结构力学精.同济大学_朱慈勉
结构力学课件.ppt同济大学 朱慈勉
刚片中任一两点间的距离保持不变,既由刚片中 任意两点间的一条直线的位臵可确定刚片中任一点 的位臵。所以可由刚片中的一条直线代表刚片。
二、研究体系几何组成的任务和目的:
1、研究结构的基本组成规则,用及判定体系是否 可作为结构以及选取结构的合理形式。
2、根据结构的几何组成,选择相应的计算方法和 计算途径。
§2-3 平面体系的几何组成分析
一、几何不变体系的简单组成规则 规则一 (两刚片规则):(图2-3-1) 两个刚片用不全交于一点也不全平行的三根链杆 相连,组成无多余约束的几何不变体系。 或:两个刚片用一个单铰和杆轴不过该铰铰心的 一根链杆相连,组成无多余约束的几何不变体系。 *虚铰的概念: 虚铰是由不直接相连接的两根链杆构成的。虚铰 的两根链杆的杆轴可以平行、交叉,或延长线交于 一点。 当两个刚片是由有交汇点的虚铰相连时,两个刚 片绕该交点(瞬时中心,简称瞬心)作相对转动。 从微小运动角度考虑,虚铰的作用相当于在瞬时 中心的一个实铰的作用。
四、有多余约束的几何不变体系:
拆除约束法:去掉体系的某些约束,使其成为无 多余约束的几何不变体系,则去掉的约束数即是体 系的多余约束数。 1、切断一根链杆或去掉一个支座链杆,相当去 掉一个约束; 2、切开一个单铰或去掉一个固定铰支座,相当 去掉两个约束;
3、切断一根梁式杆或去掉一个固定支座,相当 去掉三个约束; 4、在连续杆(梁式杆)上加一个单铰,相当去 掉一个约束。
§1-2 结构计算简图
1、结构计算简图的概念 2、结构计算简图的简化原则是: 1)计算简图要能反映实际结构的主要受力和变 形特点,即要使计算结果安全可靠; 2)便于计算,即计算简图的简化程度要与计算 手段以及对结果的要求相一致。
3、结构计算简图的几个要点:
新版同济大学朱慈勉结构力学第10章结构动..习题答案-新版.pdf
1
l
3
1 lk
3
C
.
lc
解:取 AC 杆转角为坐标,设在平衡位置附近发生虚位移
为: 1 q t l 2
3
1
1
lk l
3
3
.
l
..
l l c m x xdx 0
0
。根据几何关系,虚功方程
.
则同样有:
..
ma
ka
3ca
qt
。
3l
l
l
10-9 图示结构 AD 和 DF 杆具有无限刚性和均布质量 m , A 处转动弹簧铰的刚度系数为 k θ,C、 E 处 弹簧的刚度系数为 k ,B 处阻尼器的阻尼系数为 c,试建立体系自由振动时的运动方程。
ll
l
l
l
l
l
EI 32 2 3 32 32 2 19 3 32 19 3 64
同济大学朱慈勉 结构力学 第 10 章 结构动 ..习题答案
10-1 试说明动力荷载与移动荷载的区别。移动荷载是否可能产生动力效应? 10-2 试说明冲击荷载与突加荷载之间的区别。为何在作厂房动力分析时,吊车水平制动力可视作突 加荷载?
10-3 什么是体系的动力自由度?它与几何构造分析中体系的自由度之间有何区别?如何确定体系的 动力自由度?
10-4 将无限自由度的振动问题转化为有限自由度有哪些方法?它们分别采用何种坐标? 10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。 (a)
m1 EI
m2 EI
(b)
ym EI1= ∞
EI
分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度
(c)
m
m
同济大学朱慈勉 结构力学第11章_结构的稳定计算
§11-2 有限自由度体系的稳定 ——静力法和能量法
P
即 : P 3klP k l 0
2 2 2
A 1.618
1
2.618kl 3 5 特征值: P kl 2 0.382kl
B C
k
Pcr 0.382kl ---临界荷载
y1 1 ---失稳形式 y2 1.618
P A
EI
y1
k k
y2
ky1
l
B
EI
ky2
l
C
(2lk P ) y1 kly2 0 整理得 :(kl P ) y Py 0 1 2
为使y1、y2 不同时为零,令:
HB’
P
A’ B’
VB’
ky1 ky2
2kl P kl 0 ----稳定方程 kl P P
y
y(l ) l
y(l ) tanl
经试算: (l )min 4.493
2 Pcr min EI 4.493 2 EI ( ) EI 20.19 2 l l
2
3 2
5 2
l
§11-3 无限自由度体系的稳定——静力法
例11.8 求体系的临界荷载Pcr 。 P P
第十一两类稳定问题概述 §11-2 有限自由度体系的稳定 ——静力法和能量法
§11-3 无限自由度体系的稳定 ——静力法 §11-4 无限自由度体系的稳定 ——能量法
§11-1 概述
强度验算 薄壁结构 刚度验算 结构设计 高强材料结构 稳定验算——某些时候是必须的 (如钢结构) 主要受压的结构等 强度验算与刚度验算是在结构静力平衡的状态下、采用未变形的 结构的计算简图来分析的; 而稳定验算是在结构产生大变形后的几何形状和位置上进行计算 的,其方法已经属于几何非线性范畴,叠加原理不再适用。
结构力学答案-同济大学朱慈勉
FP
FP
4
1
FP
4
31
3
2
FP 2
பைடு நூலகம்
2
B
FP
1
3 4
FP
C
1
.1
2
3
.
4
FN1 = −
2 2 FP
∑ . 由 MB = 0,可求得FC = 0.75FP
.
X1
X2
D
FN 3 =
2 2
FP
∑ 由 MD = 0,可求得x1 = −FP → x2 = FP
由节点法,对C分析可求得FN 2
=
FP 4
3-15 试求图示桁架各指定杆件的内力。 (a)
qa 2
qa 2 2
qa 2qa
1.5qa
3-11 试指出图示桁架中的零杆。
1.5qa
FP
FP
页 19 / 180
结构力学答案-同济大学朱慈勉
FP
FP
FP
、
3-12 试求图示桁架各指定杆件的内力。 (b)
3m
3 ×3m
先求出支座反力,如图所示。零杆亦示于图中。 取1-1截面以上部分分析
F3
FBC
然后再依次隔离A, B, D点不难求得 F2 = −7.5KN (−), FBD = 3KN , F1 = −4KN (−)
=
0
→
FB x
=
4 3
P
∑ M C = 0 → FN 4 = −2P
1C
3 2 4D
2P 5 P FP
2
∑
取虚线所示的两个隔离体有:
M B = 0,
2 2
×
FN 2
朱慈勉_结构力学_第4章课后习题(全)
同济大学朱慈勉 结构力学 第4章习题答案(1)4-5 试用静力法作图示结构中指定量值的影响线。
(a)01571(5),77,(02)()2,(25)ARB RB QDB DC Md F d d x xx F F dd x x d M CD d d x d =⨯+⨯=⨯-∴=-=≤≤⎧=⎨≤≤⎩∑知以右侧受拉为正ACC DA2d5/7QDBF DCM(b)A 0F 1()F xa ≤≤=→=-↑∑以为坐标原点,向右为x 轴正方向。
弯矩M 以右侧受拉为正当0x a 时,M 分析以右部分,GCD 为附属部分,可不考虑x/aG E NE M F xxa==-G 31a x a ≤≤=-当时,去掉AF,GCD 附属部分结构,分析中间部分M=(2a-x),F4-x/aG RD NE 4033,F 4a x a x a x xa a a≤≤=-==-=-+∑G E 当3时,由M 知M =x-4a,F1E M 的影响线NE F 的影响线(c)2mN3N3N3N2()08()0F [(10)(1)10]/220420()(1)10200F 524F 01F 20x C x xxx x D xx CD C D x↑≤≤=→=---⨯=-≤≤-⨯=→=-=-≤≤=→-+∑∑∑RA I I y 上承荷载时:x以A 点为坐标原点,向右为x 轴正方向。
F =1-20当点以左时,取1-1截面左侧考虑由M 当12点以右时,由M 在之间的影响线用点及的值。
直线相连。
当0x 8时,取1-1截面左侧分析由F N2N13N22sin 451F 2200F F F cos 4545x x==-=→=-+=-∑x 知由F A B CDEFN3F N2F N1F(d)M01(8)F 8F 18F F 1F 803110F F 0F 8110F F F 04220F 4F20F x d x d dx dx d x d x d d d =→⨯-=⨯→=-+=→=≤≤-=→+=→=≤≤-=→=→=≤≤-=→⨯+⨯=→=-∑∑∑∑上承荷载时当时,取截面右侧分析。
结构力学朱慈勉版课后答案【重要】
朱慈勉 结构力学 第2章课后答案全解(b)解:基本结构为:1M2Mp M M()EIEI 1086623323326611=⨯⨯+⨯⨯+⨯⨯=δ EI=常数6m6m6mEDACB20kN/m X1 X120kN/mX2 X2363361 11 118090 15030150()03323326612=⨯⨯-⨯⨯=EI δ ()EIEI 1086623323326622=⨯⨯+⨯⨯+⨯⨯=δEI EI p 27003231806212362081632323180621121=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⨯⨯⨯=∆EI EI p 5403231806212362081632323180621122=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯-⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯+⨯⨯⨯⨯=∆ ⎩⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧=+=+5250540108027001082111X X EI X EIEIX EI m KN M CA ⋅=⨯-⨯-=9035253180 m KN M CB ⋅=⨯+⨯-=12035253180 ()m KN M CD ⋅-=-⨯=3056(c)解:基本结构为: ⊕6m 3m5III 10kN ·m10kN ·mEA =∞C ABD 5I12m10kN ·m10kN ·mX110kN ·m 119 339 10kN ·m10kN ·m 10 101N 1M p M()EI I E EI 5558293299233256633263111=⨯⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯=δ ()EI I E p 1442103109109231025661-=⨯⎥⎦⎤⎢⎣⎡⨯+⨯+⨯⨯+⨯⨯⨯-=∆ 01111=∆+p X δ29.11=⇒Xm KN M AC ⋅=-⨯=61.11029.19m KN M DA ⋅-=-⨯=13.61029.13 m KN M DC ⋅=⨯=87.329.13M题6-6图6-7 试用力法计算图示组合结构,求出链杆轴力并绘出M 图。
朱慈勉语录完整版同济史上最受争议
朱慈勉语录完整版同济史上最受争议的老师(转)朱慈勉,同济大学土木工程学院教授,博士学位,博士研究生导师,结构力学研究室主任,国家教育部高等学校力学基础课程教学指导分委员会委员,上海市土木工程学会会员,国家一级注册结构工程师。
1970年毕业于清华大学工程力学数学系固体力学专业,此后几年在国家第一机械工业部第八设计院从事结构设计工作,1978年进入同济大学。
长期从事结构力学等课程的教学和结构工程领域的科学研究与工程实践,曾多次获得国家级和上海市科技进步奖和教学成果奖,发表论文数十篇。
提出了“概念结构力学”与“计算结构力学”并进发展的结构力学学科发展思想,并付诸于教学实践。
1997 年和2003年曾先后获得上海市育才奖和高校名师奖。
曾先后主持和参加数十项大型结构工程的设计和技术咨询,具有深厚的学科造诣,并善于解决实际工程问题。
研究方向:概念结构力学,结构非线性分析,结构与地基的共同工作工号:1981128 姓名:朱慈勉性别:男籍贯:上海民族:汉出生日期:保密政治面貌:中XXXXX员参加时间:保密系/所:建筑工程系部门:结构力学教学管理室职称:教授,博士生导师现任职务:结构力学研究室主任传真:65986345 办公电话:65982927最高学历:博士研究生最高学位:博士第一外语:英语家庭电话:保密博导任职时间:1999年08月享受津贴时间:电子由E件:zcm@抽烟,骂人,捧自己,瞧不起女生…朗诵俄文,抨击时政……上课时幽默到极点,下课时古怪到极点1。
全世界的结构力学书上就我编的有这个内容,不信你去看2。
你平时也算是好学生,怎么每次都出这些低级错误?3。
我上周去中南地区开会,那些人都说是我的"粉丝",叫我出个题目讲解一下, 我看下面全是五六十岁的老教授,都教了一辈子结构力学了,不想为难他们,但是他们就是要我讲,没办法,我就讲了一个,就是我刚才问你们的这个,竟然没有一个人能回答,唉,概念都没掌握,教了一辈子结构力学,连最基本的都做不来,还搞出什么抛物线形4o ――(朱)实际上振型是由第一,第二…第n个振型合成的,就像你的基因里有你爸爸的,你妈妈的。
同济大学 结构力学课后习题及答案解析(完整版)
(c) (d)
(e) (f)
(g) (h)
2-5 试从两种不同的角度分析图示体系的几何构造。 (a)
(b)
同济大学朱慈勉 结构力学 第 3 章习题答案 3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) A
FP
B
C
FPa
D
E
F
a
a
a
a
a
(b) 2kN/m
10kN
A
2m
6m
B
C
2m
D
4m
2m
1
1
2a
1
2
2
M1
6-4 试用力法计算图示结构,并绘其内力图。 (a)
6m
20kN/m
B
1.75EI
C
D
EI
A
6m
3m
解:基本结构为:
20kN/m
X1
6 1
M1
6 810
810
Mp
11X1 1p 0
M M1X1 M p
(b) E
2a
4a
C
D
q
EI=常数
A
B
4a
4a
解:基本结构为:
X1
计算 M 1 ,由对称性知,可考虑半结构。
(c)
15kN
20kN/m
A
B
C
D
E
F
2m 2m 3m
3m
3m
4m
(d)
6kN·m
4kN·m
A 3m
B
C
D
2m 2m
E 2m 2m
A
4kN
FG
H
2m 2m 2m
同济大学朱慈勉结构力学课后习题答案
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
更多土木工程考研资料见淘宝店铺:征世考研
同济大学 结构力学课后习题及答案解析(完整版)
R=2m
4m
A O
M ( ) 1 (R sin )2 1 2 R(1 cos ) 2
M ( ) 1
B
1 EI
2 1 [1 (R sin )2 1 2 R(1 cos )]Rd 02
= (8-3 ) -1.42 (逆时针)
EI
EI
(d) A q
R EI=常数
O
B
5-7 试用图乘法计算图示梁和刚架的位移:(a) ΔyC ;(b) ΔyD ;(c) ΔxC ;(d) ΔxE ;(e) D ;(f) ΔyE 。 (a)
5-5 已知桁架各杆的 EA 相同,求 AB、BC 两杆之间的相对转角 ΔB 。 5-6 试用积分法计算图示结构的位移:(a) ΔyB ;(b) ΔyC ;(c) B ;(d) ΔxB 。
(a)
q2 q1
A
EI
B
l
以B点为原点,向左为正方向建立坐标。
q( x)
q2
l
q1
x
q1
M
p(x)
1 2
52.17
M
248.49
104.37 52.14
6-6 试用力法求解图示超静定桁架,并计算 1、2 杆的内力。设各杆的 EA 均相同。
(a)
(b)
1
1
2
FP
FP
a
a
a
2m
题 6-6 图
6-7 试用力法计算图示组合结构,求出链杆轴力并绘出 M 图。
2
30kN 2m
(a)
a 1.5m
l
A
kθ=
12EI l
2 3
2 3
6 1 20 62 8
3 2
1 6180 3 2
朱慈勉语录完整版同济史上最受争议
朱慈勉语录完整版同济史上最受争议的老师(转)朱慈勉,同济大学土木工程学院教授,博士学位,博士研究生导师,结构力学研究室主任,国家教育部高等学校力学基础课程教学指导分委员会委员,上海市土木工程学会会员,国家一级注册结构工程师。
1970年毕业于清华大学工程力学数学系固体力学专业,此后几年在国家第一机械工业部第八设计院从事结构设计工作,1978年进入同济大学。
长期从事结构力学等课程的教学和结构工程领域的科学研究与工程实践,曾多次获得国家级和上海市科技进步奖和教学成果奖,发表论文数十篇。
提出了“概念结构力学”与“计算结构力学”并进发展的结构力学学科发展思想,并付诸于教学实践。
1997年和2003年曾先后获得上海市育才奖和高校名师奖。
曾先后主持和参加数十项大型结构工程的设计和技术咨询,具有深厚的学科造诣,并善于解决实际工程问题。
研究方向:概念结构力学,结构非线性分析,结构与地基的共同工作工号: 1981128 姓名: 朱慈勉性别: 男籍贯: 上海民族: 汉出生日期: 保密政治面貌: 中XXXXX员参加时间: 保密系/所: 建筑工程系部门: 结构力学教学管理室职称: 教授,博士生导师现任职务: 结构力学研究室主任传真: 65986345 办公电话: 65982927最高学历: 博士研究生最高学位: 博士第一外语: 英语家庭电话: 保密博导任职时间: 1999年08月享受津贴时间:电子邮件: zcm@抽烟,骂人,捧自己,瞧不起女生......朗诵俄文,抨击时政......上课时幽默到极点,下课时古怪到极点.....1。
全世界的结构力学书上就我编的有这个内容,不信你去看2。
你平时也算是好学生,怎么每次都出这些低级错误?3。
我上周去中南地区开会,那些人都说是我的"粉丝",叫我出个题目讲解一下,我看下面全是五六十岁的老教授,都教了一辈子结构力学了,不想为难他们,但是他们就是要我讲,没办法,我就讲了一个,就是我刚才问你们的这个,竟然没有一个人能回答,唉,概念都没掌握,教了一辈子结构力学,连最基本的都做不来,还搞出什么抛物线形........4。
同济大学朱慈勉 结构力学 第5章习题答案
同济大学朱慈勉结构力学第5章习题答案5-1 试回答:用单位荷载法计算结构位移时有何前提条件?单位荷载法是否可用于超静定结构的位移计算?aAF P F PBCa a a aD ENCD NCE NBE NAD NBC NAC DEF F0, F F2 F F FA B P P P PR R F F F F=========-由对称性分析知道1-22-2211212121222-22N NP122(2)2F F1()2 6.832222()P PPcx PF a F al F aF aEA EA EA EA EA⨯⨯-⨯-⨯-⨯-⨯∆==⨯+⨯+=↓∑5-4已知桁架各杆截面相同,横截面面积A=30cm2,E=20.6×106N/cm2,F P=98.1kN。
试求C点竖向位移yCΔ。
k5PF -5PF -5PF -5PF -54P F 54P F 54PF2PF 2PF 25544P P P P F F F F ===NAD NAE NEC NEF 由节点法知:对A 节点 F =-5F 对E 节点 F Fk1 115(122516()()24)4 11.46 ()N NP yc P P P F F l F F F EA EA cm =∆==⨯⨯⨯+⨯⨯+⨯-⨯⨯=↓∑NAD NAE 由节点法知:5对A 节点 F =-F 25-5525-5 已知桁架各杆的EA 相同,求AB 、BC 两杆之间的相对转角B Δθ。
8kN42424242-42-4244884444-4-4-8-8-12-12杆的内力计算如图所示施加单位力在静定结构上。
其受力如图142142141414-28141424-其余未标明的为零力杆11(1242)N NP BF F l EA EAθ∆==-∑5-6 试用积分法计算图示结构的位移:(a )yB Δ;(b )yC Δ;(c )B θ;(d )xB Δ。
211232113421yc 1004142B ()1()26()111 ()()()26111 =()30120p llp q q q x x q l q qM x q x x lM x x q q M x M x dx q x x dx EI EI l q l q l EI -=+-=+=-∴∆=⨯=++⎰⎰以点为原点,向左为正方向建立坐标。
结构力学.同济大学_朱慈勉
3、刚片:假想的一个在平面内完全不变形的刚性 物体叫作刚片。在平面杆件体系中,一根直杆、折 杆或曲杆都可以视为刚片,并且由这些构件组成的 几何不变体系也可视为刚片。
刚片中任一两点间的距离保持不变,既由刚片中 任意两点间的一条直线的位置可确定刚片中任一点 的位置。所以可由刚片中的一条直线代表刚片。
精品课件
精品课件
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性
静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
精品课件
1、内力概念
内力是结构承受荷载及变形的能力的体现,可理 解为在各种外因用下结构内部材料的一种响应。内 力是看不见的,但可由结构上受有荷载和结构发生 变形(变形体)体现。
1)复链杆:若一个复链杆上连接了N个结点,则 该复链杆具有(2N-3)个约束,等于(2N-3)个链杆的 作用。 2)复铰:若一个复铰上连接了N个刚片,则该复 铰具有2(N-1)个约束,等于(N-1)个单铰的作用。
精品课件
三、多余约束 在体系上加上或撤除某一约束并不改变原体系的
自由度数,则该约束就是多余约束。
拆除约束法:去掉体系的某些约束,使其成为无 多余约束的几何不变体系,则去掉的约束数即是体 系的多余约束数。
1、切断一根链杆或去掉一个支座链杆,相当去 掉一个约束;
2、切开一个单铰或去掉一个固定铰支座,相当 去掉两个约束;
3、切断一根梁式杆或去掉一个固定支座,相当 去掉三个约束;
4、在连续杆(梁式杆)上加一个单铰,相当去 掉一个约束。
§1-2 结构计算简图
结构力学朱慈勉版课后答案【重要】
朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F a4P F Q34P F 2P F(b)aaaa a2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)242018616MQ18(b)4kN ·m 3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m 6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
结构力学(朱慈勉版)上课件
图乘。 a
MK图
ql 2
8
a
l
c
MP图
d
ql 2
8
l
Δ
1 EI
(
al 2
)
(
2c 3
d) 3
(2 3
l
ql )(c 8
d 2
)
第6章
使用乘法时应注意的问题小结: 1、yo必须取自直线图形; 2、当MK为折线图形时,必须分段计算; 3、当杆件为变截面时亦应分段计算; 4、图乘有正负之分; 5、若两个图形均为直线图形时,则面积、纵标可任意
A
A
p
A B
p
A
AB B
AB A B AB A B
第6章
4、上述各种位移统称为“广义位移”。与广义 位移相对应的力称为“广义力”。
二、计算结构位移的目的
1、刚度验算:电动吊车梁跨中挠度 fmax≤l/600。
2、计算超静定结构必须考虑位移条件。
3、施工技术的需要。
190.59 0.03m( ) EA
第6章
例题3 试求图示半径为R的圆弧形曲梁B点的竖向 位移BV。梁的抗弯刚度EI为常数。
M P PR sin
M K R sin
第6章
解: (1)在B点加一单位力(右图) ,写出单位力作用下的弯
矩表达式
(2)写出单位力作用下的弯矩表达式(左图)
第6章
二、图乘法证明
y
MP(x) d
M K M P ds l EI
1 EI
B
A M K M Pdx
1 EI
B
A x tgM Pdx