第11章 数的开方测试题

合集下载

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。

数的开方测试题

数的开方测试题

第11章 数的开方单元测试题学号: 姓名:一、选择题(每小题3分,共30分):1.与数轴上的点一 一对应的是( )A 、有理数B 、整数C 、无理数D 、实数2.8的立方根是( )A .-2 B.2 C.3 D.43.若一个有理数的平方根与立方根是相等的,则这个有理数一定是( )A 、0B 、1C 、0或1D 、0和±14.下列等式中,错误的是( )A .864±=± B.1511225121±= C.62163-=- D.1.0001.03-=-5.下列说法中正确的是 ( ) A.36的平方根是±6 B.16的平方根是±2C.|-8|的立方根是-2D.16的算术平方根是46、7、若正数a 的算术平方根比它本身大,则( )A 、0<a<1B 、a>0C 、a<1D 、a>18. 下面各正方形的边长不是有理数的是 ( )A. 面积为25的正方形B.面积为169的正方形 C. 面积为27的正方形 D. 面积为1.44的正方形9.一个自然数的算术平方根为a ,则下面紧接着的一个自然数的算术平方根是( )A.1+aB.1+aC. 12+aD. 12+a10.估算192+的值是在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间二、填空题(每小题3分,共30分):11、25的算术平方根______。

12、13.比较大小:-2_____ -。

14.若2x =1,则3x =_________; 15.在 3.14,33,31,2,⋅⋅21.0,722,3π,0.2020020002…,3216,94中,有理数有______________________________, 无理数有_______________________________. 16.如果a 的平方根等于2±,那么_____=a 。

华师大版八年级上册数学第11章 数的开方 含答案

华师大版八年级上册数学第11章 数的开方 含答案

华师大版八年级上册数学第11章数的开方含答案一、单选题(共15题,共计45分)1、按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+2、下列运算正确的是()A. =±2B. =﹣16C.x 6÷x 3=x 2D.(2x 2)3=8x 63、下列结论正确的是().A.64的立方根是B. 没有立方根C.若,则D.4、下列各数中,最小的数是()A.3 ﹣2B.C.1-D.5、下列关于的说法中,错误的是()A. 是无理数B.2< <3C.5的平方根是D. 是5的算术平方根6、若有理数a、b满足a+=3+b,则a+b的值()A.3+B.4C.3D.3-7、下列变形正确的是()A. B. C. =-4 D.±=±118、若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为()A.bB.b-2aC.2a-bD.b+2a9、估算-3介于哪两个整数之间()A.1-2B.2-3C.3-4D.4-510、下列说法错误的是()A.有理数和无理数统称为实数;B.无限不循环小数是无理数;C. 是分数;D. 是无理数11、下列说法中,不正确的是()。

A.0的平方根是0B.-4的平方根是-2C.1的立方根是1D.-8的立方根是-212、5﹣2 ,1 ,的大小关系是()A.5﹣2 >>1B.5﹣2 >1 >C.>5﹣2 >1 D.1 >>5﹣213、下列说法正确的是()A.求sin30°的按键顺序是、30、=B.求2 3的按键顺序、2、、3、= C.求的按键顺序是、、8、= D.已知sinA=0.5018,用计算器求锐角A的大小,按键顺序是、、0.5018、=14、若a、b为实数,且满足|a﹣5|+=0,则b﹣a的值为()A.5B.0C.-5D.以上都不对15、下列各组数中互为相反数的是()A.﹣2与﹣B.2与|﹣2|C.﹣2与D.﹣2与二、填空题(共10题,共计30分)16、若一个正数的平方根分别是和,则这个数是________17、如果(a,b为有理数),则a=________,b=________.18、比较大小:﹣3 ________﹣4.(填“>”“<”或“=”)19、|1﹣|=________.20、设,(n为自然数),其中与分别表示的整数部分和小数部分,如[2.5]=2, =0.5; , =0.4;则=________21、平方后等于的有理数是________.22、若的平方根为±3,则a=________.23、 ________.24、如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i,(5+i)(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4i2=19﹣17i请根据以上内容的理解,利用以前学习的有关知识将(1+2i)(1﹣3i)化简结果为________.25、对于有理数,b,定义min{ ,b}的含义为:当<b时,min{ ,b}=,当>b时,min{ ,b}=.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{ ,}=,min{ ,b}=b,且和b为两个连续正整数,则+b的平方根为____________.三、解答题(共5题,共计25分)26、计算:( -1)0+(-1)2015+( )-1-2sin60°27、化简:已知实数在数轴上的位置如图,求代数式的值28、已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.29、实数a,b在数轴上的位置如图所示.化简:+ + +.30、已知一个正数的平方根为2a﹣1和﹣a+2,求这个正数.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、C6、B7、D8、C9、B10、C11、B12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

华师大版八年级上册数学第11章 数的开方含答案(审定版)

华师大版八年级上册数学第11章 数的开方含答案(审定版)

华师大版八年级上册数学第11章数的开方含答案一、单选题(共15题,共计45分)1、标准魔方的表面积为,则标准魔方的边长大约为()A.在和之间B.在和之间C.在和之间D.在和之间2、(﹣2)2的平方根是()A.2B.﹣2C.±2D.3、关于,下列说法错误的是()A.它是一个无理数B.它可以表示面积为10的正方形的边长C.它是与数轴上距离原点个单位长度的点对应的唯一的一个数D.若,则整数的值为34、如图所示,数轴上点所表示的数为,则的值是()A. B. C. D.5、如果正数x+2是100的算术平方根,则x为()A.100B.98C.8D.0.986、下列计算正确的是()A. - =B. × =6C. + =5D.÷ =47、估计的运算结果应在()A.6与7之间B.7与8之间C.8与9之间D.9与10之间8、下列说法,你认为正确的是()A.0的倒数是0B.3 -1=-3C.π是有理数D. 是有理数9、若,则x的值为()A.-0.5B.±0.5C.0.5D.0.2510、估计介于()之间.A.1.4与1.5B.1.5与1.6C.1.6与1.7D.1.7与1.811、9的平方根是()A. 3B.±3C.D.-12、下列等式成立的是()A. = 1B. = 2C. =6D. =313、下列四个实数中最大的是()A.-5B.0C.D.314、若a是的整数部分,b是的小数部分,则的值为()A.6B.4C.9D.15、下列实数中,最大的是()A.-2B.3C.D.二、填空题(共10题,共计30分)16、的平方根为________,的倒数为________17、已知是二元一次方程组的解,则m+3n的立方根为________.18、计算:________.19、用计算器求下列各式的值(精确到0.001):(1)________ (2)=________ (3)________ (4)≈________.20、比较大小:2 ________3 ,________21、如果a与b互为倒数,c与d互为相反数,那么﹣﹣1的值是________.22、计算:|﹣2|=________,(﹣2)﹣1=________,(﹣2)2=________,=________.23、计算:________.24、计算:+ =________.25、比较大小:________ .三、解答题(共5题,共计25分)26、计算(﹣)2﹣|﹣3+5|+(1﹣)027、实数a,b互为相反数,c,d互为倒数,x的绝对值为,求代数式的值.28、计算:--(精确到0.01)29、若是二元一次方程组的解,求的算术平方根.30、把下列各数填入相应的大括号里:5 ,0,8,﹣2,,0.7,﹣,﹣1.121121112…,,﹣0..正数集合{ };负数集合{ };整数集合{ };有理数集合{ };无理数集合{ }.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、C5、C6、A7、C8、D9、B10、C11、B12、A13、C14、B15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

华师大八年级数学上《第11章数的开方》单元测试含答案解析.doc

华师大八年级数学上《第11章数的开方》单元测试含答案解析.doc

第11章数的开方一、选择题1.在-3, 0, 4,低这四个数中,最大的数是()A.在1到2之间B.在2到3之间C.在3到4之间D. 8. 在已知实数:・1, 0,吉,・2中,最小的一个实数是 A. - 1 B. 0 C. £ D. - 2 29. 下列四个实数中,绝对值最小的数是( )A.・5B. -忑C. 1D. 410. 在・2, 0, 3,頁这四个数中,最大的数是( )A. - 2B. 0C. 3D. ^611. 在1, -2, 4,逅这四个数中,比0小的数是( A. -2 B. 1C. A /3D. 412. 四个实数・2, 0, -V2,1中,最大的实数是( A. -2 B. 0 C. - V2D. 113. 与无理数阿最接近的整数是( )A. 4B. 5C. 6D. 7A. -3B. 0C. 4D.后2.下列实数中,最小的数是( )A. -3B. 30.1D. 03.在实数1、0、-1、-2中,最小的实数是( )A ・・2 B.・1 C. 1 D. 04.实数 1, - 1, -寺,0,四个数中,最小的数是(A. 0B. 1C. - 1 一 'I5.在实数-2, 0, 2, 3中 ,最小的实数是()A. -2B. 0C. 2D. 36. a, b 是两个连续整数, 若a<V7<b,则a, b 分别是A. 2, 3B. 3, 2C. 3, 4D. 6, 8 7.估算、‘悩・2的值( )()在4到5之间 ( )14. 如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 - <5的点P应落在线15. 估计匹尸介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0. 7与0. 8之间16. 若m=^-X ( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 217. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间( )A B C D~6 1 ~~2~;5 3 "A. C 与DB. A 与BC. A 与CD. B 与C18. 与1+頁最接近的整数是( )A. 4B. 3C. 2D. 119. 在数轴上标注了四段范围,如图,则表示旋的点落在( )/ Y V *、、,2^3^A.段①B.段②C.段③D.段④20. 若a= ( -3) ,3 - ( - 3) 14, b= ( -0. 6) ,2 - ( - 0. 6) 14, c= ( - 1.5) 11 - ( - 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a21. 若k<V90<k+1 (k 是整数),则k二()A. 6B. 7C. 8D. 922. 估计舟履的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和923. 估计用的值在( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_.25. 若a<V6<b,且a、b是两个连续的整数,贝lj申二_.26. 若两个连续整数x、y满足x<{j+1Vy,则x+y的值是J___ £(用“〉”、“二”填空)27. 黄金比妬28. 请将2、舟、码这三个数用“〉”连结起来—.29. 它元的整数部分是—.30. 实数履・2的整数部分是_・第11章数的开方参考答案与试题解析一、选择题1.在・3, 0, 4,頁这四个数中,最大的数是()A. -3B. 0C. 4D. V6【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在-3, 0, 4,真这四个数中,-3<0<V6<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2. 下列实数中,最小的数是()A. -3B. 3C. 4-D. 0 3【考点】实数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示:故选A.【点评】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3. 在实数1、0、-1、-2中,最小的实数是()A. -2B. -1C. 1D. 0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:• • ------ •0 ------- >■2 0 1 2・・•由数轴上各点的位置可知,- 2在数轴的最左侧,・••四个数中-2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4. 实数1,・1,・寺,0,四个数中,最小的数是()A. 0B. 1C. - 1D.-吉2【考点】实数大小比较.【专题】常规题型.【分析】根据正数>o>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1 >0> - *> - 1, 所以在1, -1, -寺,0中,最小的数是-1.故选:C.【点评】此题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5. 在实数-2, 0, 2, 3中,最小的实数是()A. -2B. 0C. 2D. 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<2<3,最小的实数是・2,故选:A.【点评】本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.6. a, b是两个连续整数,若a<V7<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 8【考点】估算无理数的大小.【分析】根据A/4<V7<V9,可得答案.【解答】解:根据题意,可知五<百<肩,可得a二2, 23.故选:A.【点评】本题考查了估算无理数的大小,V4<V7<V9是解题关键.7. 估算、历_2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计何的整数部分,然后即可判断何・2的近似值.【解答】解:・・・5<何<6,A3<V27- 2<4,故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 在已知实数:-1, 0,寺,-2中,最小的一个实数是()A. -1B. 0C. |D. -2【考点】实数大小比较.【专题】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小, 由此可得出答案.【解答】解:-2、-1、0、1中,最小的实数是-2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9. 下列四个实数中,绝对值最小的数是()A. - 5B.-伍C. 1D. 4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:I -5|二5; | - *可也,|1|二1,⑷二4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10. 在-2, 0, 3,頁这四个数中,最大的数是()A. -2B. 0C. 3D.【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2V0V低V3,故选:C.【点评】本题考查了实数比较大小,血<3是解题关键.11•在1, -2, 4, 这四个数中,比0小的数是()A. -2B. 1C. V3D. 4【考点】实数大小比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:・2、1、4、yW这四个数中比0小的数是・2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12. 四个实数-2, 0, -V2, 1中,最大的实数是()A・・ 2 B. 0 C.・ V2D. 1【考点】实数大小比较.【分析】根据正数大于0, 0大于负数,正数大于负数,比较即可.【解答】解:J -2<-伍V0V1,・・・四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13. 与无理数何最接近的整数是()A. 4B. 5C. 6D. 7【考点】估算无理数的大小.【分析】根据无理数的意义和二次根式的性质得出履无転,即可求出答案.【解答】解:・・•履<俑<负,・••何最接近的整数是仮,V36=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道负在5和6之间,题目比较典型.14. 如图,已知数轴上的点A、B、C、D分别表示数・2、1、2、3,则表示数3 ■爸的点P应落在线段()4 9 兮9 £,-3 -1 0 ^2 3 4A. A0±B. 0B±C. BC±D. CD ±【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3-丽<1,进而得出答案.【解答】解:・・・2<馅<3,A0<3 - V5<b故表示数3 -頁的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出后的取值范围是解题关键.15. 估计茫1丄介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0. 6与0. 7之间D. 0. 7与0. 8之间【考点】估算无理数的大小.【分析】先估算旋的范围,再进一步估算圣丄,即可解答・【解答】解:V2. 22=4. 84, 2. 32=5, 29,:.2, 2<V5<2. 3,2.2-1 2.3-1・.・一-—=0. 6, ―-— =0. 65, 2 2V5 _ 1AO. 6<———<0. 65.2A/E _ 1所以' 7介于0. 6与0. 7之间.£故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算、‘用的大小.16. 若( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 2【考点】估算无理数的大小.【分析】先把m化简,再估算任大小,即可解答.【解答】解;m半X ( -2)二■伍,・・・1<V2<2,A■ 2< -近 V - 1,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算迈的大小.17. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间()一 4 B C D0 1 ~L5~2~25 3A. C 与DB. A 与BC. A 与CD. B 与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:V6.25<7<9,・・・2. 5<A/7<3,则表示听的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.18. 与1朋最接近的整数是()A. 4B. 3C. 2D. 1【考点】估算无理数的大小.【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+葩最接近的整数即可求解.【解答】解:・・・4<5<9,A2<V5<3.又5和4比较接近,・・・葩最接近的整数是2,・••与1+真最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19. 在数轴上标注了四段范围,如图,则表示近的点落在()「②、: Y V 7、、,22―2728~Z9 VA.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2. 6^6. 76, 2. 72=7. 29, 2. 82=7. 84, 2. 92=8. 41, 32=9,V7. 84<8<8.41,・・・2・8<V8<2. 9,・•・仮的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20. 若a二(・3)"・(・ 3) ", b二(・0. 6) 12・(・ 0. 6) 14, c=(・ 1.5) 11・(-1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a【考点】实数大小比较.【分析】分别判断出a・b与c・b的符号,即可得出答案.【解答】解:Ta - b二(-3) ” - ( -3) 14 - ( -0. 6) 12+ ( -0.6) 14= - 313 - 314 -些寻V0,5 5a < b,•/c - b=(・ 1.5) 11 - (- 1.5) 13・(・ 0.6) 12+ (・ 0.6) 14=(・ 1.5) n+1.5,3・ 0. 61Jo. 6“>0,・ \ c > b,c > b > a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21 ・若k<V90<k+1 (k 是整数),则k二( )A. 6B. 7C. 8D. 9【考点】估算无理数的大小.【分析】根据勺示9, {而二10,可知9<価<10,依此即可得到k的值.【解答】解:TkvJ亦Vk+1 (k是整数),9<A/90<10,・•・k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22. 估计后需+伍的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和9【考点】估算无理数的大小;二次根式的乘除法.【分析】先把各二次根式化为最简二次根式,再进行计算.占 +届=2 后平+3逅二2+3個【解答】解:••・・6V2+3@V7,•I、矽養应的运算结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23. 估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是翻<届<岳,从而有3<VTi<4.【解答】解:V9<11<16,/. Va< V T L< V16,A3<V11<4.故选c.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_ -街<需<听_.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为-衍,^7; 7的立方根为2厅,所以7的平方根和立方根按从小到大的顺序排列为-听<需<衔.故答案为:■衔<齿<衔.【点评】本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.25. 若a<V6<b,且a、b是两个连续的整数,贝I] J二8 .【考点】估算无理数的大小.【分析】先估算出航的范围,即可得出a、b的值,代入求出即可.【解答】解:・・・2<低V3,3—2, b—3,r.a b=8.故答案为:&【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出、用的范围.26. 若两个连续整数x、y满足xV徧1Vy,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算叮g+1,即可解答.【解答】解:・・・2<妬<3,・・・3<岳+1<4,Vx<V5+Ky,x—3, y—4,A x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.A/R - 1 127. 黄金比一> 4 (用“〉”、y“二”填空)2【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<^5<3,从而得出伍-1>1,即可比较大小.【解答】解:・・・2<爸<3,A 1 < V5 ・ 1<2,•后1、1■■I• •r "八'2 2故答案为:>.【点评】本题考查了实数的大小比较,解题的关键是熟练掌握、用在哪两个整数之间,再比较大小.28. 请将2、号、低这三个数用“〉”连结起来号”斥>2・【考点】实数大小比较.【专题】存在型.【分析】先估算出馅的值,再比较出其大小即可.【解答】解:・・・、念2.236, "1=2.5, ••寺 >后>2.故答案为:-|>V5>2.【点评】本题考查的是实数的大小比较,熟记A/5^2. 236是解答此题的关键.29. 皿的整数部分是3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定负的范围,则整数部分即可求得.【解答】解:V9<13<16,/.V13的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30. 实数728-2的整数部分是3 .【考点】估算无理数的大小.【分析】首先得出姮的取值范围,进而得出姬・2的整数部分.【解答】解:・・・5<履<6,AV28 - 2的整数部分是:3.故答案为:3.【点评】此题主要考查了估计无理数大小,得出履的取值范围是解题关键.。

数的开方测试题

数的开方测试题

第11章数的开方测试题(A卷)班别姓名____________学号_______得分_____________一、选择题(每小题2分,共28分)1、和数轴上的点一一对应的数是()A.整数 B.有理数 C.无理数 D.实数2、实数1,,346π-)A、0 B、1 C、2 D、33、下列计算正确的是()A5=± B4= C511= D3=-4、一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()B、C、D、5()A、8±B、4±C、2±D、6、对于实数,a bb a=-,则()A、a b>B、a b<C、a b≥D、a b≤7、在5,32π--四个数中,最小的数是()A、53-B、C、D、2π-8、下列说法正确的是()A、-5是()25-的算术平方根B、16的平方根是4±C、3是9-的算术平方根 D、1的平方根是它本身9、估算2的值.()A、在5和6之间B、在6和7之间C、在7和8之间D、在8和9之间10、下列说法正确的是 ( )A、两个正无理数之和一定还是正无理数 B、两个无理数之间没有有理数 C、无理数分为正无理数、负无理数和零 D、无理数可以用数轴上的点表示11、下列命题中,正确的个数是( )①.带根号的数是无理数 ②.无理数是开方开不尽的数③.无理数是无限小数 ④.绝对值最小的数不存在A .0个B .1个C .2个D .3个12、平方根等于它本身的实数是( )A 、0和1B 、0C 、1D 、-1,1,013、下列说法错误的是( )A .1的平方根是1B .-1的立方根是-1C .2 是2的平方根D .-3是2)9(-的平方根14、化简|a -2|+2)2(a -的结果是( )。

A .4-2aB .0C .24-aD .4二、填空题(每小题3分,共18分)15、若一个正数的平方根是21a +和2a -+,则a = _______,这个正数是___________.16的整数有 ___________ .172的相反数是_________ ,18、若m, n 为实数,2+m +2)2(-n =0, 则n m + = __________19、若519x +的立方根为4,则27x +的平方根是______.20、若(22x =,则x = _________.三、解答题(54分)21、计算:(每小题5分,共10分)(1)38169144+- (2)312564-38+-1001(-2)3×3064.022、求下列各式中的x .(每小题5分,共10分)(1)()214x += (2)3641250x +=23、一个正方体纸箱体积是273m ,试问:纸箱的边长是多少?每块正方形纸板的面积是多少?(7分)24、根据下表回答下列问题:(8分)(1)795.24的平方根是 ,≈7.823 ;(2)表中与800最接近的数是 ;(3)810在哪两个数之间?25、若x、y都是实数,且y=833+-+-xx求x+y的值(9分)26、已知a,b两数在数轴上表示如下图所示,化简()()2222--+ba.(10分)。

最新第11章数的开方检测题及答案解析

最新第11章数的开方检测题及答案解析

第11章 数的开方检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. 估算192+的值是在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间 2.在下列各数中是无理数的有( )-0.333…,4,5, 3π, 3.141 5, 2.010 101…(相邻两个1之间有1个0), 76.012 345 6…(小数部分由连续的自然数组成).A.3个B.4个C. 5个D. 6个 3.下列语句中,正确的是( )A.的平方根是3-B.9的平方根是3C.9的算术平方根是3±D.9的算术平方根是3 4.下列结论中,正确的是( ) A.6)6(2-=--B.9)3(2=-C.16)16(2±=-D.251625162=⎪⎪⎭⎫ ⎝⎛--5.2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A.3 B.7 C.3或7 D.1或76.下列各式中,计算不正确的是( )A .3)3(2=B .3)3(2-=-C .3)3(2=- D .3)3(2-=--7.下列运算中,错误的有( ) ①1251144251=;②4)4(2±=-; ③22222-=-=-;④2095141251161=+=+. A.1个 B.2个 C.3个 D.4个 8.下列说法中,正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数 9.若51=+mm ,则m m 1-( ) A.2± B.1± C.1 D.2 10.若9,422==b a ,且0<ab ,则b a -的值为( )A.2-B.5±C.5D.5-二、填空题(每小题3分,共24分)11. 平方等于3 的数是_________;立方等于64-的数是_________. 12. 计算:=+1636__________;=⨯-3381___________.13.把下列各数填入相应的集合内:-7, 0.32,31,46, 0,8,21,3216,-2π. ①有理数集合: { …};②无理数集合: { …}; ③正实数集合: { …};④实数集合: { …}.14.=-2)4( ;=-33)6( ;=2)196( .15. 已知212104a b ⎛⎫+++= ⎪⎝⎭,则a b =________.16.若一个正数的平方根分别是12-a 和2+-a ,则____=a ,这个正数是 . 17.若02733=+-x ,则______=x . 18.若a 、b 互为相反数,c 、d 互为负倒数,则=_______.三、解答题(共46分)19.(6分)求下列各式的值:(1)44.1;(2)3027.0-;(3)610-;(4)649 ;(5)25241+;(6)327102---. 20.(6分)已知x +12的平方根是13±,62-+y x 的立方根是2,求xy 3的算术平方根. 21.(6分)求下列各式的平方根和算术平方根:.1615289169, 22.(6分)求下列各数的立方根:.64,729.02718125,,- 23.(6分)已知,求的值.24.(8分)如图,王丽同学想给老师做一个粉笔盒.她把一个正方形硬纸片的四个角各剪去一个正方形,折起来用透明胶粘住,做成一个无盖的正方体盒子.要使这个盒子的容积为1 000 cm 3,那么她需要的正方形纸片的边长是多少?25.(8分)先阅读下列解答过程,再解答.形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.第24题图例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述例题的方法化简:42213-.第11章 数的开方检测题参考答案1.B 解析:16<19<25,即4<19<5,所以6<19+2<7.2.A3.D4.A 解析:选项B 中,故B 错误;选项C 中,故C 错误;选项D 中251625162-=⎪⎪⎭⎫ ⎝⎛--,故D 错误.只有A 是正确的. 5.D 解析:因为2)9(-,9的平方根是,所以.因为64的立方根是4,所以,所以.6.B 解析:3)3(2=-.7.D 解析:4个算式都是错误的.其中①12111213144169144251===;②4)4(2=-; ③22-没有意义; ④204125162516251161=⨯+=+. 8.B 解析:一个数的立方根只有一个,A 错误;一个数有立方根,但这个数不一定有平方根,如,C 错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D 错误.故选B. 9.B 解析:若51=+m m ,则5)1(2=+m m ,即52122=++m m ,所以3122=+mm ,故=-2)1(m m 1232122=-=-+m m ,所以11±=-mm . 10.B 解析:若9,422==b a ,则. 又0<ab ,所以.所以,故选B.11. 3±4-12.10 2- 13. ①-7,0.32,31,46,0,3216 ②8,21,-2π③0.32,31,46,8,21,3216 ④-7, 0.32,31,46, 0,8,21,3216,-2π 14.15. 216. 9 解析:由于一个正数有两个平方根且互为相反数,所以,即所以,所以这个正数为9. 17.27 解析:因为,所以,所以. 18. 解析:因为a 、b 互为相反数,c 、d 互为负倒数,所以,所以,故.19.解:(1). (2). (3).(4)83)83(6492==.(5)57254925241==+. (6)3427642710233=--=---. 20.解:由题意得x +12=13,62-+y x =8,解得1=x ,12=y . 所以3xy =36.所以3xy 的算术平方根是6. 21.解:因为所以平方根为因为所以的算术平方根为.因为所以平方根为因为所以的算术平方根为.因为28916917132=⎪⎭⎫ ⎝⎛±所以289169平方根为;1713±因为28916917132=⎪⎭⎫⎝⎛,所以289169的算术平方根为.1713,16811615= 因为1681492=⎪⎭⎫⎝⎛±所以1615平方根为;49±因为1681492=⎪⎭⎫⎝⎛,所以1615的算术平方根为.4922.解:因为8125253=⎪⎭⎫ ⎝⎛,所以8125的立方根是25.因为,271313-=⎪⎭⎫⎝⎛-所以271-的立方根是31-.因为,所以的立方根是.因为,所以的立方根是.23.解:因为,所以,即,所以.故,从而,所以,所以.24. 解:设正方体盒子的棱长为x cm ,则x 3=1 000,=10,30310=⨯,因此她需要的正方形纸片的边长是30 cm . 25.解:由题意可知,由于,所以.。

数的开方基础过关测试卷(附参考答案和评分标准)

数的开方基础过关测试卷(附参考答案和评分标准)

第11章 数的开方基础过关测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 计算327的结果是 【 】 (A )3± (B )3 (C )33± (D )332. 下列实数中无理数是 【 】 (A )4 (B )8 (C )722(D )327 3. 估算324+的值 【 】 (A )在5和6之间 (B )在6和7之间 (C )在7和8之间 (D )在8和9之间4. 下列计算结果正确的是 【 】 (A )636±= (B )()332-=-(C )()233-=- (D )3355-=-5. 下列各组数中,是互为相反数的是 【 】 (A )2-与38- (B )2-与()22-(C )2-与21(D )2-与2 6. 比较91.3---、、π的大小,正确的是 【 】 (A )1.39-<-<-π (B )91.3-<-<-π (C )91.3-<-<-π (D )1.39-<-<-π7. 下列说法中,正确的是 【 】 (A )立方根等于1-的实数是1- (B )27的立方根是3± (C )带根号的数都是无理数 (D )()26-的平方根是6-8. 化简ππ--3得 【 】(A )3 (B )3- (C )32-π (D )π23-9. 计算3825--的结果是 【 】 (A )3 (B )7- (C )7 (D )3-10. 若一个正数的两个平方根分别是12-a 和8-a ,则这个正数是 【 】 (A )3 (B )6 (C )9 (D )25二、填空题(每小题3分,共30分)11. 如果某数的一个平方根是5-,那么这个数是_________. 12. 下列各数: π , 4-, 75, 0. 010010001中,是无理数的是_________. 13.81的平方根是_________.14. 在实数41,0,2,1--中,最小的实数是_________.15. 若021=-++y x ,则y x 的值为_________.16. 设b a ,是一个等腰三角形的两边长,且满足094=-+-b a ,则该三角形的周长是_________. 17. 计算:()=-+--+3128923_________.18. 若单项式n m y x +-45与2y x n m -是同类项,则n m 7-的算术平方根是_________. 19. 实数a 在数轴上的位置如图所示,则化简=-3a _________.20. 若32-x 与321y -互为相反数,则y x 2-的值为_________.三、解答题(共60分)21. 计算:(每小题5分,共10分)(1)()⎪⎭⎫⎝⎛-÷+-+--324227523; (2)()338211+-+-.22.(8分)求下列各式中的x :(1)()032222=--x ; (2)()2713=+x .23.(8分)正数x 的两个平方根分别为a -3和72+a . (1)求a 的值;(2)求x -44这个数的立方根.24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3.(1)填空:__________________,_________,===a y x ; (2)求a y x 3+-的平方根.26.(8分)观察表格,然后回答问题:(1)__________________,==y x ;(2)从表格中探究a 与a 数位的规律,并利用这个规律解决下面两个问题: ①已知16.310≈,则≈1000_________;②已知973.8=m ,若3.897=b ,用含m 的代数式表示b ,则=b _________.27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长; (3)把正方形ABCD放到数轴上,如图②,使得点A与1重合,求点D在数轴上表示的数.①②第11章 数的开方基础过关测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. 25 12. π 13. 3± 14. 2- 15. 1 16. 22 17.23+ 18. 10 19. a -3 20. 1三、解答题(共60分) 21. 计算:(每小题5分,共10分) (1)0 ; (2)2 . 22.(8分)求下列各式中的x : (1)()032222=--x ;解:()32222=-x()1622=-x∴42=-x 或42-=-x ∴6=x 或2-=x ; (2)()2713=+x .解:32713==+x ∴2=x .23.(8分)正数x 的两个平方根分别为a -3和72+a .(1)求a 的值;(2)求x -44这个数的立方根. 解:(1)由题意可知:0723=++-a a解之得:10-=a ;……………………………………3分 (2)由(1)可知:()131033=--=-a ∴169132==x……………………………………5分 ∴1251694444-=-=-x……………………………………6分 ∵51253-=-∴x -44这个数的立方根为5-. ……………………………………2分 24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.解:由题意可知:⎩⎨⎧==-+=-64413913y x x 解之得:⎩⎨⎧==3510y x……………………………………4分 ∴811635101622=+-=+-y x9=……………………………………6分 ∴162+-y x 的平方根为3±. ……………………………………8分 25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3. (1)填空:____________,______,===a y x ;(2)求a y x 3+-的平方根. 解:(1)9 , 21- , 2 ;……………………………………3分 (2)由(1)可知:()36232193=⨯+--=+-a y x ……………………………………5分 ∵636±=±∴a y x 3+-的平方根为6±. ……………………………………8分 26.(8分)解:(1)0. 1 , 10 ;……………………………………2分 (2)31. 6 ;……………………………………5分 (3)m 10000.……………………………………8分 27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长; (3)把正方形ABCD 放到数轴上,如图②,使得点A 与1-重合,求点D 在数轴上表示的数.①②解:(1)∵4643= ∴这个魔方的棱长为4;……………………………………3分 (2)由(1)可知每个小立方体的棱长为2.∴阴影部分的面积为:842221=⨯⨯⨯……………………………………5分 ∵阴影部分为正方形 ∴阴影部分的边长为8; (或写成22)……………………………………7分 (3)设原点为点O 由(2)可知:8=AD ∴81+=+=AD OA OD∴点D 在数轴上表示的数是81--. ……………………………………10分。

第11章数的开方检测试题

第11章数的开方检测试题

第11章 数的开方检测题(时间:90分钟,满分:150分)一、选择题(每小题3分,共45分)1. 估算192+的值是在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间2.在下列各数中是无理数的有( ) -0.333…,4,5, 3π,3.141 5, 2.010 101…(相邻两个1之间有1个0),76.012 345 6…(小数部分由连续的自然数组成).A.3个B.4个C. 5个D. 6个3.下列语句中,正确的是( ) A.的平方根是3- B.9的平方根是3C.9的算术平方根是3±D.9的算术平方根是34.下列结论中,正确的是( ) A.6)6(2-=-- B.9)3(2=- C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛-- 5.2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( )A.3B.7C.3或7D.1或76.下列运算中,错误的有( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④2095141251161=+=+. A.1个 B.2个 C.3个 D.4个7.下列说法中,正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数8.若51=+m m ,则m m 1-( )A.2±B.1±C.1D.29.若9,422==b a ,且0<ab ,则b a -的值为( )A.2-B.5±C.5D.5- 10、、121的平方根是±11的数学表达式是( )A 、121= 11B 、121=±11C 、±121=11D 、±121=±1111、如果x < 0,那么x 的立方根是( )A 、3xB 、x -C 、-xD 、±3x12、如果a 是2003的算术平方根,那么2003100的平方根是( )A 、100aB 、10aC 、-10aD 、10a 或-10a13、下列各组数中,互为相反数的一组是( )A 、-2与 ()22-B 、-2与 38-C 、-2与-12 D 、|-2|与214、如果实数x 、y ,满足|x +2|+(x +y)²=0,那么y x 的值等于()A 、-14B 、14 C 、-4 D 、415、要使()3344a a-=-成立,那么a 的取值范围是( ) A 、a ≤4 B 、a ≤-4 C 、a ≥4 D 、一切实数二、填空题(每小题3分,共45分)16. 平方等于3 的数是_________;立方等于64-的数是_________. 17. 计算:=+1636__________;=⨯-3381___________.18.把各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合: { …};②无理数集合: { …};③正实数集合: { …};④实数集合: { …}.19.=-2)4( ;=-33)6( ;=2)196( .20. 已知212104a b ⎛⎫+++= ⎪⎝⎭,则a b =________. 21.若一个正数的平方根分别是12-a 和2+-a ,则____=a ,这个正数是 .22.若02733=+-x ,则______=x .23.若a 、b 互为相反数,c 、d 互为负倒数,则=_______.24、一个数的平方根是它本身,则这个数是 ;一个数的立方根是它本身,则这个数是25、已知x 为实数,且|x -1|=2,则x =25、已知|a -27|+|b -64| = 0,则33a b - =27、实数a 、b 、c 在数轴上的对应点如下图所示,化简a +|a +b|―2c ―|b -c| =28.写出所有比11小且比3大的整数_____________________; 29.81的算术平方根是___________;30.观察思考下列计算过程:因为112=121,所以121=11,同样,因为1112=12321,所以12321=111,则1234321=________,可猜想123456787654321=___________。

第十一章 数的开方 单元测试卷

第十一章 数的开方 单元测试卷

第十一章 数的开方单元测试卷姓名 班级 号数 得分一、选择题:〔每题3分,共24分〕1.以下各数中没有平方根的是〔 〕A .21- B .0 C .)2(-- D .2)4(- 2.与数轴上的点成一一对应关系的数是〔 〕 A .整数 B .有理数 C .无理数 D .实数 3.使式子23+x 有意义的实数x 的取值范围是〔 〕A .0≥xB .32->xC .23-≥xD .32-≥x 4.在38-,0,4.0-,722,9,3.0,...3030030003.0〔每相邻两个3之间依次多一个0〕中,无理数有〔 〕个A . 0B . 1C . 2D . 3 5.以下说法不正确的选项是 ( ) A .6-是36的一个平方根;B .6是36的一个平方根;C .36的平方根是6;D .36的平方根是6± 6.以下各式计算正确的选项是〔 〕A .525±=±B .416±=C .5)5(2-=- D .10100=-7.一个负数a 的立方根等于它本身,那么2+a 为〔 〕 A .0 B .1 C .1- D .01或± 8.估算192+的值是在〔 〕A .5和6之间B .6和7之间C .7和8之间D .8和9之间二、填空题〔每题4分,共28分〕9.假设,a b 都是无理数,且2a b +=,那么,a b 的值可以是______________.〔填上一组满足条件的值即可〕10.1-25-a a 与是正数m 的两个平方根,那么m 的值是 .题序 1 2 3 4 5 6 7 8 答案11.假设02733=+-x ,那么______=x .12. 当0<m 时,化简=++m m m 22.13.体积为64cm 3 的立方体铁皮水箱,需要用_________cm 2的铁皮〔不计接缝〕.14.比拟大小:-32. 15.观察以下各式:312311=+,413412=+,514513=+,……请你将猜测到的规律用含自然数n 〔1n ≥〕的代数式表示出来是___ _____.三、解答题:〔共48分〕16.计算:〔每题5分,共10分〕 (1) 2564163--- (2)97125.01692163-+÷⨯-17.解方程:〔每题6分,共12分〕(1) 025)2(2=-+x (2) 81)1(33=-x18.〔总分值8分〕312±+的平方根是a ,313的立方根是-+b a ,求的算术平方根b a 2+.19 .〔总分值8分〕如图,王丽同学想给教师做一个粉笔盒.她把一个正方形硬纸片的四个角各剪去一个正方形,折起来用透明胶粘住,做成一个无盖的正方体盒子.要使这个盒子的容积为1 000 cm 3,那么她需要的正方形纸片的边长是多少?20.〔总分值10分〕仔细阅读下面的例题,然后解答后面的问题. 例题: 比拟24-与22+的大小解: 2224)22(24---=+-- =)21(2- 又12> ,021<-∴,即0)21(2<-,所以: 2224+<-不求值试比拟232+与323+的大小.第19题图第十一章 数的开方单元测试卷卷参考答案一、选择题:〔每题3分,共24分〕二、填空题〔每题4分,共28分〕9.22,2+-〔答案不唯一〕;10.9, 11.27;12.0; 13.96; 14 .< ; 15.21)1(21++=++n n n n 为自然数)且n n ,1(≥ 三、解答题:〔共48分〕16.计算:〔每题5分,共10分〕 (1) 15 (2) 327- 17.解方程:〔每题6分,共12分〕 (1) 7-3或=x (2) 4=x 18.〔8分〕解:依题意得:⎩⎨⎧=-+=+2713912b a a 解得:⎩⎨⎧==164b a∴24216366a b +=+⨯==19 .〔8分〕解:设正方形纸片的边长xcm ,得:1000)3(3=x解得:30=x答:正方形纸片的边长cm 30.20.〔10分〕解: ∵ 232(323)232323+-+=+-- =223- 083<-=,题序 1 2 3 4 5 6 7 8 答案 ADDCCABB第19题图所以: 232+ <323+.。

八年级数学上册 第11章 数的开方 单元测试卷

八年级数学上册   第11章  数的开方 单元测试卷

八年级数学上册第11章 《数的开方》 单元测试卷一、选择题:1.下列算式正确的是( ) A .2(3)3-=-B .2(6)36=C 164=±D .3644=2.64的立方根为( ) A .8 B .﹣8 C .4 D .﹣4 3.若m 的立方根是2,则m 的值是( ) A .4B .8C .4±D .8±4.关于8 )A .8是无理数B .面积为8的正方形边长是8C .8的立方根是2D .在数轴上可以找到表示8的点 5.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1; (3)﹣a 一定没有平方根; (4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数. A .1个B .2个C .3个D .4个 6.将边长分别为2和4的长方形如图剪开,拼成一个正方形,则该正方形的边长最接近整数( )A .1 B .2C .3D .47.已知实数a ,b 在数轴上对应点的位置如图所示,则a |a |+b|b |的值是( )A .-2B .-1C .0D .28.现在规定一种新的运算“※”:a ※b =b a 9※2=93,则-127※3等于( ) A .13B .3C .-13D .-39.下列等式中:①11168= ,①()332-=2,① 2(4)- =4,①610-=0.001,①3273644-=-,①3388-=-,①()25-=25.其中正确的有( )个. A .2 B .3 C .4 D .5积分别为9和5,则下列关于m 和n 的说法,正确的是( )A .m 为有理数,n 为无理数B .m 为无理数,n 为有理数C .m ,n 都为有理数D .m ,n 都为无理数二、填空题:11.16________.的平方根是 12.64的相反数的立方根是 .13.估算比较大小:(1)-10 -3.2;(2)3130 5. 14.已知实数a 、b 满足2130a b a --+-=,则ab 的值为 .15.计算398+-= .16.若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________. 17.已知2a ﹣1的平方根是±3,3a +b +10的立方根是3,求a +b 的算术平方根 .18.设 a 、b 是有理数,且满足等式2322152a b b ++=-,则a+b= . 三、解答题:19.计算:﹣22+36327-﹣52|.20.若321a -313b -a b的值.21.已知:a 与2b 互为相反数,-a b 的算术平方根是3,求a 、b 的值;22.已知32a +的立方根是1-,31a b +-的算术平方根是3,c 11分.(1)求a ,b ,c 的值; (2)求3a b c +-的平方根.23.已知()1x -的算术平方根是3,()21x y -+的立方根是3,求22x y -的平方根.24.在学习《实数》这节内容时,我们通过“逐步逼近”的方法来估算出一系列越来越接近2的近似值,请回答如下问题:(1)我们通过“逐步逼近”的方法来估算出1.42 1.5<<,请用“逐步逼近”的方11在哪两个近似数之间(精确到0.1);(2)大家知道2是无理数,而无理数是无限不循环小数,因此2分我们不可能全部地写出来,可以用21-来表示2的小数部分. 又例如:∵479<<,即273<<, ∴7的整数部分为2,小数部分为()72-.请解答:①19 ,小数部分是 ;②6的小数部分为a 13b ,求6a b + ③若x 是211y 是211(211xy 的平方根.。

第11章《数的开方》测试卷

第11章《数的开方》测试卷

三、解答题(共 66 分) 19. (8 分)已知:在实数-34,-1. 4·2·,-π3,3. 1416, 23,0,42,(-1)2n(n 为正整数),-1. 4242242224…(每两 个 4 之间依次多 1 个 2)中, (1)写出所有有理数; (2)写出所有无理数; (3)把这些数按由小到大的顺序排列起来,并用符号 “<”连接.
解:∵h=4. 9t2,∴把 h=21-1. 4=19. 6(m )代入, 得玻璃杯下落所需时间为 t1=± 149.9.6=±2(-2 舍 去), 声音传到楼下所需时间为 t2=1394.06≈0. 058. ∵0. 058<2, ∴学生能立即躲开.
解:-3Δ 2=-3× 2+3+1=-3 2+4, 2Δ(-3)= 2×(-3)- 2+1=-4 2+1,
∵-3 2+4-(-4 2+1)= 2+3>0, ∴-3Δ 2> 2Δ(-3).
25. (10 分)自由下落的物体的下落距离 h(米)与下落 时间 t(秒)的关系为 h=4. 9t2. 有一学生不慎让一个玻璃 杯从 21 米高的楼上自由下落,刚好另有一高为 1. 4 米的 学生,站在与下落的玻璃杯同一直线的地面上,在玻璃 杯下落的同时,楼上的学生惊叫了一声.问:这时楼下 的学生能在听到叫声后立即躲开吗?(声音的速度为 340 米/秒)
(2)已知 y= x-8+ 8-x+17,求 x+y 的算术平方 根.
解:∵x-8≥0,8-x≥0,∴x≥8 且 x≤8, ∴x=8,y=17,∴x+y=8+17=25, ∴x+y 的算术平方根是 5.
23. (10 分)已知 P 是满足不等式- 3<x< 6的所有整 数 x 的和,Q 是满足不等式 x≤ 372-2的最大整数,求 P +Q 的平方根.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章 数的开方测试题
班级: 学号: 姓名:
1.9的平方根是
A .±3 B. ±3 C .3 D .81
2. 4的算术平方根是( )
A.-2
B.2
C.±2
D.16
3.下列说法中,正确的是
A .-4的算术平方根是2 B. -2是2的一个平方根
C. (-1)2的立方根是-1
D. 25=±5
4.下列实数中,无理数是
A .32
B .0
C .10
D .-3.14
5. 与数轴上的点一一对应的数是
A. 整数
B. 有理数
C. 无理数
D. 实数 6.一个正方形的面积为12,估计该正方形边长应在
A. 2到3之间
B. 3到4之间
C. 4到5之间
D. 5到6之间 7.下列四个数在实数范围内没有平方根的是( )
A.-(-1)
B.0
C.-3²
D.9
8.如图,数轴上点P 表示的数可能是( ) A.-10 B.7 P C.-7 D.3.3
9.在-35,6,-0.31,3
,0.80108中,无理数的个数为( ) A.1个 B.2个 C.3个 D.4个
10.若8n (n 为大于0的自然数)的算术平方根是整数,则正整数n 的最小值为
A. 1
B. 2
C. 4
D. 8 11、100的平方根是_________ -0.125的立方根是 .
12、16的平方根是 ________ 64的算术平方根是________
13、9的平方根的相反数是_______ 364
27- 的绝对值是_______ 14. 38= . 327-= .
15. 比较大小:
3
16.若一个正方体的体积为64cm ²,则该正方体的棱长为_____cm.
17.如图,在数轴上点A 和点B 之间的整数是 .
18.(5分)要剪出一块面积为2500cm 2的正方形纸片,纸片的边长应是多少?
19.(9分)如图,长方形内有两个相邻正方形的面积分别为4cm 2,9cm 2,求长方形内阴影部
分的面积.
20.(6分)根据下表回答下列问题:
(1)265.69的平方根是 ,≈7.265 ;
(2)表中与269最接近的数是 .
A B 2
-1 • -2 0 • 10。

相关文档
最新文档