北师大版八年级数学上册第六章:数据的分析知识点总结和常考题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

]
)()()[(1222212x x x x x x n
S n
-++-+-= 数据的分析所有知识点总结和常考题
知识点:
1.加权平均数:
权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.众数:一组数据中出现次数最多的数据就是这组数据的众数。

4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。

5.方差:
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

6.方差规律: x 1,x 2,x 3,…,x n 的方差为m ,则ax 1,ax 2,…,
ax n 的方差是a 2
m; x 1+b , x 2+b ,x 3+b ,…,x n +b 的方差是m
7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;
众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺序有关,计算很少不受极端值的影响。

8.数据的收集与整理的步骤:1.收集数据 2.整理数
据 3.描述数据 4.分析数据 5.撰写调查报
告 6.交流
常考题:
一.选择题(共14小题)
1.我市某一周的最高气温统计如下表:
最高气温(℃)25262728
天数1123
则这组数据的中位数与众数分别是()
A.27,28 B.27.5,28 C.28,27 D.26.5,27
2.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()
A.7,7 B.8,7.5 C.7,7.5 D.8,6.5
3.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
时间(小时)5678
人数1015205
则这50名学生这一周在校的平均体育锻炼时间是()
A.6.2小时 B.6.4小时 C.6.5小时 D.7小时
4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()
A.平均数B.中位数C.众数D.方差
5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()方差分别为S

A.甲B.乙C.丙D.丁
6.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()
A.10 B. C.2 D.
7.2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是()
A.32,31 B.31,32 C.31,31 D.32,35
8.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁
平均数80858580
方差42425459
A.甲B.乙C.丙D.丁
9.为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是()
A.平均数B.中位数C.众数D.方差
10.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:
居民(户)1324
月用电量(度/户)40505560
那么关于这10户居民月用电量(单位:度),下列说法错误的是()
A.中位数是55 B.众数是60 C.方差是29 D.平均数是54
11.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850
人数(人)2566876
根据上表中的信息判断,下列结论中错误的是()
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是45分
D.该班学生这次考试成绩的平均数是45分
12.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
5102050100
捐款的数额(单位:
元)
人数(单位:个)24531
关于这15名学生所捐款的数额,下列说法正确的是()
A.众数是100 B.平均数是30 C.极差是20 D.中位数是20
13.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).
组员甲乙丙丁戊方差平均成绩
得分8179■8082■80
那么被遮盖的两个数据依次是()
A.80,2 B.80,C.78,2 D.78,
14.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:
候选人甲乙丙丁
86929083
测试成绩(百分制)面

90838392


如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()
A.甲B.乙C.丙D.丁
二.填空题(共14小题)
15.数据﹣2,﹣1,0,3,5的方差是.
16.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.
17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.
18.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.
19.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差(填“变大”、“不变”或“变小”).
20.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元
电工57000
木工46000
瓦工55000
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前
相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).21.一组数据:2015,2015,2015,2015,2015,2015的方差是.
22.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.
23.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.【注:计算方差的公式是S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]】
24.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是.
25.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第组.
组别时间(小时)频数(人)
第1组0≤t<0.512
第2组0.5≤t<124
第3组1≤t<1.518
第4组 1.5≤t<210
第5组2≤t<2.56
26.一组数据1,4,6,x的中位数和平均数相等,则x的值是.
27.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.
28.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的
数据的方差是.
三.解答题(共12小题)
29.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
测试项目测试成绩/分
甲乙丙
笔试758090
面试937068
根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;
(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)
(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?
30.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.
(1)已求得甲的平均成绩为8环,求乙的平均成绩;
2,
(2)观察图形,直接写出甲,乙这10次射击成绩的方差s

s乙2哪个大;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.
参考答案与试题解析
一.选择题(共14小题)1.A.
2.C.
3.B.
4.B.
5.D.
6.C.
7.C.
8.B.
9.C.
10.C.
11.D.
12.D.
13.C.
14.B.
二.填空题(共14小题)15..
16 88.
17.小李.
18.26.
19.变小.
20.变大.
21.0.
22.6.
23.0.
24.11.
25.2.
26.﹣1或3或9.
27.10.1.
28.4S2.
三.解答题
29.解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;
(2)甲的平均成绩为:,
乙的平均成绩为:,
丙的平均成绩为:.
由于76.67>76>72.67,所以候选人乙将被录用;
(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么
甲的个人成绩为:,
乙的个人成绩为:,
丙的个人成绩为:.
由于丙的个人成绩最高,所以候选人丙将被录用.
30.解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);
(2)根据图象可知:甲的波动大于乙的波动,则s
甲2>s

2;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;
如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.。

相关文档
最新文档