操作系统内存管理复习过程

合集下载

操作系统复习提纲

操作系统复习提纲

条件(不忙)队 列
共享数据
进入队列

… 一组操作过程 初始化代码
14
27/06/2011
进程通信

指进程间的信息交换。 分为: 低级通信(进程的同步和互斥) 高级通信:是用户直接利用操作系统所提供 的一组 通讯原语,实现高效地传送大量数据的一种通讯方式。
高级进程通信方式有三大类: 共享存储器系统 消息传递系统 管道(Pipe)通信
调用进程创建原语Creat( 新进程: (1)申请空白PCB。

)按下述步骤创建一个
(2)为新进程分配资源。为新进程的程序和数据以及用户栈 分配必要的内存空间。 (3)初始化进程控制块。 ①初始化标识信息。 ②初始化处理机状态信息。使程序计数器指向程序的入 口地址,使栈指针指向栈顶; ③初始化处理机控制信息:进程的状态、优先级。 (4)将新进程插入就绪队列。
11
27/06/2011
3、进程的阻塞与唤醒 4、进程的挂起与激活
进程同步
1 什么是进程同步 所谓同步,就是并发进程在一些关键点上可能需要互相等 待或互通消息,这样一种相互制约的等待与互通消息称为 进程的同步
12
27/06/2011
2、同步机制应遵循的规则
(1) 空闲让进。当无进程处于临界区时,应允许一个请求 进入临界区的进程立即进入自己的临界区,以有效地利 用临界资源。 (2) 忙则等待。当已有进程进入临界区时,其他试图进入 临界区的进程必须等待,以保证对临界资源的互斥访问。 (3)有限等待。对要求访问临界资源的进程,应保证在有限 时间内能进入自己的临界区,以免陷入“死等”状态。 (4)让权等待。当进程不能进入自己的临界区时,应立即 释放处理机。以免进程陷入“忙等”

计算机操作系统第四章存储器管理复习资料

计算机操作系统第四章存储器管理复习资料

第四章存储器管理第一部分教材习题(P159)15、在具有快表的段页式存储管理方式中,如何实现地址变换?答:在段页式系统中,为了便于实现地址变换,须配置一个段表寄存器,其中存放段表始址和段长TL。

进行地址变换时,首先利用段号S,将它与段长TL进行比较。

若S<TL,表示未越界,利用段表始址和段号来求出该段所对应的段表项在段表中的位置,从中得到该段的页表始址,并利用逻辑地址中的段内页号P来获得对应页的页表项位置,从中读出该页所在的物理块号b,再利用块号b和页内地址来构成物理地址。

在段页式系统中,为了获得一条指令或数据,须三次访问内存。

第一次访问内存中的段表,从中取得页表始址;第二次访问内存中的页表,从中取出该页所在的物理块号,并将该块号与页内地址一起形成指令或数据的物理地址;第三次访问才是真正从第二次访问所得的地址中,取出指令或数据。

显然,这使访问内存的次数增加了近两倍。

为了提高执行速度,在地址变换机构中增设一个高速缓冲寄存器。

每次访问它时,都须同时利用段号和页号去检索高速缓存,若找到匹配的表项,便可从中得到相应页的物理块号,用来与页内地址一起形成物理地址;若未找到匹配表项,则仍须再三次访问内存。

19、虚拟存储器有哪些特征?其中最本质的特征是什么?答:虚拟存储器有以下特征:多次性:一个作业被分成多次调入内存运行,亦即在作业运行时没有必要将其全部装入,只需将当前要运行的那部分程序和数据装入内存即可;以后每当要运行到尚未调入的那部分程序时,再将它调入。

多次性是虚拟存储器最重要的特征,任何其他的存储器管理方式都不具有这一特征。

因此,认为虚拟存储器是具有多次性特征的存储器系统。

对换性:允许在作业的运行过程中进行换进、换出,也即,在进程运行期间,允许将那些暂不使用的程序和数据,从内存调至外存的对换区(换出),待以后需要时再将它们从外存调至内存(换进);甚至还允许将暂不运行的进程调至外存,待它们重又具备运行条件时再调入内存。

操作系统复习存储器管理

操作系统复习存储器管理

第一章 存储器管理4.1 存储器的层次结构—存储器应容量大,便宜,速度跟上处理器4.1.1 多级存储器结构通常有三层,细分为六层,如图4-1, 越往上,速度越快,容量越小,价格越贵; 寄存器和主存又称可执行存储器,进程可直接用指令访问,辅存只能用I/O 访问;4.1.2 主存储器与寄存器1.主存储器---内存,保存进程运行时的程序和数据;CPU与外围设备交换的信息一般也依托于主存储器地址空间;为缓和访存速度远低于CPU 执行指令的速度,在计算机系统中引入了寄存器和高速缓存;2.寄存器---与CPU 协调工作,用于加速存储器的访问速度,如用寄存器存放操作数,或用地址寄存器加快地址转换速度等;4.1.3 高速缓存和磁盘缓存1.高速缓存---根据程序执行的局部性原理将主存中一些经常访问的信息程序、数据、指令等存放在高速缓存中,减少访问主存储器的次数,可大幅度提高程序执行速度;2.磁盘缓存---将频繁使用的一部分磁盘数据和信息,暂时存放在磁盘缓存中,可减少访问磁盘的次数;它依托于固定磁盘,提供对主存储器存储空间的扩充,即利用主存中的存储空间,来暂存从磁盘中读/写入的信息;4.2 程序的装入和链接多道程序运行,需先创建进程;而创建进程第一步是将程序和数据装入内存;将源程序变为可在内存中执行的程序,通常都要经过以下几个步骤:编译---若干个目标模块;链接---链接目标模块和库函数,形成装入模块;装入---图 4-2 对用户程序的处理步骤寄存器高速缓存主存磁盘缓存磁盘可移动存储介质CPU 寄存器主存辅存第一步第二步第三步内存4.2.1 程序的装入——无需连接的单目标模块装入理解装入方式1. 绝对装入方式Absolute Loading Mode ---只适用单道程序环境如果知道程序的内存位置,编译将产生绝对地址的目标代码,按照绝对地址将程序和数据装入内存;由于程序的逻辑地址与实际内存地址完全相同,故不须对程序和数据的地址进行修改;绝对地址:可在编译时给出或由程序员直接赋予;若由程序员直接给出,不利于程序或数据修改,因此,通常是在程序中采用符号地址,然后在编译或汇编时转换为绝对地址;2. 可重定位装入方式Relocation Loading Mode ---适于多道程序环境多道程序环境下,编译程序不能预知目标模块在内存的位置;目标模块的起始地址是0,其它地址也都是相对于0计算的;此时应采用可重定位装入方式,根据内存情况,将模块装入到内存的适当位置,如图4-3 作业装入内存时的情况 ;3.动态运行时装入方式Dynamic Run-time Loading ---适于多道程序环境可重定位装入方式并不允许程序运行时在内存中移动位置;但是,在运行过程中它在内存中的位置可能经常要改变,此时就应采用动态运行时装入方式;动态运行时的装入程序,在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正执行时才进行;因此,装入内存后的所有地址都仍是相对地址;问题:程序装入内存后修改地址的时机是什么4.3 连续分配方式4.3.3 动态分区分配——根据进程需要动态分配内存1. 分区分配中的数据结构1 空闲分区表—用若干表目记录每个空闲分区的分区序号、分区始址及分区的大小等数据项;2 空闲分区链--为实现对空闲分区的分配和链接,在每分区起始部分,设置前向指针,尾部则设置一后向指针;为检索方便,在分区前、后向指针中,重复设置状态位和分区大小表目;当分0内存空间区被分配后,把状态位由“0”改为“1”时,前、后向指针失去意义;图 4-5 空闲链结构2. 分区分配算法P1231首次适应算法first-fit —空闲分区链以地址递增次序链接 每次按分区链的次序从头查找,找到符合要求的第一个分区;2 循环首次适应算法—FF 算法的变种从上次找到的空闲分区位置开始循环查找,找到后,修改起始查找指针; 3 最佳适应算法—空闲分区按容量从小到大排序 把能满足要求的、最小的空闲分区分配给作业 4 最坏适应算法——空闲分区按容量从大到小排序 挑选最大的空闲区分给作业使用;5) 快速适应算法—根据容量大小设立多个空闲分区链表3. 分区分配操作1.分配内存请求分区u.size; 空闲分区m.size; m.size-u.size ≤size,说明多余部分太小, 不再切割,将整个分区分配给请求者;否则从该分区中划分一块请求大小的内存空间,余下部分仍留在空闲分区链;如图4-6 内存分配流程;2.回收内存1 回收区与插入点的前一空闲分区F1相邻:合并,修改F1大小;2 回收区与后一空闲分区F2相邻:合并,修改首地址和大小;3 回收区同时与前、后两个分区邻接:合并,修改F1大小,取消F2;4 回收区不邻接:新建表项,填写首地址和大小,并插入链表;如图前向指针N +20N 个字节可用后向指针N +2图 4-6 内存分配流程4.3.6 可重定位分区分配1.动态重定位的引入例:在内存中有四个互不邻接的小分区,容量分别为10KB 、30KB 、14KB 和26KB;若现有一作业要获得40KB 的内存空间,因连续空间不足作业无法装入;可采用的一种解决方法是:通过移动内存中作业的位置,以把原来多个分散的小分区拼接成一个大分区的方法,称为“拼接”或“紧凑;由于用户程序在内存中位置的变化,在每次“紧凑”后,都必须对移动了的程序或数据进行重定位;图 4-8 紧凑的示意4.3.7 对换即中级调度1. 对换Swapping 的引入(a ) 紧凑前(b ) 紧凑后“活动阻塞”进程占用内存空间;外存上的就绪作业不能进入内存运行;所谓“对换”,是指把内存中暂时不能运行的进程或者暂时不用的程序和数据,调出到外存上,以便腾出足够的内存空间;再把已具备运行条件的进程或所需要的程序和数据,调入内存;对换是提高内存利用率的有效措施;根据对换单位可分为:进程对换、页面对换和分段对换;为了能实现对换,系统应具备以下三方面功能:对换空间的管理、进程的换出与换入2. 进程的换出与换入1进程的换出选择阻塞且优先级最低的进程,将它的程序和数据传送到磁盘对换区上;回收该进程所占用的内存空间,并对该进程的进程控制块做相应的修改;2进程的换入找出“就绪” 但已换出到磁盘上时间最久的进程作为换入进程,将之换入,直至已无可换入的进程;4.4 基本分页存储管理方式前面的连续分配方案会形成许多“碎片”,“紧凑”方法可以解决碎片但开销大;是否允许进程离散装入 离散单位不同,称分页式存储和分段式存储;不具备对换功能称为“基本分页式”,支持虚拟存储器功能称为“请求基本分页式”;4.4.1 页面与页表1. 页面1 页面和物理块---将进程的逻辑地址空间分成若干个大小相等的片,称为页面,并为各页编号;相应地把内存空间分成与页面相同大小的若干个存储块,称为物理块,也同样编号;分配时,将进程中的页装入到物理块中,最后一页经常装不满一块而形成 “页内碎片”;2 页面大小---页面的大小应选择适中;页面太小,内存碎片减小,利用率高;但页表过长,占大量内存;页面较大,页表长度小;但页内碎片大;因此,页面的大小应选择得适中,且页面大小应是2的幂,通常为512 B~8 KB;2. 地址结构分页地址中的地址结构如下:31 12 11 0它含有两部分:页号P12~31位,最多有1M 页和页内位移量W0~11位,每页的大小4KB ; 对某特定机器,其地址结构是一定的;若给定一个逻辑地址空间中的地址为A,页面的大小为L,则页号P 和页内地址d 可按下式求得:MODL A d L A INT P ][=⎥⎦⎤⎢⎣⎡=3. 页表---实现从页号到物理块号的地址映射用户程序0 页1 页2 页3 页4 页5 页…n 页页表内存4.4.2 地址变换机构任务:将逻辑地址转换为物理地址;页内地址变换:因页内地址与物理地址一一对应, 可直接转换;页号变换:页表可实现从逻辑地址中页号到内存中物理块号的变换; 1.基本的地址变换机构a. 页表功能可由一组专门的寄存器实现原理;b. 页表大多驻留内存,系统中只设置一页表寄存器来存放页表在内存的始址和页表长度实际操作;c. 进程未执行时,页表始址和长度存放在PCB 中;执行时才将这两个数据装入页表寄存器中过程;图 4-12 分页系统的地址变换机构2. 具有快表的地址变换机构a. 仅用页表寄存器时,CPU 每存取一数据要两次访问内存页表-地址变换-数据;b. 为提高地址变换速度,可在地址变换机构中增设一具有并行查寻能力的特殊高速缓冲寄存器用以存放当前访问的那些页表项,称为“快表”;c. ->在CPU 给出逻辑地址,将页号P 送入快表 ->页号匹配,读物理块号后送物理地址寄存器->无匹配页号,再访问内存中页表,把从页表项中读出的物理块号送地址寄存器;同时,再将此页表项存入到快表中;->如快表已满,则OS 须找到一换出页表项换出; 为什么增加“快表”为了提高地址变换速度,可在地址变换机构中增设一个具有并行查寻能力的特殊高速缓冲寄存器,又称为“联想寄存器”Associative Memory,或称为“快表 “快表”有何缺点越界中断图 4-13 具有快表的地址变换机构4.5 基本分段存储管理方式4.5.1 分段存储管理方式的引入为什么引入推动内存从固定分配到动态分配直到分页存储,主要动力是内存利用率,而引入分段存储管理方式,主要是为了满足用户和程序员的下述一系列需要:1方便编程---把作业按逻辑关系划分为若干段,每段有自己的名字和长度,并从0开始编址;LOAD 1,A|<D>; STORE 1,B|<C>2 信息共享---段是信息的逻辑单位;为实现共享,存储管理应与用户程序分段的组织方式相适应;3 信息保护---对信息的逻辑单位进行保护,应分段管理;4 动态增长---分段存储能解决数据段使用过程中动态增长;5 动态链接---运行过程中动态调入以段为单位的目标程序;4.5.2 分段系统的基本原理1. 分段作业划分为若干段,如图4-16,每个段用段号来代替段名,地址空间连续;段的长度由逻辑信息长度决定,因而各段长度不等;其逻辑地址由段号段名和段内地址所组成,结构如下: 31 16 15 0该地址结构中,允许一个作业最多有64K 个段,每个段的最大长度为64KB;编译程序能自页表寄存器逻辑地址L 物理地址动根据源程序产生若干个段;2.段表,其中每段占一个表项,中;图4-16 利用段表实现地址映射3.分页和分段的主要区别1 页是信息的物理单位,分页是为提高内存的利用率,是为满足系统管理的需要;段则是信息的逻辑单位,分段是为了能更好地满足用户的需要;2 页的大小固定且分页由系统硬件实现;而段的长度不固定,通常由编译程序根据信息的性质来划分;3 分页的作业地址空间是一维的,程序只需一个地址记忆符;而分段的作业地址空间是二维的,程序员既需给出段名,又需给出段内地址;4.5.3 信息共享可重入代码纯代码:允许多个进程同时访问的代码;绝对不允许可重入代码在执行中改变,因此,不允许任何进程修改它;4.5.4 段页式存储管理方式1.基本原理---,,,4KB;作业空间内存空间子程序段数据段(a)段号(S)段内页号(P)页内地址(W)(b)主程序段图4-21 利用段表和页表实现地址映射4.6 虚拟存储器的基本概念前面各种存储器管理方式共同点:它们要求将一个作业全部装入内存后方能运行,于是出现了下面这样两种情况:1 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行;2 有大量作业要求运行,但由于内存容量不足以容纳所有这些作业,只能将少数作业装入内存让它们先运行,而将其它大量的作业留在外存上等待;4.5.1 虚拟存储器的引入1.常规存储器管理方式的特征1 一次性;将作业全部装入内存后方能运行,此外有许多作业在每次运行时,并非其全部程序和数据都要用到;一次性装入,造成了对内存空间的浪费;2 驻留性;作业装入内存后一直驻留,直至运行结束;尽管因故等待或很少运行,都仍将继续占用宝贵的内存资源;现在要研究的问题是:一次性及驻留性在程序运行时是否必需;2.局部性原理早在1968年, Denning.P就曾指出:1 程序执行时,除了少部分的转移和过程调用指令外,在大多数情况下仍是顺序执行的;2 过程调用将会使程序的执行轨迹由一部分区域转至另一部分区域,但经研究看出,过程调用的深度在大多数情况下都不超过5;3 程序中存在许多循环结构,这些虽然只由少数指令构成, 但是它们将多次执行;4 程序中还包括许多对数据结构的处理, 如对数组进行操作,它们往往都局限于很小的范围内;局限性主要表现在下述两个方面:1 时间局限性-由于循环操作的存在;如果程序中的指令或数据一旦执行,则不久以后可能再次访问;2 空间局限性-由于程序的顺序执行;程序在一段时间内所访问的地址,可能集中在一定的范围之内;3. 虚拟存储器定义---基于局部性原理程序运行前,仅须将要运行的少数页面或段装入内存便可启动,运行时,如果需要访问的页段尚未调入内存缺页或缺段,用OS提供请求调页段功能调入;如果此时内存已满,则还须再利用页段的置换功能,将内存中暂时不用的页段调至外存,腾出足够的内存空间后,再将要访问的页段调入;所谓虚拟存储器,是指具有请求调入功能和置换功能,能从逻辑上扩充内存容量的一种存储器系统;其逻辑容量由内存容量和外存容量之和所决定,其运行速度接近于内存,成本接近于外存;4.6.3 虚拟存储器的特征1)多次性---一个作业被分成多次调入内存运行,最初装入部分程序和数据,运行中需要时,再将其它部分调入;2)对换性---允许在作业的运行过程中进行换进、换出;换进和换出能有效地提高内存利用率;3)虚拟性---从逻辑上扩充内存容量,使用户所看到远大于实际内存容量;这是虚拟存储器最重要的特征和最重要的目标;4)离散性---是以上三个特性的基础,在内存分配时采用离散分配的方式;备注:虚拟性是以多次性和对换性为基础的,而多次性和对换性又必须建立在离散分配的基础上;4.7 请求分页存储管理方式4.6.1 请求分页中的硬件支持---页表、缺页中断和地址变换请求分页系统是在分页的基础上,增加了“请求调页”和“页面置换”功能,每次调入和换出基本单位都是长度固定的页,实现比请求分段简单;1.页表机制---将用户地址空间中的逻辑地址变换为内存空间中的物理地址,因只将部分调入内存,需增设若干项;在请求分页系统中的每个页表项如下所示:1 状态位P:该页是否已调入内存,供访问时参考;2 访问字段A:记录一段时间内本页被访问的频率,供选择换出页时参考;3 修改位M:页在调入内存后是否被修改过,供置换页面时参考;4 外存地址:指出该页在外存上的地址,即物理块号,供调入该页时参考;4.7.2 内存分配策略和分配算法1.最小物理块数的确定是指能保证进程正常运行所需的最小物理块数,当系统为进程分配的物理块数少于此值时,进程将无法运行;进程应获得的最少物理块数与计算机的硬件结构有关;对于某些简单的机器,所需的最少物理块数为2,分别用于存放指令和数据,间接寻址时至少要有三块;对于某些功能较强的机器,因其指令本身、源地址和目标地址都可能跨两个页面,至少要为每个进程分配6个物理块,以装入这些页面;2. 物理块的分配策略请求分页系统的两种内存分配策略:即固定和可变分配策略;两种置换策略:即全局置换和局部置换;可组合出以下三种策略;1 固定分配局部置换Fixed Allocation, Local Replacement--每进程分配一定数目的物理块,在整个运行期间都不再改变,换入换出都限于这些物理块;每个进程物理块难以确定,太多太少都不好2 可变分配全局置换Variable Allocation, Global Replacement --每进程分配一定数目的物理块,OS 保持一空闲物理块队列;进程缺页时,摘下一空闲块,并将该页装入;3 可变分配局部置换Variable Allocation, Local Replacemen --每进程分配一定数目的物理块;进程缺页时,只允许从该进程内存页中选出一页换出;若缺页中断频繁,再为该进程分配若干物理块,直至缺页率减少;若缺页率特低,则减少该进程的物理块数,应保证缺页率无明显增加;3. 物理块分配算法1 平均分配算法--将所有可供分配的物理块,平均分配给各个进程; 例如,有100个物理块,5个进程,每进程可分20个物理块;未考虑到各进程本身的大小;2 按比例分配算法--根据进程的大小按比例分配物理块;共n 个进程,每进程页面数为si,则页面数的总和为:设可用的物理块为m,每进程分到的物理块数为bi,有:3 考虑优先权的分配算法--为了照顾重要、紧迫的作业尽快完成,为它分配较多的空间;通常采取:把可供分配的物理块分成两部分:一部分按比例分给各进程;另一部分根据优先权分给各进程;有的系统是完全按优先权来分配;4.7.3 调页策略1. 何时调入页面1 预调页策略缺页前 :页面存放连续,用预测法一次调入多个相邻页,预测成功率仅为50%;2 请求调页策略缺页时:运行中,发现不在内存,立即请求,由OS 调入;2. 从何处调入页面请求分页系统中外存分为两部分:文件区和对换区;这样,当发生缺页请求时,系统应从何处将缺页调入内存:1 系统拥有足够的对换区,可以全部从对换区调入所需页面;在进程运行前,须将有关的文件拷贝到对换区;2 系统缺少足够的对换区,这时凡是不会被修改的文件,都直接从文件区调入,由于它们未被修改而不必换出;但对于可能被修改的部分,换出时调到对换区,以后需要时,再从对换区调入;3 UNIX 方式;凡是未运行过的页面,都应从文件区调入;曾运行过但已换出的页面,放在∑==ni iS S 1m SS b ii ⨯=对换区,下次应从对换区调入;4.8 页面置换算法当进程运行时,所访问的页面不在内存而需要将他们调入内存,但内存无空闲时,需要选择一页面换出到对换区,选择算法即页面置换算法;算法评价:页面置换频率低,调出页面将不会或很少访问;4.8.1 最佳置换算法和先进先出置换算法1. 最佳Optimal 置换算法由Belady 于1966年提出的一种理论上的算法;原理:其所选择的被淘汰页面,将是以后永不使用的, 或是在最长未来时间内不再被访问的页面;特点:通常可获得最低的缺页率,但由于进程运行不可预知而无法实现,用来评价其他算法;假定系统为某进程分配了三个物理块,并考虑有以下的页面号引用串:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1进程运行时,先将7,0,1三页装入内存;当进程要访问页面2时,将会产生缺页中断,此时OS 根据最佳置换算法,将选择页面7予以淘汰;共发生6次页面置换;图 4-25 利用最佳页面置换算法时的置换图 2. 先进先出FIFO 页面置换算法---总是置换最先进入内存的页面;用FIFO 算法共发生12次页面置换;该算法与进程的实际运行规律不相符,有些页面经常被访问全局变量,常用函数;图 4-26 利用FIFO 置换算法时的置换图4.8.2 最近最久未使用Least Recently Used LRU 置换算法1. LRU置换算法 ---在无法预测各页面将来使用情况下,利用“最近过去”作为“最近将来”的近似选择最近最久未使用的页面予以淘汰;用LRU 算法共发生9次页面置换;引用率70770170122010320304243230321201201770101页框(物理块)203图 4-27 LRU 页面置换算法2. LRU 置换算法的硬件支持LRU 算法比较好,但为了快速知道哪一页是最近最久未使用的页面,需要硬件支持:寄存器或栈;1 寄存器为了记录某进程在内存中各页的使用情况,须为每个页面配置一个移位寄存器,可表示为:原理:进程访问某物理块时,先将寄存器的Rn-1位设成1;此时,定时信号将每隔一定时间将寄存器右移一位;若将n 位寄存器的数看做是一整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面;例:某进程在内存中有8个页面,为每页面配置一8位寄存器时的LRU 访问情况,如图4-28图 4-28 某进程具有8个页面时的LRU 访问情况2 栈--利用栈来保存当前使用的各页面的页面号;原理:每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶;因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号;假定现有一进程所访问的页面的页面号序列为:4,7,0,7,1,0,1,2,1,2,6随着进程的访问,栈中页面号的变化情况如图4-29所示;在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去;LRU 算法较好,但要求较多硬件支持, 实际使用接近LRU算法-Clock 算法;图引用率70770170122010323104430230321013201770201页框2304204230230127127011474074704170401741074210741207421074621074-29 用栈保存当前使用页面时栈的变化情况。

计算机操作系统的内存和资源管理

计算机操作系统的内存和资源管理

计算机操作系统的内存和资源管理计算机操作系统是人类智慧的结晶,是计算机系统中最为重要的组成部分之一。

而计算机操作系统的内存和资源管理则是计算机系统中最为基础、且最为重要的技术之一。

那么,究竟什么是计算机操作系统的内存和资源管理呢?下面,我们将对其进行较为详细的介绍。

一、计算机操作系统内存管理内存是计算机系统中非常重要的部分,它能够存储大量的程序、数据以及指令等信息。

在计算机操作系统中,内存管理是至关重要的。

内存管理的主要功能是负责将系统中的内存空间进行分配、回收以及保护等操作。

在进行内存管理时,需要使用一些技术,如分页管理、分段管理和虚拟内存管理等。

1、分页管理技术分页管理技术是一种常用的内存管理技术。

它将物理内存按照固定大小的块进行划分,并将进程的虚拟空间也划分为大小相等的块,将进程中的数据和指令分别存放在不同的块中。

这种方式可以使得进程运行时不会发生冲突,从而保证了进程的安全性和稳定性。

2、分段管理技术分段管理技术是一种对内存进行划分的技术。

它将进程中的数据和指令按照功能、性质等进行划分,形成多个独立的逻辑段。

这些段具有不同的性质和对内存空间的需求,因此需要使用不同的管理策略。

使用这种技术可以有效地解决内存碎片问题,提高了内存的利用率。

3、虚拟内存管理技术虚拟内存管理技术是一种将物理内存和硬盘上的空间互相补充使用的技术。

在使用虚拟内存技术时,进程中只需要加载其部分数据到物理内存中,其余数据则存储在硬盘上。

当需要使用到存放在硬盘上的数据时,系统将其从硬盘中调入内存中,以供进程使用。

这种方式可以使得进程更加高效地使用内存,提高计算机系统的性能。

二、资源管理资源管理包括对CPU、磁盘、网络等主要硬件资源的管理。

在计算机操作系统中,资源管理是实现进程调度、磁盘、网络等系统资源的分配和控制的核心。

一般来讲,资源管理的主要目标是提高计算机系统的性能、提高系统吞吐量,并尽可能将每个进程的资源利用率最大化。

操作系统第四章复习

操作系统第四章复习

页框号为21。 因为起始驻留集为空, 而0页对应的ห้องสมุดไป่ตู้框为空闲链表中的第三个空闲页框,其对应的页框号为21。
页框号为32。 因为11 > 10故发生第三轮扫描,页号为1的页框在第二轮已经处于空闲页框链表中,此刻该页又被重新访问,因此应被重新放回到驻留集中,其页框号为32。
页框号为41。 因为第2页从来没有被访问过,不在驻留集中。因此从空闲链表中取出链表头的页框,页框号为41。
4. 在虚拟内存管理中,地址变换机构将逻辑地址转换为物理地址,形成该逻辑地址的阶段是( )。 ① 编辑 ② 编译 ③ 链接 ④ 装载 5. 采用段式存储管理的系统中,若地址用24位表示,其中8位表示段号,则允许每段的最大长度是_______ A)224 B)28 C) 216 D) 232 6. 作业在执行中发生了缺页中断,经操作系统处理后,应让其执行______指令。 A)被中断的前一条 B)被中断的后一条 C)被中断的 D) 启动时的第一条
7、某基于动态分区存储管理的计算机,其主存容量为55MB(初始为空),采用最佳适配(Best fit)算法,分配和释放的顺序为:分配15MB,分配30MB,释放15MB,分配6MB,此时主存中最大空闲分区的大小是( ) A:7MB B:9MB C:10MB D:15MB
当该进程执行到时刻260时,要访问逻辑地址为17CAH的数据,请问答下列问题: (1)该逻辑地址对应的页号是多少? (2)若采用先进先出置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。 (3)若采用时钟置换算法,该逻辑地址对应的物理地址是多少?(设搜索下一页的指针沿顺时针方向移动,且当前指向2号页框)
页号
存储块号
0 1 2 3
5 10 4 7

操作系统第八版复习题答案

操作系统第八版复习题答案

操作系统第八版复习题答案操作系统第八版复习题答案操作系统是计算机系统中的核心组件,负责管理计算机的资源和提供各种服务。

对于学习操作系统的同学来说,复习题是一个很好的练习和巩固知识的方式。

本文将为大家提供操作系统第八版复习题的答案,希望能够对大家的学习有所帮助。

第一章:引论1. 操作系统是什么?答:操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供各种服务,是用户和计算机硬件之间的接口。

2. 操作系统的主要功能有哪些?答:操作系统的主要功能包括进程管理、内存管理、文件系统管理、设备管理和用户接口。

3. 什么是进程?答:进程是程序的执行实例,是计算机中正在运行的程序的抽象。

4. 进程和线程有什么区别?答:进程是程序的执行实例,拥有独立的地址空间和资源,而线程是进程中的一个执行单元,共享进程的地址空间和资源。

5. 什么是虚拟内存?答:虚拟内存是一种将磁盘空间作为扩展内存的技术,可以将进程的数据和指令存储在磁盘上,按需加载到内存中。

第二章:进程管理1. 进程的状态有哪些?答:进程的状态包括就绪态、运行态和阻塞态。

2. 进程调度的目标是什么?答:进程调度的目标是提高系统的吞吐量、响应时间和公平性。

3. 什么是死锁?答:死锁是指两个或多个进程因为争夺资源而相互等待的状态,导致系统无法继续执行。

4. 死锁的预防策略有哪些?答:死锁的预防策略包括资源分配策略、资源有序性策略和资源剥夺策略。

5. 什么是进程同步?答:进程同步是指多个进程之间按照一定的顺序执行,以避免竞态条件和数据不一致的问题。

第三章:内存管理1. 什么是虚拟内存?答:虚拟内存是一种将磁盘空间作为扩展内存的技术,可以将进程的数据和指令存储在磁盘上,按需加载到内存中。

2. 什么是页面置换算法?答:页面置换算法是指在内存不足时,选择一个页面将其换出到磁盘上,以便为新的页面腾出空间。

3. FIFO页面置换算法的缺点是什么?答:FIFO页面置换算法的缺点是无法考虑页面的访问频率和重要性,可能导致频繁访问的页面被置换出去。

操作系统-存储管理

操作系统-存储管理

操作系统-存储管理操作系统-存储管理一、引言存储管理是操作系统中重要的组成部分,它负责管理计算机系统中的存储器资源。

存储管理的任务包括内存分配、内存保护、内存回收等,通过有效的存储管理可以充分利用系统的存储资源,提高系统的运行效率和性能。

二、内存层次结构1、主存储器主存储器是计算机系统中最主要的存储器,它用于存放正在运行的程序和数据,是CPU直接访问的存储器。

主存储器一般被划分为若干个固定大小的块,每个块被称为一页,每一页可以存放一个进程的一部分或全部。

2、辅助存储器辅助存储器是主存储器的扩展,主要用于存储大容量的数据和程序。

辅助存储器包括硬盘、磁带等设备,其访问速度比主存储器慢,但容量较大。

三、内存管理1、内存分配方式a:静态分配静态分配是指在程序运行之前,就确定了程序在内存中的位置。

静态分配的优点是简单高效,但是会浪费存储资源。

b:动态分配动态分配是指程序在运行时,根据需要动态分配内存。

动态分配的优点是灵活高效,但是需要额外的内存管理开销。

2、内存管理算法a:首次适应算法首次适应算法是按照内存块的起始地质逐一查找,找到第一个大小大于等于要求的空闲的内存块进行分配。

b:最佳适应算法最佳适应算法是在所有满足要求的内存块中选择大小最小的内存块进行分配。

c:最差适应算法最差适应算法是在所有满足要求的内存块中选择大小最大的内存块进行分配。

3、内存保护内存保护是指通过访问权限控制,确保每个进程只能访问自己分配的内存空间,防止进程之间的干扰。

4、内存回收内存回收是指当进程不再使用某些内存空间时,将其释放给系统以便后续的内存分配。

内存回收可以通过标记清除算法、引用计数算法等方式实现。

四、虚拟内存管理1、虚拟内存机制虚拟内存是一种扩展的内存管理技术,它通过将部分程序或数据装入主存储器,并实现从辅助存储器到主存储器的动态迁移,提高了计算机系统的运行性能。

2、页面置换算法页面置换算法是指当主存储器已满时,需要置换出某些页面到辅助存储器中,以便为新的页面腾出空间。

操作系统(二)复习

操作系统(二)复习

第四章 存储器管理
存储管理的主要功能 1. 地址转换(地址映射) 2. 存储器的分配和回收 3. 存储保护 4. 存储扩充
有那些分配的方式,有那些分配的算法,各需要那 些数据结构,如何实现地址转换和存储扩充; 各种方式的优缺点(内存利用率、内零头和碎片)。
地址转换(地址映射、地址重定位)
• 概念: 逻辑地址 地址空间 物理地址 存储空间(物理空间) 方式: 静态地址转换和动态地址转换的区别,实 现过程,优缺点,每种存储分配方式对应 的地址转换是如何实现的。
页式管理和段式管理的比较
页式
大小 信息 目的 逻辑 地址 固定、硬件决定 信息的物理单位 提高内存的利用率 一维的
段式
不固定、程序决定 独立的信息逻辑单位, 更便于共享 方便程序设计 二维的
段页式管理
• 段式和页式的结合,取长补短。 • 逻辑地址:二维的 • 数据结构:每个进程一张段表(页表地址 和页表长度),每个段一张页表,位示图。 • 地址转换:硬件实现的动态地址转换机构, 要访问3次内存。
虚拟存储器
• 局部性(局限性) 时间局部性和空间局部性。 • 硬件支持:动态地址转换机构 + 中断(缺页中断、 缺段中断) • 特征:离散性、多次性、对换性、虚拟性 • 效果:大于内存配置的容量、接近内存的速度、 接近外存的单位价格。 • 容量(地址空间): MIN(地址结构可表示的大小,内存+外存)
第四章 设备管理
设备管理的主要功能 • 设备分配、调度 • 缓冲管理 • 设备处理 • 实现设备的无关性和虚拟设备
提高CPU和设备并行工作的程度,设备和设 备并行工作的程度。
设备类型
独占型设备、共享型设备、虚拟型设备
字符型设备。块设备
大中小型计算机的设备连接方式

操作系统原理复习资料

操作系统原理复习资料

操作系统原理复习资料操作系统是计算机系统中的核心组成部分,它负责管理和控制计算机硬件和软件资源,以提供良好的用户体验和高效的计算机运行环境。

了解操作系统的原理是计算机科学与技术专业学生的基本要求之一。

本文将为读者提供一份操作系统原理的复习资料,帮助读者系统地、全面地掌握操作系统的知识。

一、操作系统概述1.1 操作系统定义操作系统是一种系统软件,它管理计算机硬件和软件资源,为用户和应用程序提供接口和服务。

1.2 操作系统功能(1)处理器管理:负责处理器的分配和调度,保证每个任务得到适当的处理时间。

(2)内存管理:管理计算机的内存资源,包括内存的分配、回收和保护。

(3)文件系统管理:负责文件的存储、组织和访问,提供对文件的读写服务。

(4)设备管理:管理计算机系统中的各种设备,如硬盘、鼠标、打印机等。

(5)用户接口:为用户提供与计算机系统交互的界面,包括命令行界面和图形界面。

(6)错误检测和恢复:监测系统的错误,并采取相应的措施进行错误恢复。

1.3 操作系统分类(1)批处理操作系统:按照用户提交的作业批量执行,无需用户干预。

(2)分时操作系统:多个用户通过终端共享计算机系统,实现快速响应。

(3)实时操作系统:保证任务在规定时间内完成,适用于对时间要求较高的应用。

(4)网络操作系统:用于管理和控制网络中的计算机系统和资源。

(5)分布式操作系统:将多个计算机组成的网络作为一个整体进行管理和控制。

二、进程管理2.1 进程概念进程是计算机中正在运行的程序的实例,是操作系统资源分配和调度的基本单位。

2.2 进程状态(1)等待态(阻塞态):进程在等待某些条件满足,无法继续执行。

(2)就绪态:进程已满足运行条件,但等待处理器分配执行时间。

(3)运行态:进程正在执行指令。

(4)终止态:进程执行完成或异常终止。

2.3 进程调度进程调度是操作系统决定将处理器分配给哪个进程的过程,主要有三种调度算法:先来先服务调度、短作业优先调度和时间片轮转调度。

计算机四级网络工程师-操作系统原理-第5章内存管理

计算机四级网络工程师-操作系统原理-第5章内存管理

计算机四级网络工程师-操作系统原理-第5章内存管理计算机四级网络工程师-操作系统原理-第5章内存管理单选题可变分区管理方案,看内存分配表各类适应算法下次适应算法最优适应算法最坏适应算法首次适应算法,系统中剩余的最大空闲分区静态重定位中,从哪个单元获取操作数各类置换算法各类置换算法看内存分配情况表——实战最近最少使用页面置换算法(LRU)先进先出页面置换算法(FIFO)最近最不常用页面置换算法(LFU)最近未使用页面置换算法(NRU)涉及计算【真题讲解】页式管理存储第66题快表命中率花费us计算简单页式存储管理问最大有多少个页面问最大有多少字节问页表长度(页表项个数)写保护中断各个置换算法的缺页率(建议放弃这一题分,比较容易搞混,需要理解各个置换算法并画图表)LRU页面置换算法OPT最佳页面置换算法八进制的计算(先八进制转换成二进制再计算)虚拟页式存储管理(求偏移量题目)题目直接给二进制,直接进行数位数偏移题目直接给16进制,转换为二进制后进行数位数偏移虚拟页式的有效位、修改位、访问位、保护位、禁止位单页存放整数变量个数和循环代码计算缺页次数一般情况通解:两个循环次数相乘,除单页个数答案有整数×整数形式使用快表和不使用快表相比较,求平均访问时间降低x%需要直接记忆单选多选题需要直接记忆多选单选题可变分区管理方案,看内存分配表下次适应算法最优适应算法最坏适应算法首次适应算法,系统中剩余的最大空闲分区这种题目一定要学习画图,画出变化趋势和具体数值静态重定位中,从哪个单元获取操作数第28题:在操作系统的存储系统中,程序装入时采用静态重定位方法。

已知:第18号单元外有一条加法指令,该指令要求处第066号单外取得操作数1234。

假设存储管理为程学分配的内存区域是众第800号开始,则加法指令将从哪一个单元获取操作数:答案——866置换算法策略先进先出页面置换算法(FIFO)将驻留在内存中时间最长的一页调出最先装入内存的一页调出最近最少使用页面置换算法(LRU)最长时间未被使用过的页面距离现在最长时间没有被访问的页面最近最不常用页面置换算法(LFU)一段时间单页面被使用的次数多少选择一段确定的周期T内,使用次数最少最近未使用页面置换算法(NRU)在最近的一个【时钟滴答】中尽量置换一个没有被访问的和没有被修改过的页面理想页面置换算法(OPT)以后不再需要的、或者在最长时间以后才会用到的页面第二次机会页面置换算法检查进入内存时间最久页面的R位,如果是0,则置换该页;如果是1,就将R位清0,并把该页面放到链表的尾端,修改其进入时间【重点就是会放到链表尾端,画图表时注意】各类置换算法各类置换算法看内存分配情况表——实战最近最少使用页面置换算法(LRU)先进先出页面置换算法(FIFO)最近最不常用页面置换算法(LFU)最近未使用页面置换算法(NRU)涉及计算【真题讲解】页式管理存储第60题:在分区管理方法中,假设程序A自60K处开始存放,到124K为止。

操作系统实验-内存管理

操作系统实验-内存管理

操作系统实验-内存管理操作系统实验内存管理在计算机系统中,内存管理是操作系统的核心任务之一。

它负责有效地分配和管理计算机内存资源,以满足各种程序和进程的需求。

通过本次操作系统实验,我们对内存管理有了更深入的理解和认识。

内存是计算机用于存储正在运行的程序和数据的地方。

如果没有有效的内存管理机制,计算机系统将无法高效地运行多个程序,甚至可能会出现内存泄漏、内存不足等严重问题。

在实验中,我们首先接触到的是内存分配策略。

常见的内存分配策略包括连续分配和离散分配。

连续分配是将内存空间视为一个连续的地址空间,程序和数据被依次分配到连续的内存区域。

这种方式简单直观,但容易产生内存碎片,降低内存利用率。

离散分配则将内存分成大小相等或不等的块,根据需求进行分配。

其中分页存储管理和分段存储管理是两种常见的离散分配方式。

分页存储管理将内存空间划分为固定大小的页,程序也被分成相同大小的页,通过页表进行映射。

分段存储管理则根据程序的逻辑结构将其分成不同的段,如代码段、数据段等,每个段有不同的访问权限和长度。

接下来,我们研究了内存回收算法。

当程序不再使用分配的内存时,操作系统需要回收这些内存以便再次分配。

常见的内存回收算法有首次适应算法、最佳适应算法和最坏适应算法。

首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲区域进行分配;最佳适应算法则选择大小最接近需求的空闲区域进行分配;最坏适应算法选择最大的空闲区域进行分配。

为了更直观地理解内存管理的过程,我们通过编程实现了一些简单的内存管理算法。

在编程过程中,我们深刻体会到了数据结构和算法的重要性。

例如,使用链表或二叉树等数据结构来表示空闲内存区域,可以提高内存分配和回收的效率。

在实验中,我们还遇到了一些实际的问题和挑战。

比如,如何处理内存碎片的问题。

内存碎片是指内存中存在一些无法被有效利用的小空闲区域。

为了解决这个问题,我们采用了内存紧缩技术,将分散的空闲区域合并成较大的连续区域。

操作系统期末复习资料(全)

操作系统期末复习资料(全)

操作系统期末复习资料(全)第⼀章操作系统引论1.操作系统的设计⽬标及作⽤设计⽬的:(⽅便性和有效性是设计操作系统时最重要的两个⽬标)1.有效性:提⾼系统资源利⽤率;提⾼系统吞吐量。

2.⽅便性:配置OS后可使计算机系统更容易使⽤。

3.可扩充性:现代OS应采⽤新的结构,以便于⽅便的增加新的功能和模块。

4.开放性:系统能遵循世界标准规范,特别是遵循开放系统互连(OSI)国际标准。

作⽤:1.OS作为⽤户与计算机硬件系统之间的接⼝。

2.OS作为计算机系统资源管理者。

3.OS实现了对计算机资源的抽象。

2. 单道批处理系统和多道批处理系统特点及区别单道批处理系统特点:⾃动性顺序性单道性。

多道批处理系统特点(优缺点):1.资源利⽤率⾼。

2.系统吞吐量⼤。

3.平均周转时间长。

4. ⽆交互能⼒。

★☆单道批处理系统中,内存中仅有⼀道作业,⽆法充分利⽤系统资源。

多道批处理系统中,作业按⼀定算法从外存的“后备队列”中调⼊内存,使它们共享各种资源。

1.分时系统和实时系统的特点特征⽐较:1>.多路性。

实时信息处理系统也按分时原则为多个终端⽤户服务。

实时控制系统的多路性则主要表现在系统周期性地对多路现场信息进⾏采集,以及对多个对象或多个执⾏机构进⾏控制。

⽽分时系统中的多路性则与⽤户情况有关,时多时少。

2>.独⽴性。

实时信息处理系统中的每个终端⽤户在向实时系统提出服务请求时,是彼此独⽴地操作,互不⼲扰;⽽实时控制系统中,对信息的采集和对对象的控制也都是彼此互不⼲扰。

3>.及时性。

实时信息处理系统对实时性的要求与分时系统类似,都是以⼈所能接受的等待时间来确定的;⽽实时控制系统的及时性,则是以控制对象所要求的开始截⽌时间或完成截⽌时间来确定的,⼀般为秒级到毫秒级,甚⾄有的要低于100微秒。

4>.交互性。

实时信息处理系统虽然也具有交互性,但这⾥⼈与系统的交互仅限于访问系统中某些特定的专⽤服务程序。

它不像分时系统那样能向终端⽤户提供数据处理和资源共享等服务。

操作系统的运行流程及原理

操作系统的运行流程及原理

操作系统的运行流程及原理操作系统(Operating System,简称OS)是一种管理和控制计算机硬件与软件资源的软件系统。

它在计算机启动时加载进内存,并负责对计算机的资源进行分配和管理,为上层应用程序提供一个可靠、高效、安全和友好的使用环境。

一、引导操作系统当计算机启动时,BIOS(Basic Input/Output System,基本输入/输出系统)将控制权交给操作系统的引导加载器,它负责从硬盘或其他存储介质中找到操作系统的核心文件,并将其加载到内存中。

二、初始化系统操作系统加载到内存后,它会进行一系列的初始化工作,包括建立进程表、文件表、设备管理表等数据结构,初始化驱动程序,初始化各种服务和系统资源。

三、处理进程调度操作系统的核心任务之一是对进程进行调度和管理。

它会根据系统资源的利用情况、进程的优先级、运行时间等因素,决定应该让哪个进程获得CPU的使用权。

进程调度算法有很多种,如先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转等。

四、管理内存操作系统需要管理计算机的内存资源,包括内存的分配、回收和保护。

它会将内存划分为多个区域,如操作系统区、用户程序区、堆栈区等,并维护一个内存分配表来记录每个区的使用情况。

当有新的进程需要内存时,操作系统会根据内存分配策略为其分配足够的内存空间。

五、文件系统管理操作系统会通过文件系统来管理计算机的文件和目录。

它提供了一组API(Application Programming Interface,应用程序接口)供应用程序读取、写入和管理文件。

文件系统通常由文件控制块(FCB)和目录结构组成,用于记录文件的属性和位置信息。

六、设备管理与I/O调度操作系统还负责管理计算机的设备,如硬盘、显卡、键盘等。

它会维护一个设备管理表,记录设备的状态和使用情况。

操作系统需要根据应用程序对设备的需求,决定何时分配设备资源给进程,并通过I/O调度算法来调度设备的使用。

计算机操作系统考试解析

计算机操作系统考试解析

计算机操作系统考试解析一、概述计算机操作系统考试是对学生在操作系统课程学习中所掌握的知识和技能的综合测试。

本文将对计算机操作系统考试进行解析,包括考试内容、考试形式以及备考策略等方面的介绍。

二、考试内容1. 基本概念与原理在计算机操作系统考试中,通常会涉及到操作系统的基本概念和原理。

学生需要掌握操作系统的定义、作用、组成部分以及与硬件之间的关系等基本概念,同时还需要了解操作系统的运行原理、调度算法、内存管理和文件系统等重要原理。

2. 进程管理考试中还会出现关于进程管理的题目。

学生需要了解进程的概念、状态转换、进程调度算法以及进程同步与通信等内容。

此外,还需要了解多线程和并发控制等相关知识。

3. 内存管理内存管理也是考试的重点内容之一。

学生需要了解内存的分段与分页管理,掌握虚拟内存和页面置换算法等相关知识。

同时,还需要了解内存分配与回收的方法,如动态分区分配算法和垃圾回收算法等。

4. 文件系统文件系统也是操作系统的重要组成部分,因此在考试中也会涉及到相关的内容。

学生需要了解文件系统的组织结构、目录管理、文件共享与保护等内容,同时还需要了解磁盘调度算法和文件存储方式等知识点。

5. 设备管理考试中也会出现设备管理相关的题目。

学生需要了解设备管理的基本概念、设备分配与回收、中断处理和设备驱动程序等内容。

此外,了解I/O系统和磁盘管理等知识也是必要的。

三、考试形式1. 选择题操作系统考试通常会有一定数量的选择题,用于测试学生对基本概念和原理的了解程度。

考生需要根据题目要求选择正确答案。

2. 简答题考试中还会出现一些简答题,要求考生用简洁明了的语言回答问题。

在回答简答题时,应清晰表达自己的观点,简明扼要地概括出关键内容。

3. 计算题除了选择题和简答题之外,考试中还可能出现一些计算题,要求考生根据所学知识进行计算。

在解答计算题时,应注意计算过程的准确性,并对结果进行合理解释。

四、备考策略1. 复习基本概念复习阶段可以从操作系统的基本概念开始,对照教材或课堂笔记,对重要概念进行复习和总结。

操作系统总复习

操作系统总复习

操作系统总复习操作系统总复习第一章操作系统概述⑴操作系统定义及作用⑵操作系统的发展历程⑶操作系统的基本特征⑷操作系统的功能和分类第二章进程管理⑴进程的概念和特征⑵进程的状态和转换⑶进程调度算法⑷进程同步与互斥⑸进程通信第三章内存管理⑴内存管理的需求和基本概念⑵内存分区管理⑶页面置换算法⑷虚拟内存管理⑸内存保护和共享第四章文件系统⑴文件系统的组织和层次结构⑵文件的逻辑结构和物理结构⑶文件的操作和访问控制⑷文件系统的缓存管理⑸文件的备份和恢复第五章输入输出系统⑴输入输出设备的分类和特点⑵输入输出控制方式和机制⑶设备驱动程序和设备管理⑷中断处理和设备中断⑸缓冲区管理和输入输出性能优化第六章文件系统性能优化⑴文件访问性能的影响因素⑵磁盘存储结构和访问时间⑶文件缓冲技术和缓冲区管理⑷文件系统的优化策略⑸文件系统的容错与恢复第七章安全与保护⑴安全性和保护性的概念⑵计算机系统的安全威胁⑶计算机系统的安全性防范措施⑷计算机系统的访问控制⑸计算机系统的数据加密和身份认证第八章操作系统的演化⑴分布式和并行计算环境⑵分布式操作系统的特点和原理⑶并行操作系统的特点和原理⑷分布式操作系统的资源管理⑸并行操作系统的任务调度附件:⒈定义相关的法律名词及注释⒉操作系统设计的案例分析报告本文涉及的法律名词及注释:⒈版权:指作品的创作者对作品享有的法律保护权利,包括复制权、发行权等。

⒉专利:指发明者对其发明所享有的独占权利,包括制造、使用、销售等权利。

⒊商标:指企业对其产品或服务标识的独占权利,用于区分同类产品或服务的来源。

⒋反垄断法:指禁止企业垄断和限制竞争行为的法律法规,旨在维护市场公平和消费者权益。

计算机操作系统复习资料(考试全攻略)

计算机操作系统复习资料(考试全攻略)

计算机操作系统复习资料(考试全攻略)第1章绪论计算机系统都是由两部分组成:计算机硬件和计算机软件。

计算机软件包括:系统软件和应用软件。

引入操作系统的目的可从三方面来考察:(1) 从系统管理人员的观点来看:引入操作系统是为了合理地组织计算机工作流程,管理和分配计算机系统硬件及软件资源,使之能为多个用户高效率地共享。

(2) 从用户的观点来看:引入操作系统是为了给用户使用计算机提供一个良好的界面,以使用户无需了解许多有关硬件和系统软件的细节,就能方便灵活地使用计算机。

(3) 从发展的观点看:引入操作系统是为了给计算机系统的功能扩展提供支撑平台,使之在追加新的服务和功能时更加容易和不影响原有的服务与功能。

操作系统定义为:操作系统是计算机系统中的一个系统软件,它是这样一些程序模块的集合——它们管理和控制计算机系统中的硬件及软件资源,合理地组织计算机工作流程,以便有效地利用这些资源为用户提供一个功能强大、使用方便和可扩展的工作环境,从而在计算机与其用户之间起到接口的作用。

操作系统的5个功能:①处理机管理、②存储管理、③设备管理、④信息管理(文件系统管理)、⑤用户接口研究操作系统的几种观点:①操作系统是计算机资源的管理者、②用户界面的观点、③进程管理观点、第2章操作系统用户界面作业的定义:在一次应用业务处理过程中,从输入开始到输出结束,用户要求计算机所做的有关该次业务处理的全部工作称为一个作业,它由程序、数据和作业说明书组成。

作业的阶段:作业的提交、后备、执行以及完成阶段。

第3章进程管理现代操作系统的重要特点是程序的并发执行,及系统所拥有的资源被共享和系统的用户随机地使用系统。

程序的并发执行可总结为:一组在逻辑上互相独立的程序或程序段在执行过程中,其执行时间在客观上互相重叠,即一个程序段的执行尚未结束,另一个程序段的执行已经开始的这种执行方式。

程序的并行执行是指一组程序按独立的、异步的速度执行。

并行执行不等于时间上的重叠。

《操作系统》复习大纲及习题

《操作系统》复习大纲及习题

《计算机操作系统》复习要点及习题第一章操作系统概述1、操作系统的定义及特征2、操作系统分类:批处理、分时、实时;三种系统的特点;3、理解并发与并行第二章进程管理1、进程的概念2、进程的结构、三种基本状态及状态之间的转换和转换条件3、进程与程序的联系与差别4、进程的并发执行使进程失去顺序性,可能产生与时间有关的错误。

5、共享变量、临界区、临界资源的概念6、进程互斥的概念7、重点:信号量机制——定义整形变量如S表示信号量,S的初值、S>0表示有S个资源可用、S<0则| S |表示S等待队列中的进程个数、S=0表示无资源可用的含义。

P(S)、V(S)操作的含义。

使用信号量机制实现进程互斥、同步问题。

P(S) 表示申请一个资源、V(S) 表示释放一个资源。

P.V操作必须成对出现,有一个P操作就一定有一个V操作。

当为互斥操作时,它们同处于同一进程;当为同步操作时,则不在同一进程中出现。

8、生产者-消费者问题第三章处理机调度与死锁1、重点:处理机调度算法(必须有完整的计算过程,只有结果无过程不能给满分)(1)、先到先服务算法(FIFO)(2)、短作业优先算法(SJF)给定一作业,假定它们同时到达,并且在一台处理机上按单道方式执行,则短作业优先调度算法平均周转时间为最短。

(3)、高响应比优先调度算法(4)、最高优先数算法(5)、循环轮转/时间片轮转算法(RR)2、死锁的概念——一组进程中的每一个进程,均无限期地等待此组进程中某个其他进程占有的,因而永远无法得到的资源,这种现象称为进程死锁。

3、死锁四个必要条件:资源独占、保持申请、不可剥夺、循环等待4、死锁四种处理方法:死锁预防、死锁避免、死锁检测、死锁恢复5、死锁预防的两种方法:预先分配策略、有序分配策略6、死锁避免:进程提出资源请求,系统在分配之前进行安全性检测,若使进程进入不安全状态,则拒绝分配。

重点:银行家算法(必须有完整的计算过程,只有结果无过程不能给满分)6、死锁恢复四种方式:重新启动、终止进程、剥夺资源、进程回退第四章内存管理1、分区分配策略——最先适应算法、最佳适应算法、最坏适应算法。

计算机操作系统管理 内存管理

计算机操作系统管理		内存管理

简单存储管理
定位和重定位 程序的装入 绝对装入方式(Absolute Loading Mode)
程序中所使用的绝对地址,既可在编译或汇编时给出, 也可由程序员 直接赋予
例如:ORG 1000H
可重定位装入方式(Relocation Loading Mode)
静态 动态
简单存储管理
选择
分区分配内存管理方式的主要保护措施是
A.界地址保护 B.程序代码保护 C.数据保护 D.栈保护
综合题
页号 0 1 2
页框号 101H ---254H
有效位 1 0 1
请求分页管理系统中,假设某进程的页表内容如左表所示,页面大 小为4KB,一次内存的访问时间是100ns,一次快表(TLB)的访问 时间是10ns,处理一次缺页的平均时间为108ns(己含更新TLB和页 表的时间),进程的驻留集大小固定为2,采用最近最少使用置换算 法(LRU)和局部淘汰策略。假设①TLB初始为空;②地址转换时先 访问TLB,若TLB未命中,再访问页表(忽略访问页表之后的TLB更新 时间);③有效位为0表示页面不在内存,产生缺页中断,缺页中断
若工作集的窗口大小为6,则在t时刻的工作集为 A.{6,0,3,2} B.{2,3,0,4} C.{0,4,3,2,9} D.{4,5,6,0,3,2}
虚拟存储管理
Belady’s 异常 Thrashing 抖动
选择
在页式虚拟存储管理系统中,采用某些页面置换算法,会出现 Belady异常现象,即进程的缺页次数会随着分配给该进程的页框个 数的增加而增加。下列算法中,可能出现Belady异常现象的是
A.28字节 B.216字节 C.224字节 D.232字节
选择
某计算机采用二级页表的分页存储管理方式,按字节编址, 页大小为210字节,页表项大小为2字节,逻辑地址结构为 下图所示,逻辑地址空间大小为216页,则表示整个逻辑

操作系统概念复习资料【8-13章】

操作系统概念复习资料【8-13章】

结果分析:多分配一个物理块可有效减少缺页次数。
(3)分配给该作业3个物理块时,采用最佳页面替换算法, 进程执行过程中页面臵换如下表:
1 4 3 5 4 3 4 4 3 3 1 5 缺页次数为7,缺页中断率为:7/12。 f(2) f(1)
4 4
3 4 3
2 4 3 2
2 2 3 5 f(4)
1 5 1 3 5 f(2)
(2)分配给该作业4个物理块时,采用FIFO页面替换算 法,进程执行过程中页面臵换如下表:
4 4 3 4 3 2 4 3 2 1 4 3 2 1 4 3 5 5 3 2 1 f(4) 4 5 4 2 1 f(3) 3 5 4 3 1 f(2) 2 5 4 3 2 f(1) 1 1 4 3 2 f(5) 5 1 5 3 2 f(4)
2.在采用页式存储管理的系统中,某作业J的逻 辑地址空间为4页(每页2KB),且已知该作业 的页面映像表(即页表)如下所示。
页号 0 1 2
块号 2 4 6
3
8
试借助地址变换图(即要求 画出地址变换图)求出有效 逻辑地址4865所对应的物理 地址。
解:在本题中,一页大小 为2KB,即2048字节,则 逻辑地址4865的页号及 页内位移为: 页号: 4865/2048=2 页内位移: 48652048*2=769 通过页表可知页面2存放 在物理块6中,将物理块 号与逻辑地址中的页内 位移进行拼接,形成物 理地址,即: 6*2048+769=13057
综合分析计算题
1.个请求分页系统中,采用FIFO、最近最久未使用、 最佳页面臵换算法时,假如一个作业的页面走向为4、 3、2、1、4、3、5、4、3、2、1、5,当分配给该作业 的物理块数M分别为3和4时,试计算在访问过程中所 发生的缺页次数和缺页率。并比较所得结果。

操作系统复习提纲

操作系统复习提纲

第一章导论操作系统的功能作用:1、作用:操作系统是控制和管理计算机系统内各种硬件和软件资源,有效地组织多道程序运行的系统软件,使用户与计算机之间的接口。

2、功能:处理机管理、存储管理、设备管理、文件管理、用户接口。

操作系统的发展过程:1、手工操作时期:人工干涉,用户独占。

2、早期批处理时期:出现了完成作业自动转换工作的程序叫监督程序,包括早期联机批处理、早期脱机批处理。

3、多道批处理系统:在内存中同时存放多道程序在管理程序的控制下交替执行,用户独占。

分时系统:用户与主机交互。

实时系统:具有专用性及时性。

4、现代操作系统(网络操作系统和分布式操作系统):有网络地址,提供网络服务,实现资源共享。

第二章计算机系统结构计算机系统在硬件方面的保护:1、双重模式操作:用户模式、监督程序模式,双重模式操作为人们提供了保护操作系统和用户程序不受错误用户程序影响的手段。

2、I/O保护:定义所有I/O指令为特权指令,所以用户不能直接发出I/O指令,必须通过操作系统来进行3、内存保护:对中断向量和中断服务程序进行保护,使用基址寄存器和界限寄存器4、CPU保护:使用定时器防止用户程序运行时间过长,操作系统在将控制权交给用户之前,应确保设置好定时器,以便产生中断。

第三章操作系统结构操作系统的基本组成:进程管理、内存管理、文件管理、输入/输出系统管理、二级存储管理、联网、保护系统、命令解释系统。

系统调用的含义:系统调用提供了进程与操作系统之间的接口。

分为五类:进程控制、文件管理、设备管理、信息维护、通信。

操作系统设计所采用的结构:1、简单结构:以较小、简单且功能有限的系统形式启动,但后来渐渐超过了其原来的范围,由于运行所用的硬件有限,它被编写成利用最小的空间提供最多的功能2、分层方法:优点:模块化,简化了调试和系统验证;缺点:涉及对层的仔细认真的定义的困难,效率较差3、微内核:优点:便与操作系统扩充,便于移植;缺点:关于哪些服务应保留在内核内,而哪些服务应在用户空间内实现,并没有定论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统内存管理操作系统内存管理1. 内存管理方法内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。

2. 连续分配存储管理方式连续分配是指为一个用户程序分配连续的内存空间。

连续分配有单一连续存储管理和分区式储管理两种方式。

2.1 单一连续存储管理在这种管理方式中,内存被分为两个区域:系统区和用户区。

应用程序装入到用户区,可使用用户区全部空间。

其特点是,最简单,适用于单用户、单任务的操作系统。

CP/M和 DOS2.0以下就是采用此种方式。

这种方式的最大优点就是易于管理。

但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。

2.2 分区式存储管理为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。

分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。

分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。

分区式存储管理引人了两个新的问题:内碎片和外碎片。

内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。

为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。

表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。

2.2.1 固定分区(nxedpartitioning)。

固定式分区的特点是把内存划分为若干个固定大小的连续分区。

分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。

分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。

根据程序的大小,分配当前空闲的、适当大小的分区。

优点:易于实现,开销小。

缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。

2.2.2动态分区(dynamic partitioning)。

动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。

与固定分区相比较其优点是:没有内碎片。

但它却引入了另一种碎片——外碎片。

动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。

若是大于要求,则将该分区分割成两个分区,其中一个分区为要求的大小并标记为“占用”,而另一个分区为余下部分并标记为“空闲”。

分区分配的先后次序通常是从内存低端到高端。

动态分区的分区释放过程中有一个要注意的问题是,将相邻的空闲分区合并成一个大的空闲分区。

下面列出了几种常用的分区分配算法:最先适配法(nrst-fit):按分区在内存的先后次序从头查找,找到符合要求的第一个分区进行分配。

该算法的分配和释放的时间性能较好,较大的空闲分区可以被保留在内存高端。

但随着低端分区不断划分会产生较多小分区,每次分配时查找时间开销便会增大。

下次适配法(循环首次适应算法 next fit):按分区在内存的先后次序,从上次分配的分区起查找(到最后{区时再从头开始},找到符合要求的第一个分区进行分配。

该算法的分配和释放的时间性能较好,使空闲分区分布得更均匀,但较大空闲分区不易保留。

最佳适配法(best-fit):按分区在内存的先后次序从头查找,找到其大小与要求相差最小的空闲分区进行分配。

从个别来看,外碎片较小;但从整体来看,会形成较多外碎片优点是较大的空闲分区可以被保留。

最坏适配法(worst- fit):按分区在内存的先后次序从头查找,找到最大的空闲分区进行分配。

基本不留下小空闲分区,不易形成外碎片。

但由于较大的空闲分区不被保留,当对内存需求较大的进程需要运行时,其要求不易被满足。

2.3 伙伴系统固定分区和动态分区方式都有不足之处。

固定分区方式限制了活动进程的数目,当进程大小与空闲分区大小不匹配时,内存空间利用率很低。

动态分区方式算法复杂,回收空闲分区时需要进行分区合并等,系统开销较大。

伙伴系统方式是对以上两种内存方式的一种折衷方案。

伙伴系统规定,无论已分配分区或空闲分区,其大小均为 2 的 k 次幂,k 为整数, l≤k≤m,其中:2^1 表示分配的最小分区的大小,2^m 表示分配的最大分区的大小,通常 2^m是整个可分配内存的大小。

假设系统的可利用空间容量为2^m个字,则系统开始运行时,整个内存区是一个大小为2^m的空闲分区。

在系统运行过中,由于不断的划分,可能会形成若干个不连续的空闲分区,将这些空闲分区根据分区的大小进行分类,对于每一类具有相同大小的所有空闲分区,单独设立一个空闲分区双向链表。

这样,不同大小的空闲分区形成了k(0≤k≤m)个空闲分区链表。

分配步骤:当需要为进程分配一个长度为n 的存储空间时:首先计算一个i 值,使 2^(i-1) &lt;n ≤ 2^i,然后在空闲分区大小为2^i的空闲分区链表中查找。

若找到,即把该空闲分区分配给进程。

否则,表明长度为2^i的空闲分区已经耗尽,则在分区大小为2^(i+1)的空闲分区链表中寻找。

若存在 2^(i+1)的一个空闲分区,则把该空闲分区分为相等的两个分区,这两个分区称为一对伙伴,其中的一个分区用于配,而把另一个加入分区大小为2^i的空闲分区链表中。

若大小为2^(i+1)的空闲分区也不存在,则需要查找大小为2^(i+2)的空闲分区,若找到则对其进行两次分割:第一次,将其分割为大小为 2^(i+1)的两个分区,一个用于分配,一个加入到大小为 2^(i+1)的空闲分区链表中;第二次,将第一次用于分配的空闲区分割为 2^i的两个分区,一个用于分配,一个加入到大小为 2^i的空闲分区链表中。

若仍然找不到,则继续查找大小为 2^(i+3)的空闲分区,以此类推。

由此可见,在最坏的情况下,可能需要对 2^k的空闲分区进行 k 次分割才能得到所需分区。

与一次分配可能要进行多次分割一样,一次回收也可能要进行多次合并,如回收大小为2^i的空闲分区时,若事先已存在2^i的空闲分区时,则应将其与伙伴分区合并为大小为2^i+1的空闲分区,若事先已存在2^i+1的空闲分区时,又应继续与其伙伴分区合并为大小为2^i+2的空闲分区,依此类推。

在伙伴系统中,其分配和回收的时间性能取决于查找空闲分区的位置和分割、合并空闲分区所花费的时间。

与前面所述的多种方法相比较,由于该算法在回收空闲分区时,需要对空闲分区进行合并,所以其时间性能比前面所述的分类搜索算法差,但比顺序搜索算法好,而其空间性能则远优于前面所述的分类搜索法,比顺序搜索法略差。

需要指出的是,在当前的操作系统中,普遍采用的是下面将要讲述的基于分页和分段机制的虚拟内存机制,该机制较伙伴算法更为合理和高效,但在多处理机系统中,伙伴系统仍不失为一种有效的内存分配和释放的方法,得到了大量的应用。

2.4 内存紧缩内存紧缩:将各个占用分区向内存一端移动,然后将各个空闲分区合并成为一个空闲分区。

这种技术在提供了某种程度上的灵活性的同时,也存在着一些弊端,例如:对占用分区进行内存数据搬移占用CPU时间;如果对占用分区中的程序进行“浮动”,则其重定位需要硬件支持。

紧缩时机:每个分区释放后,或内存分配找不到满足条件的空闲分区时。

图8.12堆结构的存储管理的分配算法:在动态存储过程中,不管哪个时刻,可利用空间都是-一个地址连续的存储区,在编译程序中称之为"堆",每次分配都是从这个可利用空间中划出一块。

其实现办法是:设立一个指針,称之为堆指针,始终指向堆的最低(或锻联)地址。

当用户申请N个单位的存储块时,堆指针向高地址(或低地址)称动N个存储单位,而移动之前的堆指针的值就是分配给用户的占用块的初始地址。

例如,某个串处理系统中有A、B、C、D这4个串,其串值长度分别為12,6,10和8. 假设堆指针free的初值为零,则分配给这4个串值的存储空间的初始地址分别为0.12.18和28,如图8.12(a)和(b)所示,分配后的堆指针的值为36。

因此,这种堆结构的存储管理的分配算法非常简单,释放内存空间执行内存紧缩:回收用户释放的空闲块就比较麻烦.由于系统的可利用空间始终是一个绝址连续的存储块,因此回收时必须将所释放的空间块合并到整个堆上去才能重新使用,这就是"存储策缩"的任务.通常,有两种做法:一种是一旦有用户释放存储块即进行回收紧缩,例始,图8.12 (a)的堆,在c串释放存储块时即回收紧缩,例如图8.12 (c)的堆,同时修改串的存储映像成图8.12(d)的状态;另一种是在程序执行过程中不回收用户随时释放的存储块,直到可利用空同不够分配或堆指针指向最高地址时才进行存储紧缩。

此时紧缩的目的是将堆中所有的空间块连成一块,即将所有的占用块部集中到可利用空间的低地地区,而剩余的高地址区成为一整个地继连续的空闲块,如图8.13所示,其中(a)为紧缩前的状态,(b)为紧缩后的状态·图8.13 a 紧缩前 b紧缩后和无用单元收集类似,为实现存储紫编,首先要对占用块进行“标志”,标志算法和无用单元收集类同(存储块的结构可能不同),其次需进行下列4步雄作:(1)计算占用块的新地址。

从最低地址开始巡査整个存储空间,对每一个占用块找到它在紧缩后的新地址。

为此,需设立两个指针随巡查向前移动,这两个指针分别指示占用块在紧缩之前和之后的原地址和新地址。

因此,在每个占用块的第-·个存储单位中,除了设立长度域(存储该占用换的大小)和标志域(存储区别该存储块是占用块或空闲块的标志)之外,还需设立一个新地址城,以存储占用块在紧缩后应有的新地址,即建立一张新,旧地址的对照表m(2)修改用户触初始变量表,以便在存储紧缩后用户程序能继续正常运行*。

(3)检查每个占用块中存储的数据,若有指向其他存储换的指针,则需作相应修改.(4)将所有占用块迁移到新地址走,这实质上是作传送数据的工作。

至此,完成了存储紧缩的操作,最后,将堆指针赋以新值(即紧缩后的空闲存储区的最低地址)。

可见,存储紧缩法比无用单元收集法更为复杂,前者不仅要传送数据(进行占用块迁移),而且还有需要修改所有占用块中的指针值。

因此,存储紧缩也是个系统操作,且非不得已就不用。

3. 覆盖和交换技术3.1 覆盖技术引入覆盖 (overlay)技术的目标是在较小的可用内存中运行较大的程序。

这种技术常用于多道程序系统之中,与分区式存储管理配合使用。

覆盖技术的原理:一个程序的几个代码段或数据段,按照时间先后来占用公共的内存空间。

将程序必要部分(常用功能)的代码和数据常驻内存;可选部分(不常用功能)平时存放在外存(覆盖文件)中,在需要时才装入内存。

相关文档
最新文档