201709年中考数学解直角三角形复习专题.doc
09年中考数学解直角三角形与中考
第十二章解直角三角形与中考中考要求及命题趋势1、理解锐角三角形函数角的三角函数的值;2、会由已知锐角求它的三角函数,由已知三角函数值求它对应、的锐角 ;3、会运用三角函数解决与直角三角形有关的简单实际问题。
2007年将继续考查锐角三角形函数的概念,其中特殊三角函数值为考查的重点。
解直角三角形为命题的热点,特别是与实际问题结合的应用题 应试对策1要掌握锐角三角函数的概念,会根据已知条件求一个角的三角函数,会熟练地运用特殊角的三角函数值,会使用科学计算器进行三角函数的求值;2掌握根据已知条件解直角三角形的方法,运用解直角三角形的知识解决实际问题。
具体做到:1)了解某些实际问题中的仰角、俯角、坡度等概念;2)将实际问题转化为数学问题,建立数学模型;3)涉及解斜三角形的问题时,会通过作适当的辅助线构造直角三角形,使之转化为解直角三角形的计算问题而达到解决实际问题第一节 锐角三角函数与解直角三角形【回顾与思考】【例题经典】 锐角三角函数的定义和性质【例1】在△ABC 中,∠C=90°.(1)若cosA=12,则tanB=______;(•2)•若cosA=45,则tanB=______. 【例2】(1)已知:cos α=23,则锐角α的取值范围是( ) A .0°<α<30° B .45°<α<60°C .30°<α<45°D .60°<α<90°(2)(2006年潜江市)当45°<θ<90°时,下列各式中正确的是( )A .tan θ>cos θ>sin θB .sin θ>cos θ>tan θC .tan θ>sin θ>cos θD .cot θ>sin θ>cos θ解直角三角形【例3】(1)如图,在Rt △ABC 中,∠C=90°,AD 是∠BAC∠的平分线,∠CAB=60°,AC ,AB 的长. (2)(2005年黑龙江省)“曙光中学”有一块三角形状的花园ABC ,•有人已经测出∠A=30°,AC=40米,BC=25米,你能求出这块花园的面积吗?(3)某片绿地形状如图所示,其中AB ⊥BC ,CD ⊥AD ,∠A=60°,AB=200m ,CD=100m ,•求AD 、BC 的长. 【点评】设法补成含60°的直角三角形再求解.第二节 解直角三角形的应用【回顾与回顾】问题⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩转化---直角三角形视角常用术语坡度方位角 【例题经典】关于坡角【例1】(2005年济南市)下图表示一山坡路的横截面,CM 是一段平路,•它高出水平地面24米,从A 到B ,从B 到C 是两段不同坡角的山坡路.山坡路AB 的路面长100米,•它的坡角∠BAE=5°,山坡路BC 的坡角∠CBH=12°.为了方便交通,•政府决定把山坡路BC 的坡角降到与AB 的坡角相同,使得∠DBI=5°.(精确到0.01米)(1)求山坡路AB 的高度BE .(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)方位角.【例2】(2006年襄樊市)如图,MN 表示襄樊至武汉的一段高速公路设计路线图,•在点M 测得点N在它的南偏东30°的方向,测得另一点A 在它的南偏东60°的方向;•取MN 上另一点B ,在点B测得点A 在它的南偏东75°的方向,以点A 为圆心,500m•为半径的圆形区域为某居民区,已知MB=400m ,通过计算回答:如果不改变方向,•高速公路是否会穿过居民区?【点评】通过设未知数,利用函数定义建立方程来寻求问题的解决是解直角三角形应用中一种常用方法.坡度【例3】(2005年辽宁省)为了农田灌溉的需要,αCB A 某乡利用一土堤修筑一条渠道,•在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形)•,并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米(如图所示)求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.例题精讲例1、在Rt △ABC 中,∠C=90°,a = 1 , c = 4 , 则sinA 的值是 ( )A 、1515B 、41C 、31D 、415 答案:B例2.在A ABC 中,已知∠C=90°,sinB=53,则cosA 的值是 ( ) A .43 B .34 c .54 D .53 答案:D例3.在Rt ΔABC 中,∠C=900,则下列等式中不正确的是( )(A )a=csinA ;(B )a=bcotB ;(C )b=csinB ;(D )c=cos b B .答案:D例4.为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角为α,则楼房BC 的高为( )B(A )30tan α米;(B )30tan α米; (C )30sin α米; (D )30sin α米答案:B例5.在ABC ∆中,︒=∠90C ,23cos =A ,则B ∠为( )C A .︒30 B .︒45 C .︒60 D .︒90答案:C例6.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影长MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室的距离AC 为( )A.23米 B.3米 c.3.2米 D.233米答案:B例7.某人沿倾斜角为β的斜坡走了100米,则他上升的高度是米答案:100sinβ例8.如图7,初三年级某班同学要测量校园内国旗旗杆的高度,在地面的C点用测角器测得旗杆顶A点的仰角∠AFE=60°,再沿直线CB后退8米到D点,在D 点又用测角器测得旗杆顶A点的仰角∠AGE=45°;已知测角器的高度是1.6米,求旗杆AB的高度.(3的近似值取1.7,结果保留小数)解:设AE为x米,在Rt△EF中,∠AFE=60°,∴EF=3x/3在Rt△AGE中,∠AGE=45° AE=GE8+3x/3=x ∴x=12+43即x≈18.8(3的近似值取1.7,结果保留小数)∴AB=AE+EB≈20.4答:旗杆高度约为20.4米例9.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
初三几何复习资料(解直角三角形
初三几何复习资料班级 姓名 座号第六章 解直角三角形重点、难点和关键:本章的重点是锐角三角函数的概念和直角三角形的解法。
特殊锐角与其三角函数值之间的对应关系也很重要,应当牢记,即:已知特殊锐角,说出它的四个三角函数值;反过来,已知特殊锐角的三角函数值,说出这个角的度数。
锐角三角函数的概念,既是本章的难点,又是学好本章的关键。
只有正确了解锐角三角函数的概念,才能正确理解直角三角形中边、角之间的关系,从而才能利用这些关系来解直角三解形。
学习指导:了解锐角三解函数的概念,能够正确地应用sin A,cos A,tan A,cot A 表示直角三角形中两边的比,熟记30°,45°,60°角的各个三角函数值,会计算含有这三个特殊锐角的的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角。
理解直角三角形中边、角之间的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,并会用解直角三角形的有知识来解某些简单的实际问题。
第一节 锐角三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
A90B 90∠-︒=∠︒=∠+∠得由B A 对边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、30°、45°、60°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2017中考数学真题汇编-----解直角三角形(含解析)
2017中考数学真题汇编-----解直角三角形一.选择题(共12小题)1.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD 的长为()A.B.C.D.2.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2C.3+D.33.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=214.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.5.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm6.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A.B.1 C.2 D.37.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.8.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2D.BC=49.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若点E是BC的中点,则sin∠CAE的值为()A.2 B.C.D.10.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A.B.7C.4+3D.3+411.如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°sin54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.二.填空题(共12小题)13.如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=.14.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.15.如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.16.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).17.如图,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9.则BC=.18.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.19.如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E、F在线段AD 上,tan∠ABC=3,则阴影部分的面积是.20.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.21.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是.22.如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC 上,若,则=.23.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD=.24.如图,已知∠BAC=60°,在角的内部有一点P,P到AB的距离为,P 到AC的距离为3,则点P到顶点A的距离为.三.解答题(共16小题)25.把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.26.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).27.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)28.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.29.阅读下面的材料:(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=,sinB=是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC==1.由sinA=,可得c=;由sinB=,可得c=,而c==,于是就有(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=,∴AD=c•sinB,∴S△ABC=a•AD=ac•sinB,在Rt△ACD中,sinC=,∴AD=b•sinC.∴S△ABC =a•AD=ab•sinC.同理可得S△ABC=bc•sinA.因此有S△ABC=ac•sinB=ab•sinC=bc•sinA.也就是=ac•sinB=ab•sinC=bc•sinA.每项都除以abc,得,故请你根据对上面材料的理解,解答下列问题:(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;(2)求问题(1)中△ABC的面积;(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)30.如图,四边形ABCD中,AB=AD,∠ABC=∠ADC.(1)求证:CB=CD;(2)若∠BCD=90°,AO=2CO,求tan∠ADO.31.已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF=,求BE的长.32.如图,已知在△ABC中,AB=AC=10,tan∠B=.(1)求BC的长;(2)点D在边AB上,且AD=1,M为边BC上一动点,连接DM.当△BDM是直角三角形时,求BM的长.33.如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.34.已知:如图,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD与AC相交于点E,AB=9,cos∠BAC=,tan∠DBC=.求:(1)边CD的长;(2)△BCE的面积.35.定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A 的邻弦,记作thi A,即thi A==.请解答下列问题:已知:在△ABC中,∠C=30°.(1)若∠A=45°,求thi A的值;(2)若thi A=,则∠A=°;(3)若∠A是锐角,探究thi A与sinA的数量关系.36.在一节数学实践课上,老师出示了这样一道题,如图1,在锐角三角形ABC 中,∠A、∠B、∠C所对边分别是a、b、c,请用a、c、∠B表示b2.经过同学们的思考后,甲同学说:要将锐角三角形转化为直角三角形来解决,并且不能破坏∠B,因此可以经过点A,作AD⊥BC于点D,如图2,大家认同;乙同学说要想得到b2要在Rt△ABD或Rt△ACD中解决;丙同学说那就要先求出AD=,BD=;(用含c,∠B的三角函数表示)丁同学顺着他们的思路,求出b2=AD2+DC2=(其中sin2α+cos2α=1);请利用丁同学的结论解决如下问题:如图3,在四边形ABCD中,∠B=∠D=90°,∠BAD=60°,AB=4,AD=5.求AC的长(补全图形,直接写出结果即可).37.如图,在平面直角坐标内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.38.如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.(1)比较∠BAD和∠DAC的大小.(2)求sin∠BAD.39.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AB=10,tan∠BAC=,求菱形ADCE的面积.40.喜欢钻研的小亮对75°角的三角函数发生了兴趣,他想:75度虽然不是特殊角,但和特殊角有着密切的关系,能否通过特殊角的三角函数值求75°的正弦值呢?经研究,他发现:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°,于是他大胆猜想:sin(α+β)=sinαcosβ+cosαsinβ(α和β为锐角).将图1(a)等积变形为图1(b)可用于勾股定理的证明,现将这两幅图分别“压扁”成图2(a)和图2(b).如图,锐角为α的直角三角形斜边为m,锐角为β的直角三角形斜边为n,请你借助图2(a)和图2(b)证明上述结论能成立.参考答案与解析一.选择题(共12小题)1.(2017•安顺)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【分析】首先由切线的性质得出OB⊥BC,根据锐角三角函数的定义求出cos∠BOC的值;连接BD,由直径所对的圆周角是直角,得出∠ADB=90°,又由平行线的性质知∠A=∠BOC,则cos∠A=cos∠BOC,在直角△ABD中,由余弦的定义求出AD的长.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选B.【点评】本题综合考查切线、平行线、圆周角的性质,锐角三角函数的定义等知识点的运用.此题是一个综合题,难度中等.2.(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.3【分析】通过解直角△ABC得到AC与BC、AB间的数量关系,然后利用锐角三角函数的定义求tan∠DAC的值.【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.【点评】本题考查了解直角三角形,利用锐角三角函数的概念解直角三角形问题.3.(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BQ=CQ=6,求出CM=QM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.4.(2017•怀化)如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.【分析】作AB⊥x轴于B,如图,先利用勾股定理计算出OA=5,然后在Rt△AOB 中利用正弦的定义求解.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,sinα==.故选C.【点评】本题考查了解直角三角形:充分利用勾股定理和三角函数的定义计算三角形的边或角.也考查了坐标与图形性质.5.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.【点评】此题主要考查了线段垂直平分线的性质以及解直角三角形等知识,得出AD=BD,进而用CD表示出BD是解决问题的关键.6.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A.B.1 C.2 D.3【分析】根据题意画出图形,利用勾股定理求出BC的长.【解答】解:如图:∵cosA=,∴=,又∵AC=,∴BC==1.故选B.【点评】本题主要考查了解直角三角形,画出图形并利用勾股定理和三角函数是解题的关键.7.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.【分析】方法1、利用待定系数法求得直线AB的解析式,然后求得B的坐标,进而利用正切函数定义求解.方法2、先求出AD,即可得出结论.【解答】解:方法1、设直线AB的解析式是y=kx+b,根据题意得:,解得,则直线AB的解析式是y=﹣x+2.在y=﹣x+2中令y=0,解得x=.则B的坐标是(,0),即OB=.则tan∠OAB===.故选B.方法2、过点C作CD⊥y轴,∵C(﹣2,5),∴CD=2,OD=5,∵A(0,2),∴OA=2,∴AD=OD﹣OA=3,在Rt△ACD中,tan∠OAB=tan∠CAD=,故选B.【点评】本题考查了三角函数的定义以及待定系数法求函数解析式,正确求得B 的坐标是关键.8.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2D.BC=4【分析】A、根据∠OBC=∠AOB即可得出OA∥BC,由平行线的性质即可得出∠OAC=∠ACB,再由等腰三角形的性质即可得出∠OAC=∠OCA,替换后即可得出∠OCB=2∠ACB,结论A正确;B、根据等腰三角形的性质结合三角形内角和定理即可得出∠OAB+∠AOB=90°,结合结论A即可得出∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,则△AOE≌△OAF,利用勾股定理即可AF=OE==,从而得出AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,则△AOE∽△ABM,根据相似三角形的性质即可得出AM=,OM=AO﹣AM=,由BC∥AO、BM⊥AO、ON⊥BC即可得出四边形MBNO为矩形,再根据矩形的性质以及等腰三角形的性质即可得出BC=2BN=2OM=7,结论D错误.综上即可得出结论.【解答】解:A、∵∠OBC=∠AOB,∴OA∥BC,∴∠OAC=∠ACB.∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠ACB,∴∠OCB=2∠ACB,结论A正确;B、∵OA=OB,∴∠OAB+∠AOB+∠OBA=180°.∵∠OAC=∠OCB=∠AOB,∠OAB=∠OBA,∴∠OAB+∠AOB=90°,即∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,如图4所示.∵OA=OB,∴∠AOE=∠AOB=∠OAF.在△AOE和△OAF中,,∴△AOE≌△OAF(AAS),∴AF=OE==,∴AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,如图5所示.∵∠OAB+∠AOE=90°,∠MAB+∠ABM=90°,∴∠AOE=∠ABM.∵∠AEO=∠AMB=90°,∴△AOE∽△ABM,∴,∴AM=,OM=AO﹣AM=.∵BC∥AO,BM⊥AO,ON⊥BC,∴四边形MBNO为矩形,∴BN=OM=.∵OB=OC,ON⊥BC,∴BC=2BN=7,结论D错误.故选D.【点评】本题考查了等腰三角形的性质、解直角三角形、相似三角形的判定与性质、全等三角形的判定与性质以及矩形的判定与性质,逐一分析四个选项的正误是解题的关键.9.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若点E是BC的中点,则sin∠CAE的值为()A.2 B.C.D.【分析】如图,由于在边长为1的小正方形组成的网格中,△ABC的边长可以利用勾股定理求出,然后利用三角函数的定义即可求解.【解答】解:依题意得AB==,AC==2BC==5,∴AB2+AC2=BC2,∴△ABC是直角三角形,又∵E为BC的中点,∴AE=CE,∴∠CAE=∠ECA,∴sin∠CAE=sin∠ECA==.故选D.【点评】此题主要考查了三角函数的定义,也考查了勾股定理及其逆定理,首先根据图形求出三角形的边长,然后利用勾股定理及其逆定理和三角函数即可解决问题.10.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A. B.7 C.4+3D.3+4【分析】在Rt△CDB和Rt△CBE中,通过解直角三角形易求得BD、BE的长.过B作BF⊥DE于F,由圆周角定理知∠BCE=∠BDE,∠BED=∠BCD.根据这些角的三角函数值以及BD、BE的长,即可求得DF、EF的值,从而得到DE的长.【解答】解:过B作BF⊥DE于F.在Rt△CBD中,BC=10,cos∠BCD=,∴BD=8.在Rt△BCE中,BC=10,∠BCE=30°,∴BE=5.在Rt△BDF中,∠BDF=∠BCE=30°,BD=8,∴DF=BD•cos30°=4.在Rt△BEF中,∠BEF=∠BCD,即cos∠BEF=cos∠BCD=,BE=5,∴EF=BE•cos∠BEF=3.∴DE=DF+EF=3+4,故选D.【点评】此题主要考查的是圆周角定理和解直角三角形的综合应用,难度适中.11.如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°sin54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=ABsin36°,即可判断A、C;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AOsin36°,AO=AB•sin54°,求出AD,即可判断B、D.【解答】解:B到AO的距离是指BO的长,∵AB∥OC,∴∠BAO=∠AOC=36°,∵在Rt△BOA中,∠BOA=90°,AB=1,∴sin36°=,∴BO=ABsin36°=sin36°,故A、C选项错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°,∵sin36°=,∴AD=AO•sin36°,∵sin54°=,∴AO=AB•sin54°,∵AB=1,∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故B选项正确,D选项错误;故选:B.【点评】本题考查了解直角三角形的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.【分析】过点A构造∠ADB所在的直角三角形,设AE为1,得到DE的值,相除即可.【解答】解:作AE⊥BD,交DB的延长线于点E.由题意可得:∠ABE=∠CBD=45°,设AE=1,则AB=∴BC=,∵Rt△BCD是等腰直角三角形,∴BD=,∴DE=1+,∴tan∠ADB=1÷(+1)=.故选D.【点评】考查解直角三角形的知识;构造出所求角所在的直角三角形是解决本题的难点.二.填空题(共12小题)13.(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.14.(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.15.(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=,设DE=x,∴AD=3a,AE=,∴AB=6a,∴BC=,AC=∴CE=,∴tan2α==,故答案为:.【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.16.(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为:;.【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9.则BC=8.【分析】可设DE为未知数,表示出AC,CD,根据∠B的正弦值得到BD的值,易得∠B的正切值,进而在△ABC中利用得到的正切值即可求得未知数,也就求得了BC长.【解答】解:设DE为x,则CD=x,AC=9﹣x,∵sinB=,∴BD=x,tanB=,∴=,=,解得x=3,∴BC=x+x=8,故答案为8.【点评】考查解直角三角形的相关知识;熟练掌握三角函数的定义并灵活进行应用是解决本题的关键.18.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.【分析】首先在△ABC中,根据三角函数值计算出AC的长,再利用勾股定理计算出AD的长,然后根据余弦定义可算出cos∠ADC.【解答】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.【点评】此题主要考查了解直角三角形,以及勾股定理的应用,关键是利用三角函数值计算出AC的长,再利用勾股定理计算出AD的长.19.如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E、F在线段AD 上,tan∠ABC=3,则阴影部分的面积是6.【分析】由图,根据等腰三角形是轴对称图形知,阴影部分的面积是三角形面积的一半.根据BC=4,D为BC的中点,tan∠ABC=3可求AD,然后利用阴影部分即可求解.面积=S△ABC【解答】解:∵AB=AC,D为BC的中点,∴△ABC是等腰三角形,∴△ABC是轴对称图形,AD所在直线是对称轴,.∴阴影部分面积=S△ABC∵AB=AC,BC=4,D为BC的中点,∴BD=DC=BC=2,AD⊥BC,∴tan∠ABC===3,∴AD=6,=××4×6=6.∴阴影部分面积=S△ABC故答案为6.【点评】本题考查了解直角三角形,等腰三角形的性质及轴对称性质;利用对称发现阴影部分的面积是三角形面积的一半是正确解答本题的关键.20.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM===.故答案是:.【点评】本题考查的是解直角三角形,运用正方形的性质,根据题目中角的关系,判断两个三角形相似,然后用相似三角形的性质进行计算,求出直角三角形中边的长度,再用正切的定义求出角的正切值.21.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是 4.8.【分析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,解直角△ABE即可求得x的值,即可求得BE、AE的值,根据AB、PE的值和△ABE的面积,即可求得PE的最小值.【解答】解:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=,于是,解得x=10,即AB=10.所以易求BE=8,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.8.故答案为 4.8.【点评】本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键.22.如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC 上,若,则=.【分析】如图所示,作出辅助线,可知三角形ABK是等边三角形,设出正方形的边长,解直角三角形求出BG.再计算比值.【解答】解:如图,作EK⊥FG,K是FG的中点,连AK、KB,易知E、K、G、B 和E、K、F、A分别四点共圆∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°.∴三角形ABK是等边三角形作KM⊥AB,M是AB的中点,设AB=6则EB=AB=2,MB=3,ME=1,MK=6sin60°=3∴EK=;;.故.故答案为.【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、解直角三角形、三角函数等知识.难度很大,有利于培养同学们钻研和探索问题的精神.23.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD=14.【分析】延长AB与DC的延长线相交于点E,构造了两个30°的直角三角形,首先在直角三角形CBE中求得BE的长,再进一步在直角三角形ADE中,求得AD 的长,再在直角三角形BAD中由勾股定理求得BD.【解答】解:如图,延长AB与DC的延长线相交于点E.在Rt△ADE中,∵∠ADE=60°,∴∠E=30°.在Rt△BCE中,sinE=,∴BE==4,∴AE=AB+BE=11+4=15.在Rt△DAE中,tanE=,∴AD=AE•tanE=15×=5,在Rt△BAD中,BD===14,故答案为:14.【点评】此题考查的知识点是解直角三角形,关键要特别注意构造30°的直角三角形,熟练运用锐角三角函数求解.24.如图,已知∠BAC=60°,在角的内部有一点P,P到AB的距离为,P 到AC的距离为3,则点P到顶点A的距离为5.【分析】延长BP,AC交于点D,构造出两个特殊的直角三角形,易得PD的值,也就求得了BP的值,进而求得AB的值,利用勾股定理即可求得AP的值.【解答】解:延长BP,AC交于点D,连接AP.∵∠D=30°,PC=3,∴PD=6,∴BD=BP+PD=4.5+2,∴AB=+2,PA===5.故答案为5.【点评】考查解直角三角形的相关知识;把四边形转换为直角三角形求解是常用的解题思路.三.解答题(共16小题)25.(2017•黔西南州)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=1,sin2A2+cos2A2=1,sin2A3+cos2A3=1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sinA=、cosA=且a2+b2=c2知sin2A+cos2A=()2+()2===1;(4)根据直角三角形中sin2A+cos2A=1知()2+cosA2=1,据此可得答案.【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin2A3+cos2A3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1,故答案为:1;(3)在图2中,∵sinA=,cosA=,且a2+b2=c2,则sin2A+cos2A=()2+()2=+===1,即sin2A+cos2A=1;(4)在△ABC中,∠A+∠B=90°,∴∠C=90°,∵sin2A+cos2A=1,∴()2+cosA2=1,解得:cosA=或cosA=﹣(舍),∴cosA=.【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.26.(2017•湘潭)某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.27.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【分析】作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.【解答】解:作BE⊥l于点E,DF⊥l于点F.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin ,∴mm在Rt△ADF中,cos ,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.【点评】本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.28.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC =S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC =S△ADC,∴S△BDC =S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.29.阅读下面的材料:(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=,sinB=是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC==1.由sinA=,可得c=;由sinB=,可得c=,而c==,于是就有(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=,∴AD=c•sinB,∴S△ABC=a•AD=ac•sinB,在Rt△ACD中,sinC=,∴AD=b•sinC.∴S△ABC =a•AD=ab•sinC.同理可得S△ABC=bc•sinA.因此有S△ABC=ac•sinB=ab•sinC=bc•sinA.也就是=ac•sinB=ab•sinC=bc•sinA.每项都除以abc,得,故请你根据对上面材料的理解,解答下列问题:(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;(2)求问题(1)中△ABC的面积;(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)【分析】(1)根据阅读材料得到,则=,可计算出b=;(2)作AD⊥BC于D,如图,在Rt△ABD中,利用余弦的定义得cosB=cos60°=,可计算出BD=1,在Rt△ADC中,根据等腰直角三角形的性质得AD=CD=AC=,所以BC=BD+CD=+1,然后根据三角形面积公式计算得到△ABC的面积=;(3)先根据三角形内角和定理得到∠A=180°﹣∠B﹣∠C=75°,再根据阅读材料得到△ABC的面积=bcsinA,即••2•sin75°=,可计算出sin75°=.【解答】解:(1)∵,∴=,∴b==;(2)作AD⊥BC于D,如图,在Rt△ABD中,cosB=cos60°==,∴BD=1,在Rt△ADC中,AD=CD=AC=×=,∴BC=BD+CD=+1,∴△ABC的面积=××(+1)=;(3)∵∠B=60°,∠C=45°,∴∠A=180°﹣∠B﹣∠C=75°,∴△ABC的面积=bcsinA,∴••2•sin75°=,∴sin75°=.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.30.如图,四边形ABCD中,AB=AD,∠ABC=∠ADC.(1)求证:CB=CD;(2)若∠BCD=90°,AO=2CO,求tan∠ADO.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角的和差得到∠CBD=∠CDB,于是得到结论;。
(完整word版)九年级数学解直角三角形专题
做教育做良知中小学 1 对 1 课外指导《解直角三角形》专题一、复习目标:1.掌握直角三角形中锐角三角函数的定义。
2.熟记 30°, 45°, 60°角的各三角函数值,会计算含特别角三角函数的代数式的值。
3.能娴熟运用勾股定理、直角三角形中两锐角互余及三角函数定义解直角三角形。
4.会用解直角三角形的相关知识解简单的实质问题。
二、复习要点:先结构直角三角形,再综合应用勾股定理和锐角三角函数解决简单的实质问题。
三、复习难点:把实质问题转变为解直角三角形的数学识题。
四、复习过程: B(一)知识回首1.三角函数定义 :我们规定斜边∠A 的对边A C∠A 的邻边A的对边A的对边①叫∠ A 的正弦 . 记作sin A斜边斜边A的邻边A的邻边②叫∠ A 的余弦 . 记作cos A斜边斜边A的对边A的对边③叫∠ A 的正切 . 记作 tanA=A的邻边A的邻边2.特别角的三角函数值角度30°45°60°函数值sin 1 2 32 2 2cos 3 2 12 2 2tan α31 3 33.互为余角的函数关系式 :90°- ∠A与∠ A 是互为余角 .有 sin(90A) cos A cos(90A) sin A经过这两个关系式, 能够将正 , 余弦互化 .如 sin 40cos50cos38 12sin 51 48专题练习做教育做良知中小学 1 对 1 课外指导1. 如图,从地面上的点 A 看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是 45°,向前走 6m抵达 B 点,测得杆顶端点 P 和杆底端点Q的仰角分别是 60°和 30°。
(1)求∠ BPQ的度数;(2)求该电线杆 PQ的高度(结果精准到 1m)。
备用数据: 3 1.7, 2 1.42.热气球的探测器显示,从热气球底部 A 处看一栋高楼顶部的俯角为 30°,看这栋楼底部的俯角为 60°,热气球 A 处于地面距离为 420 米,求这栋楼的高度.3.如图,小俊在 A 处利用高为 1.5 米的测角仪 AB 测得楼 EF 顶部 E 的仰角为 30°,而后行进 12 米抵达 C 处,又测得楼顶 E 的仰角为 60°,求楼 EF 的高度.(结果精准到 0.1 米)做教育做良知中小学1对1课外指导4.为解决江北学校学生上学过河难的问题,乡政府决定修筑一座桥,建桥过程中需丈量河的宽度(即两平行河岸AB 与MN 之间的距离).在丈量时,选定河对岸沿河岸 AB 前行 30 米后抵达 B 处,在 B 处测得∠≈1.41,≈1.73,结果保存整数)MN 上的点 C 处为桥的一端,在河岸点 A 处,测得∠ CAB=30 °,CBA=60 °,请你依据以上丈量数据求出河的宽度.(参照数据:5.为保护渔民的生命财富安全,我国政府在南海海疆新建了一批观察点和避风港.某日在观察点 A 处发此刻其北偏西 36.9 °的 C处有一艘渔船正在作业,同时检测到在渔船的正西 B 处有一股强台风正以每小时40 海里的速度向正东方向挪动,于是立刻通知渔船到位于其正东方向的避风港 D 处进行闪避.已知避风港 D 在观察点 A 的正北方向,台风中心 B 在观察点 A 的北偏西67.5 °的方向,渔船C与观察点 A 相距 350 海里,台风中心的影响半径为 200 海里,渔船的速度为每小时18 海里,问渔船可否顺利闪避本次台风的影响?(sin36.9 °≈ 0.6 ,tan36.9 ≈0.75 ,sin67.5 ≈0.92 ,tan67.5 ≈2.4 )6.如图,某校数学兴趣小组为测得大厦 AB 的高度,在大厦前的平川上选择一点 C,测得大厦顶端 A 的仰角为 30°,再向大厦方向行进 80 米,抵达点 D 处( C、D、B 三点在同向来线上),又测得大厦顶端 A 的仰角为 45°,请你计算该大厦的高度.(精准到0.1 米,参照数据:≈ 1.414,≈ 1.732)7.如图,爬山缆车从点 A 出发,路过点 B 后抵达终点 C,此中 AB段与 BC段的运转行程均为200m,且 AB段的运行路线与水平面的夹角为30°, BC段的运转路线与水平面的夹角为42°,求缆车从点A运转到点 C 的垂直上涨的距离.(参照数据: sin42 °≈ 0.67 , cos42 °≈ 0.74 , tan42 °≈ 0.90 )8.张老师利用歇息时间组织学生丈量山坡上一棵大树CD 的高度,如图,山坡与水平面成30°角(即∠MAN=30 °),在山坡底部 A 处测得大树顶端点 C 的仰角为45°,沿坡眼行进20 米,抵达 B 处,又测得树顶端点 C 的仰角为60°(图中各点均在同一平面内),求这棵大树CD 的高度(结果精准到0.1 米,参照数据:≈1.732)9.如图,我南海某海疆 A 处有一艘打鱼船在作业时突遇特狂风波,船长立刻向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到打鱼船正西方向的 B 处,该渔政船收到渔政求救中心指令后前往营救,但两船之间有大片暗礁,没法直线抵达,于是决定立刻调整方向,先向北偏东60°方向以每小时30 海里的速度航行半小时抵达C 处,同时打鱼船低速航行到 A 点的正北 1.5 海里D 处,渔政船航行到点 C 处时测得点 D 在南偏东53°方向上.( 1)求 CD 两点的距离;( 2)渔政船决定再次调整航向前往营救,若两船航速不变,而且在点 E 处相会集,求∠ECD的正弦值.(参照数据:sin53°≈, cos53°≈,tan53°≈)10. 如图,两幢建筑物 AB 和 CD,AB⊥ BD,CD⊥ BD,AB=15cm,CD=20cm, AB和 CD之间有一景观池,小南在 A 点测得池中喷泉处 E 点的俯角为42°,在 C 点测得 E 点的俯角为45°(点 B、E、D 在同向来线上),求两幢建筑物之间的距离 BD(结果精准到0.1m ).(参照数据: sin42 °≈ 0.67 ,cos42°≈ 0.74 ,tan42 °≈ 0.90 )11.如图,在楼房AB 和塔 CD 之间有一棵树EF ,从楼顶 A 处经过树顶 E 点恰巧看到塔的底部 D 点,且俯角α为 45°.从距离楼底 B 点 1 米的 P 点处经过树顶 E 点恰巧看到塔的顶部 C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度.(结果保存根号)12.如下图,港口 B 位于港口 O 正西方向 120km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿OA 方向(北偏西 30°)以 vkm/h 的速度驶离港口 O,同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物质后,立刻按本来的速度给游船送去.( 1)快艇从港口 B 到小岛 C 需要多长时间?( 2)若快艇从小岛 C 到与游船相遇恰巧用时1h,求 v 的值及相遇处与港口O 的距离.5做教育做良知中小学 1 对 1 课外指导13.如下图,港口 B 位于港口 O 正西方向 120km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿 OA 方向(北偏西30°)以 vkm/h 的速度驶离港口O,同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物质后,立刻按本来的速度给游船送去.( 1)快艇从港口 B 到小岛 C 需要多长时间?( 2)若快艇从小岛 C 到与游船相遇恰巧用时1h,求 v 的值及相遇处与港口 O 的距离.14.一数学兴趣小组为了丈量河对岸树AB 的高,在河岸边选择一点C,从 C 处测得树梢 A 的仰角为45°,沿 BC 方向退后10 米到点 D,再次测得 A 的仰角为30°,求树高.(结果精准到0.1 米,参照数据:≈1.414,≈1.732)15.如图是一座人行天桥的表示图,天桥的高度是10 米, CB ⊥DB ,坡面 AC 的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为 i=:3.若新坡角下需留 3 米宽的人行道,问离原坡角( A 点处) 10 米的建筑物能否需要拆掉?(参照数据:≈1.414,≈1.732)616.如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东60°的方向,轮船从 B 处继续向正东方向航行 200 海里抵达 C 处时,测得小岛 A 在船的北偏东30°的方向.己知在小岛四周 170 海里内有暗礁,若轮船不改变航向持续向前行驶,试问轮船有无触礁的危险?(≈1.732)17.2015 年 4 月 25 日 14 时 11 分,尼泊尔发生8.1 级地震,震源深度20 千米.中国营救队快速赶往灾区营救,探测出某建筑物废墟下方点 C 处有生命迹象.在废墟一侧某面上选两探测点 A 、 B, AB 相距 2 米,探测线与该面的夹角分别是30°和 45°(如图).试确立生命所在点C 与探测面的距离.(参照数据≈1.41,≈1.73)18.某海疆有 A ,B 两个港口, B 港口在 A 港口北偏西30°方向上,距 A 港口 60 海里,有一艘船从 A 港口出发,沿东北方向行驶一段距离后,抵达位于 B 港口南偏东75°方向的 C 处,求该船与 B 港口之间的距离即CB 的长(结果保存根号).19.如图,某渔船在海面上朝正西方向以20 海里 /时匀速航行,在 A 处观察到灯塔 C 在北偏西 60°方向上,航行 1 小时抵达 B 处,此时察看到灯塔 C 在北偏西 30°方向上,若该船持续向西航行至离灯塔距离近来的地点,求此时渔船到灯塔的距离(结果精准到 1 海里,参照数据:≈1.732)20.小红将笔录本电脑水平搁置在桌子上,显示屏OB与底板OA所在的水平线的夹角为120 °时,感觉最舒坦(如图 1),侧面表示图为图2;使用时为了散热,她在底板下垫入散热架ACO ' 后,电脑转到AO ' B ' 地点(如图3),侧面表示图为图 4.已知 OA=OB=24cm ,O' C OA 于点C, O ' C =12cm.(1)求CAO '的度数;(2)显示屏的顶部B '比本来高升了多少?( 3)如图 4,垫入散热架后,要使显示屏O ' B' 与水平线的夹角仍保持120°,则显示屏O 'B ' 应绕点 O ' 按顺时针方向旋转多少度?。
2017年中考数学专题复习试卷分类汇编(解析版):--解直角三角形专题
.选择题1. ( 2016山东省荷泽市 3分)如图,△ ABC 与厶A'B'C'都是等腰三角形,且 AB=AC=5, AB 'AC ' =3 若/B+ / B ' =90° 则 A ABC 与厶 A 'B'C 的面积比为( )【考点】互余两角三角函数的关系. 【分析】先根据等腰三角形的性质得到 / B=Z C , / B ' =C ',根据三角函数的定义得到 AD=AB?sinB , A D ' AB ' s ?B BC=2BD=2AB?;osB , B C ' =2 D ' =2B ' c ?sB ',然后根据三角 形面积公式即可得到结论. 【解答】解:过 A 作AD 丄BC 于D ,过A 作A D 丄B C 于D ', •••△ ABC 与厶A B C 都是等腰三角形, •••/ B= / C , / B ' M C ; BC=2BD , B C ' =B D ••• AD=AB?sinB , A D ' AB ' S ?B ; BC=2BD=2AB?cosB , B C ' =B D ' =A B ' c ?sB ; •••/ B+ / B ' =90° • sinB=cosB ', sinB ' cosB , •-S BAC 誌 AD7BC 令 AB?si nB?2AB?sosB=25s in B^osB , S A A B C =*A D ' B ? ' = B ' c ?sB ' A2B ' s ?B ' =9iB ' cosB ',•-S A BAC : S A A B C =25: 9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知 元素的过程就是解直角三角形•也考查了等腰三角形的性质和三角形面积公式.2. (2016重庆市A 卷•分)某数学兴趣小组同学进行测量大树 CD 高度的综合实践活动, 解直角三角形2'A . 25: 9B . 5: 3C . . ~:D . 5. : 3一扌 故选A .如图,在点A处测得直立于地面的大树顶端C的仰角为36°然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1 : 2.4,那么大树CD的高度约为(参考数据:sin36°~ 0.5%os36°~ 0.8,an36°~ 0.73A . 8.1 米B . 17.2 米C. 19.7 米 D . 25.5 米【分析】作BF丄AE于F,贝U FE = BD=6米,DE = BF,设BF=x米,贝U AF =2.4米,在Rt A ABF 中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt A ACE 中,由三角函数求出CE,即可得出结果.【解答】解:作BF丄AE于F,如图所示:贝U FE=BD=6 米,DE=BF ,•••斜面AB的坡度i=1 : 2.4,••• AF =2.4BF ,设BF=x 米,则AF=2.4x 米,在Rt A ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,•DE = BF=5 米,AF=12 米,•AE=AF + FE=18 米,在Rt A ACE 中,CE=AEtan36°18X0.73=13.14 米,•CD = CE- DE=13.14 米- 5 米~8.1 米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数; 决问题的关键. 3. ( 2016浙江省绍兴市 4分)如图,在 Rt A ABC 中,/ B=90 ° / A=30 °以点A 为圆心, BC 长为半径画弧交 AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点 E , 连接AE , DE ,则/ EAD 的余弦值是( A — B F E C 昼 D . 73 5 . 6 . 3 2 【考点】解直角三角形. 【分析】设BC=x ,由含30°角的直角三角形的性质得出 根据题意得出AD = BC=x , AE=DE=AB= :;x ,作EM 丄AD 于M ,由等腰三角形的性质得出 111 1 AM^-AD^-x , 在 Rt A AEM 中,由三角函数的定义即可得出结果. 【解答】 解:如图所示:设 BC=x , •••在 Rt A ABC 中,/ B=90° , / A=30° ,故选:B . A M I 0 £7 L\ 、 Ec4. (2016重庆市B 卷4分)如图所示,某办公大楼正前方有一根高度是 15米的旗杆ED ,由勾股定理得出方程是解 AC=2BC=2x ,求出 AB= . 】BC=. ; x , 根据题意得: AD=BC=x , AE=DE=AB 「_;x ,在 Rt A AEM 中, cos / EAD= ANAE 13.5 ••• AC=2BC=2x , AB= ';BC= :_;x , 作EM 丄AD 于M ,贝U AM =」-AD= x ,从办公楼顶端A测得旗杆顶端E的俯角a是45°旗杆底端D到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC是12米,梯坎坡度i=1:.则大楼AB的高度约为()(精确到o.i 米,参考数据: 1.41 1.73 2.45I~IC DA. 30.6B. 32.1C. 37.9D. 39.4【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AB交DC于H,作EG丄AB于G,则GH = DE=15米,EG=DH,设BH=x米, 则CH= .「;x米,在Rt A BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△ AEG是等腰直角三角形,得出AG=EG=6. :+20(米),即可得出大楼AB 的高度.【解答】解:延长AB交DC于H,作EG丄AB于G,如图所示:贝U GH = DE=15 米,EG=DH ,•••梯坎坡度i=1:「,••• BH : CH=1 ::-.,设BH=x 米,贝U CH= . lx 米,在Rt A BCH 中,BC=12 米,由勾股定理得:x2+ (一「;x)2=122,解得:x=6, • BH=6 米,CH=6. 一;米,•BG = GH - BH=15 - 6=9 (米),EG=DH=CH + CD=6 . :+20 (米),T/ a=45°,•••/ EAG=90°- 45° =45°,•△ AEG是等腰直角三角形,•AG = EG=6 . 1+20 (米),•AB=AG+BG=6 才£+20+A 39.4 (米);故选:D.H C D【点评】本题考查了解直角三角形的应用-坡度、 俯角问题;通过作辅助线运用勾股定理求 出BH ,得出EG 是解决问题的关键.二.填空题1. ( 2016山东省荷泽市 3分)如图,在正方形 ABCD 外作等腰直角 △ CDE , DE = CE ,连 接 BE ,贝U tan / EBC= 二.~~【考点】正方形的性质;等腰直角三角形;解直角三角形.【专题】计算题.【分析】作EF 丄BC 于F ,如图,设DE=CE = a ,根据等腰直角三角形的性质得 CD=*CE=.:a , / DCE=45 °再利用正方形的性质得 CB=CD^2a , / BCD =90 °接着判断△ CEF 为等【解答】解:作 EF 丄BC 于F ,如图,设DE=CE=a ,•••△ CDE 为等腰直角三角形,••• CD= _ 】CE=.】a , / DCE=45° ,•••四边形ABCD 为正方形,• CB=CD^ ■:a , / BCD =90°,•••/ ECF=45° ,• △ CEF 为等腰直角三角形,腰直角三角形得到 CF = EF= V2 CE=^-' a ,然后在Rt A BEF 中根据正切的定义求解.即/ EBC —•3正方形的四条边都相等, 四个角都是直角;正方形的两 条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四 边形、矩形、菱形的一切性质•也考查了等腰直角三角形的性质.2. (2016湖北荆州3分)全球最大的关公塑像矗立在荆州古城东门外•如图,张三同学 在东门城墙上C 处测得塑像底部 B 处的俯角为18°8 ',测得塑像顶部 A 处的仰角为45°点 D 在观测点C 正下方城墙底的地面上,若CD=10米,则此塑像的高 AB 约为 58 米(参考数据:tan 78° 12'~)4.8 7 C* 1 弊:二*「B D【分析】 直接利用锐角三角函数关系得出 EC 的长,进而得出 AE 的长,进而得出答案.【解答】 解:如图所示:由题意可得: CE 丄AB 于点E , BE=DC ,•// ECB=18° 48,'•••/ EBC=78° 12'则 tan78° 12'—=—=4.8, BE 10解得:EC=48 (m ), •// AEC=45° 贝U AE=EC ,且 BE=DC=10m ,•此塑像的高 AB 约为:AE+EB=58 (米).故答案为:58.一一 V2 宁一一 BFa 在 RtA BEF 中,tan / EBFE4啓匚 B D【点评】此题主要考查了解直角三角形的应用,根据题意得出EC 的长是解题关键. 三•解答题1. ( 2016湖北随州8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝 雕像高度,已知烈山坡面与水平面的夹角为 30°山高857.5尺,组员从山脚 D 处沿山坡向 着雕像方向前进1620尺到达E 点,在点E 处测得雕像顶端 A 的仰角为60°求雕像AB 的 高度.【考点】 解直角三角形的应用-仰角俯角问题.【分析】构造直角三角形,利用锐角三角函数,进行简单计算即可.【解答】解:如图,过点E 作EF 丄AC , EG 丄CD , 在 Rt A DEG 中,•/ DE=1620, / D=30°•/ BC=857.5, CF=EG ,••• EG=••• BF=BC - CF=47.5, 在 Rt A BEF 中,tan / BEF=三一, EF • EF= -BF , 在 Rt A AEF 中,/ AEF=60° ,设 AB=x , •/ tan / AEF —二 BF • AF =EF xtan / AEF , • x+47.5=3 X 47.5, • x=95, 答:雕像AB 的高度为95尺. 2. (2016吉林7分)如图,某飞机于空中 A 处探测到目标 C ,此时飞行高度 AC=1200m , 从飞机上看地平面指挥台 B 的俯角a =43°,求飞机A 与指挥台B 的距离(结果取整数) (参考数sin43°0.68, cos43°=0.73, tan43° =0.93)答:飞机A 与指挥台B 的距离为1765m . 3. (2016江西8分)如图1是一副创意卡通圆规,图 OB 是旋转臂,使用时,以点 A 为支撑点,铅笔芯端点 OA=OB=10cm . 【考点】 解直角三角形的应用-仰角俯角问题. 【分析】先利用平行线的性质得到 / B= a =43°,然后利用/ B 的正弦计算AB 的长. 【解答】 解:如图,/ B= a =43° , 在 Rt A ABC 中,•/sinB= = AB = & 1765(m ). 2是其平面示意图,OA 是支撑臂,B 可绕点A 旋转作出圆.已知(1)当/ AOB=18°时,求所作圆的半径;(结果精确到O.O1cm)(2)保持/ A0B=18°不变,在旋转臂0B末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度. (结果精确到0.01cm)(参考数据:sin9°~ 0.15@4cos9°~ 0.9877sin 18°~ 0.3090cos18°~ 0.95,可使用科学计算器)圉1【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC丄AB于点C,根据OA=OB=10cm, / OCB=90°,/ AOB=18°,可以求得/ BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC丄AB于点C,如右图2所示,由题意可得,OA=OB=10cm, / OCB=90°, / AOB=18°,•••/ BOC=9°••• AB=2BC=2OB?sin9°~ 2X 10X 0.1564 5,即所作圆的半径约为 3.13cm;(2)作AD丄OB于点D,作AE=AB,如下图3所示,•••保持/ AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,•••折断的部分为BE,•••/ AOB=18°, OA=OB , / ODA =90°,•••/ OAB=81°, / OAD =72°,•••/ BAD=9° ,••• BE=2BD=2AB?sin9°~ 2X 3.13 X 0.1564 笔册98 即铅笔芯折断部分的长度是 0.98cm .4. (2016辽宁丹东10分)某中学九年级数学兴趣小组想测量建筑物AB 的高度•他们在 C64 °求建筑物的高度.(测角器的高度忽略不计,结果精确到【考点】 解直角三角形的应用-仰角俯角问题.【分析】Rt A ADB 中用AB 表示出BD 、Rt A ACB 中用AB 表示出BC ,根据CD = BC - BD 可 得关于AB 的方程,解方程可得.【解答】 解:根据题意,得 / ADB=64° , / ACB=48°AB 10 tan48& Ji11• CD = BC - BDsin48°^^, tan48°^^,sin64° J10 101A* #建/ /巩/ // /JT £(参考数据:jf fL_CDBAB 1贝VBD=处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进 6米到达D 处,测得仰角为在 Rt A ADB 中,tan64° -二:,在 Rt A ACB 中,tan48° =.AB ■,tan 64°~)2在 Rt △ ACF 中,tan / ACF肿 -_工 =tan2^ ACP tan Cl i 一丄一「在直角AB =x+ BF =4+ x (米), 在直角 △ ABF 中, =AB :=x+4tan/AEB3•/ CF - 解得:x= 则AB =~2~ 胡打 3V3+12+4=22答:树高AB 是心]"'(米).1 AB -二AB2132 解得:AB=== y•••建筑物的高度约为 14.7 米.5. (2016四川宜宾)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的 棵树,在平台顶C 点测得树顶A 点的仰角a =30° ,从平台底部向树的方向 水平前进3米到达点E ,在点E 处测得树顶A 点的仰角3=60° ,求树高AB (结【分析】作CF 丄AB 于点F ,设AF=x 米,在直角△ ACF 中利用三角函数用x 表示出CF 的长,在直角△ ABE 中表示出BE 的长,然后根据CF - BE = DE 即 可列方程求得x 的值,进而求得AB 的长. 【解答】解:作CF 丄AB 于点F ,设AF =x 米, ~ 14.7(米),三角形的应用-仰角俯角问题.△ ABE中, 则CF,(x+4 )米..,则 BEtan / AEB = BE = DE ,即 (x+4 ) =3 .D6. ( 2016湖北黄石8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB 和BC两段,每一段山坡近似是直”的,测得坡长AB=800米,BC=200米,坡角/ BAF=30° / CBE=45°.(1 )求AB段山坡的高度EF ;(2)求山峰的高度CF .(叮[F1.414, CF结果精确到米)【分析】(1)作BH丄AF于H,如图,在Rt A ABF中根据正弦的定义可计算出BH的长, 从而得到EF的长;(2)先在Rt A CBE中利用/ CBE的正弦计算出CE,然后计算CE和EF的和即可.【解答】解:(1)作BH丄AF于H,如图,在Rt A ABF 中,T sin/ BAH==,AB••• BH=800?si n30°=400,/• EF =BH =400m;(2)在Rt A CBE 中,T sin/ CBE=),BC•CE=200?sin45°=100 J 2^ 141.4•CF=CE+EF=141.4+400~541 ( m).答:AB段山坡高度为400米,山CF的高度约为541米.【点评】本题考查了解直角三角形的应用-坡度与坡角问题: 平宽度I 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1: m 的形式.把坡面与水平面的夹角 a 叫做坡角,坡度i 与坡角a 之间的关系为:iTan a 7.( 2016湖北荆门6分)如图,天星山山脚下西端 A 处与东端B 处相距800 (1+ '■)米, 小军和小明同时分别从 A 处和B 处向山顶C 匀速行走.已知山的西端的坡角是 45°东端的 坡角是30°小军的行走速度为 *2米/秒•若小明与小军同时到达山顶 C 处,则小明的行走 【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C 作CD 丄AB 于点D ,设AD=x 米,小明的行走速度是 a 米/秒,根据直角三 角形的性质用x 表示出AC 与BC 的长,再根据小明与小军同时到达山顶 C 处即可得出结论. 【解答】 解:过点C 作CD 丄AB 于点D ,设AD=x 米,小明的行走速度是 a 米/秒, •••/ A=45° , CD 丄 AB , ••• AD = CD=x 米, ••• AC=*x. 在 RtA BCD 中,坡度是坡面的铅直高度 h 和水速度是多少?• BC = sin3Q =2x ,•••小军的行走速度为.米/秒.若小明与小军同时到达山顶 C 处,•••/ B=30° ,8. (2016四川内江)(9分)如图8,禁渔期间,我渔政船在 A 处发现正北方向B 处有一艘可 疑船只,测得 A , B 两处距离为200海里,可疑船只正沿南偏东45。
初三解直角三角形.docx
辅导讲义(1) 三边关系:a 2+b 2=c 2,(2) 角关系:ZA+ZB=—,sin B = — ,cos A =—,cos B = —, tan A c c c c 二、同步题型分析直角三角形的性质已知:如图,ADDBC,F 是AB 中点,DF 交CB 延长线于点E, CE = CD ,则图中与ZADE 相等的 有 ,与ZADE 互余的角有 ___ •解题分析:(1)注意题中直线的平行关系,利用平行线的性质找出相等角(2)利用等腰三角形的性质,判定哪些三角形是直角三角形,再利用Rt △的两个锐角互余进行处理1. 几何题注意先标清题屮给出的条件,寻找突破门;sin A (3)边角关系:AB(亍2.灵活运用平行线性质;3.注意等腰三角形三线合一.瑪例题3如图,A、C是ZMON的0M边上两点,A3丄0W于B,CD丄ON于D, 若OA=-,OB=CD,OD+AB=1 求ZMON的度数.2解题分析:(1)注意分析OD+AB二1二20A,可联想到三角形中的性质,延长0D至II,使得DII二AB,连CII;(2)利用三角形全等,可确定OA=CH=| OH,可得ZA=30°;(3)本题主要注意截长补短方法的运用.1.先标出己知条件,通过己知条件推导岀其中隐含的条件,再灵活运用这些条件解题;2.注意截长补短方法的运用;3.在Rt△屮,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。
.如图,已知在AABC中,ZACB = 90°, AC = BC, AE 丄BE于E, AE = -BD . 2求证:BZ)平分ZABC.4解题分析:(1)延长AE、BC,相交点F,连接CE;(2)灵活利用:在Rt△中,斜边上的小线等于斜边的一半;(3)同时注意垂直平分线定理的运用. 詈衣采弑一弑./1.己知:如图所示,AE、BD相交于点C, M、F、G分别是AD、BC、中点,AB = AC, DC = DE .求证:MF = MG .解题分析:连接AF、DG.灵活运用刚学的相关知识(在Rt△屮,斜边上的中线等于斜边的一半)进行处理.2.如图,在AA3C^,Z3 = 40o,ZC = 20°,AD 丄C4于人交BC于D .求证:CD = 2AB.解题分析:取CD 中点连接AM.灵活运用刚学的相关知识(在Rt △中,斜边上的中线等于斜边的一半)进行处理.3. 如图,正\ABC 的边长为1, P 是AB±不与A,3重合的任意一点,PQ 丄BC , QR 丄AC, RS 1 AB t Q,R,S为垂足,设BP = x, AS = y.求(1) y 与x 之间的函数关系式;(2) 当SP =丄时,求AP 的长; 4(3) 当点P 与S 重合时,与4R 的长各为多少?解题分析:在Rt △中,如果一个锐角等于30。
(word完整版)中考复习专题——解直角三角形
中考复习之——解直角三角形1.了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半.掌握有两个角互余的三角形是直角三角; 2。
探索勾股定理及其逆定理,并掌握运用它们解决一些简单的实际问题;3。
利用相似的直角三角形,探索并认识锐角三角函数(sin A 、cos A 、tan A );知道30、45、60角的三角函数值;4.会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角; 5。
能用锐角三角函数解直角三角形,并用相关知识解决一些简单的实际问题.三.知识回顾1.知识脉络2.基础知识(1)勾股定理及其逆定理①勾股定理:直角三角形中,两直角边的平方和等于斜边的平方. 即:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2.②勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (2)锐角三角函数 ①锐角三角函数的定义如图7—1,在Rt △ABC 中,∠C =90,则sin A =A ∠的对边斜边=ac ,cos A =A ∠的邻边斜边=b c ,tan A =A A ∠∠的对边的邻边=ab.sin A 、cos A 、tan A 分别叫做锐角∠A 的正弦、余弦、正切,统称为锐角∠A 的三角函数. ②锐角三角函数的取值范围0<sin A 〈1,0〈cos A <1,tan A >0. ③各锐角三角函数间的关系斜边c∠A 的对边a∠A 的邻边图7-1 直角三角形边的关系:勾股定理边角关系:锐角三角函数解直角三角形角的关系:两个锐角互余锐角三角函数的应用sin A =cos (90−A),cos A =sin (90−A).④特殊角的三角函数值sin cos tan3012323345222216032123(3)解直角三角形①解直角三角形的的定义:已知边和角(其中必有一条边),求所有未知的边和角。
初三数学解直角三角形专题复习
第五讲 解直角三角形一、【知识梳理】知识点1、 解直角三角形定义:由直角三角形中已知元素求出未知元素的过程叫解直角三角形。
知识点2、解直角三角形的工具:1、直角三角形边、角之间的关系:sinA=cosB=c a sinB=cosA=c b tanA=cotB=b a cotA=tanB=ab 2、直角三角形三边之间的关系: 222c b a =+(勾股定理)3、直角三角形锐角之间的关系 : ︒=∠+∠90B A 。
(两锐角互为余角)知识点3、解直角三角形的类型:可以归纳为以下2种,(1)、已知一边和一锐角解直角三角形; (2)、已知两边解直角三角形。
知识点4、解直角三角形应用题的几个名词和素语 1、方位角:在航海的某些问题中,描述船的航向,或目标对观测点的位置,常用方位角.画方位角时,常以铅直的直线向上的方向指北,而以水平直线向右的方向为东,而以交点为观测点.2、仰角和俯角在利用测角仪观察目标时,视线在水平线上方和水平线的夹角称为仰角,视线在水平线下 方和水平线的夹角称为俯角(如图). 在测量距离、高度时,仰角和俯角常是不可缺少的数据.3、坡度和坡角:在筑坝、修路时,常把坡面的铅直高度h 和水平宽度l 的比叫作坡度(或坡比),用字母i 表示(如图(1)),则有,l h i =坡面和水平面的夹角叫作坡角.显然有:αtan ==lhi , 这说明坡度是坡角的正切值,坡角越大,坡度也越大.二、【典型题例】考点1、解直角三角形例1.、1、在ABC ∆中,C ∠为直角,A ∠、B ∠、C ∠所对的边分别为c b a 、、.(1)已知3=b ,ο30=∠A ,求a 和c . (2)已知20=a ,20=b ,求A ∠. 2、如图,已知△ABC 中∠B=45°,∠C=30°,BC=10,AD 是BC 边上的高,求AD 的长 3、已知,如图,△ABC 中,∠A=30°,AB=6,CD ⊥AB 交AB 延长线于D ,∠CBD=60°。
《解直角三角形》专题复习总结1.docx
《解直角三角形》专题复习一一、直角三角形的性质1、直角三角形的两个锐角互余几何表示:【•.•ZC=9O(V.ZA+ZB二90。
】2、勾股定理:直角三角形两直角边的平方和等于斜边的平方几何表示:【在RMABC 中TZACB二90。
:.a2 +/?2 =c2]3、在直角三角形中,30。
角所对的直角边等于斜边的一半。
几何表示:[•/ ZC=9O°ZA=30°/.BC=- AB]24、直角三角形斜边上的中线等于斜边的一半。
几何表示:[\ ZACB=900 D为AB的中点CD=1AB=BD=AD5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:/ZACB=900CD 丄AB・•・CD? = AD・BDAC2 = AD^ABBC? = BD・AB6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
=山上图可得:AB• CD=AC• BC二、锐角三角函数的概念如图,在厶ABC中,ZC二90。
sin A -ZA的对边_ a斜边ccosA = ZA的邻边二b斜边 cZA的对边ZB的邻边ZA的邻边ZB的对边tanA =a sina cosa tana30°12T 屈T45°近运160°&1273锐角三角函数的取值范鬧:0<sina<l, 0<cosa<l, tana>0. 三、特殊角的三角函数值说明:锐角三角函数的增减性,当角度在07 逛之间变化时.(1)正弦值随着角度的增大(或减小)而增大(或减小).(2)余弦值随着角度的增大(或减小)而减小(或增大).(3)正切值随着角度的增大(或减小)而增大(或减小).四、解直角三角形在RI△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
中考数学复习专题七解直角三角.doc
中考数学复习专题7 解直角三角函数一、知识点回顾1、锐角∠A 的三角函数(按右图Rt △ABC 填空)∠A 的正弦:sin A = , ∠A 的余弦:cos A = , ∠A 的正切:tan A = , ∠A 的余切:cot A =2、锐角三角函数值,都是 实数(正、负或者0);3、正弦、余弦值的大小范围: <sin A < ; <cos A <4、tan A •cot A = ; tan B •cot B = ;5、sin A = cos (90°- ); cos A = sin ( - )tan A =cot ( ); cot A = 6、填表7、在Rt △ABC 中,∠C =90゜,AB =c ,BC =a ,AC =b ,1)、三边关系(勾股定理): 2)、锐角间的关系:∠ +∠ = 90°3)、边角间的关系:sin A = ; sin B = ;cos A = ; cos B = ; tan A = ; tan B = ;cot A = ;cot B =8、图中角α可以看作是点A 的 角 也可看作是点B 的 角;9、(1)坡度(或坡比)是坡面的 高度(h )和 长度(l )的比。
记作i ,即i = ;(2)坡角——坡面与水平面的夹角。
记作α,有i =lh=tan α(3)坡度与坡角的关系:坡度越大,坡角α就越 ,坡面就越二、巩固练习(1)、三角函数的定义及性质1、在△ABC 中,,900=∠C 13,5==AB AC ,则cos B 的值为(1)2、在Rt ⊿ABC 中,∠C =90°,BC =10,AC =4,则______tan _____,cos ==A B ;3、Rt △ABC 中,若,900=∠C 2,4==BC AC ,则tan ______=B 4、在△ABC 中,∠C =90°,1,2==b a ,则=A cos 5、已知Rt △ABC 中,若,900=∠C cos 24,135==BC A ,则._______=AC 6、Rt △ABC 中,,900=∠C 35tan ,3==B BC ,那么.________=AC 7、已知32sin -=m α,且a 为锐角,则m 的取值范围是 ;8、已知:∠α是锐角,︒=36cos sin α,则α的度数是 9、当角度在︒0到︒90之间变化时,函数值随着角度的增大反而减小的三角函是 ( ) A .正弦和正切 B .余弦和余切 C .正弦和余切 D .余弦和正切 10、当锐角A 的22cos >A 时,∠A 的值为( ) A 小于︒45B 小于︒30C 大于︒45D 大于︒6011、在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦址与余弦值的情况( ) A 都扩大2倍 B 都缩小2倍 C 都不变 D 不确定12、已知α∠为锐角,若030cos sin =α,αtan = ;若1tan 70tan 0=⋅α,则_______=∠α;13、在△ABC 中,,900=∠C sin 23=A , 则cosB 等于( ) A 、1 B 、23 C 、22 D 、21 (2)、特殊角的三角函数值1、在Rt △ABC 中,已知∠C =900,∠A=450则A sin = 2、已知:α是锐角,221cos =α,tan α=______; 3、已知∠A 是锐角,且______2sin ,3tan ==AA 则;4、在平面直角坐标系内P 点的坐标(︒30cos ,︒45tan ),则P 点关于x 轴对称点P /的坐标为 ( )A . )1,23(B . )23,1(-C . )1,23(- D . )1,23(-- 5、下列不等式成立的是( )A .︒<︒<︒45cos 60sin 45tanB .︒<︒<︒45tan 60sin 45cotC .︒<︒<︒45tan 30cot 45cosD .︒<︒<︒30cot 60sin 45cos6、若1)10tan(30=+α,则锐角α的度数为( )A .200B .300C .400D .5007、计算(1)_______60cot 45tan _______,60cos 30sin 0=+=+; (2)︒-︒+︒+︒-︒30sin 30cos 30tan 4145sin 60cos 22(3)000045tan 30tan 145tan 30tan ⋅-+ (4))60sin 45(cos 30sin 60cos 2330cos 45sin 000000---+(3)、解直角三角形1、在△ABC 中,,900=∠C 如果4,3==b a ,求A ∠的四个三角函数值. 解:(1)∵ a 2+b 2=c2∴ c =∴sin A = cos A =∴tan A = cot A =2、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1)已知a =43,b =23,则c= ; (2)已知a =10,c =102,则∠B= ; (3)已知c =20,∠A =60°,则a= ; (4)已知b =35,∠A =45°,则a= ;3、若∠A = ︒30,10=c ,则___________,==b a ;4、在下列图中填写各直角三角形中字母的值.7、设Rt △ABC 中,∠C =90゜,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,根据下列所给条件求∠B 的四个三角函数值.(1)a =3,b =4; (2)a =6,c =10.8、在Rt △ABC 中,∠C =90゜,BC :AC =3:4,求∠A 的四个三角函数值.9、△ABC 中,已知0045,60,22=∠=∠=C B AC ,求AB 的长ABC9题(4)、实例分析1、斜坡的坡度是3:1,则坡角.____________=α2、一个斜坡的坡度为1=ι︰3,那么坡角α的余切值为 ;3、一个物体A 点出发,在坡度为7:1的斜坡上直线向上运动到B ,当30=AB m 时,物体升高 ( ) A730m B 830m C 23m D 不同于以上的答案 4、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( ) A ︒90 B ︒60 C ︒75 D ︒1055、电视塔高为350m ,一个人站在地面,离塔底O 一定的距离A 处望塔顶B ,测得仰角为060,若某人的身高忽略不计时,__________=OA m.6、如图沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时进行.已知∠ABD=1500,BD=520m,∠B=600,那么开挖点E 到D 的距离DE=____m 时,才能使A,C,E 成一直线.7、一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东060,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )A 18海里/小时B 318海里/小时C 36海里/小时D 336海里/小时8、如图,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三辅导班资料7 解直角三角函数一、知识点回顾1、锐角∠A的三角函数(按右图Rt△ABC填空)∠A的正弦:sin A = ,∠A的余弦:cos A = ,∠A的正切:tan A = ,∠A的余切:cot A =2、锐角三角函数值,都是实数(正、负或者0);3、正弦、余弦值的大小范围:<sin A<;<cos A<4、tan A•cot A = ; tan B•cot B = ;5、sin A =cos(90°- );cos A = sin( -)tan A =cot(); cot A =6、填表7、在Rt△ABC中,∠C=90゜,AB=c,BC=a,AC=b,1)、三边关系(勾股定理):2)、锐角间的关系:∠+∠= 90°3)、边角间的关系:sin A = ; sin B= ;cos A = ; cos B= ;tan A = ; tan B= ;cot A = ;cot B=8、图中角 可以看作是点A的角也可看作是点B的角;(1)9、(1)坡度(或坡比)是坡面的 高度(h )和 长度(l )的比。
记作i ,即i = ;(2)坡角——坡面与水平面的夹角。
记作α,有i =lh =tan α (3)坡度与坡角的关系:坡度越大,坡角α就越 ,坡面就越 二、巩固练习(1)、三角函数的定义及性质1、在△ABC 中,,900=∠C 13,5==AB AC ,则cos B 的值为2、在Rt ⊿ABC 中,∠C =90°,BC =10,AC =4,则______t a n _____,c o s ==A B ; 3、Rt △ABC 中,若,900=∠C 2,4==BC AC ,则tan ______=B 4、在△ABC 中,∠C =90°,1,2==b a ,则=A cos 5、已知Rt △ABC 中,若,900=∠C cos 24,135==BC A ,则._______=AC 6、Rt △ABC 中,,900=∠C 35tan ,3==B BC ,那么.________=AC 7、已知32sin -=m α,且a 为锐角,则m 的取值范围是 ;8、已知:∠α是锐角,︒=36cos sin α,则α的度数是 9、当角度在︒0到︒90之间变化时,函数值随着角度的增大反而减小的三角函是 ( )A .正弦和正切B .余弦和余切C .正弦和余切D .余弦和正切10、当锐角A 的22cos >A 时,∠A 的值为( ) A 小于︒45B 小于︒30C 大于︒45D 大于︒60 11、在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦址与余弦值的情况( )A 都扩大2倍B 都缩小2倍C 都不变D 不确定12、已知α∠为锐角,若030cos sin =α,αtan = ;若1t a n 70tan 0=⋅α,则_______=∠α;13、在△ABC 中,,900=∠C sin 23=A , 则cosB 等于( ) A 、1 B 、23 C 、22D 、21(2)、特殊角的三角函数值1、在Rt △ABC 中,已知∠C =900,∠A=450则A sin =2、已知:α是锐角,221cos =α,tan α=______; 3、已知∠A 是锐角,且______2sin ,3tan ==AA 则;4、在平面直角坐标系内P 点的坐标(︒30cos ,︒45tan ),则P 点关于x轴对称点P /的坐标为 ( ) A . )1,23(B .)23,1(- C . )1,23(- D . )1,23(-- 5、下列不等式成立的是( )A .︒<︒<︒45cos 60sin 45tanB .︒<︒<︒45tan 60sin 45cotC .︒<︒<︒45tan 30cot 45cosD .︒<︒<︒30cot 60sin 45cos 6、若1)10tan(30=+α,则锐角α的度数为( )A .200B .300C .400D .500 7、计算(1)_______60cot 45tan _______,60cos 30sin 0000=+=+;(2)︒-︒+︒+︒-︒30sin 30cos 30tan 4145sin 60cos 22(3)000045tan 30tan 145tan 30tan ⋅-+ (4))60sin 45(cos 30sin 60cos 2330cos 45sin 000000---+(3)、解直角三角形1、在△ABC 中,,900=∠C 如果4,3==b a ,求A ∠的四个三角函数值.解:(1)∵ a 2+b 2=c2∴ c =∴sin A = cos A =∴tan A = cot A =2、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1)已知a =43,b =23,则c= ; (2)已知a =10,c =102,则∠B= ; (3)已知c =20,∠A =60°,则a= ; (4)已知b =35,∠A =45°,则a= ;3、若∠A = ︒30,10=c ,则___________,==b a ;4、在下列图中填写各直角三角形中字母的值.7、设Rt△ABC中,∠C=90゜,∠A、∠B、∠C的对边分别为a、b、c,根据下列所给条件求∠B的四个三角函数值.(1)a =3,b =4; (2)a =6,c =10.8、在Rt△ABC中,∠C=90゜,BC:AC=3:4,求∠A的四个三角函数值.9、△ABC中,已知0045∠=CBAC,求AB的长=,2∠60,2=A9题B C(4)、实例分析1、斜坡的坡度是3:1,则坡角.____________=α2、一个斜坡的坡度为1=ι︰3,那么坡角α的余切值为 ;3、一个物体A 点出发,在坡度为7:1的斜坡上直线向上运动到B ,当30=AB m 时,物体升高 ( )A 730mB 830m C 23m D 不同于以上的答案4、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( ) A ︒90 B ︒60 C ︒75 D ︒1055、电视塔高为350m ,一个人站在地面,离塔底O 一定的距离A 处望塔顶B ,测得仰角为060,若某人的身高忽略不计时,__________=OA m.6、如图沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时进行.已知∠ABD=1500,BD=520m,∠B=600,那么开挖点E 到D 的距离DE=____m 时,才能使A,C,E 成一直线.7、一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东060,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )A 18海里/小时B 318海里/小时C 36海里/小时D 336海里/小时 8、如图,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高。
9、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m ,底CD 宽12m ,求路基顶AB 的宽B ADC10、如图,已知两座高度相等的建筑物AB 、CD 的水平距离BC =60米,在建筑物CD 上有一铁塔PD ,在塔顶P 处观察建筑物的底部B 和顶部A ,分别测行俯角0030,45==βα,求建筑物AB 的高。
(计算过程和结果一律不取近似值)11、如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?解直角三角形总复习答案二、巩固练习(1)三角函数的定义和性质 1、1312 2、29295 、 25 3、2 4、55 5、10 6、5 7、25.1<<m 8、540 9、B 10、 A 11、C 12、3 13、B (2)特殊角的三角函数值 1、222、13、214、A5、D6、A7、(1)1、333+ (2)12523-或12536- (3)32+ (4) 23(3)解直角三角形1、5=c 53s i n=A 54c o s =A 43t a n =A 34c o t =A 2、(1)152 (2)10 (3)310 (4)35 3、 5 、25 4、10=a 35=b 5、310=c 10=d 6、3334 3317=f 7、(1)5=c 54s i n=B 53c o s =B 34t a n =B 43c o t =B (2)8=b 54s i n=B 53c o s =B 34t a n =B 43c o t =B 8、解:设BC=3k ,AC=k︒=∠90Ck AB 5=∴54cos ,53sin ==∴A A 34c o t ,43t a n ==A A9、解:过A 作AD ⊥BC ,垂足为D 。
︒=∠=∠90ADB ADC 22,45=︒=∠AC A 2=∴AD 2,60=︒=∠AD B 3=∴AB(4)实例分析1、︒302、33、C4、C5、33350- 6、 7、B8、解:设铁塔AB 高x 米 ︒=∠30B 314cot =+==∠∴ABBDAB BC C 在ABD RT ∆中 ︒=∠45ADB即314=+xx解得:x=)737(+m 答:铁塔AB 高)737(+m 。
9、解:过B 作BF ⊥CD ,垂足为F BF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠3:2=iBCAE=3m∴DE=4.5mAD=BC ,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE∴CF=DE=4.5m∴EF=3m︒=∠=∠90AEF BFE∴BF//CD∴四边形ABFE 为平行四边形∴AB=EF=3m10、解:︒=∠∴︒=4545BPC α 在RT ∆BPC 中mCP m BC 6060=∴= 在矩形ABCD 中AD=BC=60m︒=∠∴︒=∠6030APD β 在RT ∆APD 中AD=60m, ︒=∠60APDm AB CD PD )32060(320-==∴=∴答:AB 高)32060(-米。
11、(1)过A 作AC ⊥BF ,垂足为C︒=∠∴︒=∠30601ABC 在RT ∆ABC 中AB=300km响城会受到这次台风的影A kmAC ABC ∴=∴︒=∠15030 (2)h h km km t hkm v kmDE kmCD kmad km AC ADAE E ,BF kmAD D ,BF 1071071007107100750200,150200==∴==∴=∴==== 使上取在使上取在答:A 城遭遇这次台风影响10个小时。