AD802-155BR中文资料
IEEE 802简介
一、IEEE 802简介定义:IEEE 802又称为LMSC(LAN /MAN Standards Committee,局域网/城域网标准委员会),致力于研究局域网和城域网的物理层和MAC层中定义的服务和协议,对应OSI网络参考模型的最低两层(即物理层和数据链路层)。
IEEE 802也指IEEE标准中关于局域网和城域网的一系列标准。
更确切的说,IEEE 802标准仅限定在传输可变大小数据包的网络。
OSI的数据链路层事实上,IEEE 802将OSI的数据链路层分为两个子层,分别是逻辑链路控制(Logical Link Control, LLC)和介质访问控制(Media Access Control, MAC)。
二、IEEE 802.3标准IEEE802.3标准描述了在多种媒体上的从1MB/S-10MB/S局域网解决方案。
IEEE802.3标准的帧结构如图所示。
每帧以7个字节的前导字段开头,每个字节的内容为10101010。
该字段经过曼彻斯特编码会产生10MHZ、持续5.6us的方波,从而使接收方与发送方的时钟同步。
随后是帧起始定界符,它是一个10101011序列,表示帧本身的开始。
帧还包括了源地址和目的地址,它可能是一个普通地址、组地址或广播地址。
前导帧起始定界符目的地址源地址长度LLCDATA填充FCSIEEE 802. 310Mb/s 物理层媒体选项10B ASE 5 指定使用50欧的同轴电缆,数据速率是10MB/S,使用曼彻斯特编码。
10BASE5支持的电缆最长为500M,用转发器可以将网络的长度扩展。
10B ASE 2 使用50欧的同轴电缆,数据速率是10MB/S,使用曼彻斯特编码,其接头处采用工业标准的BNC连接器组成T型插座,它使用灵活,可靠性高。
10BAS2电缆价格低廉,而且安装方便,但是使用范围只有200M,并且每个网段内只能使用30台机器。
10B ASE 指定了一个星形拓扑。
所有站点通过两对非屏蔽双绞线传输质量较差,每条链路的长度限制在100M以内。
半导体传感器AD7324BRUZ中文规格书
The following is the list of Analog Devices, Inc. processors supported by the IAR Embedded WorkBench®develop-ment tools. For information about the IAR Embedded WorkBench product and software download, The ADSP-CM40x processors are based on the ARM Cortex®-M4 core and are designed for motor controland industrial applications.The ADSP-CM41x processors are based on the ARM Cortex-M4 and ARM Cortex-M0 cores and are de-signed for motor control and industrial applications.Product InformationProduct information can be obtained from the Analog Devices Web site and CrossCore Embedded Studio online Help system.Analog Devices Web SiteThe Analog Devices Web site, provides information about a broad range of products—ana-log integrated circuits, amplifiers, converters, and digital signal processors.To access a complete technical library for each processor family, go to:The manuals selection opens a list of current manuals related to the product as well as a link to the previ-ous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the title that leads to the current correction report against the manual.Also note, is a free feature of the Analog Devices Web site that allows customization of a Web page to display only the latest information about products you are interested in. You can choose to receive weekly e-mail notifications containing updates to the Web pages that meet your interests, including documentation errata against all manuals. provides access to books, application notes, data sheets, code examples, and more. Visit to sign up. If you are a registered user, just log on. Your user name is your e-mail address. EngineerZoneEngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI technical sup-port engineers. You can search FAQs and technical information to get quick answers to your embedded processing and DSP design questions.Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http:// to sign up.ADSP-BF7xx Blackfin+ Processor xxxNotation ConventionsText conventions used in this manual are identified and described as follows. Additional conventions, which apply only to specific chapters, may appear throughout this document.Example DescriptionFile > Close Titles in reference sections indicate the location of an item within the CrossCoreEmbedded Studio IDE's menu system (for example, the Close command appearson the File menu).{this | that}Alternative required items in syntax descriptions appear within curly brackets andseparated by vertical bars; read the example as this or that. One or the other isrequired.[this | that]Optional items in syntax descriptions appear within brackets and separated byvertical bars; read the example as an optional this or that.[this, …]Optional item lists in syntax descriptions appear within brackets delimited bycommas and terminated with an ellipse; read the example as an optional comma-separated list of this..SECTION Commands, directives, keywords, and feature names are in text with LetterGothic font.filename Non-keyword placeholders appear in text with italic style format.NOTE:NOTE: For correct operation, ...A note provides supplementary information on a related topic. In the online ver-sion of this book, the word NOTE: appears instead of this symbol. CAUTION:CAUTION: Incorrect device operation may result if ...CAUTION: Device damage may result if ...A caution identifies conditions or inappropriate usage of the product that couldlead to undesirable results or product damage. In the online version of this book,the word CAUTION: appears instead of this symbol.ATTENTION:ATTENTION: Injury to device users may result if ...A warning identifies conditions or inappropriate usage of the product that couldlead to conditions that are potentially hazardous for devices users. In the onlineversion of this book, the word ATTENTION: appears instead of this symbol. Register Documentation ConventionsRegister diagrams use the following conventions:•The descriptive name of the register appears at the top with the short form of the name.•If a bit has a short name, the short name appears first in the bit description, followed by the long name.•The reset value appears in binary in the individual bits and in hexadecimal to the left of the register.•Bits marked X have an unknown reset value. Consequently, the reset value of registers that contain such bits is undefined or dependent on pin values at reset.ADSP-BF7xx Blackfin+ Processor xxxiIntroduction 1 IntroductionThis Blackfin+ Processor Programming Reference provides details on the assembly language instructions used by Black-fin+ processors. The Blackfin+ architecture extends the Micro Signal Architecture (MSA) core developed jointly by Analog Devices, Inc. and Intel Corporation. This manual applies to all ADSP-BF7xx processor derivatives. All devi-ces provide an identical core architecture and instruction set. Additional architectural features are only supported by some devices and are identified in the manual as being optional features. A read-only memory-mapped register, FEATURE0, enables run-time software to query the optional features implemented in a particular derivative. Some details of the implementation may vary between derivatives. This is generally not visible to software, but system and test code may depend on very specific aspects of the memory microarchitecture. Differences and commonalities at a global level are discussed in the Memory chapter. For a full description of the system architecture beyond the Black-fin+ core, refer to the specific hardware reference manual for your derivative. This section points out some of the conventions used in this document.The Blackfin+ processor combines a dual-MAC signal processing engine, an orthogonal RISC-like microprocessor instruction set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and multimedia features into a single instruction set architecture.Core ArchitectureThe Blackfin+ processor core contains two 16-bit multipliers (MACs), one 32-bit MAC, two 40-bit accumulators, one 72-bit accumulator, two 40-bit Arithmetic Logic Units (ALUs), four 8-bit video ALUs, and a 40-bit shifter, shown in the Processor Core Architecture figure. The Blackfin+ processors work on 8-, 16-, or 32-bit data from the register file.ADSP-BF7xx Blackfin+ Processor1–1。
AD8027中文资料
10 +VS
– + – +
9 8 7 6
VOUTB –IN B +IN B DISABLE/SELECT B
图1 连接图(顶视图)
关断模式
无反相:VIN > |VS| + 200 mV 宽电源电压范围:2.7V至12 V 小型封装:SOIC-8、SOT-23-6、MSOP-10
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供 的最新英文版数据手册。
AD8027/AD8028
目录
技术规格 ........................................................................................... 3 绝对最大额定值.............................................................................. 6 最大功耗...................................................................................... 6 ESD警告....................................................................................... 6 典型工作特性 .................................................................................. 8 工作原理.................................................................................... 17 输入级 ........................................................................................ 17 交越选择.................................................................................... 17 输出级 ........................................................................................ 18 直流误差.................................................................................... 18 宽带运作 ......................................................................................... 19 电路考虑.................................................................................... 19 应用.................................................................................................. 21 使用SELECT引脚..................................................................... 21 驱动16位ADC........................................................................... 21 带通滤波器 ............................................................................... 22 设计工具和技术支持.............................................................. 22 外形尺寸 ......................................................................................... 23 订购指南.................................................................................... 24
半导体传感器ADG1636BRUZ中文规格书
ADF4116/ADF4117/ADF4118Rev. D | Page 21 of 28APPLICATIONS INFORMATION LOCAL OSCILLATOR FOR THEGSM BASE STATION TRANSMITTERFigure 35 shows the ADF4117/ADF4118 being used with a VCO to produce the LO for a GSM base station transmitter. The reference input signal is applied to the circuit at F REFIN and, in this case, is terminated in 50 Ω. A typical GSM system has a 13 MHz TCXO driving the reference input without a 50 Ω termination. To have a channel spacing of 200 kHz (the GSM standard), the reference input must be divided by 65, using the on-chip reference divider of the ADF4117/ADF1118. The charge pump output of the ADF4117/ADF1118 (Pin 2) drives the loop filter. In calculating the loop filter component values, a number of items need to be considered. In this example, the loop filter was designed so that the overall phase margin for the system is 45°. Other PLL system specifications include: K D = 1 mAK V = 12 MHz/VLoop bandwidth = 20 kHzF REF = 200 kHzN = 4500Extra reference spur attenuation = 10 dBAll of these specifications are needed and are used to produce the loop filter component values shown in Figure 36.The loop filter output drives the VCO, which, in turn, is fed back to the RF input of the PLL synthesizer; it also drives the RF output terminal. A T-circuit configuration provides 50 Ω matching between the VCO output, the RF output, and the RF IN terminal of the synthesizer.In a PLL system, it is important to know when the system is in locked mode. In Figure 35, this is accomplished by using the MUXOUT signal from the synthesizer. The MUXOUT pin can be programmed to monitor various internal signals in the synthesizer. One of these is the LD or lock-detect signal. SHUTDOWN CIRCUIT The attached circuit in Figure 36 shows how to shut down both the ADF411x family and the accompanying VCO. The ADG702 switch goes open-circuit when a Logic 1 is applied to the IN input. The low cost switch is available in both SOT-23 and MSOP packages. DIRECT CONVERSION MODULATOR In some applications, a direct conversion architecture can be used in base station transmitters. Figure 37 shows the combination available from Analog Devices, Inc. to implement this solution. The circuit diagram shows the AD9761 being used with the AD8346. The use of dual integrated DACs, such as the AD9761 with specified ±0.02 dB and ±0.004 dB gain and offset matching characteristics, ensures minimum error contribution (over temperature) from this portion of the signal chain. The local oscillator is implemented by using the ADF4117/ ADF4118. In this case, the FOX801BH-130 provides the stable 13 MHz reference frequency. The system is designed for 200 kHz channel spacing and an output center frequency of 1960 MHz. The target application is a WCDMA base station transmitter. Typical phase noise performance from this LO is −85 dBc/Hz at a 1 kHz offset. The LO port of the AD8346 is driven in single-ended fashion. LOIN is ac-coupled to ground with the 100 pF capacitor, and LOIP is driven through the ac-coupling capacitor from a 50 Ω source. An LO drive level between −6 dBm and −12 dBm is required. The circuit in Figure 37 gives a typical level of −8 dBm. The RF output is designed to drive a 50 Ω load, but it must be ac-coupled as shown in Figure 37. If the I and Q inputs are driven in quadrature by 2 V p-p signals, the resulting output power is approximately −10 dBm.ADF4116/ADF4117/ADF4118Rev. D | Page 24 of 28INTERFACINGThe ADF411x family has a simple SPI®-compatible serial inter-face for writing to the device. CLK, DATA, and LE control the data transfer. When LE (latch enable) goes high, the 24 bits that are clocked into the input register on each rising edge of CLK are transferred to the appropriate latch. See Figure 2 for the timing diagram and Table 5 for the latch truth table.The maximum allowable serial clock rate is 20 MHz. This means that the maximum update rate possible for the device is 833 kHz or one update every 1.2 μs. This is more than adequate forsystems that have typical lock times in hundreds of microseconds. ADuC812 Interface Figure 38 shows the interface between the ADF411x family and the ADuC812 MicroConverter®. Since the ADuC812 is based on an 8051 core, this interface can be used with any 8051-based microcontroller. The MicroConverter is set up for SPI master mode with CPHA = 0. To initiate the operation, the I/O port driving LE is brought low. Each latch of the ADF411x family needs a 24-bit word. This is accomplished by writing three 8-bit bytes from the MicroConverter to the device. When the third byte has been written, the LE input should be brought high to complete the transfer.00392-038Figure 38. ADuC812 to ADF411x family Interface On first applying power to the ADF411x family, it requires three writes (one each to the R counter latch, the N counter latch, and the initialization latch) for the output to become active. I/O port lines on the ADuC812 are also used to control power-down (CE input) and to detect lock (MUXOUT configured as lock detect and polled by the port input). When operating in the mode described, the maximum SCLOCK rate of the ADuC812 is 4 MHz. This means that the maximum rate at which the output frequency can be changed is 166 kHz. ADSP-21xx InterfaceFigure 39 shows the interface between the ADF411x family and the ADSP-21xx digital signal processor. The ADF411x family needs a 21-bit serial word for each latch write. The easiest way to accomplish this using the ADSP-21xx family is to use the autobuffered transmit mode of operation with alternate framing. This provides a means for transmitting an entire block of serial data before an interrupt is generated.00392-039Figure 39. ADSP-21xx to ADF411x family Interface Set up the word length for 8 bits and use three memory locations for each 24-bit word. To program each 21-bit latch, store the three 8-bit bytes, enable the autobuffered mode, and write to the transmit register of the DSP . This last operation initiates the autobuffer transfer.。
AD8021ARMZ中文资料
Maximum Power Dissipation ..................................................... 7
The AD8021 is stable over temperature with low input offset voltage drift and input bias current drift, 0.5 μV/°C and 10 nA/°C, respectively. The AD8021 is also capable of driving a 75 Ω line with ±3 V video signals.
CONNECTION DIAGRAM
LOGIC REFERENCE
1
–IN 2
+IN 3
–VS 4
AD8021
8 DISABLE 7 +VS Байду номын сангаас VOUT 5 CCOMP
Figure 1. SOIC-8 (R-8) and MSOP-8 (RM-8)
01888-001
The AD8021 allows the user to choose the gain bandwidth product that best suits the application. With a single capacitor, the user can compensate the AD8021 for the desired gain with little trade-off in bandwidth. The AD8021 is a well-behaved amplifier that settles to 0.01% in 23 ns for a 1 V step. It has a fast overload recovery of 50 ns.
半导体传感器AD7323BRUZ中文规格书
Data SheetADuM1400/ADuM1401/ADuM1402 Rev. L | Page 21 of 31ABSOLUTE MAXIMUM RATINGSAmbient temperature = 25°C, unless otherwise noted. Table 13.ParameterRating Storage Temperature (T ST )−65°C to +150°C Ambient Operating Temperature (T A )1−40°C to +105°C Ambient Operating Temperature (T A )2−40°C to +125°C Supply Voltages (V DD1, V DD2)3−0.5 V to +7.0 V Input Voltage (V IA , V IB , V IC , V ID , V E1, V E2)3, 4−0.5 V to V DDI + 0.5 V Output Voltage (V OA , V OB , V OC , V OD )3, 4−0.5 V to V DDO + 0.5 V Average Output Current per Pin 5Side 1 (I O1)−18 mA to +18 mA Side 2 (I O2)−22 mA to +22 mA Common-Mode Transients 6−100 kV/µs to +100 kV/µs 1 Does not apply to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions.2 Applies to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions.3 All voltages are relative to their respective ground.4 V DDI and V DDO refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.5 See Figure 4 for maximum rated current values for various temperatures.6 This refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Ratings may cause latch-up or permanent damage.Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD CAUTION Table 14. Maximum Continuous Working Voltage 1ParameterMax Unit Constraint AC Voltage, Bipolar Waveform565 V peak 50-year minimum lifetime AC Voltage, Unipolar WaveformBasic Insulation1131 V peak Maximum approved working voltage per IEC 60950-1 Reinforced Insulation560 V peak Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 DC VoltageBasic Insulation1131 V peak Maximum approved working voltage per IEC 60950-1 Reinforced Insulation560 V peak Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details. Table 15. Truth Table (Positive Logic)V Ix Input 1V Ex Input 1, 2 V DDI State 1 V DDO State 1 V Ox Output 1 Notes HH or NC Powered Powered H LH or NC Powered Powered L XL Powered Powered Z XH or NC Unpowered Powered H Outputs return to the input state within 1 µs of V DDI power restoration. XL Unpowered Powered Z X X Powered Unpowered Indeterminate Outputs return to the input state within 1 µs of V DDO power restoration if the V Ex state is H or NC. Outputs return to a high impedance statewithin 8 ns of V DDO power restoration if the V Ex state is L.1V Ix and V Ox refer to the input and output signals of a given channel (A, B, C, or D). V Ex refers to the output enable signal on the same side as the V Ox outputs. V DDI and V DDO refer to the supply voltages on the input and output sides of the given channel, respectively.2 In noisy environments, connecting V Ex to an external logic high or low is recommended.ADuM1400/ADuM1401/ADuM1402 Data SheetRev. L | Page 30 of 31OUTLINE DIMENSIONSCONTROLLING DIMENSIONS ARE IN MILLIMETERS;INCH DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN PLIANT TO JEDEC STANDARDS MS-013-AA03-27-2007-B Figure 24. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches) ORDERING GUIDEModel1, 2, 3, 4Number of Inputs, V DD1 Side Number of Inputs, V DD2 Side Maximum Data Rate (Mbps) Maximum Propagation Delay, 5 V (ns) Maximum Pulse Width Distortion (ns) Temperature Range Package Description Package Option ADuM1400ARW4 0 1 100 40 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1400BRW4 0 10 50 3 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1400CRW4 0 90 32 2 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1400ARWZ4 0 1 100 40 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1400BRWZ4 0 10 50 3 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1400CRWZ4 0 90 32 2 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1400WSRWZ4 0 1 100 40 −40°C to +125°C 16-Lead SOIC_W RW-16 ADuM1400WTRWZ4 0 10 34 3 −40°C to +125°C 16-Lead SOIC_W RW-16 ADuM1401ARW3 1 1 100 40 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1401BRW3 1 10 50 3 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1401CRW3 1 90 32 2 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1401ARWZ3 1 1 100 40 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1401BRWZ3 1 10 50 3 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1401CRWZ3 1 90 32 2 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1401WSRWZ3 1 1 100 40 −40°C to +125°C 16-Lead SOIC_W RW-16 ADuM1401WTRWZ3 1 10 34 3 −40°C to +125°C 16-Lead SOIC_W RW-16 ADuM1402ARW2 2 1 100 40 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1402BRW2 2 10 503 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1402CRW2 2 90 32 2 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1402ARWZ2 2 1 100 40 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1402BRWZ2 2 10 503 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1402CRWZ2 2 90 32 2 −40°C to +105°C 16-Lead SOIC_W RW-16 ADuM1402WSRWZ2 2 1 100 40 −40°C to +125°C 16-Lead SOIC_W RW-16 ADuM1402WTRWZ2 2 10 343 −40°C to +125°C 16-Lead SOIC_W RW-16 EVAL-ADuMQSEBZ Evaluation Board 1Z = RoHS Compliant Part. 2 W = Qualified for Automotive Applications. 3 Tape and reel are available. The addition of an -RL suffix designates a 13” (1,000 units) tape and reel option. 4 No tape and reel option is available for the ADuM1400CRW or ADuM1402BRW models.。
AD7324BRUZ;AD7324BRUZ-REEL;AD7324BRUZ-REEL7;中文规格书,Datasheet资料
12-bit plus sign
AD7323 500 00 kSPS 12-bit plus sign
AD7321 500 kSPS
12-bit plus sign
Number of Channels 8 8 8 4 2 2
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
3. 1 MSPS serial interface. SPI®-/QSPI™-/DSP-/MICROWIRE™compatible interface.
4. Low power, 31 mW maximum, at 1 MSPS throughput rate.
5. Channel sequencer.
Table 1. Similar Products Selection Table
Device Throughput
Number Rate
Number of bits
AD7329 1000 kSPS 12-bit plus sign
AD7328 1000 kSPS 12-bit plus sign
AD7327 500 kSPS
ESD Caution.................................................................................. 8 Pin Configuration and Function Description .............................. 9 Typical Performance Characteristics ........................................... 10 Terminology .................................................................................... 14 Theory of Operation ...................................................................... 16
AD9235中文资料
特性单3 V供应操作(2.7 V至3.6 V)信噪比= 70 dBc Nyquist在65MSPSSFDR = 85 dBc Nyquist在65MSPS低功率:300 mW 65MSPS微分输入500 MHz带宽芯片上的参考和SHADNL= 0.4 LSB灵活的模拟输入:1 Vpp- 2 Vpp范围抵消二进制或2补充数据格式时钟占空比稳定器应用超声设备如果通信接收机的采样:IS-95,cdma-ONE,imt - 2000电池供电的仪器手持Scopemeters低成本数字示波器产品描述AD9235是一个巨大的系列、供应3 V信号,12位,20/40/65MSPS模拟-数字转换器。
这个系列的特点是高性能取样保持的放大器(SHA)和电压参考。
AD9235使用多级微分管线式架构与输出误差修正提供逻辑12位精度在20/40/65MSPS数据率并且保证操作温度范围内没有缺失的代码。
宽的带宽,真正微分SHA允许各种的用户可选的输入范围包括单端应用。
适用于多路开关的系统全面的连续的电压水平通道和抽样单通道输入的速度远远超出了奈奎斯特频率。
结合能力和成本节约超过以前模拟数字转换器,AD9235适合应用在通信、成像和医学超声检查。
单端时钟输入是用来控制所有内部转换周期。
一个占空比稳定器(DCS)补偿宽在时钟的责任周期的变化,同时保持优秀ADC的整体性能。
数字数据以直接二进制或2补充格式输出。
一个超出范围(OTR)的信号表明表明一个溢出条件最重要的一点来确定低或高溢出。
捏造一个先进的CMOS工艺,AD9235可用在28-lead薄收缩(TSSOP)和一个小提纲包32-lead芯片规模包(LFCSP)和指定工业温度范围(-40°C + 85°C)。
REV. B提供的信息被认为是精确和模拟设备可靠的。
然而,没有任何责任由模拟装置的假定使用,也不是为任何侵害专利或其他第三方的权利可能由于其使用。
或以其他方式影响没有颁发的许可证在任何专利或专利权的模拟设备。
AD802资料
FUNCTIONAL BLOCK DIAGRAMC FRAC OUTPUTRECOVERED CLOCK OUTPUT REV.BInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aClock Recovery and Data RetimingPhase-Locked Loop AD800/AD802*One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 617/329-4700Fax: 617/326-8703PRODUCT DESCRIPTIONThe AD800 and AD802 employ a second order phase-locked loop architecture to perform clock recovery and data retiming on Non-Return to Zero, NRZ, data. This architecture is capable of supporting data rates between 20 Mbps and 160Mbps. The products described here have been defined to work with standard telecommunications bit rates. 45 Mbps DS-3 and 52 Mbps STS-1 are supported by the AD800-45 and AD800-52 respectively. 155 Mbps STS-3 or STM-1 are supported by the AD802-155.Unlike other PLL-based clock recovery circuits, these devices do not require a preamble or an external VCXO to lock onto input data. The circuit acquires frequency and phase lock using two control loops. The frequency acquisition control loop initially acquires the clock frequency of the input data. The phase-lock loop then acquires the phase of the input data, and ensures that the phase of the output signals track changes in the phase of the input data. The loop damping of the circuit isdependent on the value of a user selected capacitor; this defines jitter peaking performance and impacts acquisition time. The devices exhibit 0.08 dB jitter peaking, and acquire lock on random or scrambled data within 4 × 105 bit periods when using a damping factor of 5.FEATURESStandard Products 44.736 Mbps—DS-351.84 Mbps—STS-1155.52 Mbps—STS-3 or STM-1Accepts NRZ Data, No Preamble Required Recovered Clock and Retimed Data OutputsPhase-Locked Loop Type Clock Recovery—No Crystal RequiredRandom Jitter: 20؇ Peak-to-Peak Pattern Jitter: Virtually Eliminated 10KH ECL CompatibleSingle Supply Operation: –5.2 V or +5 VWide Operating Temperature Range: –40؇C to +85؇CDuring the process of acquisition the frequency detector provides a Frequency Acquisition (FRAC) signal whichindicates that the device has not yet locked onto the input data.This signal is a series of pulses which occur at the points of cycle slip between the input data and the synthesized clock signal.Once the circuit has acquired frequency lock no pulses occur at the FRAC output.The inclusion of a precisely trimmed VCO in the deviceeliminates the need for external components for setting center frequency, and the need for trimming of those components. The VCO provides a clock output within ±20% of the device center frequency in the absence of input data.The AD800 and AD802 exhibit virtually no pattern jitter, due to the performance of the patented phase detector. Total loop jitter is 20° peak-to-peak. Jitter bandwidth is dictated by mask programmable fractional loop bandwidth. The AD800, used for data rates < 90 Mbps, has been designed with a nominal loop bandwidth of 0.1% of the center frequency. The AD802, used for data rates in excess of 90 Mbps, has a loop bandwidth of 0.08% of center frequency.All of the devices operate with a single +5 V or –5.2 V supply.*Protected by U.S. Patent No. 5,027,085.AD800/AD802–SPECIFICATIONS(V EE = V MIN to V MAX, V CC = GND, T A = T MIN to T MAX, Loop DampingFactor = 5, unless otherwise noted)AD800-45BQ AD800-52BR AD802-155KR/BRParameter1Condition Min Typ Max Min Typ Max Min Typ Max Units NOMINAL CENTER FREQUENCY44.73651.84155.52MHz OPERATING TEMPERATURE K Grade070°C RANGE (T MIN to T MAX) B Grade–4085–4085–4085°C TRACKING RANGE4345.54953155156Mbps CAPTURE RANGE4345.54953155156Mbps STATIC PHASE ERRORρ = 1, T A = +25°C,V EE = –5.2 V2102101430Degreesρ = 1311.5311.51837Degrees RECOVERED CLOCK SKEW t RCS (Figure 1)0.20.610.20.610.20.81nsSETUP TIME t SU (Figure 1) 2.06 2.37ns TRANSITIONLESS DATA RUN240240240Bit Periods OUTPUT JITTERρ = 122 3.5Degrees rms27–1 PRN Sequence 2.5 4.7 2.5 4.7 5.49.7Degrees rms223–1 PRN Sequence 2.5 4.7 2.5 4.7 5.49.7Degrees rms JITTER TOLERANCE f = 10 Hz2,5002,5003,000Unit Intervalsf = 2.3 kHz 6.5Unit Intervalsf = 30 kHz0.47Unit Intervalsf = 1 MHz0.47Unit Intervalsf = 30 Hz830Unit Intervalsf = 300 Hz83Unit Intervalsf = 2 kHz7.4Unit Intervalsf = 20 kHz0.47Unit Intervalsf = 6.5 kHz 2.07.6Unit Intervalsf = 65 kHz0.260.9Unit Intervals JITTER TRANSFERDamping FactorCapacitor, C Dζ = 1, Nominal8.2 6.8 2.2nFζ = 5, Nominal0.220.150.047µFζ = 10, Nominal0.820.680.22µF Peakingζ = 1, Nominal T A = +25°C, V EE = –5.2 V222dBζ = 5, Nominal T A = +25°C, V EE = –5.2 V0.080.080.08dBζ = 10, Nominal T A = +25°C, V EE = –5.2 V0.020.020.02dB Bandwidth4552130kHz ACQUISITION TIMEρ = 1/2ζ = 1 1 × 104 1 × 104 1.5 × 104Bit Periods T A = +25°Cζ = 5 3 × 1058 × 105 3 × 1058 × 105 4 × 1058 × 105Bit Periods V EE = –5.2 Vζ = 108 × 1058 × 105 1.4 × 106Bit Periods POWER SUPPLYVoltage (V MIN to V MAX)T A = +25°C–4.5–5.2–5.5–4.5–5.2–5.5–4.5–5.2–5.5Volts Current T A = +25°C, V EE = –5.2 V125170125170140180mA180180205mAINPUT VOLTAGE LEVELS T A = +25°CInput Logic High, V IH–1.084–0.72–1.084–0.72–1.084–0.72Volts Input Logic Low, V IH–1.95–1.594–1.95–1.594–1.95–1.594Volts OUTPUT VOLTAGE LEVELS T A = +25°COutput Logic High, V OH–1.084–0.72–1.084–0.72–1.084–0.72Volts Output Logic Low, V OL–1.95–1.60–1.95–1.60–1.95–1.60VoltsINPUT CURRENT LEVELS T A = +25°CInput Logic High, I IH125125125µA Input Logic Low, I IL808080µA OUTPUT SLEW TIMES T A = +25°CRise Time (t R)20%–80%0.75 1.50.75 1.50.75 1.5ns Fall Time (t F)80%–20%0.75 1.50.75 1.50.75 1.5ns SYMMETRYρ = 1/2, T A = +25°CRecovered Clock Output V EE = –5.2 V455545554555%NOTES1Refer to Glossary for parameter definition.Specifications subject to change without notice.–2–REV. BAD800/AD802REV. B–3–ABSOLUTE MAXIMUM RATINGS*Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–6 V Input Voltage (Pin 16 or Pin 17 to V CC ) . . . .V EE to +300 mV Maximum Junction TemperatureSOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Ceramic DIP Package . . . . . . . . . . . . . . . . . . . . . .+175°C Storage Temperature Range . . . . . . . . . . . .–65°C to +150°C Lead Temperature Range (Soldering 60 sec) . . . . . . .+300°C ESD RatingAD800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1500 V AD802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1000 V*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to an absolute maximum rating condition for an extended period may adversely affect devicereliability.SKEW, t RCSFigure 1.Recovered Clock Skew and Setup (See Previous Page)PIN DESCRIPTIONSNumber Mnemonic Description1DATAOUT Differential Retimed Data Output 2DATAOUT Differential Retimed Data Output 3V CC2Digital Ground4CLKOUT Differential Recovered Clock Output 5CLKOUT Differential Recovered Clock Output 6V EE Digital V EE 7V EE Digital V EE8V CC1Digital Ground 9AV EEAnalog V EE10ASUBST Analog Substrate11CF 2Loop Damping Capacitor Input 12CF 1Loop Damping Capacitor Input 13AV CC Analog Ground 14V CC1Digital Ground 15V EEDigital V EE16DATAIN Differential Data Input 17DATAIN Differential Data Input 18SUBST Digital Substrate19FRAC Differential Frequency Acquisition Indicator Output20FRACDifferential Frequency Acquisition Indicator OutputTHERMAL CHARACTERISTICSθJCθJA SOIC Package 22°C/W 75°C/W Cerdip Package25°C/W90°C/WUse of a heatsink may be required depending on operating environment.GLOSSARYMaximum and Minimum SpecificationsMaximum and minimum specifications result from statistical analyses of measurements on multiple devices and multiple test systems. Typical specifications indicate mean measurements.Maximum and minimum specifications are calculated by adding or subtracting an appropriate guardband from the typical specification. Device-to-device performance variation and test system-to-test system variation contribute to each guardband.Nominal Center FrequencyThis is the frequency that the VCO will operate at with no input signal present and the loop damping capacitor, C D , shorted.Tracking RangeThis is the range of input data rates over which the PLL will remain in lock.Capture RangeThis is the range of input data rates over which the PLL can acquire lock.Static Phase ErrorThis is the steady-state phase difference, in degrees, between the recovered clock sampling edge and the optimum sampling instant, which is assumed to be halfway between the rising and falling edges of a data bit. Gate delays between the signals that define static phase error, and IC input and output signals prohibit direct measurement of static phase error.Data Transition Density, This is a measure of the number of data transitions, from “0” to “1” and from “1” to “0,” over many clock periods. ρ is the ratio (0 ≤ ρ ≤ 1) of data transitions to clock periods.JitterThis is the dynamic displacement of digital signal edges from their long term average positions, measured in degrees rms, or Unit Intervals (UI). Jitter on the input data can cause dynamic phase errors on the recovered clock sampling edge. Jitter on the recovered clock causes jitter on the retimed data.Output JitterThis is the jitter on the retimed data, in degrees rms, due to a specific pattern or some psuedo-random input data sequence (PRN Sequence).Jitter ToleranceJitter tolerance is a measure of the PLL’s ability to track a jittery input data signal. Jitter on the input data is best thought of as phase modulation, and is usually specified in unit intervals.ORDERING GUIDEFractional Loop Device Center Frequency Bandwidth Description Operating Temperature Package Option AD800-45BQ 44.736 MHz 0.1%20-Pin Cerdip–40°C to +85°C Q-20AD800-52BR 51.84 MHz 0.1%20-Pin Plastic SOIC –40°C to +85°C R-20AD802-155BR 155.52 MHz 0.08%20-Pin Plastic SOIC –40°C to +85°C R-20AD802-155KR 155.52 MHz0.08%20-Pin Plastic SOIC0°C to +70°CR-20AD800/AD802REV. B–4–The PLL must provide a clock signal which tracks this phase modulation in order to accurately retime jittered data. In order for the VCO output to have a phase modulation which tracks the input jitter, some modulation signal must be generated at the output of the phase detector (see Figure 21). The modulation output from the phase detector can only beproduced by a phase error between the data input and the clock input. Hence, the PLL can never perfectly track jittered data.However, the magnitude of the phase error depends on the gain around the loop. At low frequencies the integrator provides very high gain, and thus very large jitter can be tracked with small phase errors between input data and recovered clock. At frequencies closer to the loop bandwidth, the gain of the integrator is much smaller, and thus less input jitter can be tolerated. The PLL data output will have a bit error rate less than 1 ϫ 10–10 when in lock and retiming input data that has the specified jitter applied to it.Jitter TransferThe PLL exhibits a low-pass filter response to jitter applied to its input data.BandwidthThis describes the frequency at which the PLL attenuates sinusoidal input jitter by 3 dB.PeakingThis describes the maximum jitter gain of the PLL in dB.Damping Factor, ζ describes how the PLL will track an input signal with a phase step. A greater value of ζ corresponds to less overshoot in the PLL response to a phase step. ζ is a standard constant in secondorder feedback systems.Acquisition TimeThis is the transient time, measured in bit periods, required for the PLL to lock on input data from its free-running state.SymmetrySymmetry is calculated as (100 ϫ on time)/period, where on time equals the time that the clock signal is greater than the midpoint between its “0” level and its “1” level.Bit Error Rate vs. Signal-to-Noise RatioThe AD800 and AD802 were designed to operate with standard ECL signal levels at the data input. Although not recom-mended, smaller input signals are tolerable. Figure 8, 14, and 20 show the bit error rate performance versus input signal-to-noise ratio for input signal amplitudes of full 900 mV ECL, and decreased amplitudes of 80 mV and 20 mV. Wideband ampli-tude noise is summed with the data signals as shown in Figure 2. The full ECL and 80 mV signals give virtually indistinguish-able results. The 20 mV signals also provide adequate perfor-mance when in lock, but signal acquisition may be impaired.POWER Figure 2.Bit Error Rate vs. Signal-to-Noise Ratio Test:Block DiagramUSING THE AD800 AND THE AD802 SERIES Ground PlanesUse of one ground plane for connections to both analog and digital grounds is recommended. Output signal sensitivity to power supply noise (PECL configuration, Figure 22) is less using one ground plane than when using separate analog and digital ground planes.Power Supply ConnectionsUse of a 10 µF tantalum capacitor between V EE and ground is recommended.Use of 0.1 µF ceramic capacitors between IC power supply or substrate pins and ground is recommended. Power supply decoupling should take place as close to the IC as possible.Refer to schematics, Figure 22 and Figure 26, for advised connections.Sensitivity of IC output signals (PECL configuration,Figure 22) to high frequency power supply noise (at 2 ϫ the nominal data rate) can be reduced through the connection of signals AV CC and V CC1, and the addition of a bypass network.The type of bypass network to consider depends on the noise tolerance required. The more complex bypass network schemes tolerate greater power supply noise levels. Refer to Figures 23and 24 for bypassing schemes and power supply sensitivity curves.Transmission LinesUse of 50 Ω transmission lines are recommended for DATAIN,CLKOUT, DATAOUT, and FRAC signals.TerminationsTermination resistors should be used for DATAIN, CLKOUT,DATAOUT, and FRAC signals. Metal, thick film, 1% tolerance resistors are recommended. Termination resistors for the DATAIN signals should be placed as close as possible to the DATAIN pins.Connections from V EE to lead resistors for DATAIN, DATA-OUT, FRAC, and CLKOUT signals should be individual, not daisy chained. This will avoid crosstalk on these signals.Loop Damping Capacitor, C DA ceramic capacitor may be used for the loop damping capacitor.Input BufferUse of an input buffer, such as a 10H116 Line Receiver IC, is suggested for an application where the DATAIN signals do not come directly from an ECL gate, or where noise immunity on the DATAIN signals is an issue.AD800/AD802REV. B –5–52381004440–2042–40504648806040200TEMPERATURE – °C C E N T E R F R E Q U E N C Y – M HzFigure 3.AD800-45 Center Frequency vs. Temperature 52381004440–2042–40504648806040200TEMPERATURE – °CD A T A R A TE – M b psFigure 5.AD800-45 Capture and Tracking Range vs.Temperature55350.3041370.053904743454951530.250.200.150.10INPUT JITTER – UI p-pD A T A R A TE – M b psFigure 7.AD800-45 Acquisition Range vs. Input Jitter 10010031–202–40645789806040200TEMPERATURE – °CJ I T T E R – D e g r e e s r msFigure 4.AD800-45 Jitter vs. Temperature1000.110101011010101010JITTER FREQUENCY – HzU N I T I N T E R V A L S – p -pFigure 6.AD800-45 Jitter Tolerance1E-51E-111E-21E-31E-41E-91E-71E-15E-23E-22E-2S/N – dBB I T E R R O R R A T EFigure 8.AD800-45 Bit Error Rate vs. Input JitterTypical Characteristics –AD800/AD802REV. B–6–58401004442–20–40464850525456806040200TEMPERATURE – °C C E N T E R F R E Q U E N C Y – M HzFigure 9.AD800-52 Center Frequency vs. Temperature 58401004442–20–4046485052545680604020TEMPERATURE – °CD A T A R A TE – M b p sFigure 11.AD800-52 Capture and Tracking Range vs.Temperature60400.3046420.054405248505456580.250.200.150.10INPUT JITTER – UI p-pD A T A R A TE – M b psFigure 13.AD800-52 Acquisition Range vs. Input Jitter 10010031–202–4064578980604020TEMPERATURE – °CJ I T T E R – D e g r e e s r msFigure 10.AD800-52 Jitter vs. Temperature1000.110101101105104103102JITTER FREQUENCY – HzU N I T I N T E R V A L S – p -pFigure 12.AD800-52 Jitter Tolerance1E-51E-101E-21E-31E-41E-81E-61E-15E-23E-22E-2S/N – dBB I T E R R O R R A T EFigure 14.AD800-52 Bit Error Rate vs. Input JitterAD800/AD802REV. B –7–180100120110–4014013015016017010080604020–20TEMPERATURE – °CC E N T E R F R E Q U E N C Y – M Hz Figure 15.AD802-155 Center Frequency vs. Temperature TEMPERATURE – °C200130100160140–20150–4019017018080604020D A T A R A TE – M b p sFigure 17.AD802-155 Capture Range, Tracking Range vs.TemperatureI N P U T J I T T E R – U I100011000100.1101100JITTER FREQUENCY – HzFigure 19.AD802-155 Minimum Acquisition Range vs.Jitter Frequency, T MIN to T MAX V MIN to V MAX100–20–4010031264578980604020J I T T E R – D e g r e e s r m sTEMPERATURE – °CFigure 16.AD802-155 Output Jitter vs. Temperature1000.1102101U I – P k -P k103104105108107106JITTER FREQUENCY – HzFigure 18.AD802-155 Jitter Tolerance1E-51E-101E-21E-31E-41E-81E-61E-15E-23E-22E-2B I T E R R O R R A T ES/N – dB1E-12Figure 20.AD802-155 Bit Error Rate vs. Input JitterAD800/AD802REV. B–8–THEORY OF OPERATIONThe AD800 and AD802 are phase-locked loop circuits for re-covery of clock from NRZ data. The architecture uses a fre-quency detector to aid initial frequency acquisition, refer toFigure 21 for a block diagram. Note the frequency detector is al-ways in the circuit. When the PLL is locked, the frequency error is zero and the frequency detector has no further effect. Since the frequency detector is always in circuit, no control functions are needed to initiate acquisition or change mode after acquisi-tion. The frequency detector also supplies a frequency acquisi-tion (FRAC) output to indicate when the loop is acquiring lock.During the frequency acquisition process the FRAC output is a series of pulses of width equal to the period of the VCO. These pulses occur on the cycle slips between the data frequency and the VCO frequency. With a maximum density (1010 . . .) data pattern, every cycle slip will produce a pulse at FRAC. How-ever, with random data, not every cycle slip produces a pulse.The density of pulses at FRAC increases with the density of data transitions. The probability that a cycle slip will produce a pulse increases as the frequency error approaches zero. After the frequency error has been reduced to zero, the FRAC output will have no further pulses. At this point the PLL begins the process of phase acquisition, with a settling time of roughly 2000 bit pe-riods. Valid retimed data can be guaranteed by waiting 2000 bit periods after the last FRAC pulse has occurred.Jitter caused by variations of density of data transitions (pattern jitter) is virtually eliminated by use of a new phase detector (patented). Briefly, the measurement of zero phase error does not cause the VCO phase to increase to above the average run rate set by the data frequency. The jitter created by a 27–1pseudo-random code is 1/2 degree, and this is small compared to random jitter.The jitter bandwidth for the AD802-155 is 0.08% of the center frequency. This figure is chosen so that sinusoidal input jitter at 130 kHz will be attenuated by 3 dB. The jitter bandwidths of the AD800-45 and AD800-52 are 0.1% of the respective center frequencies. The jitter bandwidth of the AD800 or the AD802 is mask programmable from 0.01% to 1% of the center frequency.A device with a very low loop bandwidth (0.01% of the center frequency) could effectively filter (clean up) a jittery timing reference. Consult the factory if your application requires a special loop bandwidth.The damping ratio of the phase-locked loop is user program-mable with a single external capacitor. At 155 MHz a damping ratio of 10 is obtained with a 0.22 µF capacitor. More generally,the damping ratio scales as1.7×f DATA ×C D . At 155 MHz a damping ratio of 1 is obtained with a2.2 nF capacitor. A lower damping ratio allows a faster frequency acquisition; generally the acquisition time scales directly with the capacitor value.However, at damping ratios approaching one, the acquisition time no longer scales directly with the capacitor value. Theacquisition time has two components: frequency acquisition and phase acquisition. The frequency acquisition always scales with capacitance, but the phase acquisition is set by the loopbandwidth of the PLL and is independent of the damping ratio.Thus, the 0.08% fractional loop bandwidth sets a minimum acquisition time of 15,000 bit periods. Note the acquisition time for a damping factor of 1 is specified as 15,000 bit periods. This comprises 13,000 bit periods for frequency acquisition and 2,000 periods for phase acquisition. Compare this to the 400,000 bit periods acquisition time specified for a damping ratio of 5; this consists entirely of frequency acquisition, and the 2,000 bit periods of phase acquisition is negligible.While lower damping ratio affords faster acquisition, it also allows more peaking in the jitter transfer response (jitter peaking). For example, with a damping ratio of 10 the jitter peaking is 0.02 dB, but with a damping factor of 1, the peaking is 2 dB.DATA INPUTFigure 21.AD800 and AD802 Block DiagramAD800/AD802REV. B –9–Figure 22.Evaluation Board Schematic, Positive Supply Table I. Evaluation Board, Positive Supply: Components ListReference Designator DescriptionQuantity R1–8, R15–18Resistor, 100 Ω, 1%12R9–14Resistor, 154 Ω, 1%6R19, 20, 23, 24Resistor, 130 Ω, 1%4R21, 22, 25, 26Resistor, 80.6 Ω, 1%4C D Capacitor, Loop Damping (See Specifications Page)1C2Capacitor, 10 µF, Tantalum1C3–C21Capacitor, 0.1 µF, Ceramic Chip 17Z1AD800/AD8021Z210H116, ECL Line Receiver1µF(A)BEAD WITH BEAD WITH BEAD WITH BEAD WITH BYPASS NETWORK COMPONENTS:CAPACITOR ..........CERAMIC CHIPFERRITE BEAD......1/4 IN. STACKPOLE CARBO 57-13923.00 1.01.50.50.11.02.52.00.90.70.60.50.80.40.30.2J I T T E R – n s p -pNOISE – V p-p @ 311MHzFigure 23.Bypass Network SchemesFigure 24.AD802-155 Output Jitter vs. Supply Noise (PECL Configuration)AD800/AD802REV. B–10–Figure 25.Power Supply Noise Sensitivity Test Circuit, PECL ConfigurationFigure 26.Evaluation Board Schematic, Negative Supply Table II. Evaluation Board, Negative Supply: Components ListReference Designator DescriptionQuantity R1–8Resistor, 100 Ω, 1%8R9–12Resistor, 154 Ω, 1%4R13, 14, 17, 18Resistor, 80.6 Ω, 1%4R15, 16, 19, 20Resistor, 130 Ω, 1%4R21, 22Resistor, 274 Ω, 1%2C D Capacitor, Loop Damping (See Specifications Page)1C2Capacitor, 10 µF, Tantalum1C3–C12Capacitor, 0.1 µF, Ceramic Chip 10Z1AD800/AD8021Z210H116, ECL Line Receiver1AD800/AD802REV. B–11–Figure 27.Negative Supply Configuration: ComponentSide (Top Layer)Figure 28.Negative Supply Configuration: Solder Side Figure 29.Positive Supply Configuration: ComponentSide (Top Layer)Figure 30.Positive Supply Configuration: Solder SideAD800/AD802REV. B –12–OUTLINE DIMENSIONSDimensions shown in inches and (mm).20-Pin Small Outline IC Package (R-20)BSC 0.019 (0.48)0.014 (0.36)0.104 (2.64)0.093 (2.36)20-Pin Cerdip Package (Q-20)C 1725a –7.5–12/93P R I N T ED I N U .S .A .。
电子芯片大全
号功能简述型号AD1380JDAD1380KDAD1671JQAD1672APAD1674ADAD1674JNAD202JNAD202JYAD204JNAD22100KTAD22105ARAD261BND-1AD2S99APAD420AN-32AD420AR-32AD421BNAD421BRAD515AJHAD515ALHAD517JHAD518JHAD521JDAD524ADAD526BDAD526JNAD532JHAD534JDAD534JHAD536AJDAD536AJHAD536AJQAD537JHAD537SHAD538ADAD539JNAD542JHAD545ALHAD546JNAD547JHAD548JNAD549JHAD549LHAD5539JNAD557JNAD558JNAD568JQ AD569JN AD570JD/+ AD574AJD AD574AKD AD578KN AD580JH AD580LH AD581JH AD582KD AD584JH AD584JN AD585AQ AD586JN AD586JQ AD586KN AD586KQ AD586KR AD587KN AD587KR AD588AQ AD589JH AD590JH AD590KH AD592AN AD592BN AD595AD AD595AQ AD598AD AD600XN AD602JN AD603AQ AD606JN AD607ARS AD620AN AD621AN AD622AN AD623AN AD623AR AD624AD AD625JN AD625KN AD626AN AD627AN AD629AN AD630JNAD636JDAD636JHAD637JQAD648JNAD650JNAD650KNAD652AQAD654JNAD654JRAD660ANAD6640AST AD6644AST AD667JNAD667KNAD669ANAD670JNAD676JDAD676JNAD676KDAD677ARAD677JDAD677JNAD678JDAD678KNAD679JNAD679KNAD680JNAD684JQAD693AQAD694AQAD694JNAD698APAD7008AP20 AD7008JP-50 AD704JNAD705JNAD706JNAD707AQAD707JNAD708AQAD708JNAD7111ABN AD7111LN AD711AQAD711JNAD711JRAD712JN AD713BQ AD713JN AD720JP AD7224KN AD7226KN AD7228ABN AD722JR-16 AD7237AAN AD7237JN AD7243AN AD7245AAN AD7249BN AD724JR AD73360AR AD734AQ AD736JN AD737AQ AD737JN AD7416AR AD741KN AD743JN AD744JN AD745JN AD75019JP AD7501JN AD7502JN AD7502KQ AD7503JN AD7506JN AD7507JN AD7510DIJN AD7510DIKN AD7512DIJN AD7512DIKN AD7520LN AD7523JN AD7524JN AD7528JN AD7528KN AD7533JN AD7535JN AD7537JN AD7541AKN AD7542JN AD7543KNAD7564BN AD7574JN AD7590DIKN AD7660AST AD7664AST AD767JNAD768ARAD7701AN AD7703AN AD7703BN AD7705BN AD7705BR AD7706BN AD7707BR AD7710AN AD7711AN AD7712AN AD7713AN AD7714AN-3 AD7714AN-5 AD7715AN-5 AD7715AR-5 AD7731BN AD7741BN AD7742BN AD7750AN AD7755AARS AD7777AR AD779JDAD780ANAD781JNAD7820KN AD7821KN AD7822BN AD7824BQ AD7824KN AD7837AN AD7845JN AD7846JN AD7847AN AD7856AN AD7862AN-10 AD7864AS-1 AD7865AS-1 AD7872AN AD7874ANAD7886JD AD7886KD AD7888AR AD7890AN-10 AD7891AP-1 AD7892AN-1 AD7895AN-10 AD790JNAD795JNAD797ANAD797ARAD8001AN AD8002AN AD8009AR AD8011AN AD8015AR AD8018AR AD8031AN AD8032AN AD8036AN AD8037AN AD8041AN AD8041AR AD8042AN AD8044AN AD8047AN AD8055AR AD8056AR AD8058AR AD8079AR AD8108AST AD8109AST AD810ANAD8111AST AD8115AST AD8116AST AD811ANAD811JRAD812ANAD812ARAD8131AR AD8138AR AD813ANAD813AR-14 AD815AYAD8170ANAD817ANAD8180AN AD8184AN AD818ANAD820ANAD822ANAD822AN-3V AD823ANAD824ANAD826ANAD827AQAD827JNAD828ANAD829JNAD8307AN AD8307AR AD8309ARU AD830ANAD830ANAD8313ARM AD8313ARM AD8320ARP AD834JNAD8350AR15 AD835ANAD8402AN-10 AD8403AN100 AD840JNAD843AQAD844ANAD845JNAD845KNAD847AQAD847JNAD847SQAD849JNAD8522AN AD8551AR AD8552AR AD8561AN AD8561AR AD8564AN AD8598AN AD9042AST AD9048JQ AD9049BRSAD9051BRSAD9057BRS-40 AD9057BRS-60 AD9058JJAD9059BRSAD9066JRAD9071BRAD9101ARAD9200ARSAD9203ARUAD9220ARAD9221ARAD9223ARAD9225ARAD9226ARSAD9240ASAD9243ASAD9260ASAD9280ARSAD9281ARSAD9283BRS-100 AD9283BRS-80 AD9288BRS-80 AD9300KQAD9483KS-100 AD9500BQAD9501JNAD9617JRAD9617JNAD9618JNAD9630ANAD9631ANAD96687BQAD9698KNAD9708ARUAD9709ASTAD9713BANAD9721BRAD9731BRAD9732BRSAD9750ARAD9752ARAD9760ARAD9762ARAD9764ARAD976CNAD976AAN AD9772AST AD977AAN AD977AN AD9801JCST AD9802JST AD9803JST AD9805JS AD9816JS AD9822JR AD9830AST AD9831AST AD9832BRU AD9850BRS AD9851BRS AD9852AST AD9852ASQ AD9853AS AD9854AST AD9854ASQ AD9901KQ ADG201AKN ADG201HSJN ADG211AKN ADG222AKN ADG333ABN ADG333ABR ADG408BN ADG409BN ADG411BN ADG417BN ADG419BN ADG431BN ADG436BN ADG441BN ADG442BN ADG506AKN ADG507AKN ADG508AKN ADG508FBN ADG509AKN ADG511BN ADG608BN ADG609BN ADG719BRM ADG736BRMADM690ANADM708ANADSP21060KS160 ADSP21060CZ-160 ADSP21062KS-160 ADSP2181KS-133 ADSP2181KST-133 ADUC812BS ADVF32KNADXL105JQC ADXL202AQC AMP02FPAMP04FPDAC08CPDAC8228FPOP07AZ/883COP07CPOP07CSOP176GPOP177GPOP27GPOP291GPOP295GPOP296GPOP297GPOP297GSOP37EPOP37GPOP495GPOP497GPOP77GPOP90GPOP97FPOP97FSPKD01FPREF02CPREF03GPREF192GPREF192GSREF194GPREF195GSREF43FZSMP04EPSMP08FPSSM2141PSSM2142PSSM2211P SSM2275P TMP03FS TMP04FS TMP36GT9 MAX038CPP MAX1044CPA MAX110ACPE MAX110BCPE MAX111BCPE MAX122BCNG MAX1232CPA MAX1242BCSA MAX125CEAX MAX134CPL MAX135CPI MAX139CPL MAX140CPL MAX1480BCPI MAX1480BEPI MAX1483CPA MAX1487CPA MAX1487ECPA MAX1488ECPD MAX1489ECPD MAX148BCPP MAX1490BCPG MAX158BCPI MAX1771CPA MAX1771CSA MAX180CCPL MAX186CCPP MAX187BCPA MAX189CCPA MAX191BCNG MAX192BCPP MAX197BCNI MAX202CPE MAX202CSE MAX202ECPE MAX202EESE MAX202EPE MAX207CNG MAX208CNG MAX232CPE MAX232CSEMAX235CPG MAX238CNG MAX238ENG MAX260BCHG MAX260BENG MAX261BCNG MAX280CPA MAX291CPA MAX292CPA MAX293CPA MAX294CPA MAX297CPA MAX301CPE MAX305EPE MAX306CPI MAX3080CPD MAX3082CPA MAX308CPE MAX309CPE MAX3100CPD MAX312CPE MAX313CPE MAX318CPA MAX319CPA MAX3218CPP MAX3223CPP MAX3232CPE MAX325CPA MAX333CPP MAX338CPE MAX339CPE MAX351CPE MAX354CPE MAX354CWE MAX354EPE MAX355CPE MAX355CWE MAX366CPA MAX367CPN MAX384CPN MAX391CPE MAX400CPA MAX4016ESA MAX4100ESA MAX4101ESA MAX4106ESAMAX4142ESD MAX4146ESD MAX419CPD MAX420CPA MAX427CPA MAX435CPD MAX436CPD MAX440CPI MAX441CPP MAX442CPA MAX4456CPL MAX453EPA MAX457EPA MAX458CPL MAX468CPE MAX470CPE MAX479CPD MAX480EPA MAX483CPA MAX485CPA MAX487CPA MAX487ECPA MAX487EEPA MAX488CPA MAX490ECPA MAX491CPD MAX491ECPD MAX501AENG MAX504CPD MAX505BCNG MAX506CPP MAX509BCPE MAX512CPD MAX515CPA MAX517BCPA MAX518BCPA MAX526DCNG MAX527DCNG MAX528CPP MAX530BCNG MAX531BCPD MAX532BCPE MAX536BCWE MAX538BCPA MAX543ACPA MAX551ACPAMAX619CPA MAX6225ACPA MAX6225AESA MAX6225BCPA MAX6225BCSA MAX622CPA MAX6250BCPA MAX633ACPA MAX638AEPA MAX639CPA MAX660CPA MAX662ACPA MAX667CPA MAX691ACPE MAX691CPE MAX705CPA MAX706CPA MAX708CPA MAX708CSA-T MAX709LEPA MAX712CPE MAX712EPE MAX713CPE MAX7219CNG MAX7219ENG MAX724CCK MAX726CCK MAX729CCK MAX730ACPA MAX733CPA MAX735CPA MAX736CPD MAX738ACPA MAX738AEPA MAX739CPD MAX739CWE MAX7400CPA MAX743CPE MAX743EPE MAX749CPA MAX750ACPA MAX756CPA MAX761CPA MAX764CPA MAX765CPA MAX766EPAMAX791CPE MAX807LCPE MAX810LEUR-T MAX813LCPA MAX813LEPA MAX818LCPA MAX860ISA MAX865EUA MAX866ESA MAX874EPA MAX875BCPA MAX882CPA MAX883CPA MAX883CSA MAX907CPA MAX910CNG MAX912CPE MAX913CPA MAX931CPA MAX934CPE MXD1210CPA LFC2LFC3LFC4LFC54LFC75F003F004(5G23)F005F006F007(5G24)F010F011F1550F1490F1590F157/AF253F741(F007)F741AF747OP-07OP111AF4741F101A/201AF301AF308F110/210 F310F118/218 F441F318F124/224 F324F148F248/348 F158/258 F358F1558F4558LF791LF4136 FD37/FD38 FD46LF082 LFOP37LF3140LF7650LZ1606LZ19001 LBMZ1901 LM741LM747OP-07LM101/201 LM301LM108/208 LM308LM110LM310LM118/218 LM318LM124/224 LM324LM148LM248/348 LM158/258 LM358LM1558 OP-27CP TL062TL072TL082TL084MC1458LF147/347LF156/256/356LF107/307LF351LF353LF155/355LF157/357LM359LM381CA3080CA3100CA3130CA3140CA3240CA3193CA3401MC3303MC3403LF411LF444µpc4558MC4741LM709LM725LM733LM748ICL7650ICL7660稳压器固定输出(正电压)稳压器78xx 系列 3端稳压器 5V 到 24V1A78Lxx 系列 3端稳压器 5V 到 24V 0.1A78Mxx 系列 3端稳压器 5V 到 24V 0.5A78Sxx 系列 3端稳压器 5V 到 24V 2A固定输出(负电压)稳压器79xx 系列 3端负电压稳压器 -5V 到 -24V 1A [110kb] 79Lxx 系列 3端负电压稳压器 -5V 到 -24V 0.1A [95kb]可调输出 - 常用稳压器LM117 1.2V... 37V 1.5A 正电压可调稳压器 [100kb] LM217 1.2V... 37V 1.5A 正电压可调稳压器 [100kb] LM317 1.2V... 37V 1.5A 正电压可调稳压器 [100kb] LM137 -1.2V...-37V 1.5A 负电压可调稳压器 [246kb] LM237 -1.2V...-37V 1.5A 负电压可调稳压器 [246kb]LM337 -1.2V...-37V 1.5A 负电压可调稳压器 [246kb] LM138 1.2V --32V 5-安培 可调LM338 1.2V -- 32V 5-安培 可调LM723 高精度可调 [136kb]L200 2 A / 2.85 to 36 V.可调 [166KB]TTL 逻辑电路 [LS - HC 或 HCT 系列]74LS0074LS0474LS0874LS1074LS1374LS1474LS2774LS3074LS3274LS4274LS4574LS4774LS9074LS9274LS9374LS12174LS15474LS19274LS19374HC23774LS37474LS390CMOS 逻辑电路4001400240074011401340164017402240234025402640284029404040464051405240534055 4056 4060 4066 4067 4068 4069 4071 4072 4075 4081 4082 4093 4511 4518 4583 4584晶体管小功率管2N9302N16132N2222A 2N34392N34402N39042N39062N54012N54152N54162N55502N55512N65152N49212N49222N4923 AF125 BC107 BC108 BC109 BC148 BC177 BC178 BC179 BC182 BC183 BC184BC214BC327BC301BC302BC303BC304BC328BC337BC338BC414BC416BC461BC516BC517BC546BC547BC548BC549BC550BC556BC557BC558BC559BC560BC635BC636BC637BC638BC639BC640BCY70BCY71BCY78BCY79BCY87BCY88BCY89MPSL01 MPSL51 MPSA06 MPSA42 MPSA43 MPSA56 MPSA92 MPSA93中、大功率管2N6283 2N6284 2N6286 2N6287 BD135 BD136 BD137 BD138 BD139 BD140 BD162 BD203 BD204 BD241C BD242C BD243 BD249 BD250 BD375 BD376 BD377 BD378 BD379 BD380 BD543 BD529 BD530 BD533 BD534 BD535 BD536 BD537 BD538 BD677 BD678 BD679 BD680 BD681 BD682 BD591 BD592 BDX53C BDX54C BDW51 BU208A BU508AMJ2955MJ4502MJ15003MJ15004MJE340MJE350MJE15028MJE15029MJE15030MJE15031PMD16K100PMD17K100TIP31TIP32TIP122TIP140TIP141TIP142TIP145TIP146TIP147TIP2955TIP3055Fet 晶体管2N52482N54572N5460BS170BF245CBF256BJ210J211J212Fet 功率管2SK15302SJ201IRF540IRF9540集成电路(模拟)AD711CA3130LH0032LF351LF411LM108LM208LM833LM358LM359LM324LM391LM393NE5532NE5534OP27OP37TL071TL072TL074TL081TL082TL084TLC271TLC272TLC274MN3004IC's 功率放大 [模拟] L165LM388LM1875TDA1516BQTDA1519CTDA1563QTDA2002TDA2005TDA2004TDA2030STK4036 IISTK4036 XISTK4038 IISTK4040 IISTK4040 XISTK4042 IISTK4042 XISTK4044 IISTK4044 IISTK4046 XISTK4048 XISTK4050 V显示驱动LM3914LM3915UAA180CA3161ECA3162EICL7136PLL 立体声解码LM1800CA3090PMC1310P定时-时钟电路555556MN3101XR2206光电耦合4N254N264N274N284N354N364N37H11A1H11A2H11A3SCR - TRIAC BTY79-800RC106D时钟MM5314N二极管1N4000 系列1N41481N5408IN5236B1N5240B1N5252B电子管300B5U4G6SN76BX76DJ8ECC886N1PECC88692212AT712AU712AX7E80CCECC81ECC82ECC83ECC88EL34EL84Z2CKT88常用锁相环电路集成电路型号(规格) 数据表生产厂家器件名称参考单价兼容型号EM92600/1EMC 专用型锁相环(中国10频道)HT9286A/BHT9287A/BHOLTEK 专用型锁相环(美国10频道)HT9288A/BHOLTEK 专用型锁相环(中国10频道)HYL21011S/JHYUNDAI 通用型锁相环HYL21012S/JHYUNDAI 专用型锁相环(美国10频道)HYL21014S/JHYUNDAI 专用型锁相环(中国10频道)MC145162MOTOROLA通用型锁相环MC145166MOTOROLA专用型锁相环(美国10频道)MC145167MOTOROLA专用型锁相环(美国10频道)KS8805BGM6532LG 专用型锁相环(中国10频道)DMD5603DAEWOO专用型锁相环(中国10频道)DMD5602DAEWOO专用型锁相环(美国10频道)KA567KA567LLM567常用元器件ICL7106,ICL7107DAC0830/DAC0832ADC0831/ADC0832/ADC0834/ADC0838 ADC0808/ADC0809ADC0802/ADC0803/ADC0804AD7520/AD7521/AD7530/AD75214N35/4N36/4N37ICL7116,ICL7117ICL7650ICL7660/MAX1044ICL7106,ICL7107DAC0830/DAC0832ADC0831/ADC0832/ADC0834/ADC0838 ADC0808/ADC0809ADC0802/ADC0803/ADC0804AD7520/AD7521/AD7530/AD75214N35/4N36/4N37ICL7116,ICL7117ICL7650ICL7660/MAX1044ICL8038ICM7216ICM7226ISO2-CMOSLF351LF353LM117/LM317A/LM317LM124/LM124/LM324LM137/LM337LM139/LM239/LM339LM158/LM258/LM358LM193/LM293/LM393LM201/LM301LM231/LM331LM285/LM385LM308ALM386LM399LM431LM567/LM567CLM741LM831LM833LM8365MAX038MC1403MC1404MC1413/MC1416MC145026/MC145027/MC145028MC145403-5/8MC145406MC145407MC145583MC145740MC1488MC1489MC2833MC3362MC4558MC7800系列MC78L00系列MC78M00系列MC78T00系列MC7900系列MC79L00系列MC79M00系列Microchip PIC系列单片机RS232通讯应用MM5369MOC3009/MOC3012MOC3020/MOC3023MOC3081/MOC3082/MOC3083MOC8050MOC8111MT8870MT8888CNE5532/NE5532ANE5534/SE5534NE555/SA555NE556/SA556/SE556NE570/NE571/SA571OP07OP27OP37OP77OP90PC817/PC827/PC847PT2262PT2272SG2524/SG3524ST7537TDA1521TDA7000TTDA7010TTDA7021TTDA7040TTDA7050TL062/TL064TL071/TL072/TL074TL082/TL084 JFETTL494TL594TLP521/1-4TOP100-4TOP221-7TOP232-4TOP412/TOP414ULN2068ULN2803ULN2803/ULN2804VFC32LM319LM393/LM339经典8腿IC封装(LM393)经典14腿IC封装(LM339)电源范围 2――36V静态工作电流 0.4mA翻转时间 1.3us最大输出电流 16mA输入电压范围 -0.3V――Vcc型号功能简述功能16位 20us高性能模数转换器(民用级)16位 20us高性能模数转换器(民用级)12位 1.25MHz采样速率带宽2MHz模数转换器(民用级)12位 3MHz采样速率带宽20MHz单电源模数转换器(工业级)12位 100KHz采样速率带宽500KHz模数转换器(工业级)12位 100KHz采样速率带宽500KHz模数转换器(民用级)小型2KHz隔离放大器(民用级)卧式小型2KHz隔离放大器(民用级)立式小型5KHz隔离放大器(民用级)卧式带信号调理比率输出型温度传感器可编程温控开关电阻可编程温度控制器 SOIC数字隔离放大器可编程正弦波振荡器(工业级) PLCC16位单电源 4-20mA输出数模转换器(工业级)DIP16位单电源 4-20mA输出数模转换器(工业级)SOIC16位环路供电符合HART协议 4-20mA输出数模转换器(工业级)DIP 16位环路供电符合HART协议 4-20mA输出数模转换器(工业级)SOIC 低价格,低偏置电流,高输入阻抗运放(民用级) TO-99低价格,低偏置电流,高输入阻抗运放(民用级) TO-99低失调电压,高性能运放 (民用级) TO-99宽带,低价格运放(民用级) TO-99电阻设置增益精密仪表放大器(民用级)DIP引脚设置增益高精度仪表放大器(工业级)DIP软件编程仪表放大器(工业级)DIP软件编程仪表放大器(民用级)DIP模拟乘法器(民用级)TO-99模拟乘法器(民用级)DIP模拟乘法器(民用级)TO-99集成真有效值直流转换器(民用级)DIP集成真有效值直流转换器(民用级)TO-99集成真有效值直流转换器(民用级)DIP150KHZ集成压频转换器(民用级)TO-99150KHZ集成压频转换器(军用级)TO-99单片实时模拟乘法器(工业级)DIP宽带双通道线性乘法器(民用级)DIP低价格,低偏置电流,高输入阻抗运放(民用级) TO-99低偏置电流,高输入阻抗运放(民用级) TO-99静电计放大器(民用级)DIP低价格,低偏置电流,高输入阻抗运放(民用级) TO-99精密 BiFET输入运放(民用级)DIP低偏置电流,高输入阻抗运放(民用级) TO-99低偏置电流,高输入阻抗运放(民用级) TO-99高速运放(民用级)DIP微处理器兼容完整7位电压输出数模转换器(民用)DIP微处理器兼容完整8位电压输出数模转换器(民用)DIP12位 0.25us电流输出数模转换器(民用)DIP12位超高速电流输出数模转换器(民用)DIP16位 3us电流输出数模转换器(民用)DIP8位 25us模数转换器(民用)DIP12位 25us模数转换器(民用)DIP12位 25us模数转换器(民用)DIP12位 3us模数转换器(民用)DIP精密 2.5V电压基准源(民用级)TO-52精密 2.5V电压基准源(民用级)TO-52精密 10V电压基准源(民用级)TO-50.7us采样保持放大器(民用)DIP引脚设置输出电压基准源(民用级)TO-99引脚设置输出电压基准源(民用级)DIP3us采样保持放大器(工业级)DIP精密 5V电压基准源(民用级)DIP精密 5V电压基准源(民用级)DIP精密 5V电压基准源(民用级)DIP精密 5V电压基准源(民用级)DIP精密 5V电压基准源(民用级)SOIC精密 10V电压基准源(民用级)DIP精密 10V电压基准源(民用级)SOIC精密可编程电压基准源(工业级)DIP精密 1.235V电压基准源(民用级)H-02A—55℃~150℃测温范围温度传感器 TO-52—55℃~150℃测温范围温度传感器 TO-52低价格,精密单片温度传感器 TO-92低价格,精密单片温度传感器 TO-92K型(铬-铝)热电偶信号调节器(工业级)DIPK型(铬-铝)热电偶信号调节器(工业级)DIP线性可变位移信号调节器(LVDT)(工业级)DIP低噪声宽带可变增益双运放(民用级)DIP低噪声宽带可变增益双运放(民用级)DIP低噪声可变增益运放(工业级)DIP50MHz, 80db对数放大器(民用级)DIP低功耗混频器/AGC/RSSC 3V接收机的IF子系统(工业级) SSOP 低功耗仪表放大器(工业级)DIP低功耗仪表放大器(工业级)DIP单电源仪表放大器(工业级)DIP单电源Rail-Rail输出仪表放大器(工业级)DIP单电源Rail-Rail输出仪表放大器(工业级)SOIC精密仪表放大器(工业级)DIP可编程增益仪表放大器(民用级)DIP可编程增益仪表放大器(民用级)DIP单电源仪表放大器(工业级)DIP单电源低功耗Rail-Rail输出仪表放大器(工业级)DIP高电压抑制比差分放大器(工业级) DIP平衡跳制解调器(民用级)DIP低价格模拟乘法器(民用级)DIP高精度真有效值直流转换器(民用级)DIP高精度真有效值直流转换器(民用级)TO-99高精度真有效值直流转换器(民用级)DIP精密,BiFET输入运放(民用级)DIP1MHz,电压频率转换器(民用级)DIP1MHz,电压频率转换器(民用级)DIP2MHz,同步电压频率转换器(工业级)DIP500KHz,低价格电压频率转换器(民用级)DIP500KHz,低价格电压频率转换器(民用级)SOIC16位 8us串并行输入数模转换器(工业级)DIP12位65MSPS模数转换器(工业级) LQFP14位65MSPS模数转换器(工业级) LQFP12位 3us并行输入数模转换器(民用级)DIP12位 3us并行输入数模转换器(民用级)DIP16位 8us并行输入数模转换器(工业级)DIP单电源,内带仪表放大器电压基准源8位数模转换器(民用级)DIP16位100KSPS采样速率并行输出模数转换器(民用级)DIP16位100KSPS采样速率并行输出模数转换器(民用级)DIP16位100KSPS采样速率并行输出模数转换器(民用级)DIP16位100KSPS采样速率串行输出模数转换器(民用级)SOIC16位100KSPS采样速率串行输出模数转换器(民用级)DIP16位100KSPS采样速率串行输出模数转换器(民用级)DIP12位200KSPS采样速率并行输出模数转换器(民用级)DIP12位200KSPS采样速率并行输出模数转换器(民用级)DIP14位128KSPS采样速率并行输出模数转换器(民用级)DIP14位128KSPS采样速率并行输出模数转换器(民用级)DIP精密 2.5V电压基准源(民用级)DIP1us 四通道采样保持放大器(民用级)DIP环路供电,4~20mA输出传感器信号变送器(工业级)DIP0~2V或0~10V输入,4~20mA或0-20mA输出信号变送器(工业级)DIP 0~2V或0~10V输入,4~20mA或0-20mA输出信号变送器(民用级)DIP 通用线性可变位移信号调节器(LVDT)(工业级)PLCC带10位D/A,20MHz主频直接数字同步调制器(工业级)PLCC带10位D/A,50MHz主频直接数字同步调制器(民用级)PLCC精密四运放(民用级)DIP精密运放(民用级) DIP精密双运放(民用级) DIP精密单运放(工业级)DIP精密单运放(民用级)DIP双AD707(工业级)DIP双AD707(民用级)DIP0.37db对数数模转换器(工业级)DIP0.37db对数数模转换器(工业级)DIP精密 BiFET输入运放(工业级)DIP精密 BiFET输入运放(民用级)DIP精密 BiFET输入运放(民用级)SOIC双AD711(工业级)DIP双AD711(民用级)DIP四AD711(工业级)DIP四AD711(民用级)DIPRGB-NTSC/PAL编码器(民用级)PLCC8位 3us转换时间电压输出数模转换器(民用级)DIP8位 4通道3us转换时间电压输出数模转换器(民用级)DIP8位 8通道5us转换时间电压输出数模转换器(工业级)DIPAnalog toNTSC/PAL编码器(民用级) SOIC12位 2通道5us转换时间电压输出数模转换器(工业级)DIP12位 2通道5us转换时间电压输出数模转换器(民用级)DIP12位电压输出型数模转换器(工业级) DIP12位 10us转换时间电压输出数模转换器(工业级)DIP12位双路串行输出数模转换器(工业级) DIPAnalog toNTSC/PAL编码器(民用级) SOIC16位6通道数据采集子系统(三相电量测量IC)(工业级) SOIC10MHz带宽四象限模拟乘法器(工业级)DIP通用真有效值直流转换器(民用级)DIP通用真有效值直流转换器(工业级)DIP通用真有效值直流转换器(民用级)DIP片内带D/A 数字输出温度传感器 LM35升级品可8片级联(工业级)SOIC 通用运放(民用级)DIP低噪声,BiFET输入运放(民用级)DIP精密,双极性运放(民用级)DIP精密低噪声运放(民用级) DIP16×16音频距阵开关(民用级) PLCC8选1 CMOS多路转换器(民用级)DIP差动4选1 CMOS多路转换器(民用级)DIP差动4选1 CMOS多路转换器(民用级)DIP8选1 CMOS多路转换器(民用级)DIP16选1 CMOS多路转换器(民用级)DIP差动8选1 CMOS多路转换器(民用级)DIP四单刀单掷 CMOS介质隔离模拟开关9民用级)DIP四单刀单掷 CMOS介质隔离模拟开关9民用级)DIP双单刀双掷 CMOS介质隔离模拟开关9民用级)DIP双单刀双掷 CMOS介质隔离模拟开关9民用级)DIP10位 CMOS数模转换器(民用级)DIP8位 CMOS数模转换器(民用级)DIP8位 CMOS带锁存数模转换器(民用级)DIP8位 180ns电流输出CMOS数模转换器(民用级)DIP8位 180ns电流输出CMOS数模转换器(民用级)DIP10位 600ns电流输出CMOS数模转换器(民用级)DIP14位 1.5us电流输出CMOS数模转换器(民用级)DIP12位双路1.5us电流输出CMOS数模转换器(民用级)DIP12位 600ns电流输出CMOS数模转换器(民用级)DIP12位 250ns电流输出CMOS数模转换器(民用级)DIP12位串行输入CMOS数模转换器(民用级)DIP12位 1us电流输出CMOS数模转换器(民用级)DIP低功耗四路数模转换器(工业级) DIP8位 15us电流输出CMOS数模转换器(民用级)DIP四单刀单掷 CMOS带锁存介质隔离模拟开关9民用级)DIP16位100KSPS CMOS模数转换器(工业级) LQFP16位570KSPS CMOS模数转换器(工业级) LQFP12位高速电压输出数模转换器(民用级)DIP16位高速电流输出数模转换器(民用级)SOIC16位 ∑–△模数转换器(工业级)DIP20位 ∑–△模数转换器(工业级)DIP20位 ∑–△模数转换器(工业级)DIP16位 ∑–△模数转换器(工业级)DIP16位 ∑–△模数转换器(工业级)SOIC16位 ∑–△模数转换器(工业级)DIP16位 ∑–△模数转换器(工业级)SOIC24位 ∑–△模数转换器(工业级)DIP24位 ∑–△模数转换器(工业级)DIP24位 ∑–△模数转换器(工业级)DIP24位 ∑–△模数转换器(工业级)DIP24位 ∑–△模数转换器(工业级)DIP 3V电源24位 ∑–△模数转换器(工业级)DIP 5V电源16位 ∑–△模数转换器(工业级)DIP 5V电源16位 ∑–△模数转换器(工业级)SOIC 5V电源24位 ∑–△模数转换器(工业级)DIP单通道输入6MHz压频转换器(工业级) DIP四通道输入6MHz压频转换器(工业级) DIP两通道乘积/频率转换器电度表专用芯片(工业级)DIPIEC521/1036标准电度表专用芯片(工业级)DIP10位多路T/H子系统(工业级) SOIC14位128KSPS采样速率并行输出模数转换器(民用级)DIP2.5V或3V可选输出高精度电压基准源(工业级)DIP700ns采样保持放大器(民用级)DIP8位500KSPS采样速率模数转换器(民用级)DIP8位1MSPS采样速率模数转换器(民用级)DIP8位2MSPS采样速率模数转换器(工业级)DIP8位四通道高速模数转换器(民用级)DIP8位四通道高速模数转换器(工业级)DIP12位双路乘法数模转换器(工业级)DIP12位乘法数模转换器(民用级)DIP16位电压输出数模转换器(民用级)DIP12位双路乘法数模转换器(工业级)DIP14位8通道285KSPS采样速率模数转换器(工业级)DIP12位4通道同时采样250KSPS速率模数转换器带2SHA and 2ADCs(工业级)DIP 12位4通道同时采样147KSPS速率模数转换器(工业级)PQFP14位4通道同时采样175KSPS速率模数转换器带2SHA and 2ADCs(工业级)PQFP 14位串行输出模数转换器(工业级)DIP12位 750KSPS采样速率模数转换器(民用级)DIP12位8通道200KSPS速率模数转换器(工业级)SOIC12位单电源八通道串行采样模数转换器(工业级)DIP12位单电源八通道串并行采样模数转换器(工业级)DIP12位600KSPS采样模数转换器(工业级)DIP12位单电源200KSPS采样速率模数转换器(工业级)DIP12位四通道同时采样模数转换器(工业级)DIP12位四通道同时采样模数转换器(工业级)SOIC12位 750KSPS采样速率模数转换器(民用级)DIP高速精密比较器(民用级)DIP低偏置电流低噪声运放(民用级)DIP低失真低噪声运放(工业级)DIP低失真低噪声运放(工业级)SOIC800MHz 电流反馈运放(工业级)DIP800MHz 电流反馈双运放(工业级)DIP1GHz 4500V/us 电流反馈双运放(工业级)DIP340MHz 电流反馈运放(工业级)DIP单电源真空管前置放大器(工业级) SOIC5V Rail-Rail 大电流输出 XDSL线性驱动放大器(工业级) SOIC 单电源 Rail-Rail输入输出运放(工业级)DIP单电源 Rail-Rail输入输出双运放(工业级)DIP低失真宽带240MHz电压输出运放(工业级)DIP低失真宽带270MHz电压输出运放(工业级)DIP120MHz带宽 Rail-Rail输出运放(工业级)DIP120MHz带宽 Rail-Rail输出运放(工业级)SOIC120MHz带宽 Rail-Rail输出双运放(工业级)DIP80MHz带宽 Rail-Rail输出四运放(工业级)DIP电压反馈运放(工业级) DIP电压反馈运放(工业级) SOIC低价格 300MHz电压反馈双运放(工业级) SOIC电压反馈双运放(工业级) SOIC双通道 260MHz缓冲器(工业级) SOIC8×8视频距阵开关(工业级) LQFP8×8视频距阵开关(工业级) LQFP带电源休眠控制端的低功耗视频运放(工业级) DIP16×8视频距阵开关(工业级) LQFP16×16视频距阵开关(工业级) LQFP16×16视频距阵开关(工业级) LQFP高性能视频运放(工业级) DIP高性能视频运放(工业级) SOIC低功耗电流反馈双运放(工业级) DIP低功耗电流反馈双运放(工业级) SOIC差分输入输出电压反馈放大器(工业级) SOICIF 放大器(工业级) SOIC单电源低功耗三视频运放(工业级) DIP单电源低功耗三视频运放(工业级) SOIC大电流输出,差动输入\输出运放(工业级)2选1视频多路转换器(工业级) DIP4选1视频多路转换器(工业级) DIP高速低功耗宽电源运放(工业级) DIP差动2选1视频多路转换器(工业级) DIP4选1视频多路转换器(工业级) DIP低价格高速电压反馈视频运放(工业级) DIP单电源低功耗FET输入 Rail-Rail输出运放(工业级) DIP 双AD820(工业级) DIP双AD820(工业级) DIP 3V电源单电源 Rail-Rail输出双运放(工业级) DIP单电源 Rail-Rail输出四运放(工业级) DIP高速低功耗双运放(工业级) DIP双AD847 (工业级) DIP双AD847 (民用级) DIP双AD818(工业级) DIP高速低噪声视频运放(工业级) DIP500MHz对数放大器(工业级)DIP500MHz对数放大器(工业级)SOIC500MHz对数放大器(工业级)TSSOP高速视频差动运放(工业级) DIP高速视频差动运放(工业级) DIP2.5GHz对数放大器(工业级) RM-82.5GHz对数放大器(工业级) RM-8数字可变增益线性驱动器(工业级) RP-20500MHz带宽四象限模拟乘法器(工业级)DIP差分输入射频放大器(工业级) SOIC250MHz带宽四象限电压输出模拟乘法器(工业级)DIP2通道数字电位器阻值10K(工业级) DIP4通道数字电位器阻值100K(工业级) DIP宽带高速运放(民用级) DIP34MHz带宽高速FET输入运放(工业级) DIP2000V/us高速运放(工业级) DIP16MHz带宽高速FET输入运放(民用级) DIP16MHz带宽高速FET输入运放(民用级) DIP300V/us高速低功耗运放(工业级) DIP300V/us高速低功耗运放(民用级) DIP300V/us高速低功耗运放(军用级) DIP高速低功耗运放(民用级) DIP12 位单电源双路电流输出型数模转换器(工业级) DIP 自稳零运放(工业级) SOIC自稳零双运放(工业级) SOIC单电源比较器(工业级)DIP单电源比较器(工业级) SOIC单电源TTL/CMOS四路比较器(工业级) DIP单电源双路比较器(工业级) DIP12位41MSPS模数转换器(工业级) LQFP8位35MSPS视频模数转换器(民用级) DIP9位30MSPS模数转换器(工业级) SSOP10位40MSPS模数转换器(工业级) SOIC10位60MSPS模数转换器(工业级) SSOP8位40MSPSz视频模数转换器(工业级) SSOP8位60MSPS视频模数转换器(工业级) SSOP双路8位50MSPS视频模数转换器(民用级) LCC双路8位60MSPS视频模数转换器(工业级) SSOP双路6位60MSPS视频模数转换器(民用级) SSOP10位TTL兼容100MSPS模数转换器(工业级) SOIC7ns建立时间采样保持放大器(工业级) SOIC10位20MSPS模数转换器(工业级) SSOP10位40MSPS模数转换器(工业级) TSSOP12位10MSPS模数转换器(工业级) SOIC12位1MSPS模数转换器(工业级) SOIC12位3MSPS模数转换器(工业级) SOIC12位25MSPS模数转换器(工业级) SOIC12位65MSPS模数转换器(工业级) SSOP14位10MSPS模数转换器(工业级) MQFP14位3MSPS模数转换器(工业级) MQFP16位2.5MSPS∑–△模数转换器(工业级)MQFP单电源8位32MSPS模数转换器(工业级) SSOP单电源 8位双路32MSPS模数转换器(工业级) SSOP单电源8位100MSPS模数转换器(工业级) SSOP单电源8位80MSPS模数转换器(工业级) SSOP单电源 8位双路80MSPS模数转换器(工业级) SSOP4选1宽带视频多路转换器(民用级) DIP8位 100MSPS三视频模数转换器(民用级)MQFP数字化可编程延迟信号发生器(工业级) DIPTTL/COMS数字化可编程延迟信号发生器(民用级) DIP 1400V/us,140MHz带宽高速运放(民用级) SOIC1400V/us,140MHz带宽高速运放(民用级) DIP1800V/us,160MHz带宽高速运放(民用级) DIP低失真闭环缓冲放大器(工业级) DIP超低失真宽带电压反馈放大器(工业级) DIP高速双电压比较器(工业级) DIP高速TTL兼容双电压比较器(工业级) DIP8位100MSPS 双路数模转换器(工业级) TSSOP8位125MSPS 双路数模转换器(工业级) PQFP12位 80MSPS TTL兼容数模转换器(工业级) DIP10位 400MSPS TTL兼容数模转换器(工业级) SOIC10位 170MSPS 双电源数模转换器(工业级) SOIC10位 200MSPS 单电源数模转换器(工业级) SSOP10位125MSPS 数模转换器(工业级) SOIC12位125MSPS 数模转换器(工业级) SOIC10位100MSPS 数模转换器(工业级) SOIC12位100MSPS 数模转换器(工业级) SOIC14位100MSPS 数模转换器(工业级) SOIC16位100KSPS BiCMOS并行输出模数转换器(工业级) DIP16位100KSPS BiCMOS并行输出模数转换器(工业级) DIP16位200KSPS BiCMOS并行输出模数转换器(工业级) DIP14位300MSPS 数模转换器(工业级) LQFP16位200KSPS BiCMOS串行输出数模转换器(工业级) DIP16位100KSPS BiCMOS串行输出数模转换器(工业级) DIP10位 6MSPS CCD信号处理器(民用级)LQFP10位 6MSPS CCD信号处理器(民用级)LQFP10位 6MSPS CCD信号处理器(民用级)LQFP10位 3通道 6MSPS CCD信号处理器(民用级) MQFP12位 3通道 6MSPS CCD信号处理器(民用级) MQFP14位 3通道 12MSPS CCD信号处理器(民用级) SOIC带10位D/A,25MHz主频直接数字同步调制器(工业级)PQFP带10位D/A,50MHz主频直接数字同步调制器(工业级)PQFP带10位D/A,25MHz主频直接数字同步调制器(工业级)TSSOP带10位D/A,125MHz主频直接数字同步调制器(工业级)SSOP带10位D/A,180MHz主频直接数字同步调制器(工业级)SSOP带12位D/A,200MHz主频直接数字同步调制器(工业级)LQFP-80带散热器带12位D/A,300MHz主频直接数字同步调制器(工业级)LQFP-80数字 QPSK/16 QAM 调整器(工业级) PQFP带12位D/A,200MHz主频直接数字同步调制器(工业级)LQFP-80带散热器带12位D/A,300MHz主频直接数字同步调制器(工业级)LQFP-80线性相位探测器/频率鉴别器(民用级) DIP四单刀单掷模拟开关(民用级) DIP四单刀单掷模拟开关(民用级) DIP四单刀单掷模拟开关(民用级) DIP四单刀单掷模拟开关(民用级) DIP四单刀单掷模拟开关(工业级) DIP四单刀单掷模拟开关(工业级) SOIC8选1CMOS模拟多路转换器(工业级) DIP差动4选1CMOS模拟多路转换器(工业级) DIP四单刀单掷模拟开关(工业级) DIP单刀单掷模拟开关(工业级) DIP单刀单掷模拟开关(工业级) DIP四单刀单掷模拟开关(工业级) DIP双单刀单掷模拟开关(工业级) DIP四单刀单掷模拟开关(工业级) DIP四单刀单掷模拟开关(工业级) DIP16选1CMOS模拟多路转换器(民用级) DIP差动8选1CMOS模拟多路转换器(民用级) DIP8选1CMOS模拟多路转换器(民用级) DIP8选1CMOS带过压保护模拟多路转换器(工业级) DIP差动4选1CMOS模拟多路转换器(民用级) DIP单电源四单刀单掷模拟开关(工业级) DIP8选1CMOS模拟多路转换器(工业级) DIP差动4选1CMOS模拟多路转换器(工业级) DIP单路视频CMOS模拟开关(工业级)RM-6双路视频CMOS模拟开关(工业级)RM-10DC-DC转换器(工业级)DIP微处理器监控电路(工业级) DIP微处理器监控电路(工业级) DIP32位浮点数字信号处理器内存4M(民用级)PQFP32位浮点数字信号处理器内存4M(工业级)PQFP32位浮点数字信号处理器内存2M(民用级)PQFP16位定点数字信号处理器(民用级)PQFP-12816位定点数字信号处理器(民用级)TQFP-128带单片机、8路12位A/D、2路D/A的数采系统(工业级)PQFP 500KHz工业标准压频转换器(民用级) DIP±1g-±5g带温度补偿加速度传感器(民用级)QC-14±2g双路加速度传感器(工业级)QC-14高精度仪表放大器(工业级) DIP单电源精密仪表放大器(工业级) DIP8位高速电流输出型数模转换器(民用级) DIP8位双路电压输出型数模转换器(工业级) DIP超低失调电压运放(军用级)DIP超低失调电压运放(工业级)DIP超低失调电压运放(工业级)SOIC低失真低噪声运放(工业级)DIP高精密运放(工业级) DIP低噪声精密运放(工业级) DIP单电源 Rail-Rail输入输出双运放(工业级)DIP单电源 Rail-Rail输入输出双运放(工业级)DIP微功耗 Rail-Rail输入输出双运放(工业级)DIP超低偏置电流精密双运放(工业级) DIP超低偏置电流精密双运放(工业级) SOIC低噪声精密运放(民用级) DIP低噪声精密运放(工业级) DIP单电源 Rail-Rail输入输出四运放(工业级)DIP超低偏置电流精密四运放(工业级) DIPOP07改进型(工业级) DIP低电压微功耗精密运放(工业级) DIP微功耗精密运放(工业级) DIP微功耗精密运放(工业级) SOIC峰值检测器(工业级) DIP精密5V电压基准源带温度传感器(工业级) DIP精密低价格2.5V电压基准源(工业级) DIP低功耗大电流输出2.5V电压基准源(工业级) DIP低功耗大电流输出2.5V电压基准源(工业级) SOIC低功耗大电流输出4.5V电压基准源(工业级) DIP低功耗大电流输出5V电压基准源(工业级) SOIC高精度2.5V电压基准源(工业级)DIP7us四通道采样保持放大器(工业级) DIP7us八通道采样保持放大器(工业级) DIP差动线路接收器 Gain=0dB(工业级) DIP平衡线路驱动器(工业级) DIP差动线路接收器 Gain=-6dB(工业级) DIP1W功率差分输出音频功率放大器(工业级)DIPRail-Rail输出双音频功率放大器(工业级)DIPPWM输出,直接与微处理器接口数字输出温度传感器 SOIC反相PWM输出,直接与微处理器接口数字输出温度传感器 SOIC 电压输出温度传感器 TO-92波形发生器60KHz振荡器自举模式DC-DC 电荷泵转换器低价格双路14位串形模数转换器低价格双路14位串形模数转换器低价格14位串形模数转换器高速带采保和基准的12位模数转换器微处理器监控电路10位带2.5V基准的串形模数转换器14位2×4通道4路同时采集并行模数转换器积分型A/D转换器,+5V,3-3/4位低功率A/D转换器积分型A/D转换器积分型A/D转换器完全隔离半双RS-485接口完全隔离半双RS-485接口RS-485/RS-442接口,256个节点RS-485/RS-442接口,128个节点RS-485/RS-442接口,+15KV保护RS-232接口,+15KV保护RS-232接口,+15KV保护低功耗8路10位A/D完全隔离全双IKS-485接口高速8路8位A/D开关型DC-DC变换器开关型DC-DC变换器8路12位A/D串行接口A/D,带采保,电压基准,12位,采样速率133KHZ串行A/D,12位,采样速率75KHZ低功耗,12位单通道,串行带采保和电压基准A/D低功耗,12位单通道,带采保和电压基准A/D串行A/D,10位采样速率133M12位,八通道故障保护,带采保并行A/DRS-232接口,+5VRS-232接口+15KV静电保护RS-232接口+15KV静电保护,工业级RS-232接口工业级RS-232接口RS-232接口RS-232接口RS-232接口,+5VRS-232接口工业级RS-232接口RS-232接口5组收发器RS-232接口RS-232接口双路,开关电容型4阶滤波器双路,开关电容型4阶滤波器双路,开关电容型4阶滤波器单路,开关电容型5阶滤波器有源滤波器,时钟可编程有源滤波器,时钟可编程有源滤波器,时钟可编程有源滤波器,时钟可编程有源滤波器,时钟可编程模拟开关模拟开关模拟多路转换器失效保护RS-485/RS-232失效保护RS-485/RS-232模拟多路转换器模拟多路转换器通用异步收发信机(UART)模拟开关模拟开关模拟开关模拟开关RS-232接口RS-232接口RS-232接口模拟开关模拟开关模拟多路转换器模拟多路转换器模拟开关模拟多路转换器模拟多路转换器模拟多路转换器(工业级)模拟多路转换器模拟多路转换器模拟多路转换器模拟多路转换器模拟多路转换器模拟多路转换器运算放大器视频放大器视频放大器视频放大器视频放大器。
RX-8025中文资料
11.使用上的注意事项················································································· 30
11.1 处理上的注意事项 ·························································································· 30 11.2 装配上的注意事项 ·························································································· 30
输入输出
本输入与电源电压无关 输入电压最高可达到 5.5V
半导体传感器AD7327BRUZ中文规格书
Core ArchitectureFigure 1-1: Processor Core ArchitectureThe compute register file contains eight 32-bit registers. When performing compute operations on 16-bit operand data, the register file operates as 16 independent 16-bit registers. All operands for compute operations come from the multi-ported register file and instruction constant fields.Each 16-bit MAC can perform a 16- by 16-bit multiply per cycle, with accumulation to a 40-bit result. The 32-bit MAC can perform a 32- by 32-bit multiply, with accumulation to 72-bits, or a 16-bit complex multiplication. Sign-ed and unsigned formats, rounding, and saturation are supported.The ALUs perform a traditional set of arithmetic and logical operations on 16-bit or 32-bit data. Many special in-structions are included to accelerate various signal processing tasks, including bit operations such as field extract and population count, divide primitives, saturation and rounding, and sign/exponent detection. The set of video instruc-tions include byte-alignment and packing operations, 16-bit and 8-bit adds with clipping, 8-bit average operations, and 8-bit Subtract/Absolute value/Accumulate (SAA) operations. Also provided are the compare/select and vector search instructions. For some instructions, two 16-bit ALU operations can be performed simultaneously on register pairs (a 16-bit high half and 16-bit low half of a compute register). By also using the second ALU, quad-16-bit operations are possible.The 40-bit shifter can deposit data and perform shifting, rotating, normalization, and extraction operations.A program sequencer controls the instruction execution flow, including instruction alignment and decoding. For program flow control, the sequencer supports PC-relative and indirect conditional jumps (with static branch predic-tion) and subroutine calls. Hardware is provided to support zero-overhead looping. The architecture is fully inter-locked, meaning there are no visible pipeline effects when executing instructions with data dependencies.Memory Architecture The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It contains a multi-ported register file consisting of four sets of 32-bit index, modify, length, and base registers (for circular buffering)and eight additional 32-bit pointer registers (for C-style indexed stack manipulation).Blackfin+ processors support a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories typically operate at the full processor speed with little or no latency. At the L1 level, the instruction memory holds instructions only. The two data memories hold data, and a dedicated scratchpad data memory can be used to store stack and local variable information.In addition, multiple L1 memory blocks are provided, which may be configured as a mix of SRAM and cache. The Memory Management Unit (MMU) provides memory protection for individual tasks that may be operating on the core.The architecture provides three modes of operation: User, Supervisor, and Emulation. User mode has restricted ac-cess to a subset of system resources, thus providing a protected software environment. Supervisor and Emulation modes have unrestricted access to the system and core resources.The Blackfin+ processor instruction set is optimized so that 16-bit opcodes represent the most frequently used in-structions. Complex DSP instructions are encoded into 32-bit opcodes as multi-function instructions, and some in-structions with very large immediate values are encoded into 64-bit opcodes. Blackfin+ products support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions. This allows the programmer to use many of the core resources in a single instruction cycle.The Blackfin+ processor assembly language uses an algebraic syntax. The architecture is optimized for use with the C compiler.Memory ArchitectureThe Blackfin+ processor architecture structures memory as a single, unified 4 GB address space using 32-bit address-es. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency on-chip memory (as cache or SRAM) and larger, lower-cost and lower-performance off-chip memory systems.The memory DMA controller provides high-bandwidth data movement capabilities. It can perform block transfers of code or data between the internal and external memory spaces.Internal MemoryThe L1 memory system is the primary, highest-performance memory available to the core. At a minimum, each Blackfin+ processor has two blocks of on-chip memory that provide high-bandwidth access to the core:•L1 instruction memory, consisting of SRAM and/or an instruction cache. This memory is accessed at the full core clock rate.•L1 data memory, consisting of SRAM and/or a data cache. This memory block is also accessed at the full core clock rate.Memory ArchitectureOn-chip Level 2 (L2) memory forms an on-chip memory hierarchy with L1 memory and provides much more ca-pacity, but the latency is higher. The on-chip L2 memory may be made cacheable in L1 and is capable of storing both instructions and data.External MemoryExternal (off-chip) memory is accessed via on-chip memory peripherals such as DDR controllers.I/O Memory SpaceBlackfin+ processors do not define a separate I/O space. All resources are mapped through the flat 32-bit address space. Control registers for on-chip I/O devices are mapped into memory-mapped registers (MMRs) at addresses in a reserved part of the 4 GB address space. These are separated into two smaller blocks, one containing the control MMRs for all core functions (core MMRs) and the other containing the registers needed for setup and control of the on-chip peripherals outside of the core (system MMRs). All MMRs are accessible only in Supervisor mode. Event HandlingThe event controller on the Blackfin+ processor handles all asynchronous and synchronous events in the system. It supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously, and prioritization ensures that servicing a higher-priority event takes precedence over servicing a lower-priority event. The controller provides support for five different types of events:•Emulation - causes the processor to enter Emulation mode, allowing command and control of the processor via the JTAG interface.•Reset - resets the processor.•Non-Maskable Interrupt (NMI) - the software watchdog timer or the NMI input signal to the processor can generate this event. The NMI event is frequently used as a power-down indicator to initiate an orderly shut-down of the system.•Exceptions - synchronous to program flow, an exception is taken before the instruction is allowed to complete.Conditions such as data alignment violations and undefined instructions cause exceptions.•Interrupts - asynchronous to program flow. These events can be caused by input pins, timers, other peripherals, and software.Each event has an associated register to hold the return address and an associated return-from-event instruction. When an event is triggered, the state of the processor is saved on the supervisor stack.The processor event controller consists of two stages, the Core Event Controller (CEC) and the System Event Con-troller (SEC). The CEC works with the SEC to prioritize and control all system events. Conceptually, interrupts from the peripherals arrive at the SEC and are routed directly into a general-purpose interrupt of the CEC.。
TDA8025中文资料
35 −25
To enable the microcontroller to provide the required maximum voltage input level on XTAL1, VDD(INTF) must not exceed VDD(INTREGD) + 0.3 V. See Section 8.1 on page 7 for specific limitations on the maximum VDD(INTF) voltage and Table 8 on page 23 for the limits of XTAL1. See Figure 12 on page 18.
© NXP B.V. 2009. All rights reserved.
Product data sheet
Rev. 01 — 6 April 2009
2 of 38
元器件交易网
NXP Semiconductors
TDA8025
IC card interface
Table 1. Symbol ICC
[1]
Quick reference data Parameter Conditions Min 3.6 3 1.6 1.6 3 Typ 5 3.3 3.0 3.0 3.3 Max 5.5 3.6 3.3 VDDI(REG) + 0.3 3.6 Unit V V V V V
VDD(INTF)
TDA8025_1
Unit mA mA mA V/µs µs W °C
SR General tdeact Ptot Tamb
[1]
slew rate deactivation time total power dissipation ambient temperature
日本AD的流行病学和治疗指南中文稿
Hong Kong 3.9/2.7 4.6/3.3 Singapore 2.8/7.4 8.9/9.2
Cuernavaca 4.9/4.4 4.0/2.8
Panama -/7.8 -/14.5 Lima -/8.2 -/10.5 São Paulo 6.8/3.7 6.8/3.5
Cape Town -/8.3 -/13.3
98 88 51
44 26 15 4
0
0
32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
5
日本和其他国家的儿童AD患病率的比较
全世界多个国家的问卷调查结果(国际儿童哮喘和过敏研究 ISAAC) I期:6-7岁儿童和13-14 岁儿童 (1994-1996), III期:与一期相同(2001-2003)
0.095
0.803 0.006 0.632 0.028 0.180 < 0.001 0.024 0.807 0.737 0.831 18
脓疱疮 (IC), 软疣 (MC) 以及疱疹病毒感染(HI)真的和 AD相关吗?
----多因素逻辑回归分析
History of IC 可变因素 年龄 OR (95% CI) 1.23 (1.10-1.37)c History of MC OR (95% CI) 1.53 (1.33-1.76)c History of HI OR (95% CI) 1.11 (0.78-1.58)
男性
AD病史 EA病史 父亲有 AD史 兄弟姐妹有 AD史 Hosmer-Lemeshow检验
‐
1.80 (1.16-2.81)b ‐ 2.44 (1.07-5.56)a 1.53 (0.90-2.60) χ2=7.96, P = 0.24
AD1674BR资料
a
FEATURES Complete Monolithic 12-Bit 10 s Sampling ADC On-Board Sample-and-Hold Amplifier Industry Standard Pinout 8- and 16-Bit Microprocessor Interface AC and DC Specified and Tested Unipolar and Bipolar Inputs ؎5 V, ؎10 V, 0 V–10 V, 0 V–20 V Input Ranges Commercial, Industrial and Military Temperature
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
12
12
±3
±2
±6
±4
0.1
0.25
0.1
0.25
0
+70 0
+70
±2
±1
CAD快捷键大全(中英文对照版)
本文为CAD快捷键大全(英汉比较版)12.LEN,*LENGTHEN(直线拉长)1、对象特征13.SC,*SCALE(比率缩放)1.ADC,*ADCENTER(设计中心“Ctrl+2”)14.BR,*BREAK(打断)2.CH,MO*PROPERTIES(改正特征“Ctrl+1”)15.CHA,*CHAMFER(倒角)3.MA,*MATCHPROP (属性般配)16.F,*FILLET(倒圆角)4.ST,*STYLE(文字款式)17.AutoCAD2000快捷命令的使用5.COL,*COLOR(设置颜色)18.作者:breeze转贴自:本站原创点击数:802文,*LAYER(图层操作)章录入:breeze7.LT,*LINETYPE (线形)19.PE,*PEDIT(多段线编写)8.LTS,*LTSCALE (线形比率)20.ED,*DDEDIT(改正文本)9.LW,*LWEIGHT(线宽)4、视窗缩放:10.UN,*UNITS(图形单位) 1.P,*PAN(平移)11.ATT,*ATTDEF(属性定义) 2.Z+空格+空格,*及时缩放12.ATE,*ATTEDIT (编写属性) 3.Z,*局部放大13 .BO,*BOUNDARY(界限创立,包含创立闭合多 4.Z+P,*返回上一视图段线和面域) 5.Z+E,*显示全图14.AL,*ALIGN(对齐)5、尺寸标明:15.EXIT,*QUIT (退出) 1.DLI,*DIMLINEAR(直线标明)16EXP,*EXPORT(输出其余格式文件) 2.DAL,*DIMALIGNED(对齐标明).17.IMP,*IMPORT(输入文件) 3.DRA,*DIMRADIUS(半径标明)18.OP,PR*OPTIONS(自定义CAD设置) 4.DDI,*DIMDIAMETER(直径标明)19.PRINT,*PLOT(打印) 5.DAN,*DIMANGULAR(角度标明)20.PU,*PURGE(消除垃圾) 6.DCE,*DIMCENTER(中心标明)21.R,*REDRAW(从头生成)7.DOR,*DIMORDINATE(点标明)22.REN,*RENAME(重命名)8.TOL,*TOLERANCE(标明形位公差)23.SN,*SNAP(捕获栅格)9.LE,*QLEADER(迅速引出标明)24.DS,*DSETTINGS(设置极轴追踪)10.DBA,*DIMBASELINE(基线标明)25.OS,*OSNAP(设置捕获模式)11.DCO,*DIMCONTINUE(连续标明)26.PRE,*PREVIEW(打印预览)12.D,*DIMSTYLE(标明款式)27.TO,*TOOLBAR (工具栏)13.DED,*DIMEDIT(编写标明)28.V,*VIEW(命名视图)14.DOV,*DIMOVERRIDE(替代标明系统变量)29.AA,*AREA(面积)(二)常用CTRL快捷键30 .DI,*DIST(距离) 1.【CTRL】+1*PROPERTIES(改正特征)31.LI,*LIST(显示图形数据信息) 2.【CTRL】+2*ADCENTER(设计中心)2、画图命令: 3.【CTRL】+O*OPEN(翻开文件)1.PO,*POINT(点) 4.【CTRL】+N、M*NEW(新建文件)2.L,*LINE(直线) 5.【CTRL】+P*PRINT(打印文件)3.XL,*XLINE(射线) 6.【CTRL】+S*SAVE(保留文件)4.PL,*PLINE(多段线)7.【CTRL】+Z*UNDO(放弃)5.ML,*MLINE (多线)8.【CTRL】+X*CUTCLIP(剪切)6.SPL,*SPLINE(样条曲线)9.【CTRL】+C*COPYCLIP(复制)7.POL,*POLYGON(正多边形)10.【CTRL】+V*PASTECLIP(粘贴)8.REC,*RECTANGLE(矩形)11.【CTRL】+B*SNAP(栅格捕获)9.C,*CIRCLE(圆)12.【CTRL】+F*OSNAP(对象捕获)10.A,*ARC(圆弧)13.【CTRL】+G*GRID(栅格)11.DO,*DONUT(圆环)14.【CTRL】+L*ORTHO(正交)12 .EL,*ELLIPSE(椭圆)15.【CTRL】+W*(对象追踪)13.REG,*REGION(面域)16.【CTRL】+U*(极轴)14.MT,*MTEXT (多行文本)(三)常用功能键15.T,*MTEXT (多行文本) 1.【F1】*HELP(帮助)16.B,*BLOCK (块定义) 2.【F2】*(文本窗口)17 .I,*Insert(插入块) 3.【F3】*OSNAP(对象捕获)18.W,*WBLOCK(定义块文件) 4.【F7】*GRIP(栅格)19 .DIV,*DIVIDE(平分) 5.【F8】*ORTHO(正交)20.H,*BHATCH(填补)(四CAD)用快捷键3、改正命令: 1.AIT+O+C--颜色1.CO,*COPY(复制)2.AIT+O+N--线型2.MI,*MIRROR(镜像)3.AIT+O+L--图层3.AR,*ARRAY (阵列) 4.AIT+O+W--线宽4.O,*OFFSET(偏移)5.AIT+O+S--文字款式5.RO,*ROTATE(旋转)6.AIT+O+D--表注款式6.M,*MOVE (挪动)7.AIT+O+Y--打印款式7.E,DEL键*ERASE(删除)8.AIT+O+P--点款式8.X,*EXPLODE(分解)9.AIT+O+M--多线款式9.TR,*TRIM(修剪)10.AIT+O+V--单位款式10.EX,*EXTEND(延长)11.AIT+O+T--厚度11.S,*STRETCH(拉伸)12.AIT+O+A--圆形界限13.AIT+O+R--重命名42.F---倒圆角(五)画图用(直接命令):43.FI---选择过滤器1.OT --单行文字44.G---对象编组2.T--多行文字GR---选项3.B--创立块(重) 1.H---填补4.I--插入块(重) 2.HE---关系填补5.A--弧线 3.I---插入图元6.MI--镜像 4.IMP---输入文件7.M--挪动(对于这个命令仍是试一试吧) 5.IN---布尔运算合集8.SC--比率 6.IO---插入文档程序9.LEN--拉伸(重)7.L---线(六)F1~F11的作用:8.LA---图层编写1.F1---帮助9.LE---文字说明2.F2---文本窗口10.LEN---改正对象长度等数值3.F3---对象捕获11.LI---对象特征显示4.F4---(忘了)12.LO---布局选项5.F5---等轴测平面13.LS---命令历史纪录6.F6---坐标14.LTC---线型设置7.F7---栅格15.LWC---线宽设置8.F8---正交16.LTS---新线形比率因子9.F9---捕获17.MC---挪动10 .F10--极轴追踪18.ME---平分11 .F11--对象追踪19.ML---多样线趁便加个金属材质的调理数据吧,我用感觉这个成效20.MT---文本好些,或许用的到:21.OS---捕获设置(七)金属:100/20/50,反光10022.---偏移1.AutoCAD2002快捷键23.OP---选项2.3A---使用物成3D阵列24.orBIT---旋转3.3DO---旋转空间视角25.P---平移4.3F---创立3F面26.Pl---连续线5.3P---指定多线段的起点27.Po---点6.A---圆弧28.Pol---多边形7.AA---计算机面积和周长29.PR---选项8.AL---对齐30.PRE---页视图面9.AR ---阵列31.PRINT---打印10ATT-属性定32PU--清理11 .ATE---块属性33.PE---改正多段线12 .B---定义块34.REA---重画13.BH ---定义图案填补35.REN---重命名14 .BO---创立界限36.REC---矩形15.BR ---打断37.REV---旋转成三维面16 .C---圆38.RO---旋转物体17 .CH---改正物体特征39.S---拉伸18 .CHA---倒直角40.SCL---缩放19 .COL---颜色41.SCR---脚本文件20 .CO---复制42.SEC---确实体21 .D---标明设置43.SHA---着色22 .DAL---标明44.SL---切面23 .DAN---角度标明45.SN---指定捕获间距24 .DBA---圆弧标明46.SP---拼写检查25 .DCE---圆心标志47.SPL---样条曲线26 .DCO---连续标明48.SI---文字款式27DDI-丈量圆和圆弧直径49SU--布尔运算28 .DO---齐心圆环50.TO---自定义工具栏29 .DOV---改正标明变量51.TOR---三维圆环30 .DRA---标明半径52.TR---修剪31 .DIV---平分53.UC---用户声标32 .DI---丈量54.UNI---归并三维体33 .DT---输入文本55.V---视图34.DV ---相机调整56.VP---视点设置35 .E---删除57.W---编写块36.ED ---改正文本58.X---分解37 .EL---椭圆59.XA---样参照文件38 .EX---延长60.XB---外面参照锁定39 .EXIT---退出61.XC---剪裁40 .EXP---输出数据62.XL---参照线41 .EXT---拉伸63.XR---外面参照料理64.Z---缩放16.CTRL+A另存为(八)1,绘制17.CTRL+V打印预览1.线LINEL18.CTRL+P打印2.结构线xlineXL19.CTRL+D发送3.多线mlineML20.度%%D4.多段线plinePL21.正负号%%P5.正多边形polygonPOL22.直径符号%%C6.矩形rectangREC23.找回CAD字体7.圆弧rcA~~~~~~~~~~~~~~~~~~~~8.圆circleC9.样条曲线splineSPL10.椭圆ellipseEL11.插入块insertI12.创立块blockB13.图案填补bhatchBH;H14.多行文字mtextMT九2,改正1.删除eraseE复制对象copyCO镜像mirrorMI2.偏移offsetO3.阵列arrayAR4.挪动moveM5.旋转rotateRO6.缩放scaleSC7.拉伸stretchS8.修剪trimTR9.延长extendEX10.打断于点breakBR打断breakBR11.倒角chamferCHA12.圆角filletF13.分解explodeX14.特征般配matchpropMA15.放弃CTRL+ZU16.及时平移panP17.及时缩放zoomZ18.特征CTRL+1;CH19.放弃UCTRL+Z消除DEL十标明及其设置1.标明款式管理器DIMSTYLED,DST创立坐标点标明DIMORDINATEDOR3. 创立线性尺寸标明DIMLINEARDLI创立圆或圆弧的中心线或圆心标志DIMCENTERDCE5.创立对齐线性标明(斜向)DIMALIGNEDDAL6.创立圆和圆弧的直径标明DIMDIAMETERDDI7.创立圆和圆弧的半径标明DIMRADIUSDRA8.创立角度标明DIMANGULARDAN9. 创立形位公差标明TOLERANCETOL 1.十一其余F1帮助F2文本窗口2.F3对象捕获3.F4数字化仪4.F5等轴测平面5.F6坐标6.F7栅格F8正交7.F9捕获8.F10极轴9.F11对象捕获追踪CTRL+N新建10.CTRL+O翻开11.CTRL+C封闭12.CTRL+S保留。
IEEE 802.11、802.15、802.16、802.20标准简介-文档资料
IEEE 802简介
802.1 :高层局域网协议Higher Layer LAN Protocols 802.2 :逻辑链路控制Logical Link Control 802.3 :以太网Ethernet 802.4 :令牌总线Token Bus 802.5 :令牌环Token Ring 802.11:无线局域网Wireless LAN 802.15:无线个域网 Wireless Personal Area Network 802.16:宽带无线接入 Broadband Wireless Access 802.17:弹性分组环 Resilient Packet Ring 802.18:无线管制 Radio Regulatory TAG 802.19:共存 Coexistence TAG 802.20:移动宽带无线接入 Mobile Broadband Wireless
5
802.11标准
802.11标准是IEEE最初制定的一个无线局 域网标准,主要用于解决办公室局域网和 校园网中用户与用户终端的无线接入,业 务主要限于数据存取,速率最高只能达到 2Mbps。由于它在速率和传输距离上都不 能满足人们的需要,因此,IEEE小组又 相继推出了802.11b和802.11a两个新标准。
10
802.11f/802.11r标准
802.11f追加了IAPP(inter-access point protocol)协定 ,确保用户端在不同接入点间的漫游,让用户端能平顺 、无形地切换存取区域。 802.11f标准确定了在同一网 络内接入点的登陆,以及用户从一个接入点切换到另一 个接入点时的信息交换。(2006年2月被IEEE批准撤销 )
16
IEEE 802.11o/p/Q/t/u/v标准
AD780中文资料
75
0.75 1.0 0.8 1.3 0.7 1.0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
µV/mA
mA mA mA
OUTPUT NOISE 0.1 Hz to 10 Hz Spectral Density, 100 Hz
LONG TERM STABILITY3
TRIM RANGE
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site:
Fax: 781/326-8703
© Analog Devices, Inc., 2000
A temperature output pin is provided on the AD780. This provides an output voltage that varies linearly with temperature, allowing the AD780 to be configured as a temperature transducer while providing a stable 2.5 V or 3.0 V output.
10
*
10
*
50
*
75
*
75
*
75
*
150
*
*
µV/V
*
µV/V
*
µV/mA
*
µV/mA
*
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FUNCTIONAL BLOCK DIAGRAMC FRAC OUTPUTRECOVERED CLOCK OUTPUT REV.BInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aClock Recovery and Data RetimingPhase-Locked Loop AD800/AD802*One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 617/329-4700Fax: 617/326-8703PRODUCT DESCRIPTIONThe AD800 and AD802 employ a second order phase-locked loop architecture to perform clock recovery and data retiming on Non-Return to Zero, NRZ, data. This architecture is capable of supporting data rates between 20 Mbps and 160Mbps. The products described here have been defined to work with standard telecommunications bit rates. 45 Mbps DS-3 and 52 Mbps STS-1 are supported by the AD800-45 and AD800-52 respectively. 155 Mbps STS-3 or STM-1 are supported by the AD802-155.Unlike other PLL-based clock recovery circuits, these devices do not require a preamble or an external VCXO to lock onto input data. The circuit acquires frequency and phase lock using two control loops. The frequency acquisition control loop initially acquires the clock frequency of the input data. The phase-lock loop then acquires the phase of the input data, and ensures that the phase of the output signals track changes in the phase of the input data. The loop damping of the circuit isdependent on the value of a user selected capacitor; this defines jitter peaking performance and impacts acquisition time. The devices exhibit 0.08 dB jitter peaking, and acquire lock on random or scrambled data within 4 × 105 bit periods when using a damping factor of 5.FEATURESStandard Products 44.736 Mbps—DS-351.84 Mbps—STS-1155.52 Mbps—STS-3 or STM-1Accepts NRZ Data, No Preamble Required Recovered Clock and Retimed Data OutputsPhase-Locked Loop Type Clock Recovery—No Crystal RequiredRandom Jitter: 20؇ Peak-to-Peak Pattern Jitter: Virtually Eliminated 10KH ECL CompatibleSingle Supply Operation: –5.2 V or +5 VWide Operating Temperature Range: –40؇C to +85؇CDuring the process of acquisition the frequency detector provides a Frequency Acquisition (FRAC) signal whichindicates that the device has not yet locked onto the input data.This signal is a series of pulses which occur at the points of cycle slip between the input data and the synthesized clock signal.Once the circuit has acquired frequency lock no pulses occur at the FRAC output.The inclusion of a precisely trimmed VCO in the deviceeliminates the need for external components for setting center frequency, and the need for trimming of those components. The VCO provides a clock output within ±20% of the device center frequency in the absence of input data.The AD800 and AD802 exhibit virtually no pattern jitter, due to the performance of the patented phase detector. Total loop jitter is 20° peak-to-peak. Jitter bandwidth is dictated by mask programmable fractional loop bandwidth. The AD800, used for data rates < 90 Mbps, has been designed with a nominal loop bandwidth of 0.1% of the center frequency. The AD802, used for data rates in excess of 90 Mbps, has a loop bandwidth of 0.08% of center frequency.All of the devices operate with a single +5 V or –5.2 V supply.*Protected by U.S. Patent No. 5,027,085.AD800/AD802–SPECIFICATIONS(V EE = V MIN to V MAX, V CC = GND, T A = T MIN to T MAX, Loop DampingFactor = 5, unless otherwise noted)AD800-45BQ AD800-52BR AD802-155KR/BRParameter1Condition Min Typ Max Min Typ Max Min Typ Max Units NOMINAL CENTER FREQUENCY44.73651.84155.52MHz OPERATING TEMPERATURE K Grade070°C RANGE (T MIN to T MAX) B Grade–4085–4085–4085°C TRACKING RANGE4345.54953155156Mbps CAPTURE RANGE4345.54953155156Mbps STATIC PHASE ERRORρ = 1, T A = +25°C,V EE = –5.2 V2102101430Degreesρ = 1311.5311.51837Degrees RECOVERED CLOCK SKEW t RCS (Figure 1)0.20.610.20.610.20.81nsSETUP TIME t SU (Figure 1) 2.06 2.37ns TRANSITIONLESS DATA RUN240240240Bit Periods OUTPUT JITTERρ = 122 3.5Degrees rms27–1 PRN Sequence 2.5 4.7 2.5 4.7 5.49.7Degrees rms223–1 PRN Sequence 2.5 4.7 2.5 4.7 5.49.7Degrees rms JITTER TOLERANCE f = 10 Hz2,5002,5003,000Unit Intervalsf = 2.3 kHz 6.5Unit Intervalsf = 30 kHz0.47Unit Intervalsf = 1 MHz0.47Unit Intervalsf = 30 Hz830Unit Intervalsf = 300 Hz83Unit Intervalsf = 2 kHz7.4Unit Intervalsf = 20 kHz0.47Unit Intervalsf = 6.5 kHz 2.07.6Unit Intervalsf = 65 kHz0.260.9Unit Intervals JITTER TRANSFERDamping FactorCapacitor, C Dζ = 1, Nominal8.2 6.8 2.2nFζ = 5, Nominal0.220.150.047µFζ = 10, Nominal0.820.680.22µF Peakingζ = 1, Nominal T A = +25°C, V EE = –5.2 V222dBζ = 5, Nominal T A = +25°C, V EE = –5.2 V0.080.080.08dBζ = 10, Nominal T A = +25°C, V EE = –5.2 V0.020.020.02dB Bandwidth4552130kHz ACQUISITION TIMEρ = 1/2ζ = 1 1 × 104 1 × 104 1.5 × 104Bit Periods T A = +25°Cζ = 5 3 × 1058 × 105 3 × 1058 × 105 4 × 1058 × 105Bit Periods V EE = –5.2 Vζ = 108 × 1058 × 105 1.4 × 106Bit Periods POWER SUPPLYVoltage (V MIN to V MAX)T A = +25°C–4.5–5.2–5.5–4.5–5.2–5.5–4.5–5.2–5.5Volts Current T A = +25°C, V EE = –5.2 V125170125170140180mA180180205mAINPUT VOLTAGE LEVELS T A = +25°CInput Logic High, V IH–1.084–0.72–1.084–0.72–1.084–0.72Volts Input Logic Low, V IH–1.95–1.594–1.95–1.594–1.95–1.594Volts OUTPUT VOLTAGE LEVELS T A = +25°COutput Logic High, V OH–1.084–0.72–1.084–0.72–1.084–0.72Volts Output Logic Low, V OL–1.95–1.60–1.95–1.60–1.95–1.60VoltsINPUT CURRENT LEVELS T A = +25°CInput Logic High, I IH125125125µA Input Logic Low, I IL808080µA OUTPUT SLEW TIMES T A = +25°CRise Time (t R)20%–80%0.75 1.50.75 1.50.75 1.5ns Fall Time (t F)80%–20%0.75 1.50.75 1.50.75 1.5ns SYMMETRYρ = 1/2, T A = +25°CRecovered Clock Output V EE = –5.2 V455545554555%NOTES1Refer to Glossary for parameter definition.Specifications subject to change without notice.–2–REV. BAD800/AD802REV. B–3–ABSOLUTE MAXIMUM RATINGS*Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–6 V Input Voltage (Pin 16 or Pin 17 to V CC ) . . . .V EE to +300 mV Maximum Junction TemperatureSOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Ceramic DIP Package . . . . . . . . . . . . . . . . . . . . . .+175°C Storage Temperature Range . . . . . . . . . . . .–65°C to +150°C Lead Temperature Range (Soldering 60 sec) . . . . . . .+300°C ESD RatingAD800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1500 V AD802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1000 V*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to an absolute maximum rating condition for an extended period may adversely affect devicereliability.SKEW, t RCSFigure 1.Recovered Clock Skew and Setup (See Previous Page)PIN DESCRIPTIONSNumber Mnemonic Description1DATAOUT Differential Retimed Data Output 2DATAOUT Differential Retimed Data Output 3V CC2Digital Ground4CLKOUT Differential Recovered Clock Output 5CLKOUT Differential Recovered Clock Output 6V EE Digital V EE 7V EE Digital V EE8V CC1Digital Ground 9AV EEAnalog V EE10ASUBST Analog Substrate11CF 2Loop Damping Capacitor Input 12CF 1Loop Damping Capacitor Input 13AV CC Analog Ground 14V CC1Digital Ground 15V EEDigital V EE16DATAIN Differential Data Input 17DATAIN Differential Data Input 18SUBST Digital Substrate19FRAC Differential Frequency Acquisition Indicator Output20FRACDifferential Frequency Acquisition Indicator OutputTHERMAL CHARACTERISTICSθJCθJA SOIC Package 22°C/W 75°C/W Cerdip Package25°C/W90°C/WUse of a heatsink may be required depending on operating environment.GLOSSARYMaximum and Minimum SpecificationsMaximum and minimum specifications result from statistical analyses of measurements on multiple devices and multiple test systems. Typical specifications indicate mean measurements.Maximum and minimum specifications are calculated by adding or subtracting an appropriate guardband from the typical specification. Device-to-device performance variation and test system-to-test system variation contribute to each guardband.Nominal Center FrequencyThis is the frequency that the VCO will operate at with no input signal present and the loop damping capacitor, C D , shorted.Tracking RangeThis is the range of input data rates over which the PLL will remain in lock.Capture RangeThis is the range of input data rates over which the PLL can acquire lock.Static Phase ErrorThis is the steady-state phase difference, in degrees, between the recovered clock sampling edge and the optimum sampling instant, which is assumed to be halfway between the rising and falling edges of a data bit. Gate delays between the signals that define static phase error, and IC input and output signals prohibit direct measurement of static phase error.Data Transition Density, This is a measure of the number of data transitions, from “0” to “1” and from “1” to “0,” over many clock periods. ρ is the ratio (0 ≤ ρ ≤ 1) of data transitions to clock periods.JitterThis is the dynamic displacement of digital signal edges from their long term average positions, measured in degrees rms, or Unit Intervals (UI). Jitter on the input data can cause dynamic phase errors on the recovered clock sampling edge. Jitter on the recovered clock causes jitter on the retimed data.Output JitterThis is the jitter on the retimed data, in degrees rms, due to a specific pattern or some psuedo-random input data sequence (PRN Sequence).Jitter ToleranceJitter tolerance is a measure of the PLL’s ability to track a jittery input data signal. Jitter on the input data is best thought of as phase modulation, and is usually specified in unit intervals.ORDERING GUIDEFractional Loop Device Center Frequency Bandwidth Description Operating Temperature Package Option AD800-45BQ 44.736 MHz 0.1%20-Pin Cerdip–40°C to +85°C Q-20AD800-52BR 51.84 MHz 0.1%20-Pin Plastic SOIC –40°C to +85°C R-20AD802-155BR 155.52 MHz 0.08%20-Pin Plastic SOIC –40°C to +85°C R-20AD802-155KR 155.52 MHz0.08%20-Pin Plastic SOIC0°C to +70°CR-20AD800/AD802REV. B–4–The PLL must provide a clock signal which tracks this phase modulation in order to accurately retime jittered data. In order for the VCO output to have a phase modulation which tracks the input jitter, some modulation signal must be generated at the output of the phase detector (see Figure 21). The modulation output from the phase detector can only beproduced by a phase error between the data input and the clock input. Hence, the PLL can never perfectly track jittered data.However, the magnitude of the phase error depends on the gain around the loop. At low frequencies the integrator provides very high gain, and thus very large jitter can be tracked with small phase errors between input data and recovered clock. At frequencies closer to the loop bandwidth, the gain of the integrator is much smaller, and thus less input jitter can be tolerated. The PLL data output will have a bit error rate less than 1 ϫ 10–10 when in lock and retiming input data that has the specified jitter applied to it.Jitter TransferThe PLL exhibits a low-pass filter response to jitter applied to its input data.BandwidthThis describes the frequency at which the PLL attenuates sinusoidal input jitter by 3 dB.PeakingThis describes the maximum jitter gain of the PLL in dB.Damping Factor, ζ describes how the PLL will track an input signal with a phase step. A greater value of ζ corresponds to less overshoot in the PLL response to a phase step. ζ is a standard constant in secondorder feedback systems.Acquisition TimeThis is the transient time, measured in bit periods, required for the PLL to lock on input data from its free-running state.SymmetrySymmetry is calculated as (100 ϫ on time)/period, where on time equals the time that the clock signal is greater than the midpoint between its “0” level and its “1” level.Bit Error Rate vs. Signal-to-Noise RatioThe AD800 and AD802 were designed to operate with standard ECL signal levels at the data input. Although not recom-mended, smaller input signals are tolerable. Figure 8, 14, and 20 show the bit error rate performance versus input signal-to-noise ratio for input signal amplitudes of full 900 mV ECL, and decreased amplitudes of 80 mV and 20 mV. Wideband ampli-tude noise is summed with the data signals as shown in Figure 2. The full ECL and 80 mV signals give virtually indistinguish-able results. The 20 mV signals also provide adequate perfor-mance when in lock, but signal acquisition may be impaired.POWER Figure 2.Bit Error Rate vs. Signal-to-Noise Ratio Test:Block DiagramUSING THE AD800 AND THE AD802 SERIES Ground PlanesUse of one ground plane for connections to both analog and digital grounds is recommended. Output signal sensitivity to power supply noise (PECL configuration, Figure 22) is less using one ground plane than when using separate analog and digital ground planes.Power Supply ConnectionsUse of a 10 µF tantalum capacitor between V EE and ground is recommended.Use of 0.1 µF ceramic capacitors between IC power supply or substrate pins and ground is recommended. Power supply decoupling should take place as close to the IC as possible.Refer to schematics, Figure 22 and Figure 26, for advised connections.Sensitivity of IC output signals (PECL configuration,Figure 22) to high frequency power supply noise (at 2 ϫ the nominal data rate) can be reduced through the connection of signals AV CC and V CC1, and the addition of a bypass network.The type of bypass network to consider depends on the noise tolerance required. The more complex bypass network schemes tolerate greater power supply noise levels. Refer to Figures 23and 24 for bypassing schemes and power supply sensitivity curves.Transmission LinesUse of 50 Ω transmission lines are recommended for DATAIN,CLKOUT, DATAOUT, and FRAC signals.TerminationsTermination resistors should be used for DATAIN, CLKOUT,DATAOUT, and FRAC signals. Metal, thick film, 1% tolerance resistors are recommended. Termination resistors for the DATAIN signals should be placed as close as possible to the DATAIN pins.Connections from V EE to lead resistors for DATAIN, DATA-OUT, FRAC, and CLKOUT signals should be individual, not daisy chained. This will avoid crosstalk on these signals.Loop Damping Capacitor, C DA ceramic capacitor may be used for the loop damping capacitor.Input BufferUse of an input buffer, such as a 10H116 Line Receiver IC, is suggested for an application where the DATAIN signals do not come directly from an ECL gate, or where noise immunity on the DATAIN signals is an issue.AD800/AD802REV. B –5–52381004440–2042–40504648806040200TEMPERATURE – °C C E N T E R F R E Q U E N C Y – M HzFigure 3.AD800-45 Center Frequency vs. Temperature 52381004440–2042–40504648806040200TEMPERATURE – °CD A T A R A TE – M b psFigure 5.AD800-45 Capture and Tracking Range vs.Temperature55350.3041370.053904743454951530.250.200.150.10INPUT JITTER – UI p-pD A T A R A TE – M b psFigure 7.AD800-45 Acquisition Range vs. Input Jitter 10010031–202–40645789806040200TEMPERATURE – °CJ I T T E R – D e g r e e s r msFigure 4.AD800-45 Jitter vs. Temperature1000.110101011010101010JITTER FREQUENCY – HzU N I T I N T E R V A L S – p -pFigure 6.AD800-45 Jitter Tolerance1E-51E-111E-21E-31E-41E-91E-71E-15E-23E-22E-2S/N – dBB I T E R R O R R A T EFigure 8.AD800-45 Bit Error Rate vs. Input JitterTypical Characteristics –AD800/AD802REV. B–6–58401004442–20–40464850525456806040200TEMPERATURE – °C C E N T E R F R E Q U E N C Y – M HzFigure 9.AD800-52 Center Frequency vs. Temperature 58401004442–20–4046485052545680604020TEMPERATURE – °CD A T A R A TE – M b p sFigure 11.AD800-52 Capture and Tracking Range vs.Temperature60400.3046420.054405248505456580.250.200.150.10INPUT JITTER – UI p-pD A T A R A TE – M b psFigure 13.AD800-52 Acquisition Range vs. Input Jitter 10010031–202–4064578980604020TEMPERATURE – °CJ I T T E R – D e g r e e s r msFigure 10.AD800-52 Jitter vs. Temperature1000.110101101105104103102JITTER FREQUENCY – HzU N I T I N T E R V A L S – p -pFigure 12.AD800-52 Jitter Tolerance1E-51E-101E-21E-31E-41E-81E-61E-15E-23E-22E-2S/N – dBB I T E R R O R R A T EFigure 14.AD800-52 Bit Error Rate vs. Input JitterAD800/AD802REV. B –7–180100120110–4014013015016017010080604020–20TEMPERATURE – °CC E N T E R F R E Q U E N C Y – M Hz Figure 15.AD802-155 Center Frequency vs. Temperature TEMPERATURE – °C200130100160140–20150–4019017018080604020D A T A R A TE – M b p sFigure 17.AD802-155 Capture Range, Tracking Range vs.TemperatureI N P U T J I T T E R – U I100011000100.1101100JITTER FREQUENCY – HzFigure 19.AD802-155 Minimum Acquisition Range vs.Jitter Frequency, T MIN to T MAX V MIN to V MAX100–20–4010031264578980604020J I T T E R – D e g r e e s r m sTEMPERATURE – °CFigure 16.AD802-155 Output Jitter vs. Temperature1000.1102101U I – P k -P k103104105108107106JITTER FREQUENCY – HzFigure 18.AD802-155 Jitter Tolerance1E-51E-101E-21E-31E-41E-81E-61E-15E-23E-22E-2B I T E R R O R R A T ES/N – dB1E-12Figure 20.AD802-155 Bit Error Rate vs. Input JitterAD800/AD802REV. B–8–THEORY OF OPERATIONThe AD800 and AD802 are phase-locked loop circuits for re-covery of clock from NRZ data. The architecture uses a fre-quency detector to aid initial frequency acquisition, refer toFigure 21 for a block diagram. Note the frequency detector is al-ways in the circuit. When the PLL is locked, the frequency error is zero and the frequency detector has no further effect. Since the frequency detector is always in circuit, no control functions are needed to initiate acquisition or change mode after acquisi-tion. The frequency detector also supplies a frequency acquisi-tion (FRAC) output to indicate when the loop is acquiring lock.During the frequency acquisition process the FRAC output is a series of pulses of width equal to the period of the VCO. These pulses occur on the cycle slips between the data frequency and the VCO frequency. With a maximum density (1010 . . .) data pattern, every cycle slip will produce a pulse at FRAC. How-ever, with random data, not every cycle slip produces a pulse.The density of pulses at FRAC increases with the density of data transitions. The probability that a cycle slip will produce a pulse increases as the frequency error approaches zero. After the frequency error has been reduced to zero, the FRAC output will have no further pulses. At this point the PLL begins the process of phase acquisition, with a settling time of roughly 2000 bit pe-riods. Valid retimed data can be guaranteed by waiting 2000 bit periods after the last FRAC pulse has occurred.Jitter caused by variations of density of data transitions (pattern jitter) is virtually eliminated by use of a new phase detector (patented). Briefly, the measurement of zero phase error does not cause the VCO phase to increase to above the average run rate set by the data frequency. The jitter created by a 27–1pseudo-random code is 1/2 degree, and this is small compared to random jitter.The jitter bandwidth for the AD802-155 is 0.08% of the center frequency. This figure is chosen so that sinusoidal input jitter at 130 kHz will be attenuated by 3 dB. The jitter bandwidths of the AD800-45 and AD800-52 are 0.1% of the respective center frequencies. The jitter bandwidth of the AD800 or the AD802 is mask programmable from 0.01% to 1% of the center frequency.A device with a very low loop bandwidth (0.01% of the center frequency) could effectively filter (clean up) a jittery timing reference. Consult the factory if your application requires a special loop bandwidth.The damping ratio of the phase-locked loop is user program-mable with a single external capacitor. At 155 MHz a damping ratio of 10 is obtained with a 0.22 µF capacitor. More generally,the damping ratio scales as1.7×f DATA ×C D . At 155 MHz a damping ratio of 1 is obtained with a2.2 nF capacitor. A lower damping ratio allows a faster frequency acquisition; generally the acquisition time scales directly with the capacitor value.However, at damping ratios approaching one, the acquisition time no longer scales directly with the capacitor value. Theacquisition time has two components: frequency acquisition and phase acquisition. The frequency acquisition always scales with capacitance, but the phase acquisition is set by the loopbandwidth of the PLL and is independent of the damping ratio.Thus, the 0.08% fractional loop bandwidth sets a minimum acquisition time of 15,000 bit periods. Note the acquisition time for a damping factor of 1 is specified as 15,000 bit periods. This comprises 13,000 bit periods for frequency acquisition and 2,000 periods for phase acquisition. Compare this to the 400,000 bit periods acquisition time specified for a damping ratio of 5; this consists entirely of frequency acquisition, and the 2,000 bit periods of phase acquisition is negligible.While lower damping ratio affords faster acquisition, it also allows more peaking in the jitter transfer response (jitter peaking). For example, with a damping ratio of 10 the jitter peaking is 0.02 dB, but with a damping factor of 1, the peaking is 2 dB.DATA INPUTFigure 21.AD800 and AD802 Block DiagramAD800/AD802REV. B –9–Figure 22.Evaluation Board Schematic, Positive Supply Table I. Evaluation Board, Positive Supply: Components ListReference Designator DescriptionQuantity R1–8, R15–18Resistor, 100 Ω, 1%12R9–14Resistor, 154 Ω, 1%6R19, 20, 23, 24Resistor, 130 Ω, 1%4R21, 22, 25, 26Resistor, 80.6 Ω, 1%4C D Capacitor, Loop Damping (See Specifications Page)1C2Capacitor, 10 µF, Tantalum1C3–C21Capacitor, 0.1 µF, Ceramic Chip 17Z1AD800/AD8021Z210H116, ECL Line Receiver1µF(A)BEAD WITH BEAD WITH BEAD WITH BEAD WITH BYPASS NETWORK COMPONENTS:CAPACITOR ..........CERAMIC CHIPFERRITE BEAD......1/4 IN. STACKPOLE CARBO 57-13923.00 1.01.50.50.11.02.52.00.90.70.60.50.80.40.30.2J I T T E R – n s p -pNOISE – V p-p @ 311MHzFigure 23.Bypass Network SchemesFigure 24.AD802-155 Output Jitter vs. Supply Noise (PECL Configuration)AD800/AD802REV. B–10–Figure 25.Power Supply Noise Sensitivity Test Circuit, PECL ConfigurationFigure 26.Evaluation Board Schematic, Negative Supply Table II. Evaluation Board, Negative Supply: Components ListReference Designator DescriptionQuantity R1–8Resistor, 100 Ω, 1%8R9–12Resistor, 154 Ω, 1%4R13, 14, 17, 18Resistor, 80.6 Ω, 1%4R15, 16, 19, 20Resistor, 130 Ω, 1%4R21, 22Resistor, 274 Ω, 1%2C D Capacitor, Loop Damping (See Specifications Page)1C2Capacitor, 10 µF, Tantalum1C3–C12Capacitor, 0.1 µF, Ceramic Chip 10Z1AD800/AD8021Z210H116, ECL Line Receiver1AD800/AD802REV. B–11–Figure 27.Negative Supply Configuration: ComponentSide (Top Layer)Figure 28.Negative Supply Configuration: Solder Side Figure 29.Positive Supply Configuration: ComponentSide (Top Layer)Figure 30.Positive Supply Configuration: Solder SideAD800/AD802REV. B–12–OUTLINE DIMENSIONSDimensions shown in inches and (mm).20-Pin Small Outline IC Package (R-20)BSC 0.019 (0.48)0.014 (0.36)0.104 (2.64)0.093 (2.36)20-Pin Cerdip Package (Q-20)C 1725a –7.5–12/93P R I N T E D I N U .S .A .。