第十届华杯赛口试试题及解案

合集下载

华杯赛决赛试题及答案

华杯赛决赛试题及答案

华杯赛决赛试题及答案一、选择题(每题5分,共20分)1. 若一个数的平方根是a,则这个数是:A. a^2B. -a^2C. |a|D. a^32. 一个等差数列的前三项分别为2,5,8,则此数列的通项公式为:A. 3n - 1B. 3n - 2C. 3n + 2D. 3n - 33. 对于函数f(x) = ax^2 + bx + c,若a < 0,b > 0,则f(x)的图像可能是:A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个开口向上的双曲线D. 一个开口向下的双曲线4. 一个圆的半径为r,圆心到直线的距离为d,若圆与直线相交,则:A. d > rB. d < rC. d = rD. d ≤ r答案:1. A2. B3. B4. B二、填空题(每题5分,共10分)1. 一个圆的周长为2π,那么它的面积是______。

2. 如果一个三角形的两边长分别为3和4,夹角为60度,那么第三边的长度是______。

答案:1. π2. √13三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 = c^2,则这个三角形是直角三角形。

2. 解方程组:\[\begin{cases}x + y = 5 \\2x + 3y = 11\end{cases}\]答案:1. 证明:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

设三角形ABC,其中AB=a,BC=b,AC=c。

根据题目条件,有a^2 + b^2 = c^2。

根据勾股定理的逆定理,可以得出∠C=90°,即三角形ABC是直角三角形。

2. 解:将第一个方程乘以2得到2x + 2y = 10。

然后用这个新方程减去第二个方程,得到y = 1。

将y = 1代入第一个方程,得到x + 1 = 5,解得x = 4。

因此,方程组的解为x = 4,y = 1。

华杯赛历届试题及答案

华杯赛历届试题及答案

华杯赛历届试题及答案华杯赛,全称“华罗庚数学金杯赛”,是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。

以下是历届华杯赛的部分试题及答案,供参考:一、选择题1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?- A. 3- B. 4- C. 5- D. 6答案:A二、填空题1. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是________ 立方厘米。

答案:2402. 计算下列数列的第10项:1, 1, 2, 3, 5, 8, 13, 21, 34, ...答案:55三、解答题1. 一个水池有注水口和排水口,单开注水口每小时可注水20吨,单开排水口每小时可排水10吨。

如果同时打开注水口和排水口,水池每小时净增水量是多少吨?如果池中原有水100吨,需要多少时间才能将水排空?答案:同时打开注水口和排水口时,水池每小时净增水量是20吨- 10吨 = 10吨。

要将100吨水排空,需要的时间为100吨÷ 10吨/小时 = 10小时。

2. 一个班级有48名学生,其中1/3是男生,剩下是女生。

问这个班级有多少名女生?答案:班级中有48名学生,其中1/3是男生,即48 * (1/3) = 16名男生。

剩下的学生是女生,所以女生人数为48 - 16 = 32名。

四、证明题1. 证明对于任意的正整数n,n的立方与n的和不小于n的平方与n 的两倍之和。

答案:设n为任意正整数。

我们需要证明n^3 + n ≥ n^2 + 2n。

展开立方项,得到n^3 + n - n^2 - 2n = n(n^2 - n - 1) = n(n - (1 + √5)/2)(n - (1 - √5)/2)。

由于n是正整数,(n - (1 +√5)/2)和(n - (1 - √5)/2)都是负数或零,因此整个表达式是非负的,即n^3 + n ≥ n^2 + 2n。

华杯赛试题及答案小学

华杯赛试题及答案小学

华杯赛试题及答案小学一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的因数只有1和它本身,那么这个数是:A. 合数B. 质数C. 偶数D. 奇数3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 26立方厘米C. 28立方厘米D. 30立方厘米4. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。

2. 一个数的最大因数是______。

3. 一个数的因数的个数是______。

4. 一个数的倍数的个数是______。

三、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。

2. 一个数的平方是64,求这个数。

3. 一个班级有45名学生,如果每排坐5名学生,那么需要排几排?四、应用题(每题15分,共30分)1. 小明买了3支铅笔和2本笔记本,每支铅笔的价格是1元,每本笔记本的价格是2元。

请问小明一共花了多少钱?2. 一个长方体的长是10cm,宽是8cm,高是6cm,求它的表面积。

答案:一、选择题1. C2. B3. A4. C二、填空题1. 它本身2. 它本身3. 有限个4. 无限个三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数是8或-8(因为8^2 = 64且(-8)^2 = 64)3. 需要排的排数 = 学生总数÷ 每排人数= 45 ÷ 5 = 9排四、应用题1. 小明一共花了3 × 1元+ 2 × 2元 = 3元 + 4元 = 7元2. 表面积= 2 × (长× 宽 + 长× 高 + 宽× 高)= 2 × (10cm × 8cm + 10cm × 6cm + 8cm × 6cm) = 2 × (80平方厘米 + 60平方厘米 + 48平方厘米) = 2 × 188平方厘米 = 376平方厘米。

马鞍山市成功学校第十届“华杯赛”集训题(4)

马鞍山市成功学校第十届“华杯赛”集训题(4)

马鞍山市成功学校第十届“华杯赛”集训题(4)一、填空题(每小题10分,共60分)1.计算:+++++++++432113211211 (100)3211+++++ = . 2.已知ac z c b y b a x -=-=-,则z y x ++= . 3.在分数4328的分子、分母上分别加上正整数a 、b 以后,所得的结果是127,那么b a + 的最小值是 .4. 刘林在计算一道多位数乘法的算式时,把被乘数十位上的5看成了8,算出的结果是83568;张明在做这道题时,把被乘数百位的4看成了2,算出的结果是78048.正确的结果是 . 5.如图,在△ABC 中,E 、D 、G 分别是AB 、BC 、AD 的中点,那么图中与△AED 的面积相等的有n 个,则n 等于 __________ .6.小明、小强、小华三个人参加华杯赛,他们是来金城、沙市、水乡的选手,并分别获得一、二、三等奖,现在知道:(1)小明不是金城的选手;(2)小强不是沙市的选手;(3)金城的选手不是一等奖;(4)沙市的选手得二等奖;(5)小强不是三等奖.根据上述情况,小华就是 的选手,他得的是 等奖.二、解下列各题(每小题10分,共60分)7.三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为0,a b ,b 的形式,试求20012000b a+的值.B AC ED G8.如果把一个六位数的个位数移到最前面的十万位上,把其他各位的数字依次向后移一位,得到一个新的六位数,如果新数是原数的5倍,那么原来的六位数几?9.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现他从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?10.一条船往返于甲、乙两港之间.由甲至乙是顺水行驶;由乙至甲是逆水行驶.已知船在静水中的速度为每小时8公里,平时逆行与顺行所用的时间的比为2∶1.某天恰逢暴雨,水流速度变为原来的2倍,这条船往返共用了9小时,那么甲、乙港相距多少公里?11.某公园门票价格,对达到一定人数的团体,按团体票优惠.现有A、B、C三个旅游团共72人,如果各团单独购票,门票费依次为360元、384元、480元;如果三个团合起来购票,总共可少花72元.(1)这三个旅游团各有多少人?(2)在下面填写一种票价方案,使其与上述购票情况相符:12.一个棱长为6cm的正方体,把它切开成49个小正方体,小正方体的大小不必都相同,而小正方体的棱长以厘米作单位必须是整数.问:可切出几种不同尺寸的正方体?每种正方体的个数各是多少?参考答案一、填空题1.10199 2.0 3.24 4.82848 5.3 6.金城 三 二、解下列各题7.由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,a b ,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a b 与中有一个是1,但若0=a ,会使ab 无意义,∴0≠a ,只能0=+b a ,即b a -=,于是1-=a b .只能是1=b ,于是a =-1。

华杯赛决赛试题及答案

华杯赛决赛试题及答案

华杯赛决赛试题及答案一、选择题1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是三角形的D. 地球是正方形的答案:B2. 以下哪个数字是最小的质数?A. 2B. 3C. 4D. 5答案:A3. 以下哪个选项是正确的?A. 2 + 2 = 5B. 3 - 1 = 1C. 4 * 2 = 6D. 5 / 2 = 2答案:C二、填空题1. 请写出圆的面积公式:__________。

答案:πr²2. 请写出勾股定理的公式:__________。

答案:a² + b² = c²3. 请写出牛顿第二定律的公式:__________。

答案:F = ma三、解答题1. 已知一个直角三角形,两条直角边的长度分别为3和4,求斜边的长度。

答案:斜边长度为5,因为根据勾股定理,3² + 4² = 5²。

2. 一个数列的前三项为2, 4, 6,每一项都是前一项加上2,求第10项的值。

答案:第10项的值为20,因为每一项都是前一项加上2,所以第10项的计算方式为2 + (10-1)*2 = 20。

3. 一个水池,打开水龙头后,每分钟流入水池的水量是固定的,如果单独打开一个水龙头,需要1小时才能将水池填满,如果同时打开两个水龙头,需要40分钟才能将水池填满。

请问,如果同时打开三个水龙头,需要多少时间才能将水池填满?答案:需要24分钟。

设水池的容量为C,单个水龙头每分钟的进水量为x,则有C = 60x。

两个水龙头同时打开时,每分钟的进水量为2x,所以C = 40 * 2x。

由此可得,x = C / 60。

三个水龙头同时打开时,每分钟的进水量为3x,所以需要的时间t = C / (3x) = 60 / 3 = 20分钟。

第十届“华杯赛”小学组总决赛二试题

第十届“华杯赛”小学组总决赛二试题
699
第十届 “华杯赛”总决赛小学组二试试题
l. 如 下 页 图 ,四 边 形 ABCD 中 ,对 角 线 AC 和 BD 交 于 O 点 。已 知 :AO = l , 并且
三角形ABD 的面积 3 , 那 么 OC 的 长 是 多 少 ? 三角形CBD的面积 5
2. 将 1/2 化 成 小 数 等 于 0.5 , 是 个 有 限 小 数 ; 将 1/11 化 成 小 数 等 于
3. 计 算 :
1 1 1 1 1 3 5 3 5 7 5 7 9 2001 2003 2005
4. abc 表 示 一 个 十 进 制 的 三 位 数 , 若 abc 等 于 由 a , b , c 三 个 数 码 所 组 成 的全体两位数的 和,写出所 有满足上 述条件的三 位数。 5. 由 26 = 1 2 + 5 2 = 1 2 + 3 2 + 4 2 , 可 以 断 定 26 最 多 能 表 示 为 3 个 互 不 相 等 的 非 零 自 然 数 的 平 方 和 , 请 你 判 定 360 最 多 能 表 示 为 多 少 个 互 不 相 等 的非零自然数的 平方之和? 6. 有 若 干 名 小 朋 友 , 第一名小 朋友的糖果 比第二名小 朋友的糖果多 2 块, 第二名小朋友的 糖果比第三 名小朋友 的糖果多 2 块 ……即前一 名小朋 友总比后 一名小朋 友多二 块糖果 。他们按 次序围 成圆圈 做游戏, 从第 一名小朋友开始 给第即每一名小 朋友总是 将前面传来 的糖果再加 上自己 的 2 块传给下一名 小朋友。当 游戏进行 到某一名小 朋友收到上 一名小 朋友传来 的糖果但 无法按 规定给 出糖果时 ,有两 名相邻 小朋友的 糖果 数 的 比 是 13 : 1 , 问 最 多 有 多 少 名 小 朋 友 ?

华杯赛试题及答案初中

华杯赛试题及答案初中

华杯赛试题及答案初中一、选择题(每题3分,共30分)1. 已知函数y=f(x)在点x=a处的导数为f'(a),那么曲线y=f(x)在点(a, f(a))处的切线斜率为:A. f(a)B. f'(a)C. f(a) - f'(a)D. f'(a) - f(a)2. 一个数列的前三项为1,1,2,从第四项开始,每一项是前三项的和,那么这个数列的第10项是:A. 76B. 89C. 144D. 2333. 一个圆的直径为10,那么这个圆的面积是:A. 25πB. 50πC. 100πD. 200π4. 一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是:A. 7B. 10C. 11D. 145. 一个数的平方根是2和-2,那么这个数是:A. 4B. -4C. 2D. -26. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是:A. 5B. 6C. 7D. 87. 一个数列的前三项为2,4,8,从第四项开始,每一项是前三项的乘积,那么这个数列的第5项是:A. 64B. 128C. 256D. 5128. 一个圆的半径为5,那么这个圆的周长是:A. 10πB. 20πC. 30πD. 40π9. 一个等边三角形的边长为6,那么这个三角形的高是:A. 3√3B. 4√3C. 6√3D. 9√310. 一个数的立方根是3,那么这个数是:A. 27B. 81C. 243D. 729二、填空题(每题4分,共20分)1. 如果一个数的倒数是它本身,那么这个数是______。

2. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是______。

3. 一个数的绝对值是5,那么这个数可以是______。

4. 一个圆的半径为7,那么这个圆的面积是______。

5. 一个直角三角形的两条直角边长分别为5和12,那么这个三角形的斜边长是______。

三、解答题(每题10分,共50分)1. 已知函数y=x^2-4x+3,求函数的顶点坐标。

第十届华杯赛口试试题及解案

第十届华杯赛口试试题及解案

第十届华杯赛口试试题题1.(共答题1)粤++=10在上面的算式中,粤、惠、州、华、罗、庚、金、杯、赛代表1~9这九个不同的数字。

请给出一种填数法,使得等式成立。

题2.(群答题1)跳绳的时候,可以认为绳子的中间点在同一个圆周上运动。

如果小光用0.5秒跳一个“单摇”,用0.6秒跳一个“双摇”,则跳“单摇”时绳中间点的速度和跳“双摇”时绳中间点的速度之比是多少?(说明:“单摇”是脚离地面一次,绳子转一圈;“双摇”是脚离地面一次,绳子转两圈。

) 题3.(必答题A1)如图,阴影正方形的顶点分别是大正方形EFGH各边的中点,分别以大正方形各边的一半为直径向外作半圆,再分别以阴影正方形的各边为直径向外作半圆,形成8个“月牙形”。

这8个“月牙形”的总面积为5平方厘米,问大正方形EFGH的面积是多少平方厘米?题4.(必答题A2)两个自然数a,b的最小公倍数等于50,问a+b有多少种可能的数值?题5.(必答题A3)如图所示,三角形ABC中,点X,Y,Z分别在线段AZ,BX,CY上,且YZ=2ZC,ZX =3XA,XY=4YB,三角形XYZ的面积等于24,求三角形ABC的面积。

题6.(必答题A4)你能在3×3的方格表(如图)中填入彼此不同的9个自然数(每个格子里只填一个数),使得每行、每列及两条对角线上三个数的乘积都等于2005吗?若能,请填出一例,若不能,请说明理由。

题7.(必答题A5)已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平,如图所示。

求重叠部分(灰色三角形)的面积。

题8.(必答题A6)开始有三个数为1,1,1,每次操作把其中的一个数换成其他两数的和。

问经过10次操作后所得的三个数中,最大数的最大可能值是多少?题9.(群答题2)中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例为15∶2∶3。

今有木炭50千克,要配制“黑火药”1000千克,还需要木炭多少千克?题10.(群答题3)图中的大正方形ABCD的面积是18平方厘米,灰色正方形MNPQ的边MN在对角线BD 上,顶点P在边BC上,Q在边CD上。

第十届“华杯赛”小学组总决赛二试题

第十届“华杯赛”小学组总决赛二试题

699 第十届 “华杯赛”总决赛小学组二试试题
l.如下页图,四边形ABCD 中,对角线AC 和BD 交于O 点。

已知:AO =l ,并且5
3CBD ABD =的面积三角形的面积三角形,那么OC 的长是多少?
2.将1/2化成小数等于0.5,是个有限小数;将1/11化成小数等于
0.0909……,简记为90
.0 ,是纯循环小数;将1/6化成小数等于0.l666……,简记为6
01.0 ,是混循环小数。

现在将2004个分数,2005
1,41,31,21 化成小数,问:其中纯循环小数有多少个? 3.计算:2005
200320011975175315311⨯⨯++⨯⨯+⨯⨯+⨯⨯ 4.abc 表示一个十进制的三位数,若abc 等于由a ,b ,c 三个数码所组成的全体两位数的和,写出所有满足上述条件的三位数。

5.由26=12+52=12+32 +42,可以断定26最多能表示为3个互不相等的非零自然数的平方和,请你判定360最多能表示为多少个互不相等的非零自然数的平方之和?
6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多2块,第二名小朋友的糖果比第三名小朋友的糖果多2块……即前一名小朋友总比后一名小朋友多二块糖果。

他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友2块糖果,第二名小朋友给第三名小朋友4块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的2块传给下一名小朋友。

当游戏进行到某一名小朋友收到上一名小朋友传来的糖果但无法按规定给出糖果时,有两名相邻小朋友的糖果数的比是13:1,问最多有多少名小朋友?。

初中华杯赛试题及答案

初中华杯赛试题及答案

初中华杯赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于4B. 3的立方等于27C. 4的平方等于16D. 5的立方等于125答案:A2. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个是质数?A. 4B. 6C. 8D. 11答案:D4. 一个三角形的三个内角之和等于:A. 90度B. 180度C. 270度D. 360度答案:B5. 以下哪个选项是正确的等式?A. 2x + 3 = 5x - 7B. 3x - 2 = 2x + 3C. 4x = 2x + 8D. 5x + 6 = 5x - 6答案:C6. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A7. 以下哪个选项是正确的不等式?A. 3 > 4B. 2 < 1C. 5 ≥ 5D. 6 ≤ 7答案:C8. 以下哪个选项是正确的分数?A. 1/2B. 2/3C. 3/4D. 4/5答案:A9. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 4:5 = 8:10D. 5:6 = 10:12答案:B10. 以下哪个选项是正确的几何图形?A. 正方形B. 矩形C. 菱形D. 梯形答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可以是______。

答案:±52. 一个数的平方根是3,这个数是______。

答案:93. 一个数的立方根是2,这个数是______。

答案:84. 一个数的倒数是1/4,这个数是______。

答案:45. 一个数的两倍是8,这个数是______。

答案:4三、解答题(每题10分,共50分)1. 解方程:2x - 5 = 9答案:x = 72. 计算:(3x^2 - 2x + 1) / (x - 1),当x = 2时的值。

华杯赛试题及答案小学b卷

华杯赛试题及答案小学b卷

华杯赛试题及答案小学b卷一、选择题(每题2分,共10分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的因数包括1和它本身,那么这个数是:A. 合数B. 质数C. 既不是质数也不是合数D. 无法确定答案:B3. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,那么它的体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米答案:A4. 以下哪个图形是轴对称图形?A. 圆形B. 正方形C. 长方形D. 所有选项答案:D5. 一个数加上它的相反数等于:A. 0B. 1C. 2D. 无法确定答案:A二、填空题(每题3分,共15分)1. 一个数的最小倍数是它本身,这个数是______。

答案:12. 一个数的因数最大是18,那么这个数可能是______。

答案:1, 2, 3, 6, 9, 183. 一个长方体的体积是120立方厘米,如果长是10厘米,宽是4厘米,那么高是______厘米。

答案:34. 一个数的约数包括1、2、3、6,那么这个数是______。

答案:65. 如果一个数的因数只有1和它本身,那么这个数是______。

答案:质数三、解答题(每题5分,共10分)1. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求它的体积。

答案:8厘米× 6厘米× 5厘米 = 240立方厘米2. 一个数的最小倍数是它本身,这个数是几?请说明理由。

答案:这个数是1。

因为1是最小的自然数,它的倍数只有1本身,没有其他因数。

华杯赛1-15届的真题和答案

华杯赛1-15届的真题和答案

=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。
18.【解】三个背包分别装 8.5 千克、6 千克与 4 千克,4 千克、3 千克与 2 千克,这时最重 的背包装了 lO 千克。 另一方面最重的包放重量不少于 10 千克:8.5 千克必须单放(否则这一包的重量超过 10)6 千 克如果与 2 千克放在一起, 剩下的重量超过 10, 如果与 3 千克放在一起, 剩下的重量等于 10。 所以最重的背包装 10 千克。 19.【解】从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽, 也就是说,二个小纸片的长等于三个小纸片的宽。 已知小纸片的宽是 12 厘米,于是小纸片的长是:12× 3÷ 2=18(厘米), 阴影部分是三个正方形,边长正好是小纸片的长与宽的差:18-12=6 于是,阴影部分的面积是:6× 6× 3=108(平方厘米)。

第十届华杯赛决赛试题答案

第十届华杯赛决赛试题答案

第十届华杯赛决赛试题答案2008-04-19 22:37分类:华杯赛字号:大大中中小小第十届华杯赛决赛试题一、填空(每题10分,共80分)12.计算:①18.3×0.25+5.3÷0.4-7.13 = ();②= ()。

3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B,1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=()。

5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度?10.有2、3、4、5、6、7、8、9、10和11共10个自然数,①从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质;②说明从这10个数中最多可以选出多少个数,这些数两两互质。

华杯赛初中试题及答案

华杯赛初中试题及答案

华杯赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2 + 2 = 3B. 2 + 2 = 4C. 2 + 2 = 5D. 2 + 2 = 6答案:B2. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 25B. 30C. 50D. 60答案:C3. 一个数的3倍加上5等于20,这个数是多少?A. 5B. 4C. 3D. 2答案:A4. 一个圆的直径是14厘米,它的半径是多少厘米?A. 7B. 14C. 28D. 21答案:A5. 一个班级有40名学生,其中女生占60%,那么女生有多少人?A. 24B. 26C. 28D. 30答案:A6. 一个数的一半加上4等于9,这个数是多少?A. 5B. 10C. 8D. 6答案:B7. 一个三角形的底边长是8厘米,高是6厘米,它的面积是多少平方厘米?A. 24B. 48C. 32D. 16答案:A8. 一个数的4倍减去8等于12,这个数是多少?A. 6B. 4C. 5D. 3答案:A9. 一个数的3倍是45,那么这个数是多少?A. 15B. 20C. 30D. 45答案:A10. 一个数的2倍加上3等于11,这个数是多少?A. 4B. 3C. 2D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的5倍是25,这个数是______。

答案:52. 一个数的6倍减去12等于18,这个数是______。

答案:63. 一个长方形的长是15厘米,宽是10厘米,它的周长是______厘米。

答案:504. 一个数的4倍加上8等于32,这个数是______。

答案:65. 一个数的3倍是27,那么这个数是______。

答案:9三、解答题(每题10分,共50分)1. 一个数的7倍加上14等于56,求这个数。

答案:(56 - 14) / 7 = 42. 一个班级有50名学生,其中男生占40%,求男生有多少人。

答案:50 * 40% = 203. 一个圆的周长是31.4厘米,求这个圆的半径。

1-16届华杯赛复赛试题原题

1-16届华杯赛复赛试题原题

第一届华杯赛复赛试题1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。

问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。

如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。

问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。

一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。

现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。

问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。

大正方形的面积是49平方米,小正方形的面积是4平方米。

问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。

问剪下有多长?8、将0、1、2、3、4、5、6这七个数字填在圆圈的方格内,每个数字恰好出现一次,组成只有一位数和两位数的整数式。

问填在方格内的数是几?○×○=□=○÷○9、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都比赛一盘。

到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。

问小强赛了几盘?10、有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子。

第一队里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的五分之二,把这三堆棋子集中在一起,问白子占全部的几分之几?11、甲、乙两班的同学人数相等,各有一些同学参加课外天文小组,甲班参加天文小组的人数恰好是乙班没有参加的人数的三分之一,乙班参加天文小组的人数是甲班没有参加的人数的四分之一。

第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。

答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=( )。

答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十届华杯赛口试试题题1.(共答题1)粤++=10在上面的算式中,粤、惠、州、华、罗、庚、金、杯、赛代表1~9这九个不同的数字。

请给出一种填数法,使得等式成立。

题2.(群答题1)跳绳的时候,可以认为绳子的中间点在同一个圆周上运动。

如果小光用0.5秒跳一个“单摇”,用0.6秒跳一个“双摇”,则跳“单摇”时绳中间点的速度和跳“双摇”时绳中间点的速度之比是多少?(说明:“单摇”是脚离地面一次,绳子转一圈;“双摇”是脚离地面一次,绳子转两圈。

) 题3.(必答题A1)如图,阴影正方形的顶点分别是大正方形EFGH各边的中点,分别以大正方形各边的一半为直径向外作半圆,再分别以阴影正方形的各边为直径向外作半圆,形成8个“月牙形”。

这8个“月牙形”的总面积为5平方厘米,问大正方形EFGH的面积是多少平方厘米?题4.(必答题A2)两个自然数a,b的最小公倍数等于50,问a+b有多少种可能的数值?题5.(必答题A3)如图所示,三角形ABC中,点X,Y,Z分别在线段AZ,BX,CY上,且YZ=2ZC,ZX =3XA,XY=4YB,三角形XYZ的面积等于24,求三角形ABC的面积。

题6.(必答题A4)你能在3×3的方格表(如图)中填入彼此不同的9个自然数(每个格子里只填一个数),使得每行、每列及两条对角线上三个数的乘积都等于2005吗?若能,请填出一例,若不能,请说明理由。

题7.(必答题A5)已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平,如图所示。

求重叠部分(灰色三角形)的面积。

题8.(必答题A6)开始有三个数为1,1,1,每次操作把其中的一个数换成其他两数的和。

问经过10次操作后所得的三个数中,最大数的最大可能值是多少?题9.(群答题2)中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例为15∶2∶3。

今有木炭50千克,要配制“黑火药”1000千克,还需要木炭多少千克?题10.(群答题3)图中的大正方形ABCD的面积是18平方厘米,灰色正方形MNPQ的边MN在对角线BD 上,顶点P在边BC上,Q在边CD上。

问灰色正方形MNPQ的面积是多少平方厘米?题11.(共答题2)将25块边长为1的正方体积木堆放成一个几何体,如图所示,看谁堆放的几何体的表面积最小?最小的表面积是多少?(说明:这是一道现场动手操作题,每队的4名选手,既要动手,又要动脑,而且要有很好的合作精神。

参赛队如果都没得到“最小表面积是54”的堆放法,就以堆放表面积最小的队为胜者。

因此,本题以“看谁堆放的几何体的表面积最小?最小的表面积是多少?”来设问)题12.(必答题B1)下图是中国古代的“杨辉三角形”,问:写在图中“网点”处所有数的和是多少?题13.(必答题B2)一张面积为7.17平方厘米的平行四边形纸片WXYZ放在另一张平行四边形纸片EFGH上面,如上页右图所示,得出A,C,B,D四个交点,并且AB∥EF,CD∥WX。

问纸片EFGH 的面积是多少平方厘米?说明理由。

题14;(必答题B3)小于10且分母为36的最简分数共有多少个?题15.(必答题B4)如图所示,如果长方形ABCD的面积是56平方厘米,那么四边形MNPQ的面积是多少平方厘米?题16.(必答题B5)你能用写有数字的卡片,,,,,,,排成两个自然数,使得其中的一个数是另一个数的2倍吗?如果能,请排出一例,如果不能,请说明理由。

题17.(必答题B6)从下图a那样的等边三角形开始,将三角形的每条边三等分,然后以中间的线段为边向外作新的等边三角形,如图b,得到一个“雪花六角形”。

接着将“雪花六角形”的12条边的每一条三等分,仍以中间的线段为边向外作新的等边三角形,如图c,得到一个新的“雪花形”。

问:图c的面积与图a的面积的比是多少?题18.(群答题4)构成自然数。

的所有数字互不相同,这些数字的乘积等于360。

求n的最大值。

题19.(群答题5)鹅城西湖落天鹅,一湖一对两鹅多,一湖三只三只少,共落天鹅有几多?(说明:惠州别称“鹅城”,城中的西湖是著名风景区,由丰、鳄、平、菱、南5个湖区组成。

题意是说:一个湖区落一对天鹅多两只天鹅,一个湖区落三只天鹅少三只天鹅,问共落有多少只天鹅?)题20.(共答题3)编号为1~9的九位小朋友,胸前都别着一个汉字,依次为:惠、州、西、湖、丰、鳄、平、菱、南,如图所示站在五个圆的标志中,且每个圆中的小朋友的编号的和均为13,请指出别着“丰”字的小朋友的编号最大是几?题21.(抢答题1)13位同学参加某项赈灾捐款,每人的捐款数均为整数元。

马小虎很快计算出他们的平均捐款数为64.96元,可惜百分位的数字有误。

问:这13位同学的捐款总数是多少元?题22.(抢答题2)右图中的两个滑块A,B由一个连杆连接,分别可以在垂直和水平的滑道上滑动。

开始时,滑块A距O点20厘米,滑块B距O点15厘米。

问;当滑块A向下滑到O点时,滑块B 滑动了多少厘米?题23.(抢答题3)算盘上一左一右列出了两个十进位的数,左边的是个7位数,右边的是个4位数,如图所示,问左边的数除以右边的数的商是多少?题24.(抢答题4)如图所示,圆周上的十个点将圆周十等分,连接间隔两个点的等分点,共得出圆的十条弦,它们彼此相交,构成各种几何图形。

请回答:图中共有多少个平行四边形?题25.(抢答题5)圆上的100个点将该圆等分为100段等弧,随意将其中的一些点染成红点,要保证至少有4个红点是一个正方形的4个顶点,问:你至少要染红多少个点?题26.(抢答题6)用数字1,2,3,4,5,6填满一个6×6的方格表,如右图所示,每个小方格只填其中的一个数字。

将每个2X 2正方格内的四个数字的和称为这个2×2正方格的“标示数”。

问能否给出一种填法,使任意两个“标示数”均不相同?如果能,请举出一例;如果不能,请说明理由。

题27.(共答题4(操作))一个考古发现的正多边形残片,如图所示:只用一副学生三角板和一支铅笔为工具,请你判定这个正多边形的边数。

(说明:所给正多边形残片中的∠EAB=∠ZFBA=∠165°,需要选手动手去量)题28.(群答题6)下面的两条横幅:中华少年杯赛联谊切磋勾股炎黄子孙惠州弘志振兴中华每个字代表一个小于25的非零自然数,不同的字代表不同的数,相同的字代表相同的数。

已知这些字代表的34个数的平均值是12丧。

问“中华”两个字代表的自然数之和的最大值是多少?参考答案1.答案不唯一,写出一个即可。

如:9++=10,9++=10,9++=10,9++=10,7++=10,6++=10,++6=10均为解答。

2.答案:3:5分析:设绳中间点运动的圆周的半径为r,则绳子转一圈绳中间点运动了2πr的距离,“单摇”和“双摇”时的速度分别为和,所以速度之比为:=:=:=3:53.答案:10分析:如图所示,连接AB和CD相交于O,容易由勾股定理和半圆面积公式得到三角形,ACH的面积,即得到三角形AOC的面积等于AH,HC上两个“月牙形”的面积之和。

因此,这8个“月牙形”的总面积等于正方形ACBD的面积。

由于这8个“月牙形”的总面积为5平方厘米,而正方形EFGH的面积为正方形ACBD的面积的2倍,所以正方形EFGH的面积等于10平方厘米。

4.答案:8分析:因为:50=2×5,a,b是50的约数,它们只能取1,2,5,10,25,50。

不妨设a≥b,当取a=50时,b=1,2,5,10,25,50;当取a=25时,b=2,10 所以,a+b共有8种可能的不同数值。

两个自然数a,b的最小公倍数等于50,当a≥b时,a+b取不同数值可列表如下:5.答案:59分析:连接AY,CX,BZ,如图所示,由三角形XYZ的面积等于24,YZ=2ZC,三角形XZC的面积等于12。

又ZX=3XA,三角形XZC的面积等于12,所以三角形AXC的面积等于4。

三角形AYX 的面积等于8。

注意到XY=4YB,三角形ABY的面积等于2。

三角形ZBY的面积等于6,三角形CBZ的面积等于3。

所以三角形ABC的面积=24+12+4+8+2+6+3=59。

6.答案;不能分析:如果能填,则填入的彼此不同的9个自然数将是2005的9个彼此不同的约数,然而2005的彼此不同的正约数只有1,5,401,2005这4个,故不能。

7.答案:10分析:如图所示,因为∠EBD=∠EDB,显然BE=DE,AE=CE设BE=DE=x,则AE=CE=8-x由勾股定理得(8一z)+4=x解之得x=5所以,S=·BE·CD=×5×4=108. 答案:144分析:每次把三个数从小到大排序,再把前面的最小的数换成后面两个数的和,结果为{1,1,1}→{1,1,2}→{1,2,3,}→{2,3,5)→{3,5,8}→{5,8,13}→…经观察,最大的数构成一个斐波那契(Fibonacci)数列,开始的两个数是1,2,从第三项开始,每个数是前面两个数的和。

因此为1,2,3,5,8,13,21,34,55,89,144经过lO次操作后,该数列中第11个数是144,即最大数的最大可能值是144。

9.答案:100分析:由硝酸钾,硫磺,木炭的比例为15:2:3求得,木炭所占的比例为,因此,配制1000千克的“黑火药”需要木炭1000×=150(千克),今有木炭50千克,故还需要木炭150千克-50千克=100千克。

10.答案:4分析:连接AC交BD于O,作大正方形ABCD的外接正方形EFGH,如图所示,则正方形EFGH的面积是36平方厘米。

所以,DB=AC=6厘米。

易知DM=MQ=MN=NB=2厘米所以灰色正方形的面积是4平方厘米。

11.答案:54分析:25块边长为1的正方体积木堆放成一个几何体,当小积木自相重合的面最多时表面积最小。

设想27块边长为1的正方体积木,其表面积为54(图a)。

现在要去掉2块小积木成为25块,其总表面积不会减少。

要使得总表面积最小,发现在一个角处去掉相邻的两块小积木时(图b),或在两个角上各去掉一块小积木时(图C),总表面积不变,与边长为3的立方体的表面积相等,为3×3×6=54。

所以堆放25块小积木的最小表面积是54。

12.答案:127分析:这是一道找规律的速算题。

第1行的数是1;第2行的2个数的和是2;第3行的3个数的和是4;第4行的4个数的和是8;第5行的5个数的和是16;第6行的6个数的和是32;第7行的7个数的和是64。

求和:1+2+4+8+16+32+64=127。

13.答案:7.17分析:连接AC,CB,BD,DA,如图所示,因为AB∥EF∥GH,所以ABC的面积是平行四边形AEFB面积的一半,△ABD的面积是平行四边形的AHGB面积的一半,因此四边形ACBD的面积是平行四边形EFGH面积的一半。

相关文档
最新文档