延寿县第二高级中学2018-2019学年高三上学期12月月考数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

延寿县第二高级中学2018-2019学年高三上学期12月月考数学试卷 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )
A .123S S S <<
B .123S S S >>
C .213S S S <<
D .213S S S >>
2. 椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .3
1,42⎡⎤--⎢⎥⎣
⎦ B .33,48
⎡⎤--⎢⎥⎣
⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
3. 二项式(x 2
﹣)6的展开式中不含x 3项的系数之和为( )
A .20
B .24
C .30
D .36
4. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )
A .①②
B .①
C .③④
D .①②③④ 5. 若数列{a n }的通项公式a n =5
()2n ﹣2﹣4
()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1
B .2
C .3
D .4
6. 已知函数[)[)1(1)sin 2,2,212
()(1)sin 22,21,222
n
n x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足
*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912
【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 7. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1
B .2
C .3
D .4
8. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )
A .1
B .2
C .3
D .4
10.已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )
A .
B .
C .
D .
二、填空题
11.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 12.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 13.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.
14.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2
=1上,当△ABC 的面积最小时,点C 的坐标为 .
15.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有 种(用数字作答).
16.设平面向量()1,2,3,i a i =,满足1i
a =且120a a ⋅=,则12a a += ,123a a a ++的最大
值为 .
【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.
三、解答题
17.已知椭圆C 的中心在坐标原点O ,长轴在x 轴上,离心率为,且椭圆C 上一点到两个焦点的距离之和为4.
(Ⅰ)椭圆C 的标准方程.
(Ⅱ)已知P 、Q 是椭圆C 上的两点,若OP ⊥OQ ,求证:为定值.
(Ⅲ)当为(Ⅱ)所求定值时,试探究OP ⊥OQ 是否成立?并说明理由.
18.(本小题满分10分)选修4-4:坐标系与参数方程.
在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos α
y =2+3sin α
(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐
标系,C 2的极坐标方程为ρ=
2sin (θ+π4

.
(1)求C 1,C 2的普通方程;
(2)若直线C 3的极坐标方程为θ=3π
4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面
积.
19.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.
(1)证明:BC 1∥平面ACD 1.
(2)当
时,求三棱锥E ﹣ACD 1的体积.
20.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;(4分)
(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)
(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.
21.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;111]
(2)求该几何体的表面积S.
22.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图
2.
(Ⅰ)求证:平面A1BC⊥平面A1DC;
(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.
延寿县第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)
一、选择题
1.【答案】A
【解析】
考点:棱锥的结构特征.
2.【答案】B
3.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
4.【答案】A
【解析】
考点:斜二测画法.
5.【答案】A
【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),
∴a n=5t2﹣4t=﹣,
∴a n∈,
当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.
∴q﹣p=2﹣1=1,
故选:A.
【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
6.【答案】A.
【解析】
7.【答案】B
【解析】解:∵M∩{1,2,4}={1,4},
∴1,4是M中的元素,2不是M中的元素.
∵M⊆{1,2,3,4},
∴M={1,4}或M={1,3,4}.
故选:B.
8.【答案】C
【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D
连接AC、BD,设AB的中点为M,作MN⊥l于N
根据圆锥曲线的统一定义,可得
==e,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)
∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离
故选:C
【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
9.【答案】C
【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,
因为P(x1<3)=P(x2≥a),
所以3﹣2=4﹣a,
所以a=3,
故选:C.
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
10.【答案】D
【解析】解:∵函数f(x)=(x﹣3)e x,
∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,
令f′(x)>0,
即(x﹣2)e x>0,
∴x ﹣2>0, 解得x >2, ∴函数f (x )的单调递增区间是(2,+∞).
故选:D .
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
二、填空题
11.【答案】 5 .
【解析】解:P (1,4)为抛物线C :y 2
=mx 上一点,
即有42
=m ,即m=16, 抛物线的方程为y 2
=16x ,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
12.【答案】
1
e e
- 【解析】解析: 由ln a b ≥得a
b e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“a
b e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为
1
1
1|a a e da e e ==-⎰
,∴随机事件“ln a b ≥”的概率为
1
e e
-. 13.【答案】 ①③④
【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,
当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p ∨q 为真”的充分不必要条件正确,故①正确; ②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,
③设正三棱锥为P ﹣ABC ,顶点P 在底面的射影为O ,则O 为△ABC 的中心,∠PCO 为侧棱与底面所成角
∵正三棱锥的底面边长为3,∴CO=
∵侧棱长为2,∴
在直角△POC 中,tan ∠PCO=
∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,
④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,
即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.
∴点P的轨迹是以A、B为焦点的椭圆,
故动圆圆心P的轨迹为一个椭圆,故④正确,
故答案为:①③④
14.【答案】(,).
【解析】解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y﹣6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=≥,当且仅当2a=3b时,取“=”,
∴a=,②
联立①②求得:a=,b=,
故点C 的坐标为(,).
故答案是:(

).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
15.【答案】 27
【解析】解:若A 方格填3,则排法有2×32
=18种,
若A 方格填2,则排法有1×32
=9种,
根据分类计数原理,所以不同的填法有18+9=27种. 故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.
16.【答案】2,21+. 【解析】∵22
2
12112221012a a a a a a +=+⋅+=++=,∴122a a +=,
而2
2
2123
121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,
∴12321a a a ++≤
,当且仅当12a a +与3a 1.
三、解答题
17.【答案】
【解析】(I )解:由题意可设椭圆的坐标方程为
(a >b >0).
∵离心率为,且椭圆C 上一点到两个焦点的距离之和为4.
∴,2a=4,解得a=2,c=1.
∴b2=a2﹣c2=3.
∴椭圆C的标准方程为.
(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x (k≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,同理可得|OQ|2=,
∴=+=为定值.
当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.
因此=为定值.
(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.
OP⊥OQ不一定成立.下面给出证明.
证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.
当直线OP或OQ的斜率都存在时,
设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,
同理可得|OQ|2=,
∴=+=.
化为(kk′)2=1,
∴kk′=±1.
∴OP ⊥OQ 或kk ′=1. 因此OP ⊥OQ 不一定成立.
【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
18.【答案】
【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos α
y =2+3sin α
(α为参数)
得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9, 由C 2:ρ=
2sin (θ+π
4


ρ(sin θ+cos θ)=2, 即x +y -2=0,
即C 2的普通方程为x +y -2=0.
(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π
4代入上式得
ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,
∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=3 2.
C 3:θ=3
4
π(ρ∈R )的直角坐标方程为x +y =0,
∴C 2与C 3是两平行直线,其距离d =2
2
= 2.
∴△PMN 的面积为S =12|MN |×d =1
2×32×2=3.
即△PMN 的面积为3. 19.【答案】
【解析】(1)证明:∵AB ∥C 1D 1,AB=C 1D 1,
∴四边形ABC 1D 1是平行四边形,
∴BC 1∥AD 1,
又∵AD 1⊂平面ACD 1,BC 1⊄平面ACD 1,
∴BC1∥平面ACD1.
(2)解:S△ACE=AEAD==.
∴V=V===.
【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.
20.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),
∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,

综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,
x ∈(1,e],h (x )是增函数, ∴, ∴
时,
,∴
∴a 的取值范围为
…(14分)
21.【答案】(12)6+. 【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形,
2(11112)6S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.
22.【答案】
【解析】
【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.
(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.
(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=
(0<x<6),即可得出.
【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,
∴在图2中,DE⊥A1D,DE⊥DC,
又∵A1D∩DC=D,∴DE⊥平面A1DC,
∵DE∥BC,∴BC⊥平面A1DC,
∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.
(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),
E(2,0,0).
则,,
设平面A1BC的法向量为
则,解得,即
则BE与平面所成角的正弦值为
(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),
即当x=3时,A1B长度达到最小值,最小值为.。

相关文档
最新文档