第十一讲 喷管流动过程1
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ie
n j I ej
j 1
N
m
k
R
:
等
(d) 计算喷管的平均等熵指数
T 燃烧产物从 ( P0c 、 0c )等熵膨胀到
( Pe 、 e ) 满足等熵方程: T
Peve P0c voc const.
k k
Pv R T
P lg e P 0c k P R T lg e 0c 0c P R T 0c e e
由于复合反应的影响,有:k平衡 k冻结
15
第五章 喷管流动过程
3、化学组分突然冻结的流动计算 由平衡流到冻结流的转变区域 c t 冻结面
火箭发动机原理
e
c
t
e 冻结流动
平衡流动
16
第五章 喷管流动过程
四、喷管流动参数及发动机理论比冲的计算:
在喷管热力计算结果的基础上进行计算 两种计算方法 利用气体动力学中的气动关系式及平均 比热比进行计算
(1)计算喷管指定截面 i 上(尤其是出口截面上)燃烧产物 的组分及其热力学参数,即: i、 i 、 i 、 i 、 i 和 Si 等。 n P T H
计算任务: (2)计算喷管指定截面 i上(尤其是出口截面上)燃 烧产物的流速 v i 和理论比冲 I s理
5
第五章 喷管流动过程
2、喷管热力计算的方程
2、燃烧产物膨胀到给定压强时燃气参数的计算:
火箭发动机原理
最典型、也是最常遇到的情况就是:在设计状态下,计算喷 管出口截面上的燃气参数。在设计状态下有: Pe Pa
燃烧产 物平衡 膨胀到 出口截 面的给 定压强 Pe
燃烧产 物冻结 膨胀到 出口截 面的给 定压强 Pe
12
第五章 喷管流动过程
火箭发动机原理
(c) 计算喷管的平均等熵指数
P lg e P 0c k P R T lg e 0c 0c P R T 0c e e
( 5 28 )
P lg e P 0c k P T lg e 0c P T 0c e
(5 16) (5 17)
利用热力学微分关系式表5-1
0 ~ ~ cP P T 0 S P 0 、T 0 SOc (5 22) T P 0 0 1 a PT T 1 M 0 c P a P 0 P ln (5 23) T u 2 2 2P 2 M u2
2 2 u0 c ~ ue ~ I m, 0 c I m ,e 2 2
uoc ue
I X H
~ ~ ue 2 I m , 0 c I m , e
~ I m,0c 是喷管入口截面上
燃烧产物的总焓
~ I m,e 是喷管出口截面上
燃烧产物的总焓
化学组分冻结的喷管流动, X 不变化 ②:理论比冲 I s
9
第五章 喷管流动过程
三、喷管流动过程中典型情况的求解方法:
火箭发动机原理
1、平衡膨胀到给定马赫数 M 及喷管喉部截面燃气参数的计算
平衡膨胀
喷管计算截面的参 数是给定了马赫数
喷管喉部截面 t 上,有: M t 1 , 可作为平衡膨胀到给定马赫数的 特殊情况处理
等熵方程 1 有:
2I m,0c I m a
uc 2H m,0c H m,e
冻结流动
Ae Pe Pa I s ue m
真空比冲
I s ,V ue
Ae P e m
( Pa 0)
设计状态比冲 I s ue
引入函数 1
火箭发动机原理
(1)等熵方程:
~ ~ S (P、T) S0c
1 S (P、T) S0c 0
喷管入口截面上 燃烧产物的熵值
~
~
喷管任一截面上 燃烧产物的熵值
~ S
N
S 0n j j
j 1
nj R0 n j ln ng j L 1
N
R0 n g ln P
Ⅰ. 燃烧产物平衡膨胀到给定压强 P 时的燃气参数的计算: e
采用平衡流动模型,计算步骤如下:
(1)估算 Te T0c Pe P 0c
k 1 k
并选取Te1 和 Te 2 ,使
Te1 Te Te 2
Te1 Te2 100K
~ (2)计算 ( Pe , Te1 ) 和 ( Pe , Te 2 ) 条件下出口截面的 nej1 、~e1 、 ej 2 、 S e 2 n S
1 S (P、T) S0c 0
~
~
喷管计算截面的参数方程 2 有:
M 0
2 ( P、T ) ln 2I m , 0 c I m ln a ln M 0
10
用牛顿迭代法求解由 1 和 2 组成的非线性方程组
~ ~ 1 S (P、 第五章 喷管流动过程T) S0c 0
(3)根据 S 0c S e ,利用内插法确定出口截面的 Te 。
~ ~
等
~ ~ ~ 如果 S 0 c 介于 S e1 和 S e 2 之间时:
~ ~ S0c Se1 Te Te1 ~ ~ (Te 2 Te1 ) Se 2 Se1
13
第五章 喷管流动过程
火箭发动机原理
(4)计算 ( Pe , Te )条件下喷管出口截面处产物的平衡组分及其它的热力学参数。 计算内容包括: (a) 燃烧产物的平衡组分: nej (b) 燃烧产物的总焓: (c) 计算: n g
k 1 k
(1)利用等熵关系式确定 Te :
(2)计算 ( Pe , Te ) 条件下喷管出口截面处除平衡组分外的其它的热力学参数。
计算内容包括: (a) 燃烧产物的总焓: (b) 计算: n g
Ie
n j I ej
j 1
N
m
R
k :
等
对冻结流动, 有: e 0c Re R0c 等
P 0、T 0
利用泰勒级数
0 0 1 0 P T 1 P 0、T 0 T 0 0 2 0 2 0 2 P 0 、T 0 P T P T
(5 2)
S 0 是1mol j组分在一个物理大 式中 j
气压及燃烧温度 T f 条件下的熵
6
第五章 喷管流动过程
火箭发动机原理
给定喷管计算截面 P P Const. 完全膨胀喷管的 上的压强 P : 出口截面有 Pe Pa
p : P p P0c 0 给定喷管压强比
RT aP P
0
0
N 精度判断 Y
P 1 P 0 P 0 T 1 T 0 T 0
解线性方程组
P
0
、 T 0
Stop
11
输出 P 、T
nj
热力学参数 H 、S 等
第五章 喷管流动过程
1 P
0
(5 12)
N 精度判断 Y
P 1 P 0 P 0 T 1 T 0 T 0
P
0
、 T 0
修正试算值
燃烧产物的压 强 P 和温度 T
nj
热力学参数 H 、S 等
(5 28)
14
To ppt.21
第五章 喷管流动过程
火箭发动机原理
Ⅱ . 燃烧产物冻结膨胀到给定压强 P 时的燃气参数的计算: e
燃烧产物组分冻结膨胀,则意味着喷管出口百度文库面处燃气的组分与入口截面
的完全相同,即
nej
是已知值。采用组分冻结流动模型,计算步骤如下:
P Te T0c e P 0c
取试算值 P 0、T 0 级数 展开
2 ( P、T) ln 2I m, 0 c I m ln a ln M 0 火箭发动机原理
0 0 1 0 1 0 1 P 0 、T 0 P T P T T P 0 0 2 0 2 0 2 P 0 、T 0 P T P T T P
4
第五章 喷管流动过程
二、喷管热力计算的任务与计算方案: 1、喷管热力计算的任务
火箭发动机原理
已知条件:
(1)喷管进口截面上燃烧产物的热力学 ~ T P0c 、0 f 、k 、 0c 等)以 S 参数(如 及产物组分的摩尔数 n0 j 等 (2)表示喷管计算截面的参数(如 给定 Pe (或 p )、 A 、 等) M
火箭发动机原理
1.推进剂燃烧完全,产物在流动过程中处于平衡状态 2.燃烧产物为完全气体 基本假设 3.喷管内的流动是一维的 4.燃烧过程是绝热的,喷管的流动过程是定常的、而且是等熵 的
17
第五章 喷管流动过程
火箭发动机原理
1、利用喷管热力计算的结果计算流动参数及发动机的理论比冲:
①:喷气速度 u e
1、喷管流动 过程分析
P
T
复合反应
A B AB Q
放热 改变了产物的组分
存在能量平衡问题
存在相平衡问题
3
第五章 喷管流动过程
2、喷管流动过程热力计算的理论模型: (1)燃烧产物是完全气体 简化假设:
火箭发动机原理
(2)流动过程是一个不存在任何不可 逆 S Const . 现象的理想流动过程 热力计算的理论模型: 等熵流动模型 S Const.
不可逆现象是指 摩擦、传热及其 它的不平衡现象
平衡流动模型
温度较高、压强较大、 产物组分浓度也较大的 情况,计算过程中采用 平衡膨胀的平均比热。
化学组分冻结 的流动模型
燃烧温度较低的情况, 计算过程中采用冻结 平均比热。
化学组分突然冻 结的流动模型
这一模型有时能满意 地替代考虑化学不平 衡的复杂计算。
( p P / P0c)
(2)表示喷管计 算截面的方程:
给定喷管面积比 A :
t ut A 0 u
2I m,0c I m a M 0
给定喷管计算截面 的马赫数 M : 给定喷管计算截 面的温度 T :
T T Const.
热力学参数 H 、S 等
nj
P、 T
8
第五章 喷管流动过程
3、非线性方程组
火箭发动机原理
1 (P、T) S (P、T) S0c 0 2 ( P、T) 0
~ ~
1
、 2 的求解方法
对于非线性方程组,一般采用牛顿迭代法或内插法求解
牛顿迭代法:
10、 20
引入函数 2
2 ( P、T) 0
7
第五章 喷管流动过程
(3)计算给定温度与压强条件下燃烧产物平衡组分
火箭发动机原理
nj
的方程: 化学平衡方程
质量守恒方程
等熵方程:
~ ~ 1 S (P、T) S0c 0
喷管热力计算的方程
喷管计算截面方程:
2 ( P、T) 0
质量守恒方程和化学平衡方程(计算 n j )
火箭发动机原理
第五章
喷管流动过程
§5.1
喷管流动过程的热力计算与发动机理论比冲
2
第五章 喷管流动过程
火箭发动机原理
§5.1 喷管流动过程的热力计算与发动机理论比冲
一、喷管中流动分析及热力计算模型: 燃烧产物的压强、温度下降( P 、T ),而 产物的流速增大( V )
流动过程是化学平衡移动过程(或称松弛过程)
第五章 喷管流动过程
Tf
~ S
火箭发动机原理
发动机工作过程能量转换示意框图 :
( Pc ,T f )下的 n j
k cp
cv
燃烧
推进剂 化学能 燃烧产物 热能
喷管中膨胀加速流动
火箭飞行 动能
对火箭 作推力
燃烧产物 动能
评定发动机性能的综合指标是发动机的比冲 :
I s c*CF
1
第五章 喷管流动过程
n j I ej
j 1
N
m
k
R
:
等
(d) 计算喷管的平均等熵指数
T 燃烧产物从 ( P0c 、 0c )等熵膨胀到
( Pe 、 e ) 满足等熵方程: T
Peve P0c voc const.
k k
Pv R T
P lg e P 0c k P R T lg e 0c 0c P R T 0c e e
由于复合反应的影响,有:k平衡 k冻结
15
第五章 喷管流动过程
3、化学组分突然冻结的流动计算 由平衡流到冻结流的转变区域 c t 冻结面
火箭发动机原理
e
c
t
e 冻结流动
平衡流动
16
第五章 喷管流动过程
四、喷管流动参数及发动机理论比冲的计算:
在喷管热力计算结果的基础上进行计算 两种计算方法 利用气体动力学中的气动关系式及平均 比热比进行计算
(1)计算喷管指定截面 i 上(尤其是出口截面上)燃烧产物 的组分及其热力学参数,即: i、 i 、 i 、 i 、 i 和 Si 等。 n P T H
计算任务: (2)计算喷管指定截面 i上(尤其是出口截面上)燃 烧产物的流速 v i 和理论比冲 I s理
5
第五章 喷管流动过程
2、喷管热力计算的方程
2、燃烧产物膨胀到给定压强时燃气参数的计算:
火箭发动机原理
最典型、也是最常遇到的情况就是:在设计状态下,计算喷 管出口截面上的燃气参数。在设计状态下有: Pe Pa
燃烧产 物平衡 膨胀到 出口截 面的给 定压强 Pe
燃烧产 物冻结 膨胀到 出口截 面的给 定压强 Pe
12
第五章 喷管流动过程
火箭发动机原理
(c) 计算喷管的平均等熵指数
P lg e P 0c k P R T lg e 0c 0c P R T 0c e e
( 5 28 )
P lg e P 0c k P T lg e 0c P T 0c e
(5 16) (5 17)
利用热力学微分关系式表5-1
0 ~ ~ cP P T 0 S P 0 、T 0 SOc (5 22) T P 0 0 1 a PT T 1 M 0 c P a P 0 P ln (5 23) T u 2 2 2P 2 M u2
2 2 u0 c ~ ue ~ I m, 0 c I m ,e 2 2
uoc ue
I X H
~ ~ ue 2 I m , 0 c I m , e
~ I m,0c 是喷管入口截面上
燃烧产物的总焓
~ I m,e 是喷管出口截面上
燃烧产物的总焓
化学组分冻结的喷管流动, X 不变化 ②:理论比冲 I s
9
第五章 喷管流动过程
三、喷管流动过程中典型情况的求解方法:
火箭发动机原理
1、平衡膨胀到给定马赫数 M 及喷管喉部截面燃气参数的计算
平衡膨胀
喷管计算截面的参 数是给定了马赫数
喷管喉部截面 t 上,有: M t 1 , 可作为平衡膨胀到给定马赫数的 特殊情况处理
等熵方程 1 有:
2I m,0c I m a
uc 2H m,0c H m,e
冻结流动
Ae Pe Pa I s ue m
真空比冲
I s ,V ue
Ae P e m
( Pa 0)
设计状态比冲 I s ue
引入函数 1
火箭发动机原理
(1)等熵方程:
~ ~ S (P、T) S0c
1 S (P、T) S0c 0
喷管入口截面上 燃烧产物的熵值
~
~
喷管任一截面上 燃烧产物的熵值
~ S
N
S 0n j j
j 1
nj R0 n j ln ng j L 1
N
R0 n g ln P
Ⅰ. 燃烧产物平衡膨胀到给定压强 P 时的燃气参数的计算: e
采用平衡流动模型,计算步骤如下:
(1)估算 Te T0c Pe P 0c
k 1 k
并选取Te1 和 Te 2 ,使
Te1 Te Te 2
Te1 Te2 100K
~ (2)计算 ( Pe , Te1 ) 和 ( Pe , Te 2 ) 条件下出口截面的 nej1 、~e1 、 ej 2 、 S e 2 n S
1 S (P、T) S0c 0
~
~
喷管计算截面的参数方程 2 有:
M 0
2 ( P、T ) ln 2I m , 0 c I m ln a ln M 0
10
用牛顿迭代法求解由 1 和 2 组成的非线性方程组
~ ~ 1 S (P、 第五章 喷管流动过程T) S0c 0
(3)根据 S 0c S e ,利用内插法确定出口截面的 Te 。
~ ~
等
~ ~ ~ 如果 S 0 c 介于 S e1 和 S e 2 之间时:
~ ~ S0c Se1 Te Te1 ~ ~ (Te 2 Te1 ) Se 2 Se1
13
第五章 喷管流动过程
火箭发动机原理
(4)计算 ( Pe , Te )条件下喷管出口截面处产物的平衡组分及其它的热力学参数。 计算内容包括: (a) 燃烧产物的平衡组分: nej (b) 燃烧产物的总焓: (c) 计算: n g
k 1 k
(1)利用等熵关系式确定 Te :
(2)计算 ( Pe , Te ) 条件下喷管出口截面处除平衡组分外的其它的热力学参数。
计算内容包括: (a) 燃烧产物的总焓: (b) 计算: n g
Ie
n j I ej
j 1
N
m
R
k :
等
对冻结流动, 有: e 0c Re R0c 等
P 0、T 0
利用泰勒级数
0 0 1 0 P T 1 P 0、T 0 T 0 0 2 0 2 0 2 P 0 、T 0 P T P T
(5 2)
S 0 是1mol j组分在一个物理大 式中 j
气压及燃烧温度 T f 条件下的熵
6
第五章 喷管流动过程
火箭发动机原理
给定喷管计算截面 P P Const. 完全膨胀喷管的 上的压强 P : 出口截面有 Pe Pa
p : P p P0c 0 给定喷管压强比
RT aP P
0
0
N 精度判断 Y
P 1 P 0 P 0 T 1 T 0 T 0
解线性方程组
P
0
、 T 0
Stop
11
输出 P 、T
nj
热力学参数 H 、S 等
第五章 喷管流动过程
1 P
0
(5 12)
N 精度判断 Y
P 1 P 0 P 0 T 1 T 0 T 0
P
0
、 T 0
修正试算值
燃烧产物的压 强 P 和温度 T
nj
热力学参数 H 、S 等
(5 28)
14
To ppt.21
第五章 喷管流动过程
火箭发动机原理
Ⅱ . 燃烧产物冻结膨胀到给定压强 P 时的燃气参数的计算: e
燃烧产物组分冻结膨胀,则意味着喷管出口百度文库面处燃气的组分与入口截面
的完全相同,即
nej
是已知值。采用组分冻结流动模型,计算步骤如下:
P Te T0c e P 0c
取试算值 P 0、T 0 级数 展开
2 ( P、T) ln 2I m, 0 c I m ln a ln M 0 火箭发动机原理
0 0 1 0 1 0 1 P 0 、T 0 P T P T T P 0 0 2 0 2 0 2 P 0 、T 0 P T P T T P
4
第五章 喷管流动过程
二、喷管热力计算的任务与计算方案: 1、喷管热力计算的任务
火箭发动机原理
已知条件:
(1)喷管进口截面上燃烧产物的热力学 ~ T P0c 、0 f 、k 、 0c 等)以 S 参数(如 及产物组分的摩尔数 n0 j 等 (2)表示喷管计算截面的参数(如 给定 Pe (或 p )、 A 、 等) M
火箭发动机原理
1.推进剂燃烧完全,产物在流动过程中处于平衡状态 2.燃烧产物为完全气体 基本假设 3.喷管内的流动是一维的 4.燃烧过程是绝热的,喷管的流动过程是定常的、而且是等熵 的
17
第五章 喷管流动过程
火箭发动机原理
1、利用喷管热力计算的结果计算流动参数及发动机的理论比冲:
①:喷气速度 u e
1、喷管流动 过程分析
P
T
复合反应
A B AB Q
放热 改变了产物的组分
存在能量平衡问题
存在相平衡问题
3
第五章 喷管流动过程
2、喷管流动过程热力计算的理论模型: (1)燃烧产物是完全气体 简化假设:
火箭发动机原理
(2)流动过程是一个不存在任何不可 逆 S Const . 现象的理想流动过程 热力计算的理论模型: 等熵流动模型 S Const.
不可逆现象是指 摩擦、传热及其 它的不平衡现象
平衡流动模型
温度较高、压强较大、 产物组分浓度也较大的 情况,计算过程中采用 平衡膨胀的平均比热。
化学组分冻结 的流动模型
燃烧温度较低的情况, 计算过程中采用冻结 平均比热。
化学组分突然冻 结的流动模型
这一模型有时能满意 地替代考虑化学不平 衡的复杂计算。
( p P / P0c)
(2)表示喷管计 算截面的方程:
给定喷管面积比 A :
t ut A 0 u
2I m,0c I m a M 0
给定喷管计算截面 的马赫数 M : 给定喷管计算截 面的温度 T :
T T Const.
热力学参数 H 、S 等
nj
P、 T
8
第五章 喷管流动过程
3、非线性方程组
火箭发动机原理
1 (P、T) S (P、T) S0c 0 2 ( P、T) 0
~ ~
1
、 2 的求解方法
对于非线性方程组,一般采用牛顿迭代法或内插法求解
牛顿迭代法:
10、 20
引入函数 2
2 ( P、T) 0
7
第五章 喷管流动过程
(3)计算给定温度与压强条件下燃烧产物平衡组分
火箭发动机原理
nj
的方程: 化学平衡方程
质量守恒方程
等熵方程:
~ ~ 1 S (P、T) S0c 0
喷管热力计算的方程
喷管计算截面方程:
2 ( P、T) 0
质量守恒方程和化学平衡方程(计算 n j )
火箭发动机原理
第五章
喷管流动过程
§5.1
喷管流动过程的热力计算与发动机理论比冲
2
第五章 喷管流动过程
火箭发动机原理
§5.1 喷管流动过程的热力计算与发动机理论比冲
一、喷管中流动分析及热力计算模型: 燃烧产物的压强、温度下降( P 、T ),而 产物的流速增大( V )
流动过程是化学平衡移动过程(或称松弛过程)
第五章 喷管流动过程
Tf
~ S
火箭发动机原理
发动机工作过程能量转换示意框图 :
( Pc ,T f )下的 n j
k cp
cv
燃烧
推进剂 化学能 燃烧产物 热能
喷管中膨胀加速流动
火箭飞行 动能
对火箭 作推力
燃烧产物 动能
评定发动机性能的综合指标是发动机的比冲 :
I s c*CF
1
第五章 喷管流动过程