定结县高中2018-2019学年高三下学期第三次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定结县高中2018-2019学年高三下学期第三次月考试卷数学
一、选择题
1. 命题“若α
=,则tan α=1”的逆否命题是( )
A .若α
≠
,则tan α≠1 B .若α
=
,则tan α≠1
C .若tan α≠1,则α
≠ D .若tan α≠1,则α
=
2. 已知a
为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
3. 已知函数f (x )
=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是( )
A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
4. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即
()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总
人数的
1
10
,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 5. 设集合3|01x A x x -⎧⎫
=<⎨⎬+⎩
⎭
,集合(){}
2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 6. 在等比数列{a n }中,已知a 1=9,q=
﹣,a n
=,则n=( )
A .4
B .5
C .6
D .7
7. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 8. 在△AB
C 中,C=60°,
AB=,AB
边上的高为,则AC+BC 等于( ) A
.
B .5
C .3
D
.
9. 已知集合{| lg 0}A x x =≤,1
={|
3}2
B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]
C .(1,3]
D .1
[,1]2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 10.sin (﹣510°)=( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .﹣
D .﹣
11.,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )
13 ( B ) 49 (C ) 23 (D ) 89
12.若某算法框图如图所示,则输出的结果为( )
A .7
B .15
C .31
D .63
二、填空题
13.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹
为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;
③曲线E 只关于y 轴对称,但不关于x 轴对称;
④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为4;
⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
其中真命题的序号是 .(填上所有真命题的序号)
14.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .
15.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆,则该双曲线的离心率为______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查
基本运算能力及推理能力.
16.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.
17.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)
①
﹣,1是函数g (x )=2x 2﹣1有两个不动点;
②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点; ③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;
⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.
18.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE
所成角的余弦值为
,且四边形ABB 1A 1为正方形,则球O 的直径为 .
三、解答题
19.在数列{a n }中,a 1=1,a n+1=1
﹣,b n
=
,其中n ∈N *
.
(1)求证:数列{b n }为等差数列; (2)设c n =b n+1•
(
),数列{c n }的前n 项和为T n ,求T n ; (3)证明:1+
+
+…
+
≤
2
﹣1(n ∈N *
)
20.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点
E 与点C 、D 不重合,E
F AC ⊥,EF AC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥
平面ABFED .
Ⅰ求证:BD ⊥平面POA ;
Ⅱ记三棱锥P ABD -的体积为1V ,四棱锥P BDEF -的体积为2V ,且1243
V V =,求此时线段PO 的长.
P
A
B
C
D
O
E
F F
E
O D
C
A