高考数学压轴专题2020-2021备战高考《函数与导数》专项训练解析含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学】《函数与导数》知识点
一、选择题
1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛
⎫=++<< ⎪+++-⎝
⎭的最小值为
( ) A
B
C
D
【答案】B 【解析】 【分析】
利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】
2
2222sin 2sin cos 2cos 2sin cos
1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222
x x x x x x x x x x x x x x x x
x x x x +++-+++=
++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x x
x x x x x x x x x ⎛⎫⎛⎫
++ ⎪ ⎪⎝⎭⎝⎭=+=
+=⎛⎫⎛⎫
++ ⎪ ⎪
⎝⎭⎝⎭
, 则()21tan 0sin 32f x x x x π⎛
⎫=
+<< ⎪⎝
⎭, 322222
21sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '
'
'
--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭
. 令()cos 0,1t x =∈,()
32
61g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭
, 所以当03
x π
<<时,
()1
1,02
t g t <<<,从而()'0f x <; 当
3
2
x π
π
<<
时,()1
0,02
t g t <<
>,从而()'0f x >. 故(
)min 33f x f π⎛⎫== ⎪⎝⎭
. 故选:A 【点睛】
本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.
2
.3
ax ⎛ ⎝⎭
的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1
【答案】A 【解析】 【分析】
首先根据二项式定理求出a ,把a 的值带入1
1
a
dx x

即可求出结果. 【详解】
解题分析
根据二项式3
6ax ⎛- ⎝⎭
的展开式的通项公式得2
21
213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44
a
a ∴=∴=,
则4
4
111
11d d ln 2ln 2a x x x x x ===⎰⎰.
故选:A 【点睛】
本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k k
k n T a b -+=.属于中等
题.
3.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+
C .y x =
D .2y x =-
【答案】A 【解析】 【分析】
首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】
因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,
(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.
故选:A 【点睛】
本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.
4.已知()(1)|ln |
x
f x x x =
≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e
⎛⎫⋃ ⎪⎝⎭
B .11,e e ⎛⎫+
⎪⎝⎭
C .(1,)e e -
D .1
e e ⎛⎫ ⎪⎝⎭
,
【答案】C 【解析】 【分析】
由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】
由22
[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =
与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以
()|ln |ln x x f x x x =
=,令()ln x g x x
=,则'2ln 1()(ln )x g x x -=,由'
()0g x >得
x e >, 由'
()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示
要使原方程有4个根,则01m e
m e <<⎧⎨+>⎩
,解得1e m e -<<.
故选:C 【点睛】
本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.
5.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1
C .2
D .4
【答案】C 【解析】
【分析】
根据对称性即可求出答案. 【详解】
解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】
本题主要考查函数的对称性的应用,属于中档题.
6.已知()ln x
f x x
=
,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020
log 20202019
>
【答案】D 【解析】 【分析】
根据2
1ln (),(0,)x
f x x x -'=
∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】
2
1ln (),(0,)x
f x x x
-'=
∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;
对于选项B ,()2ln 4ln 2ln 2
4(2)442
f f ====,故B 正确;
对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,
ln ln a b
a b

<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,
(2019)(2020)f f ∴>,即
ln 2019ln 202022019020>⇒20192020ln 2020
log 2020ln 02019
219>=, 故选项D 不正确. 故选:D 【点睛】
本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.
7.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.
A .
34
B .
23
C .
13
D .
12
【答案】B 【解析】 【分析】
设正六棱柱容器的底面边长为x ,)3
1x -,则可得正六棱柱容器的容积为()())()32339214
V x x x x x x x =+-=-+,再利用导函数求得最值,即可求解. 【详解】
设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)3
12
x -, 所以正六棱柱容器的容积为()()()()3233921224
V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-
+,则在20,3⎛⎫
⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝

上单调递增,在2,13⎛⎫
⎪⎝⎭
上单调递减, 所以当2
3
x =时,()V x 取得最大值, 故选:B 【点睛】
本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.
8.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,
不等式()2
21f x t at ≤--成立,则t 的取值范围是( )
A .22t -≤≤
B .11
22
t -
≤≤ C .2t ≥或2t ≤-或0t =
D .1
2
t ≥
或12t ≤-或0t =
【解析】 【分析】
()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成
立,只需对于[]11a ∀∈-,,()2
121f t at -≤--即可.
【详解】
∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,
又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()2
21f x t at ≤--成立,
∴()2
2111t at f --≥-=-,
即220t at -≥, ①0t =时,不等式成立;
②0t >时,()2
220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;
③0t <时,()2
220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-
故选:C. 【点睛】
本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.
9.函数(
)
3
2x
y x x =-⋅的图象大致是( )
A .
B .
C .
D .
【答案】C 【解析】
排除法:根据函数(
)
3
2x
y x x =-⋅为奇函数,故图象关于原点对称;函数有1-,0,1三个零点;当2x =时,函数值为正数,进行选项排除即可. 【详解】
函数(
)
3
2x
y x x =-⋅为奇函数,故图象关于原点对称,故排除D ; 函数有1-,0,1三个零点,故排除A ; 当2x =时,函数值为正数,故排除B . 故选:C . 【点睛】
本题考查函数的图象,根据解析式求图像通常利用排除法,依据有函数奇偶性、单调性、零点、定义域、值域、特殊值等,属于中等题.
10.已知ln 3ln 4ln ,,34a b e c e
===(e
是自然对数的底数),则,,a b c 的大小关系是( ) A .c a b << B .a c b <<
C .b a c <<
D .c b a <<
【答案】C 【解析】 【分析】
根据ln 3ln 4ln ,,34a b e c e
=
==的结构特点,令()ln x f x x =,求导
()2
1ln x
f x x -'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解.
【详解】
令()ln x
f x x
=,
所以()2
1ln x
f x x -'=,
当0x e <<时, ()0f x '>,当x e >时,()0f x '<, 所以()f x 在()0,e 上递增,在(),+e ∞上递减. 因为34e <<,
所以 ()()()34>>f e f f , 即b a c <<. 故选:C 【点睛】
本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.
11.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭
( ) A .
12e
- B .2e - C .1-
D .e
【答案】B 【解析】 【分析】
对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1
x e
=求得结果. 【详解】
由题意得:()()121f x f x
''=+
令1x =得:()()1211f f ''=+,解得:()11f '=-
()12f x x '∴=-+
12f e e ⎛⎫
'∴=- ⎪⎝⎭
本题正确选项:B 【点睛】
本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.
12.已知函数2()f x x m =+与函数1()ln
3g x x x =--,1,22x ⎡∈⎤
⎢⎥⎣⎦
的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4
[2,2+ B .5
[2ln 2,
ln 2)4
-+ C .5(ln 2,2ln 2)4
+- D .(]2ln2,2-
【答案】A 【解析】 【分析】
将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦
恰有两个不同的解,令()()()h x f x g x =+,将问
题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦
上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定
区间端点值和最值,由此构造不等式求得结果. 【详解】
()f x Q 与()g x 在1,22x ⎡∈⎤
⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,
()()f x g x ∴=-在1,22⎡⎤
⎢⎥⎣⎦
恰有两个不同的解,
即2
21ln
3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤
⎢⎥⎣⎦
上恰有两个不同的解, 令()2
ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x
---+'=+-==
, ∴当1,12x ⎛⎫
∈ ⎪⎝⎭
时,()0h x '<;当()1,2x ∈时,()0h x '>,
()h x ∴在1
,12
⎛⎫
⎪⎝
⎭上单调递减,在()1,2上单调递增,
又15ln 224h m ⎛⎫
=--+
⎪⎝⎭
,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22
⎡⎤⎢⎥⎣⎦
上恰有两个零点,
则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢

⎭. 故选:A . 【点睛】
本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.
13.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则
()()20192024f f +=( )
A .-5
B .5
C .0
D .4043
【答案】B 【解析】 【分析】
根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】
由(8)()0f x f x ++=,得(8)()f x f x +=-,
所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,
所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.
得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】
此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.
14.已知函数()2
814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,
(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )
A .-4
B .-3
C .-2
D .-1
【答案】C 【解析】 【分析】
由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为
()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.
【详解】
由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,
由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()
21f x
-#-,
此时()f x 的值域为()g x 的值域的子集成立.
当3a >-时,()2
2814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,
即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】
本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.
15.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .
16
B .
13
C .
12
D .
56
【答案】A
【解析】
曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x =与直线y x =所围成的封闭图形的面积为()12
23100111|236
x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.
16.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )
A .()()2019202020202019f f >
B .()()20192020f f >
C .()()2019202020202019f f <
D .()()20192020f f < 【答案】A
【解析】
【分析】
构造函数()()f x g x x
=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.
【详解】
令()()()0f x g x x x =>,则()()()2xf x f x g x x
'-'=. 由已知得,当0x >时,()0g x '>.
故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,

()()2020201920202019
f f >,所以()()2019202020202019f f >. 故选:A.
【点睛】 本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.
17.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,
()20f -=,则()36f x x <+ 解集为( )
A .(),2-∞-
B .()2,2-
C .(),2-∞
D .()2,-+∞
【答案】D
【解析】
【分析】
设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得
解.
【详解】
设()()36g x f x x =--,
Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,
又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,
∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.
故选:D.
【点睛】
本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.
18.已知函数f (x )=2x -1
,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩
(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛
⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,1,22⎛
⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦
U 【答案】C
【解析】
【分析】
对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.
【详解】
当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =2
2(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,
所以此时函数g (x )的值域为(2a ,+∞),
由题得2a <1,即a <
12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],
当a ≥23时,-a +2≤2a ,由题得21,1222a a a a
-+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12
. 综合得a 的范围为a <
12或1≤a ≤2, 故选C .
【点睛】
本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.
19.设123log 2,ln 2,5a b c -===则
A .a b c <<
B .b c a <<
C .c a b <<
D .c b a << 【答案】C
【解析】
【分析】 由ln 2ln 2ln 3a b =<=及311log 3,2254a c >==<=可比较大小. 【详解】 ∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =
<=,即a b <. 又3311log 2log 3,2254a c =>=
=<=.∴a c >.综上可知:c a b << 故选C.
【点睛】
本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.
20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取
lg30.4771≈,lg 20.3010≈)
A .16
B .17
C .24
D .25 【答案】D
【解析】
【分析】
由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n ⎛⎫≥ ⎪⎝⎭
,利用运算法则可知32lg 2lg 3
n ≥⨯-,由此计算得到结果.
【详解】
记初始线段长度为a ,则“一次构造”后的折线长度为
43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭
, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n
⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭
, 即324.0220.30100.4771
n ≥
≈⨯-,∴至少需要25次构造. 故选:D .
【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。

相关文档
最新文档