学、生物技术等多学科交叉的一种新型材料。
它与人体组织有良好的相容性,在医疗和生物技术领域中得到广泛应用。
本文将从生物医学材料的定义、分类、特点、应用等方面进行详细介绍。
2.生物医学材料的定义生物医学材料是指作为人工器械或医疗设备的一部分,在体内或与体液接触时不产生毒性和副作用,与生物体组织相容性好,适用于医学或生物学目的的材料。
3.生物医学材料的分类生物医学材料可分为以下几类:3.1 生物可降解材料生物可降解材料是指在体内可被生物降解的材料,当其逐渐分解后,无毒无害地排出体外。
常见的生物可降解材料有聚乳酸(PLA)、聚羟基磷酸酯(PHB)、聚己内酰胺(PGA)等。
3.2 生物惰性材料生物惰性材料是指在体内不具有活性和毒性,不与体内物质反应的材料。
常见的惰性材料有医用聚乙烯、聚四氟乙烯、银、钛等。
3.3 合成生物材料合成生物材料是指通过人工合成而得到的具有良好生物相容性的材料,常见的有聚胺酯(PU)、聚偏二氟乙烯(PVDF)、聚己克隆(PCL)等。
3.4 天然生物材料天然生物材料是指来源于天然生物体内的材料,具有更好的生物相容性和生物活性。
常见的有胶原蛋白、明胶、海藻酸钠等。
4.生物医学材料的特点4.1 具有良好生物相容性生物医学材料在与人体组织接触时不会产生毒性和副作用,不会引起免疫反应和排异反应。
4.2 具有一定的生物学功能生物医学材料除了具备一般材料的功能外,还具备一定的生物学特性和功能,如支持细胞黏附和扩散、促进组织生长、刺激新生血管形成等。
4.3 具有良好的力学性能和可加工性生物医学材料应具有足够的强度和韧性,以承受来自体内外环境的力学负荷。
同时,应具有良好的加工性能,便于成型和制备成为医疗器械或人工组织修复材料。
4.4 可重复性好生物医学材料需要保证质量的可重复性和稳定性,确保生产的每一批次材料均满足医疗和生物学领域要求。
5.生物医学材料的应用生物医学材料以其在医疗和生物技术领域的应用而受到广泛关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011–2012学年第2学期生物医用材料期末论文题目:壳聚糖生物材料的研究进展姓名:***学号: **************专业: 09材料科学与工程学院:材料与化工学院任课教师:曹阳王江唐敏完成日期: 2012年6月7日壳聚糖生物材料的研究进展黄清优(海南大学材料科学与工程专业海口570228)摘要:壳聚糖作为一种新型天然生物材料,越来越成为国内外研究热点。
本文对近年来壳聚糖改性方面的研究进展及其在生物医学方面的应用进行了综述,并对壳聚糖的发展趋势进行了展望。
关键词:壳聚糖;化学改性;应用;生物材料The Research Progress of Chitosan BiomaterialQingyou Huang(Department of Material Science and Engineering Hainan University Haikou 570228) Abstract: Chitosan, as a kind of novel natural biomaterials, increasingly becomes a research pot at home and abroad. This paper summarized the progress in chemical modification of chitosan,and application of it in biomedical fields recently. At last, the developing trend of chitosan was predicted.Keywords: chitosan; chemical modification; application; biomaterial1前言壳聚糖是一种新型的天然生物医用材料。
虾、蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保、经济可持续发展的角度来考虑,壳聚糖作为一种天然的材料,不仅无毒、无污染,而且还具有很好的生物降解性和相容性。
因此非常有必要加大对壳聚糖的研究,以开发更多的产品[1,2]。
由于壳聚糖安全性良好,且具有可降性和组织相容性,在医药领域具有很高的应用价值。
但壳聚糖存在水溶性、稳定性、力学性能差等缺点,在一定程度上使其应用受到很大限制。
对壳聚糖进行化学改性,可改善其物理、化学性质,拓宽了壳聚糖及其衍生物的应用领域,是近几年壳聚糖研究的热点之一。
文章综述了近几年壳聚糖化学改性方面的研究进展,及其在生物医用方面的应用[2,3]。
2结构性质2.1结构壳聚糖是甲壳质的脱乙酰化产物。
甲壳质是N-乙酰基-D-葡萄糖胺通过β-1,4糖苷键相连的直链状氨基多糖,其化学名为聚(1,4)–2-乙酰氨基-2-脱氧-β-D-葡萄糖,也称为聚(N-乙酰基-D-葡糖胺),甲壳质在碱性条件下水解,脱去部分乙酰基后就转变成壳聚糖,其化学名为:聚(1,4)-2-氨基-2-脱氧-β-D-葡萄糖。
甲壳质和壳聚糖并非单一的化学实体,来源和制造过程不同,它们的成分就会发生改变。
当N-乙酰氨基-D-葡糖胺单元的含量超过50%时,该高分子聚合物就是甲壳质,反之,当N-氨基-D-葡糖胺单元的含量超过50%时即为壳聚糖[4,5]。
下图是壳聚糖的结构式:图 1 壳聚糖的结构式2.2理化性质壳聚糖是甲壳质最主要的衍生物,不同程度的的脱乙酰作用可以获得不同脱乙酰度的壳聚糖,纯净壳聚糖为白色或灰白色,半透明的片状固体,CTS经过脱乙酰后的CTS成白色或米黄色,溶解性能大大改善,可溶于烯酸水溶液,具有良好的生物相容性、可生物降解性以及无毒、无副作用。
CTS分子内含有-OH 和-NH2活性基团,易与多种有机物发生反应。
对甲壳素和CTS的化学改性可以提高其溶解性,开发更加高级的新用途,这是其研究中最为活跃的课题[3,6]。
KATO[7]等发现壳聚糖的氨基与芳香醛或脂肪醛反应生成西佛碱(Schiff's base)。
因此,可用具有双官能团的醛或酸酐与壳聚糖交联,交联产物不易溶解,溶胀也小,性质较稳定。
2.3生物活性目前已有大量研究证明,壳聚糖具有广谱抗菌性,且抗菌性受本身相对分子量大小、脱乙酰度及溶液pH值影响。
相对分子量越小、脱乙酰度越高、溶液pH 值越小,其抗菌活性越强。
同时壳聚糖可吸附带负电的脂肪酸,并与之形成复合盐,减少胆固醇的吸收同时增加其排泄,从而达到降血脂的效果,壳聚糖的降血脂作用还与其相对分子量、黏性及表面活性相关,是多种机制共同作用的结果。
不仅如此,壳聚糖在抗凝血、降血糖及增强机体免疫的功能也已得到证实[8]。
3改性研究进展3.1酰化改性壳聚糖通过与酰氯或酸酐反应,在大分子链上导入不同分子量的脂肪族或芳香族酰基。
酰化反应可在羟基(O-酰化)或氨基(N-酰化)上进行。
酰化壳聚糖及其衍生物中的酰基破坏了壳聚糖及其衍生物大分子间的氢键,改变了它们的晶态结构,提高了壳聚糖材料的溶解性。
韦萍[9]等制备了丁酰化壳聚糖膜,并应用于兔眼滤过性手术,发现丁酰化壳聚糖膜能下调兔眼滤过性手术后PCNA在成纤维细胞中的表达,能有效抑制纤维组织增生、抗组织瘢痕形成。
梁升[10]等在离子液体水溶液中,制备了水溶性N-乙酰化壳聚糖,并对产物的吸湿保湿性能进行研究,表明产物具有良好的吸湿保温性能。
3.2羧甲基化改性壳聚糖上的羟基或氨基,在不同的反应条件下与氯代烷酸或乙醛酸进行反应,得到相应的羧基化壳聚糖衍生物。
壳聚糖分子链上引入羧甲基,可制得溶解性和与金属离子螯合性更好的羧甲基壳聚糖,克服了壳聚糖只能在弱酸性条件下使用的缺陷,使其应用范围大大拓宽。
李扬等[11]检测所制备的左氧氟沙星羧甲基壳聚糖微球在人工消化液中和大鼠体内结肠靶向释药的性能。
表明其在体外、体内实验中的释放符合结肠靶向释药的特点向释药的性能。
李志峰等[12]探讨所制备的聚乳酸-O-羧甲基壳聚糖纳米粒子(PLA-O-CMC NPs)对肝细胞生长因子(HGF)的载药能力及其体外释药行为。
实验表明该载药纳米粒子体外HGF的累积释放量在前24h内逐步上升,并有明显的突释现象,释放出的药物量占释放总量的36.7%,载HGF的PLA-O-CMC NPs在体外能够迅速释放HGF,达到有效药物浓度,并能够在较长时间内维持一定的有效药物浓度,是一种良好的HGF载体。
3.3季铵盐化改性壳聚糖中引入位阻大、水合能力强的季铵盐基团,能大大削弱壳聚糖分子间的氢键,增大壳聚糖衍生物的水溶性。
水溶性的质子化壳聚糖可以使细胞膜短暂开放,促进基因的跨膜转运,这使得季铵化壳聚糖可作为潜在的基因载体。
张灿等[13]以壳聚糖为原料,先制备了N-季铵化壳聚糖,然后在其2位-NH2上和乳糖酸或乳糖反应,用KBH4还原,制备了半乳糖化季铵壳聚糖衍生物,其有望成为潜在的肝靶向基因载体。
雷万学等[14]以硝酸铈铵作引发剂,用甲基丙烯酰氧乙基-十六烷基-二甲基溴化铵为活性单体,所制备的壳聚糖季铵盐衍生物对大肠杆菌、金黄色葡萄球菌以及白色念珠菌在振荡作用15min后,平均杀菌率分别为99.99%、99.99%和99.96%。
3.4其他改性壳聚糖分子结构中含大量游离的氨基和羟基,除了能发生酰化、羧甲基化、季铵盐化改性外,还能对其进行烷基化,酯化,醚化,交联反应等改性[15]。
白欣等[16]制备了巯基烷基化壳聚糖载基因纳米粒,用透射电镜对其的形态和粒径进行观察和表征,其粒径在390nm左右,有望成为一种有价值的新型基因载体。
峻峰等[17]制备了香草醛交联的壳聚糖载药微球,其表面致密且球形度好,微球粒径在5~15μm之间,相关测试表明该载药微球缓释效果较好,前12h在pH=7.4和pH=5.7的PBS中释药速度大致相当,12h以后在pH=5.7的PBS中的载药微球释药速度略快,到72h时药物累积释放量达到80%以上。
赵婷等[18]使用制备的冠醚交联壳聚糖做吸附剂和保护剂,在水介质中用水合肼还原硝酸银制备纳米银。
实验表明:40℃时,水合肼与硝酸银(浓度均为0.1mol/L)摩尔比为6∶1,CTSG用量为0.4g时得到粒径为30~40nm的纳米银颗粒。
保持水合肼和硝酸银的摩尔比6∶1不变,纳米银粒径随水合肼和硝酸银浓度的增加而增大,当硝酸银浓度≤0.25mol/L时,改变银离子浓度对粒径影响不大,且稳定在50nm左右;而银颗粒则随水合肼浓度的减小规律递减。
4在生物医学上的应用4.1药物载体由于壳聚糖及其衍生物安全性良好,且具有可降解性和组织相容性,因此在药物传递系统中也得到广泛应用。
1)抗癌药物的载体壳聚糖本身具有抗癌性,是一种抗癌药物的理想载体。
目前,以壳聚糖为载体,已制备出阿霉素、丝裂霉素、顺铂、紫杉醇、喜树碱等药物的缓释微囊和纳米微球,研究表明这些缓释微囊和微球,能够有效地提高抗癌药物的生物利用度,并降低药物自身的毒副作用[19-21]。
HWANG等[22]研究的多西紫杉醇-乙二醇壳聚糖纳米微球抗肿瘤活性表明,载药纳米微球对A549肺癌细胞的小鼠的抗癌活性远高于游离多西紫杉醇组,且载药纳米微球组小鼠的存活时间大于45d,而游离药物组为35d。
王宏昌等[23]对制备的壳聚糖-甲基斑蝥素偶联复合物,用H22肝癌细胞小鼠荷瘤模型做了初步的体内抗肿瘤实验,发现壳聚糖作为去甲基斑蝥素的给药载体能够起到减少剂量,增加疗效的作用,并将对其他的偶联产物的体内抗肿瘤疗效做进一步研究,发现其有望成为新的抗癌制剂。
2)其他药物载体近年来,随着药剂学的飞速发展,壳聚糖为载体的药物的种类越来越多。
胰岛素是治疗Ⅰ型糖尿病的常用药物,在胃肠环境下很易降解,将其微囊化可有效保持其稳定性且方便患者服药。
杨利芳等[24]采用静电液滴工艺制备了胰岛素海藻酸钠-壳聚糖微囊,以四氧嘧啶为诱导剂建立糖尿病小鼠模型,对载药微囊的口服药效学进行评价,结果表明,以该微囊为基础的口服胰岛素制剂生物利用度高且缓释效果明显,胰岛素的相对活性保持很高。
王珊等[25]在pH7.4,温度为37℃的模拟人体肠胃缓冲溶液(NaH2PO4/NaOH)中研究了壳聚糖微球对环丙沙星的释药性能,实验表明,空心结构的壳聚糖微球对环丙沙星的载药性随初始浓度、pH、温度、微球颗粒的大小和时间的不同而不同,且吸附法比包埋法更有利于壳聚糖微球的载药,但不同的包药效率,在人工肠胃中释放性能基本相同。
4.2基因载体壳聚糖纳米粒作为天然聚阳离子,近年来正在被深入研究用作基因载体。
相对于病毒载体而言,壳聚糖载体具有无毒、无抗载体免疫反应,有良好的生物相容性及可降解性等生物学特性,日益受到广泛的关注[26,27]。
从1995年首次认为壳聚糖有用于基因治疗载体的可能性。
目前已有相关报道以壳聚糖纳米粒作为载体成功地将质粒转染到人肝癌细胞、结肠腺癌细胞、HEK293细胞、HeLa细胞、鼠巨噬细胞等[26]。